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Abstract. More and more scenarios rely today on data analysis of mas-
sive amount of data, possibly contributed from multiple parties (data
controllers). Data may, however, contain information that is sensitive or
that should be protected (e.g., since it exposes identities of the data sub-
jects) and cannot simply be freely shared and used for analysis. Business
rules, restrictions from individuals (data subjects to which data refer),
as well as privacy regulations demand data to be sanitized before being
released or shared with others. Unfortunately, such protection typically
comes with a loss of utility of the released data, impacting the perfor-
mance of the analytics tasks to be executed.

In this paper, we present DT-Anon, a target-driven anonymization ap-
proach that aims at protecting (anonymizing) data while preserving
as much as possible the capability of a classification task operating
downstream to learn from the anonymized data. The basic idea of our
approach is to perform the anonymization process on partitions pro-
duced by a decision tree driven by the target of the classification task.
Each partition is then independently anonymized, to limit the impact of
anonymization on the attributes and values that work as predictors for
the target of the classification task. Our experimental evaluation confirms
the effectiveness of the approach.

Keywords: data anonymization - machine learning classifier - target-
driven anonymization - decision tree

1 Introduction

Today’s society is highly dependent on data, with huge (and ever increasing)
amount of data generated, collected, and processed. Concepts such as big data,
data analytics, and machine learning are today common terms for the layperson,
witnessing their pervasiveness in every context of our daily life. As a matter of
fact, the availability of massive amount of data, together with powerful and
efficient computational infrastructures and services, and hence ability to extract
knowledge from data, is at the heart of our smart society, bringing great benefits
in different domains, from business to leisure.
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More and more scenarios rely today on different parties contributing to the
collection, sharing, and analysis of data. However, often data collections include
information that cannot be freely shared (e.g., [2]). This is, for example, the
case of data referred to individuals, whose privacy needs to be protected, as
demanded by data regulations. The EU General Data Protection Regulation
(GDPR), the California Consumer Protection Act (CCPA), and other similar
regulations worldwide, demand protection for information referred to individu-
als (data subjects) whose identity and sensitive information should be properly
protected by data anonymization solutions (with anonymized data being exempt
from the obligations set out in the regulations).

Notwithstanding the great benefit of operating on data, it is therefore of
utmost importance to ensure that the privacy of data subjects (to whom the data
refer) be properly protected in such data sharing and analytics process. When
data analysis is performed by external parties (other than the data controller
responsible for the data), this implies that data should be properly anonymized
before being shared with these parties. Unfortunately, anonymization, which
by design causes information loss (for a privacy gain) in the data, can have a
significant negative impact on the performance of the downstream data analytics
task, with the known tension between privacy and utility.

In this paper, we consider a scenario characterized by multiple parties (data
controllers) contributing data for a data analytics task. Our goal is to design a
target-driven anonymization approach, that is, a data anonymization approach
aware of the data analytics task operating downstream, and driven by it. We
consider classification as data analytics task, and present a technique that both
protects the privacy of data subjects and maintains the utility of the anonymized
data with respect to the classification task to which data are fed. Figure 1 shows
our reference scenario, with data controllers anonymizing their data before pro-
viding them for the global knowledge base on which the classification task oper-
ates. Our data anonymization approach, called DT-Anon, anonymizes data aware
of the data classification task to which data are contributed, with the goal of
minimizing the effect of protection on the data analysis to be executed.

The remainder of the paper is organized as follows. Section 2 illustrates the
basic concepts of our approach. Section 3 describes the problem addressed and
the rationale of our approach. Section 4 describes our target-driven anonymiza-
tion. Section 5 illustrates our experimental evaluation. Section 6 discusses related
work. Finally, Section 7 presents our conclusions. Appendixes A and B report a
theorem on the approach and the DT-Anon pseudocode, respectively.

2 Basic Concepts

We consider anonymization of datasets to be contributed to a data analytics
task. Wishing to operate with truthful information for data analytics [1], we as-
sume anonymization to be carried out according to k-anonymity [4, 12| enhanced
with (-diversity [11]. We assume datasets to be anonymized to be relational ta-
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bles, where each relation R is characterized by a set {ay,...,a,} of attributes
comprising:

— iddentifiers: attributes identifying data subjects, that is, entities to which
data refer (we consider these attributes to be removed before release and
therefore discard them from our treatment);

— quasi-identifier: set of attributes that jointly can, through linking with other
sources, possibly reduce the uncertainty about identities of data subjects;

— sensitive: attribute whose values, in association with (the identity of) data
subjects, are considered sensitive and should therefore be protected.

Data anonymization through k-anonymity and ¢-diversity implies generaliz-
ing values of the quasi-identifier attributes to ensure each combination of (gen-
eralized) values of quasi-identifying attributes appearing in the table to occur
at least k times (k-anonymity), and each group of tuples with the same general-
ized quasi-identifying values to have at least ¢ well-represented sensitive values
(¢-diversity). We consider generalization applied at the level of cell (in contrast
to the whole attribute column), hence operating at finest possible grain to limit
information loss [5]. We represent the generalized value for a set of values as the
interval between the minimum and maximum values in the set for continuous
(i.e., numerical) attributes, and as a set comprising all the values for categor-
ical attributes. Also, for simplicity, in the following examples, we assume the
well-represented criterion of /-diversity to be enforced by requiring each group
to include at least ¢ different values (¢ = 1 implies requiring only k-anonymity
to hold with no restriction on the occurrences of the sensitive values). We re-
fer to a transformed (generalized) version of a relation satisfying k-anonymity
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Fig.2: An example of original relation (a) and of two (2,2)-anonymous versions
of the original relation (b)-(c)

and (-diversity as a (k, £)-anonymous version of the relation. Figure 2 illustrates
an example of original dataset and two possible (2, 2)-anonymous versions of it,
considering Age and State to work as quasi-identifier and attribute Income to
be sensitive.

3 Problem Definition and Sketch of the Approach

Our reference scenario is characterized by multiple data controllers contributing
data for a data analytics task, operating on the collective information contributed
by the different controllers. As data analytics task we consider classification. The
goal of classification is to lear from classified data a model (classifier) able to
predict the class (i.e., the value of a target attribute) associated with unseen
data. Intuitively, classification learns dependencies of a given attribute (target)
from other attributes (predictors) in the dataset. Datasets contributed by data
controllers collectively represent the training data on which the classification
task learns. We therefore consider a dataset R(ai,...,a,) to be released by
a data controller contributing to the classification task to include, besides the
quasi-identifier and sensitive attributes, also a

— target attribute, denoted 7, of interest for the classification task for which
data are released.

Note that the target attribute cannot coincide with the sensitive attribute,
by the definition of the problem at hand (as we aim at maintaining as much as
possible the correct prediction of the target attribute while protecting instead
inferences on the sensitive attribute).

Data may contain identifying, quasi-identifying, or sensitive information, and
therefore should be anonymized before being released to external parties. As said,
we assume anonymization with k-anonymity and ¢-diversity, and hence the re-
lease to the classification analytics task of (k, £)-anonymous datasets. Anonymiza-
tion is enforced independently by each data controller, which could even operate
with different values of k& and ¢, depending on the degree of protection wished.
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Fig. 3: Overall working of our target-driven anonymization

The problem then becomes the possible negative impact of the anonymiza-
tion on the ability of the classification task to learn dependencies relevant for
the classification, that is, dependencies between attributes that represent good
predictors of the target and the target. Intuitively, if predictor attributes are
generalized in the anonymization, the classification will be operating with less
information (suffering the information loss caused by generalization). Since dif-
ferent anonymous versions of a table can exist, corresponding to different groups
of generalized tuples and/or generalization of different attributes/values in the
quasi-identifier, our goal is the definition of an anonymization process aware of
the data analytics task downstream and driven by it.

Basically, the problem we address is: Given a relational table R(ay, ..., ay)
where the set {ay,...,a,} of attributes includes quasi-identifier attributes QI,
a sensitive attribute s, and a target attribute T, compute a (k,£)-anonymous
version of R that performs well for a classification task with target 7.

In other words, we aim for an anonymization that preserves as much as possi-
ble the correlation among quasi-identifier and target values. With generalization
as the technique for achieving anonymization, this implies to aim for a gener-
alized version of the dataset that maintains as specific as possible the values of
the predictor attributes in the quasi-identifier on which the target values de-
pend more, generalizing instead values of other attributes from which the target
attribute is less (or no) dependent. We do so by applying the anonymization pro-
cess on subsets of the dataset, where each subset groups tuples that are equal
or most similar with respect to predictor attribute values (so that generalization
does not affect them or affect them with limited information loss).

Our approach, called DT-Anon, comprises two steps (Figure 3):

— target-driven partitioning operates on the datasets by partitioning data pro-
ducing groups driven by the target of the classification task. More precisely,
groups are defined through a decision tree guided by the classification target.
Intuitively, the decision tree partitions the tuples producing groups that will
have equal or close/similar predictor values; hence avoiding their generaliza-
tion or limiting the effect of a possible generalization on them.
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— group anonymization applied on each group of tuples produced in the pre-
vious step (leaf nodes of the decision tree) with a classical anonymization
approach.

Since the target-driven anonymization is enforced independently by each data
controller before releasing data, in the following we illustrate our approach with
reference to a single dataset. We will consider the presence of different of such
anonymized datasets used for the same data analytics task in the experimental
evaluation (see Section 5).

Ezample 1 (Running example). As running example, we consider the table in
Figure 2(a), where the pair (Age,State) is the quasi-identifier, Income is the
sensitive attribute, and Job is the target for the classification task to which data
are to be contributed (the example omits identifiers and other attributes since
they are not relevant for the work). We will also refer to the two (2, 2)-anonymous
versions of the table reported in Figures 2(b)-(c).

4 Target-Driven Anonymization

We describe in more details the two phases of our target-driven anonymization.

4.1 Target-Driven Partitioning

The first step of our approach is the partitioning of tuples to produce groups
of tuples that - when generalized - best preserve the correlation between (gen-
eralized) quasi-identifier and target values. Intuitively, this corresponds to pro-
duce groups that maintain in the same group tuples with the same (or as close
as possible) values for predictor attributes in the quasi-identifier, so that the
anonymization (generalization in particular) would not affect, or has limited im-
pact, on them. Of course, predictors are not known, but should be learned from
the data themselves.

Our approach to such target-driven partitioning is to use a machine learning
algorithm based on a decision tree to make predictions. In other words, we create
a model that predicts the value of the target attribute by learning decision rules
from the other (quasi-identifier) attributes.

The construction of a decision tree starts from the root node that represents
the whole dataset. The decision tree is then recursively built by splitting the
dataset represented by a node into subsets that are represented as its child
nodes. More precisely, for each node of the tree, a set of possible split values is
identified for each attribute. The algorithm for the construction of the decision
tree selects the attribute and the split value(s) that are most significant with
respect to a specific criterion defined on the target 7] (e.g., information gain).
This process terminates when a stopping condition is satisfied (e.g., the values
of the target attribute for the tuples in the leaf nodes are sufficiently uniform or
all the attributes have been used for splitting). By construction, the attributes
used in the splitting operations are those on which the target attribute depends
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more since they permit to partition the tuples in groups that are as similar as
possible with respect to the target attribute. Furthermore, the tuples in these
groups are also similar with respect to these attributes since they all satisfy the
same decision rules (i.e., the if-then rules defined over the attributes used in the
splitting operation).

We adapt this classical construction of a decision tree to our goal. First, we
only use the quasi-identifier attributes for the splitting operations. Other at-
tributes, including the sensitive attribute, are not considered. The rationale for
using the quasi-identifiers only is that, as previously mentioned, the construction
of the decision tree identifies the (quasi-identifier) attributes on which the tar-
get depends more and tuples with similar values for these attributes are grouped
together, which is exactly what we need. The reason for not using the sensitive
attribute (e.g., Income for our running example) is the need to ensure diversity
of its values in each generalized group. The reason for not considering other at-
tributes is that they are not affected by generalization and their values therefore
are never impacted by the process. Using them not only would not help but
could actually have negative effect, as it might prevent optimal consideration of
quasi-identifier predictors in the partitioning (which would eventually result in
more generalization on them). Second, we add the condition that a node can be
split only if the resulting child nodes represent a partition of the parent relation
with a sufficient number of tuples for satisfying the k-anonymity and ¢-diversity
requirements. (Intuitively, this requires the parent node to have at least 2k tuples
to permit at least a binary split.) Each leaf node of a decision tree built consid-
ering these two changes is therefore a node that, by construction, represents a
group of tuples of size at least k and with at least ¢ well-represented values for
the sensitive attribute. This target-driven partitioning phase ensures to result in
a (k, £)-compliant decision tree formally defined as follows.

Definition 1 ((k,¢)-compliant decision tree). Let R(as,...,ay) be a rela-
tion with QI, s, and T the quasi-identifier, sensitive, and target attributes in
{a1,...,a,}, respectively, and DT (N, E) be a decision tree built over R for pre-
dicting target attribute T, with N the set of nodes and E the set of edges. DT
is a (k,{)-compliant decision tree iff for each leaf node n € N, the set of tuples
R, represented by n is such that | R, |> k and R, includes tuples with at least
£ well-represented values for s.

Ezample 2 (Decision tree). Figure 4 illustrates an example of a decision tree
built over the relation in Figure 2(a). The root node coincides with the whole
table that is split over attribute State. The resulting child nodes correspond
to the set of tuples related to employees working in California (CA), Minnesota
(MN), and Texas (TX). For employees working in California, there is a further
split that distinguishes between employees with age less than or equal to 40 and
over 40. The leaf nodes are labeled with either ‘Gov’ or ‘Non-gov’ as job. For
each node, attributes with a gray background are those used for splitting, and
attributes with gray values are the attributes that cannot be used for splitting
(i.e., sensitive attribute or attributes already used for split). In this tree, for
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Fig.4: An example of decision tree built over the relation in Figure 2(a)

example, the first (from left) leaf node corresponding to the set {t2,t3} of tuples
is associated with a decision rule of the form “IF State=CA AND Age< 40 THEN
Job is ‘Non-gov’”. Since each leaf node represents a group of at least two tuples
with at least two different values for the sensitive attribute Income this is a
(2,2)-compliant decision tree.

4.2 Group Anonymization

The goal of the second phase is to independently anonymize each group of tuples
represented by the leaf nodes of the (k,£)-compliant decision tree built in the
previous phase. The construction of the groups, clustering together tuples that
are equal or close in values for predictors, ensures minimizing the impact of gen-
eralization on predictors. The problem becomes then to compute a generalization
that produces a (k, £)-anonymous version of each leaf node while minimizing in-
formation loss. This can be achieved with classical approaches for k-anonymity
and (-diversity. In particular, we consider the application of Mondrian [10], a
multi-dimensional algorithm that provides an efficient and effective approach for
achieving k-anonymity (which we consider extended with ¢-diversity). Mondrian
leverages a spatial representation of the data, mapping each quasi-identifier at-
tribute to a dimension, and each combination of values of the quasi-identifier
attributes to a point in such a multi-dimensional space (multiple tuples with the
same coordinates translate into a point with a multiplicity greater than 1). Mon-
drian then recursively partitions the multi-dimensional space in two sub-spaces
by selecting a dimension (i.e., an attribute in the quasi-identifier) and a split
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Fig.5: An example of a relational table (a) with its spatial representation and
partitioning (b), and the corresponding (2, 2)-anonymous version (c)

point (i.e., a value in the domain of such an attribute), in such a way that each
sub-space includes at least k points/tuples with at least ¢ different values for the
sensitive attribute. The process terminates when any further partitioning would
generate sub-spaces with less than & points (or the points in the sub-spaces would
have less than ¢ different values for the sensitive attribute). Finally, all the tuples
in each subspace are generalized to the same combination of (generalized) values
for the quasi-identifier. The motivation for choosing Mondrian is that, while it
being a well established reference in the field as efficient and effective approach,
its approach to cutting multi-dimensional space to partition tuples is similar to
how a decision tree works.

Ezample 3 (Anonymization). Consider the table in Figure 2(a) and the deci-
sion tree in Figure 4, where again the quasi-identifier is the pair (Age,State).
Anonymization is applied independently on the four leaves. For the groups of
two tuples no further split can be performed and hence only generalization is
applied, reporting the age interval (instead of the specific values). For the group
of four tuples, also reported in Figure 5(a) and in the multi-dimensional space
in Figure 5(b), Mondrian will perform a split over attribute Age (the only one
with different values) resulting in two groups to be generalized (Figure 5(c)).

The anonymized version of the dataset is finally obtained through the union
of the anonymized groups represented by the leaf nodes of the (k, £)-compliant
decision tree. Clearly, being each group of tuples (k, £)-anonymous, also the union
is, as formally captured by the theorem in Appendix A. For instance, the whole
dataset comprising the results of the anonymization of the different groups pro-
duced by the decision tree in Figure 4 is the table in Figure 2(b). Appendix B
presents the algorithm used to compute a target-driven anonymization of a re-
lation.

5 Experimental Results

We conducted a series of experiments to evaluate the effectiveness of DT-Anon in
producing an anonymized dataset that can be used for training a classifier with
good performance. In the following, we first describe the methodology applied
and the datasets used in the experimental evaluation (Section 5.1), and then
report and discuss the experimental results (Section 5.2).
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Fig. 6: Experimental scenario

5.1 Experimental Settings

Methodology. Our experimental evaluation has the goal of comparing the
performance of a classifier when considering anonymization of the dataset of each
single data controller running independently from the classification goal (i.e.,
following a classical approach) and when considering anonymization produced
by DT-Anon. To evaluate the impact of anonymization on the classification task,
we also evaluate the performance of the classifier trained over the original (raw)
datasets.

Figure 6 illustrates the experimental scenario with multiple data controllers
simulated by our experiments. We evaluated the classifier using different avail-
able datasets, partitioning the data in a training and a test set. To simulate the
presence of multiple data controllers, we randomly partitioned the training set in
different datasets (on which we then operated independently). In the paper, we
report the results for the case of two data controllers, assuming two partitions
of the original data on which the target-driven anonymization operated inde-
pendently. For simplicity, we assumed & and ¢ (for which we considered different
values) to be the same for all the data controllers.

As classifier, we considered a neural network, which implied transforming
data into numeric variables to be fed in the neural network. Transformation,
dependent on the type of attributes, worked as follows.

— Categorical attributes. Each categorical attribute is replaced with x binary
attributes (one for each possible value of the attribute). Data values are then
encoded through their representation via the binary attributes, setting to 1
the binary attribute(s) corresponding to their value(s). Scalar values will
have only one binary attribute set to 1 (single-hot encoding) while sets of
values (resulting from generalization) may have more than one attribute set
to 1 (multi-hot encoding). For instance, with reference to the table in Fig-
ure 2(c), attribute State will be represented using three binary attributes
(Statecs, Stateyy, and Statery), and its generalized value in tuple t5 en-
coded with the first two attributes set to 1 and the latter set to 0.
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— Numerical attributes. Scalar values of numerical attribute a are standardized,
meaning that each value v is substituted with (v — p,)/04, where g, is the
mean of the values in the relation for attribute ¢ and o, is their standard
deviation. For interval values (resulting from generalization), transformation
is preceded by replacing each interval value with its mid point. For instance,
with reference to our running example, Age interval [62-64] in generalized
tuples t7 and t1; is replaced by 63.

The transformed anonymized datasets have then been used for training a
classifier. We built a neural network with three hidden layers with 64, 32, and
16 neurons, respectively. We used the ReLu activation function and the Adam
optimizer. These are the default parameters also used in the scikit-learn® imple-
mentation.

Evaluation metrics. We evaluated the performance of the neural network
(trained over anonymized datasets or raw datasets) by measuring the accuracy
and the Fl,,4cr0 Score. Accuracy is the ratio between the number of correct
predictions and the total number of predictions. It then measures the percentage
of correct classifications that a trained machine learning model achieves. F1 010
score is defined as the average of the class-wise F'1 scores and is used for a multi-
class classification problem. Formally, given a classification problem with a set
C of classes, the F1,,,c0 score is defined as: Flyacro = M where F1(c)
is the F1 score (i.e., the harmonic means of precision and recall) computed for
class c.

Datasets. We performed experiments on different publicly available real-world
datasets. We report here the results on datasets: Bank and Nursery, from the
UCI machine learning repository and Customer _segmentation, from the Kaggle
platform. The datasets, whose attributes are reported in Table 1, are as follows.

— Bank dataset? describes individuals using both numeric and categorical at-
tributes (45,211 tuples). The dataset refers to direct marketing campaigns
based on phone calls related to a Portuguese banking institution. We con-
sider as sensitive the binary attribute default that can assume two values
stating whether the individual has credit in default. The target attribute is
y that represents whether a client of the bank has subscribed a bank term
deposit and has two possible values: ‘yes’ and ‘no’.

— Nursery dataset® describes individuals using categorical attributes (12,960
tuples). It contains information derived from a hierarchical decision model
that was realized to rank nursery school applicants. We consider as sensitive
the categorical attribute social that represents the social conditions of the
family of the applicant and can assume three values. The target attribute is
class that represents the decisions and has five possible values: ‘not _recom’,
‘recommend’, ‘very recom’, ‘priority’, and ‘spec_ prior’.

! https://scikit-learn.org/stable
2 https://archive.ics.uci.edu/dataset /222 /bank-+ marketing
3 https://archive.ics.uci.edu/dataset /76 /nursery
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Table 1: Overview of the attributes in the considered datasets

QI

Dataset Categorical Numeric Target (7) | Sensitive (s) Others
job age y default pdays
marital balance (2 values) (2 values) previous
education duration campaign

Bank housing poutcome
loan contact
day of week
month
parents, has_nurs class social
form (5 values) (3 values)
Nursery children
housing
finance
health
gender age segment spending _score | var_ 1
Cust _segm | ever married work exp (4 values) (8 values)
graduated fam_size
profession

— Customer segmentation dataset* describes individuals using both numeric
and categorical attributes (13,330 tuples). The dataset includes information
on the customers of an automotive company. We consider as sensitive the cat-
egorical attribute spending that represents the individual’s spending score
and can assume three values. The target attribute is segment that represents
the market segment and has four possible values: ‘A’; ‘B’, ‘C’, and ‘D’.

5.2 Results

Our experiments compare the performance of classifiers trained with anonymized
datasets varying the privacy parameters k and ¢. In the following, we use DT-
Anon to refer to the neural network trained over a dataset anonymized with DT-
Anon, and Anon to refer to the neural network trained over a dataset anonymized
with a classical anonymization algorithm (which, in our implementation, is Mon-
drian revised to support the ¢-diversity requirement). The performance of clas-
sifiers has been measured considering both the accuracy as well as the F1 010
score varying k (considering values 2, 5, 10, 15, 20, 25, 50) and ¢ (considering
values 1, 2, 3, according to the number of distinct values for the sensitive at-
tribute in the datasets). We consider as a baseline the neural network trained
with the original (non anonymized) datasets. Figures 7-9 illustrate the results
of our experiments. In the figures, the orange (light gray in b/w) lines and bars
refer to DT-Anon and the blue (dark gray in b/w) lines and bars refer to Anon.
For each dataset and for each value of ¢, we draw two line charts and one bar
chart showing: accuracy, Flyacro Score, and the ratio between the F1,acr0 ScOTE
of DT-Anon (or Anon) and the Fl,,,¢10 score of our baseline, respectively. This

* https://www.kaggle.com/datasets,/kaushiksuresh147 /customer-segmentation
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Fig. 7: Accuracy, Flyacro, and Flyacro ratio varying k and £ for the Bank dataset

ratio shows how well a supervised learning model (our neural network) learns
from the anonymized datasets with respect to how well it learns from the orig-
inal raw dataset. In other words, it shows how much the anonymization of the
dataset impacts the capability of the model to learn from (anonymized) data. As
it is visible from the figures, DT-Anon performs better than Anon with almost
all datasets and values of k and /.

Accuracy. The experiments (line charts in the first column of Figures 7-9) show
that the accuracy tends to decrease as the value of k and ¢ increases. This trend
is due to the fact that higher values for k£ and ¢ require a higher amount of
generalization, thus implying higher information loss that in turn produces a
decrease in the effectiveness of the anonymized datasets in the learning process.

Flmacro- The Flyacro score has a similar trend as the accuracy across all datasets
(line charts in the second column of Figures 7-9). The experiments also show
that, even though the enforcement of both the k-anonymity and ¢-diversity re-
quirements with ¢ > 1 is stricter than the enforcement of the k-anonymity re-
quirement only, the impact on the capability of the neural network to learn from
the anonymized data remains similar to the cases where £ = 1. Furthermore, the
Flimacro score of DT-Anon is constantly higher than the F1,,,.0 score of Anon.

Flyacro 71atio. The Flpaco ratio of DT-Anon for the Bank and Cus-
tomer_segmentation datasets remains always higher than 0.82 (bar chars in
Figures 7- 9), again confirming that, with DT-Anon, the neural network pre-
serves the capability of learning from the anonymized datasets. The Flacro
ratio of Anon is constantly lower. For the Nursery dataset the values are lower
than those obtained for the other two datasets (from 0.60 with & = 50 and ¢ = 2
to 0.98 with & = 2 and ¢ = 2). Such values are, however, much higher than
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Fig.8: Accuracy, Flnacro, and Flyaero ratio varying k and ¢ for the Nursery
dataset

those obtained for Anon. This is probably due to the correlation between the
quasi-identifier attributes and the target attribute in Nursery, which DT-Anon
captures and preserves.

6 Related Work

The problem of studying the effects of anonymization (e.g., k-anonymity, ¢-
diversity) on machine learning models has been the subject of several works
(e.g., [3,6,9,13,14]).

Some of these proposals address the problem of evaluating the impact of dif-
ferent existing anonymization algorithms on the result of machine learning mod-
els (e.g., classifiers) and whether data anonymization can be enough to achieve
privacy in machine learning (e.g., [13, 14]).

Other proposals instead consider a problem similar to the one addressed in
this paper and define an anonymization strategy that takes into account the
subsequent use of the anonymized datasets (e.g., [3,6,8,9]). The work in [9] has
introduced the problem of anonymizing data depending on a workload, which
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Fig.9: Accuracy, Flyacro, and Flyaeo ratio varying k& and ¢ for the Cus-
tomer_ segmentation dataset

can be a classification or regression model or selection/projection predicates (i.e.,
selection or projection predicates that identify a subset of the data on which the
anonymization is applied). The authors propose a variation of Mondrian where
data are split in a way that minimizes the weighted entropy over the set of
resulting partitions without violating the k-anonymity requirement. The main
differences with our approach are that we consider a scenario with multiple data
controllers and we can anonymize data using any anonymization algorithm. The
work in [6] defines a method for learning how to generalize unseen data for
classification analysis. It starts from an existing machine learning model and
learns how unseen data should be generalized by training a generalized model
(i.e., a decision tree) with data labeled with the existing model’s predictions.
The decision tree is then used to derive a set of generalization ranges obtained
by combining the split values of each attribute from the tree’s internal nodes.
While sharing with us the idea of using a decision tree to build groups of “similar
tuples”, the problem addressed is completely different. Also the work in [8] builds
a decision tree to determine the attributes that most influence the value of the
target attribute. Leaf nodes of the decision tree with more than k data items
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are then anonymized by suppressing all attributes that are not used along the
path from the root to the considered leaf node. Otherwise, a prune procedure
is applied to obtain new leaf nodes of size at least k. The anonymization via
suppression is then applied on these new leaf nodes. This proposal differs from
our proposal in several aspects. The decision tree is build in a different way,
the ¢-diversity requirement is not considered, and the anonymization is enforced
only through suppression, thus potentially reducing the information available for
the classification task. In [3] the authors propose an approach for anonymizing
data guided by relaxed functional dependencies. Such dependencies specify what
subsets of attributes can be generalized and at which level, so to achieve a
minimum level of anonymity (expressed through the k-anonymity requirement)
while preserving data utility as much as possible. Data utility is measured in
terms of classification accuracy and information gain. A set of generalization
rules is extracted from the relaxed functional dependencies and then used for
anonymizing datasets.

Other complementary solutions propose different anonymization strategies
to improve the trade-off between privacy and utility also in machine learning
scenarios (e.g., [15]).

7 Conclusions

We addressed the problem of anonymizing data in a scenario where multiple
data controllers contribute to a classification task. We proposed DT-Anon, a
data anonymization approach aware of and driven by the classification task
downstream. DT-Anon enables data controllers contributing with their data to
a classification task to anonymize their data while maintaining utility for the
classification task. The experimental results confirm the ability of DT-Anon to
limit, with respect to classical anonymization approaches, the information loss
caused by data anonymization and hence its effect on the performance of the
classification task. The paper leaves space for future work, including the con-
sideration of other anonymization approaches (e.g., differential privacy) and the
consideration of multiple data analytics tasks (e.g., tasks with different target
attributes).
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A Theorem and Proof

Theorem 1 ((k,¢)-anonymous dataset). Let R(aq, ..., ay) be a relation with
QI, s, and T the quasi-identifier, sensitive, and target attributes in {ai,...,an},
respectively, k and £ be the privacy parameters, and DT(N,E) be a (k,{)-
compliant decision tree built over R for T. The relation R = Unen ]?En, with

R, the (k, £)-anonymous version of relation R, and n € N a leaf node of DT,
is (kK', €)-anonymous, with k' > k.

Proof. Let R, be the partition of R represented by leaf node n in DT, and ]?in
its (k, ¢)-anonymous version. Table R obtained merging the (k,¢)-anonymous
partitions Em, . .7§nm of the leaf nodes ny,...,n,, of DT includes m (k,¥¢)-
anonymous partitions of R. Since each combination of (generalized) values for
the quasi-identifier QI have either 0 or at least & occurrences in each ﬁn, such
a combination will have either 0 or at least k occurrences also in R. Since a
specific combination of (generalized) values for the quasi-identifier could appear
in more than one anonymized partition, the number of occurrences of such a
combination of values could be higher than k (i.e., > j - k if appearing in j
partitions). Therefore, R is k’-anonymous with ¥° > k. Furthermore, table R
still satisfies the ¢-diversity property since the groups of tuples having the same
combination of (generalized) values for QI can only grow (due to the presence
of groups of tuples with the same value for QI in more than a partition of R).
Hence, the number of well represented values can either grow or remain the
same. O

B DT-Anon Algorithm

We now describe DT-Anon algorithm that enforces the target-driven anonymiza-
tion. Figure 10 illustrates the pseudocode of the algorithm implementing the two
phases of our approach.

Target-driven partitioning. Figure 10 illustrates the pseudocode of BuildDT, a
recursive procedure used in the first phase of the DT-Anon algorithm for com-
puting a (k,¢)-compliant decision tree. Procedure BuildDT receives as input
a node n of the decision tree (which corresponds to the root node at its first
invocation). The procedure first identifies the set R, CR of tuples that satisfy
the decision rule, denoted d,,, associated with node n (line 1). The procedure
then verifies whether such a set of tuples can be further split (line 2). Existing
decision tree algorithms split a node into child nodes until a stopping criterion is
met or until the node represents a set of tuples with an homogeneous value for
the target attribute. The BuildDT procedure adds a further check and verifies
whether the set R, of tuples represented by the considered node includes at
least 2k tuples (i.e., at least a binary split can be enforced on the node). In this
case, the procedure identifies all the possible candidate splits for n (line 3), con-
sidering the available attributes and partitions of their domains (like classical
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Input

R(ai,...,an): original relation

QI: quasi-identifier attributes in {a1,...,an}
s:  sensitive attribute in {a1,...,an}

7:  target attribute in {a1,...,an}
k: anonymity requirement
)4 diversity requirement

Output
R

: (k,{)-anonymous version of R

DT-Anon
/* Phase 1: Compute a (k, £)-compliant decision tree DT(N, E) */
1: N := RooT; E := () /* set N of nodes and set E of edges of DT */
2: BuildDT(ROOT) /* ROOT node representing R */
/* Phase 2: anonymize the leaves of DT */
3: _[/:E =0
4: for each leaf node n € N do
5: Rn:dn(R)
6: R:=RU Anonymize(R,)
7: return(ﬁ)
BuildDT(n)
1: let R,=d,(R) /* set of tuples in R satisfying decision rule d,, of n/*

2: if |R,| > 2k AND 3t;,t;€ Ry ti[7]#t;[7] AND stop condition is not satisfied
3: then let Split be all possible splits of Ry,

4: repeat

5: choose the most promising split in Split

6: let N’ be the set of nodes resulting applying split on R,

7 found := TRUE

8: while found=TRUE AND N’ # () do

9: let n; € N' and Ry, =dn, (Ry)

10: if |Rn;| < k OR Rn, has less than £ well-represented values for s
11: then found := FALSE

12: else N’ := N’ \ {n;}

13: Split := Split \ {split}

14: until Split=0 OR found=TRUE

15:  if found=TRUE

16: then let N’ be the set of nodes resulting applying split on R,
172 N:=NUN’'

18: for each n;eN’ do

19: E :=E U (n,n)

20: BuildDT(n;)

Fig. 10: Pseudocode of the DT-Anon algorithm
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algorithms for building a decision tree). The procedure then evaluates, in de-
creasing order or effectiveness on the classification, the candidate splits checking
whether the considered split split guarantees that the decision tree satisfies Def-
inition 1 (lines 4-14). If split produces a (k, £)-compliant decision tree, the split
is enforced and the procedure recursively invokes itself on each (child) node re-
sulting from the split (lines 15-20). As an example, suppose that the data owner
wishes to compute a (3,1)-anonymous version of the relation in Figure 2(a).
DT-Anon starts by invoking procedure BuildDT that, as shown in Figure 4,
splits the relation on attribute State in three child nodes. The second split of
the first (from left) child node in Figure 4 would be instead prevented because
it generates two partitions with less than 3 tuples each.

Group anonymization. The second phase of the DT-Anon algorithm in Figure 10
consists in independently anonymizing the (sub)relations represented by the leaf
nodes of the (k, £)-compliant decision tree built in the first phase. For each leaf
node n € N of the decision tree, the algorithm invokes an anonymization algo-
rithm on relation R,,, and returns the (k, £)-anonymous version of R,,, which is
appended to the other (k,£)-anonymous relations.
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