AN ACCESS CONTROL SYSTEM FOR
SVG DOCUMENTS

E. Damiani!, S. De Capitani di Vimercati?, E. Fernandez-Medina®, and
P. Samarati!

(1) Dipartimento di Tecnologie dell’Informazione - Universita di Milano, Crema, Italy
{damiani,samarati}@dti.unimi.it

(2) Dipartimento di Elettronica per I’Automazione - Universita di Brescia, Brescia, Italy
decapita@ing.unibs.it

(8) Escuela Superior de Informdtica - Univ. of Castilla-La Mancha, Ciudad Real, Spain
Eduardo.FdezMedina@uclm.es

Abstract The monolithic nature of traditional raster images makes controlled
dissemination of their internal features a difficult task. Recently, how-
ever, XML-based graphics formats such as the Scalable Vector Graphics
(SVG) standard are becoming increasingly popular due to their recog-
nized advantages in terms of application interoperability. In this paper
we exploit the XML-based data model of SVG to present a model and
a syntax aimed at selectively controlling access to graphic information
on the Internet.

Keywords: Access Control, SVG Documents, Vector graphic

1. INTRODUCTION

Vector graphics is a time-honored technique that uses geometrical
formulas to represent images, achieving more flexibility than usual raster
graphics relying on bit maps. For instance, vector-oriented images can be
resized and stretched without any loss of image quality; also, repetitive
geometric elements can be defined once and used many times, so that
high-quality vector images often require less memory than lower quality
bit-mapped ones. While in the past vector graphics was confined to
computationally intensive design applications, it is now spreading to new
application fields. An increasing amount of the multimedia information
being transmitted over the Internet is in the form of vector image data,
encoded by means of new XML-based standards such as the World Wide
Web Consortium’s Scalable Vector Graphics (SVG) [6], which allows

2

describing two dimensional vector graphics (specifically vector graphic
shapes, images, and text) for storage and distribution on the Web. In
contrast to raster image format such as GIF, JPEG, and PNG, SVG has
many advantages:

m SVG documents are plain text, so they can be read and modified
easily.

m Being SVG a vector format, SVG images can be resized without
loss of quality and printed at any resolution. Also, graphical ob-
jects can be easily grouped, restyled, and transformed.

m Sophisticated interactive and dynamic applications of SVG are
made possible by the Document Object Model (DOM) [7] underly-
ing all XML-based formats. User interaction is managed via a rich
set of event handlers that can be assigned to any SVG graphical
object.

m SVG offers all the advantages of XML, including interoperability,
internationalization (via its support of the Unicode character sets),
XSLT restructuring capability [8], and easy manipulation through
standard DOM APIs.

The current trend toward XML-based vector graphics is affecting dif-
ferent types of data, such as technical plans, organizational charts and di-
agrams, as well as medical images used in diagnosis and research. While
controlling access to text-based documents has since long been a focus
of research activities [5], raster graphic information has been seldom
processed with much concern for access control, mainly because of its
monolithic internal structure: either a user is allowed to see a bitmap im-
age, or she is not. On the other hand, XML-based vector images present
new and challenging feature protection problems, related to fine-grained
access control to their internal structure. Of course, the feature protec-
tion problem could also be solved by storing graphical data in multiple
copies at different levels of detail but this solution is seldom practical.
For instance, in a hospital, if some MRI-scan images are to be released
for research purposes, they must be duplicated omitting any identifying
information, making their distribution slow and costly [10, 11]. In this
paper, we present a novel approach to fine-grained feature protection of
SVG data. Our approach allows to selectively transform SVG graphical
data according to the user’s profile, releasing only the features that the
user is entitled to see. While leveraging on our proposal for protect-
ing XML sources [3], the approach presented in this paper exploits the
peculiar characteristics of SVG documents and provides a simple, yet
expressive, solution for specifying authorization subjects.

An Access Control System for SVG Documents 3

2. A CONCISE OVERVIEW OF SVG

An SVG document has a flexible structure, composed of several op-
tional elements placed in the document in an arbitrary order. After the
specification of the XML version used in the document and information
about the type of the document, there is node SVG that contains all
the elements specific to SVG documents and is composed of four parts:
descriptive text, script, definitions, and body. The descriptive text in-
cludes textual information not rendered as part of the graphic and is
represented by two elements: title, usually appearing only once, and
desc, appearing several times to describe the content of each SVG frag-
ment. The script portion contains function definitions. Each function is
associated with an action that can be executed on SVG objects in the
document. Functions have a global scope across the entire document.
The definition portion contains global patterns and templates of graphi-
cal elements (e.g., path, text, rect) or graphical properties that can be
reused in the body of the SVG document. Each definition is character-
ized by a name, which is used in the body of the document to reference
the definition, and by a set of properties. The body of an SVG document
contains any number of container and graphics elements. A container el-
ement can have graphics elements and other container elements as child
elements. Container g is used for grouping together related graphics ele-
ments. A graphics element can cause graphics to be drawn. For instance,
the use graphics element references another element (usually a defini-
tion) and indicates that the graphical contents of that element must be
drawn at that specific point in the document. Each SVG element may
have its own properties modeled by attributes. All elements in the doc-
ument can be uniquely identified including the special attribute id. It
is also possible to include user-defined properties, which can be useful
for SVG data processing.

2.1. Running Example

Figure 1 illustrates the rendering of a sample SVG document, show-
ing the oncology floor of a hospital, which will be used as a running
example throughout the paper. The document, integrated in a web site,
allows the hospital staff to know both details of the floor (e.g., rooms
and equipments location) and recovered patient information. In partic-
ular, the rectangular appearing at the bottom with the text provides
the information of the patient of bed 1B on which the mouse is cur-
rently positioned (moving the mouse on other beds the corresponding
patient will be returned). Figure 2(a) shows a tree-based representation
of the document rendered in Figure 1, reporting the types associated

ONCOLOGY FLOOR

[I I I I]
! ' I I 1! Store
T
- . - Kitchen
WC

Pharmacy

Room 9 Room 7 Room 5 Room 3 Room 1 o
Emergency I 1 by
Exit Pz
we |]
| Ka Alm B Alm|B Alm(B Alm(B A w® B
Oxygen . Room 10 Room 8 Room 6 Room 4 Room 2
i 1 i 1 1 1
X-Rays
* Patient Infermation
1 = Name: John Coffey
@iy liiness: Bone Cancer
State: Recovery
Treatment: Chemotherapy Drugs
¥ Phone
lca-npue'

. Fire Emergency Control
. Electricity Control

Figure 1. An example of graphic corresponding to an SVG document

with the group elements composing its body. In particular, the body is
a group element with oncologyfloor as identifier and with sub-elements
of type outline, information, PublicArea, PrivateArea, emergency,
and electricity control (the document defines one group for each
of them). Group PublicArea includes public aisle, reception, two
restroom instances, and ten room instances. Each room, in turn, is com-
posed of a graphical representation (rectRoom definition), a name, and
two beds. Each bed is composed of a graphical representation (rectBed
definition) and a name. Occupied beds further include a group with a
new graphic element (rectOccupiedBed definition) and information on
the occupying patient. The graphical representation of an occupied bed
has two event handlers (onmouseover=‘display_information(evt)’
and onmouseout=‘hide_information(evt)’), which show and hide re-
spectively the patient information as the mouse pointer is positioned over
the bed or moved out. Figure 2(b) gives a portion of the corresponding
SVG document.

3. THE FEATURE PROTECTION MODEL

Our approach is based on the use of authorization rules that are them-
selves expressed with an XML-based language. Each authorization rule
specifies the subject to which the rule applies, the object to which the
rule refers, the action to which the rule refers, and the sign describing

An Access Control System for SVG Documents

i
Io—sTs

G
((zecoption)

2 oo)

<?7aml version="1.0" standal.
<IDOCTYPE avg PUBLIC '-//W3C//DTD

Frectlzygenhoon
FoxygenLine

one="no"?>
VG 20010904/ /EN"
“http:/ /www.w3.org/TR/2001/REC SVG 20010904 /DTD /svg10.dtd">
height="16em" 003600 2200">
<title> Small Fragment of a Uncology Floor </title>
<1-- SCRIPT portion starts here -->
<seript type="text/ecmascript">
<1[CDATAL
function display.information(evs) {
function hide_information(evt) {
1>
<Jseript>
<1-- DEFINITION portion starts here -->
<dots>

<rect id="rectRoom" width-"400" height="300" stroke="black" fill-"beige"/>
rectBed" width="100" height="160" stroke="black" fill="white/>
=tblack" £i11="blue"/>

<rect ia:
<rect id="rectOceup =100 =
<symbol id="computer" vievBor="0 0 20 20"> </symbol>
<aymbol id="phone" viewBox="0 0 20 20"> </symbol >

<linearGradient id="MyGradient"> </linearGradient>
<Jaets>
<1-- BODY portion starts here -->

<g ia="oncologyfloor">
< nformation”>

<

</g>
id="window-data">

Name: </text>
Hlness: < /text>
State: </text>
Treatment: </text>

‘0om1" typeElement="room" >
00" y="300" xlink:href="#rectRoom" />

font-size="60"> Room 1 </text>

o 1 0
<text x="1920" y="7T00" font-size="80"> ONCOLOGY FLOOR < /text>

Patient Information </text>

550"
140" width="60" height="60" xlink:href='#phone! />
>
20" slink:href="#rectBed" />
40" font-size=
&>
<g 14="B" typeEL ed" >
<use ia=n1B" y=320" rlinkibrof="#rectBed® />
<text x=n2075" y='440" font-size="70" > B </tert>
<g id="bed1B" typeElament="occupiedBedInforamtion">
<use 1d="1B" z="2050" y="320" xlink:href="#rectOccupiedBed"
i i >
<g ia=" Bed1B" Agibi >
<text typeElement="name r='1900" y="1570" font-si:
John Coffey
</toxt>

<text typeElement~"illness" x="1910" y="1670" font-size="60">
Bone Cancer

</text>

<text typeElement='state" x="1880" y="1770" font-siza="GO0">
Recovery

</text>

<text typeElement="treatment” x="2010" y="1S70" font-size="60">

Chemotherapy Drugs
<Jtext>

e

<g id='room2" typeElement=rroom > </g>
</g>

</sve>

(b)

Figure 2. Tree-based graphical representation (a) of an SVG document (b)

whether the rule states a permission (sign = ‘+’) or a denial (sign =
‘—") for the access. Here, for simplicity, we assume action to be the
request to render the document (intuitively the read operation). This

Users

<user_profile id=‘Dave’> <user_profile id=‘Sam’>
e < name value=‘Dave’/> <name value=‘Sam’/>
MedicalStatf NonfledicalStaft <address value=‘Forest Ave.’/> <address value=‘Manchester Rd’/>
. B < job value=‘maintenance worker’/> <citizenship value=‘EU’/>
Doctors Nurses Adpin Maintenance < level value=‘senior’/> <job value=‘doctor’/>
. . A . <building value=‘ADM125°/> <specialization value=‘oncology’/>
Oncology Oncology Alfce Bob Dave <office value=‘33"/> < /user.profile>

< /user._profile>
Ca¥l Sam Eve

(a) (b)

Figure 3. An example of user group hierarchy (a) and user profiles (b)

is not limiting as reference to specific actions defined on the document
(e.g., rotate) can be regulated by allowing (or not allowing) access to
the corresponding element. Given this, we can now focus on subjects
and objects of our rules.

3.1. Authorization Subjects

The specification of subjects has often two apparently contrasting
requirements [5]. On the one side, subject reference must be sim-
ple, to allow for efficient access control and for exploiting possible
relationships between subjects in resolving conflicts between the au-
thorizations (e.g., most specific relationships between groups and sub-
groups). On the other side, one would like to see more expressive-
ness than the simple reference to user identities and groups, provid-
ing support of profile-dependent authorizations whose validity depend
on properties associated with users (e.g., age, citizenships, or field-of-
specialization) [1, 2]. Our solution nicely encounters both requirements
by supporting both user groups and user profiles. As usual, groups are
sets of users hierarchically organized: groups can be nested and need
not be disjoint [4] (e.g., see Figure 3(a)). In addition, for each user,
a profile may be maintained specifying the values of properties that
our model can exploit to characterize them. The profile is modeled
as a semi-structured document and can then be referenced by means
of path expressions [9]. A path expression is a sequence of element
names or predefined functions separated by character / (slash) and
is used to identify the elements and attributes within an XML-based
document. For instance, with respect to the profiles in Figure 3(b),
path expression user_profile//[./citizenship[@value = ‘EU’]
AND [./job[@value = ‘doctor’]] returns element user profile of
profiles of EU citizens who work as doctors, that is, it would return
the profile of user Sam. As illustrated in Figure 4(a), the subject com-
ponent of our authorization rules then includes an identity, whose value

An Access Control System for SVG Documents 7

<subject> <subject>
<id value=‘user/group-id’/> <id value=‘MedicalStaff’/>
< subj-expr > zpath-erpr< /subj-expr > < subj-expr>user_profile//[./citizenship/@value=‘EU’] < /subj-expr>
< /subject> < /subject>
(a) (b)

Figure /. The subject component (a) and an example (b)

can be a user or a group identifier, and a subject expression which is an
path expression on users’ profiles. For instance, the subject element in
Figure 4(b) denotes European users belonging to group MedicalStaff.

Note that the purpose of using path expressions in our context is
not to retrieve elements and attributes satisfying certain criteria, but
to determine whether a given profile (that of the requestor) satisfies
the criteria. Intuitively, the authorization rule should apply only if the
profile of the requestor satisfies the constraints expressed in the path
expression. Given this, we ignore the result of a path expression and
simply consider whether it is satisfied (meaning its result is not empty)
or not.

3.2. Authorization Objects

According to the description in Section 2, we identify three kinds of
protection objects: definitions (defs), groups (g), and SVG elements,
such as rect or circle, or elements referencing the definitions (e.g.,
element use in Figure 2(b)). Our authorization model allows the associ-
ation of authorizations with any of such specific elements; generic path
expressions on the SVG document can be used to specify the elements
to which an authorization applies [3]. Although generic path expres-
sions are sufficient to provide fine-grained authorization specification,
their only support result limiting from the point of view of the autho-
rization administration. While verbose, these path expressions refer to
the syntax and are detached from the semantics of the elements in the
SVG document. As a result, the translation of high-level protection re-
quirements into corresponding path expressions on the document is far
from being trivial. It is therefore important to provide a higher level
support for the specification of authorization objects. Providing higher
level support for the definition of authorization objects translates into
solving two problems: (1) object identification, that is, how to identify
the portion (element) of the SVG document to which an authorization
refers; and (2) condition support, that is, how to specify conditions that
the identified element/s have to satisfy.

Object identification. To provide an expressive authorization lan-
guage, we exploit the free format of SVG documents by assuming that

8

semantics aware tags and good design techniques are defined and ex-
ploited. In particular, identifiers (attribute id) provide useful as they
permit explicit reference to specific elements (e.g., room1) based on their
name. However, identifiers are not sufficient as listing explicit elements
may in some situations result inconvenient (e.g., to protect all rooms of
the floor we will have to specify one authorization for each room iden-
tifier). Also, support for distinguishing the shape of an object from its
content seems to be needed (e.g., to support cases where a user can see
the existence of a room - and then its shape - but cannot see what is
inside the room). We address these two requirements as follows. First,
in addition to the identifier, we allow each element to have an attribute
typeElement that defines the conceptual type of the element (e.g., room,
bed, telephone, computer). The type element can be exploited to allow
reference to all objects of a given type (e.g., all rooms) in a single ex-
pression. Second, if the shape of an element is conceptually meaningful
we assume a good design of the element where the shape (i.e., the draw-
ing instructions) appears at the first level and the content appear in a
nested element group.! Our predefined function perimeter () identifies
the shape (i.e., the drawing instructions) of an element (referenced via
its identifier or type). Summarizing, an object can then be referenced by
means of: a path expression resolving in the object; its object identifier
(value of its attribute id); its type (value of its attribute typeElement);
or the application of function perimeter to any of the above. To dis-
tinguish which of these means is adopted, we use a dot notation pre-
fixing the object with either id., type., or path.. For instance, value
‘type.room’ indicates objects with typeElement equal to room while
value ‘id.rooml’ denotes the room with id’s value room1.

Condition support. To provide a way for referencing all elements
satisfying specific semantically rich conditions, we allow the specifica-
tion of object conditions that identify a set of objects satisfying specific
properties. For instance, we may need to define an access rule stating
that “a doctor can see computers only if they are in the same room as
(i.e., together with) diagnostic machines”. In our model, conditions are
boolean expressions that can make use of the following predicates:

m inside(obj). It returns the object in the authorization rule if it
is inside an element whose identifier, type, or name is 0bj.

INote that we are not forcing documents to obey this structure: if the structure is obeyed it
can be exploited for the specification of authorizations.

An Access Control System for SVG Documents 9

<object> <object>
<refer value=*object-id’/> <refer value=‘type.phone’/>
< cond> pred-ezpr</cond> < cond>together_with(type.computer) </cond>
</object> < /object>
a b

Figure 5. The object component (a) and an example (b)

m together with(obj). It returns the object in the authorization
rule if it is a child of an element together with an object whose
identifier, type, or name is 0bj.

m number_of (obj,n). It returns the object in the authorization rule
if there are n instances of the object whose identifier, type, or name
is obj.

Authorization objects in our model are then defined as illustrated in
Figure 5(a), where element refer provides the object identification and
element cond specifies additional conditions. For instance, the object in
Figure 5(b) denotes all ‘phones’ that are in the same room as (together
with) a ‘computer’. With respect to our example in Figure 1, it denotes
the phones in the ‘Pharmacy’, ‘X-Rays’, ‘Chemotherapy’, ‘Kitchen’, and
‘Reception’ rooms.

With this expressive way of referring to subjects and objects, it worth
noticing how the combined use of positive and negative authorizations
result convenient for the specification of different constraints, providing
an additive or subtractive way of defining authorized views. As an ex-
ample, consider the graphic illustrated in Figure 1 and the user group
hierarchy and the users’ profiles in Figure 3. Figure 6(a) presents some
examples of protection requirements that can be expressed in our model.
Also, Figure 6(b) illustrates the view that, according to the given pro-
tection requirements, will be returned to the maintenance workers; in
the next Section we illustrate the process for obtaining such a view.

4. POLICY ENFORCEMENT

The enforcement algorithm in Figure 7 consists of two main phases:
node labeling (steps 1-4) and tree transformation (steps 5-8). Node la-
beling takes as input a user request and the DOM tree of the SVG
document. Then, it evaluates the authorization rules to be enforced and
selectively assigns a plus or minus sign to the nodes of the DOM tree.
Subsequently, the tree transformation phase takes the labeled DOM tree
as input and transforms it into another valid DOM tree. The result is

10

[Rule 1] Everybody can see the emergency exits [Rule 2] Everybody can see the content of any room in
<subject><id value=‘Users’/></subject> the public area
<object><refer =‘type.emergencyexit’/></object> <subject><id value=‘Users’/> </subject>
<sign value=‘+’/> <object><refer =‘id.PublicArea’/></object>

<sign value=‘+’/>
[Rule 3] Everybody can see the perimeter of any room in

the private area [Rule 4] Medical staff can see the content of any room
<subject><id value=‘Users’/></subject> in the private area
<object> <subject><id value=‘MedicalStaff’/> </subject>
<refer =‘g[@id=‘oncologyfloor’]//g’/> <object> <refer =‘id.PrivateArea’/> </object>
< cond>inside(id.PrivateArea) </cond> <sign value=‘+’/>
< /object>
<sign value=‘+’/>
[Rule 5] Only members of the NonMedicalStaff whose job is [Rule 6] Doctors with specialty ‘oncology’ can read patient
‘maintenance worker’ can see the fire emergency information; everybody else is explicitly
and electricity controls forbidden
<subject> <subject>
<id value=‘NonMedicalStaff’/> <id value=‘Doctors’/>
< cond>job[@value=‘maintenance worker’]</cond> < cond>specialty[@value=‘oncology’] </cond >
</subject> </subject>
<object><refer =‘type.electricitycontrol’/> </object> <object><refer =‘type.patientinformation’/> </object>
<sign value=‘+’/> <sign value=‘+’/>
<subject> < subject><id value=‘Users’/> < /subject>
<id value=‘NonMedicalStaff’/> <object><refer =‘type.patientinformation’/> </object>
< cond> job[@value=‘maintenance worker’] </cond> <sign value=‘—’/>
</subject>

<object> <refer =‘type.fire emergency’/></object>
<sign value=‘+’/>

(a)

ONCOLOGY FLOOR

Emergency
Exit

Patient Informaticn

¥ Phone
B computer
@ Fire Emargency Contral

@ Elscrricity Contral . .
Y Maintenance workers’ view

(b)
Figure 6. An example of authorization rules (a) and of view (b) on the SVG
document in Figure 1
a view of the SVG document containing only the elements that the re-
questor is entitled to access.?

2For simplicity, here we assume that conflicts of authorization referred to a same element
and with disjoint subjects are solved by applying the most specific takes precedence principle
(i-e., the authorization with the subject more specific with respect to the user group hierarchy

An Access Control System for SVG Documents 11

Algorithm 1 Enforcement algorithm

1 Determine the set Applicable_authorizations of authorizations applicable to the re-
questor. These are all the authorizations for which the requestor is a member (possi-
bly proper) of the subject identity (id) and for which requestor’s profile satisfies the
subject expression (subj-expr).

2 Evaluate the object expressions in every authorization in Applicable_authorizations
(e.g., resolving them into suitable XPath queries), and label the corresponding SVG
elements with the authorization subject identity (id) and the sign of the authorization.

3 If an element has more than one label eliminate all labels whose subject identity is a
super-group of the subject identity in another label (most specific takes precedence).

4 If an element remains with more than one label and they are of the same sign, assume
that sign for the element. If labels are of different sign assume ‘—’ (denials take
precedence).

5 Starting from the root, propagate each label on the DOM tree as follows:
(a) one step upward to the father node, provided the father node is a g element
while the current node is not.

(b) downward to descendants. Unlabeled descendants take the label being propa-
gated and propagate it to their children, while labeled ones discard the label
being propagated and propagate their own to their children (most specific takes
precedence).

6 Discard from the document all subtrees rooted at a node with a negative label.

7 Discard from the document all subtrees whose nodes are all unlabeled nodes.

8 Render the resulting document.

Figure 7. Enforcement algorithm

While steps 1-4 solve the problem of determining labels to be given
to nodes according to applicable authorizations, step 5 deals with com-
pleting the labeling phase by propagating initial labels on the SVG doc-
ument’s DOM tree; such step is specific to the SVG data model and
deserves some comments. In a well-behaved SVG document (see Sec-
tion 3), groups g include a typeElement attribute. Also, they contain
only two children nodes: a definition of their perimeter and a subgroup
for the rest of their content. If the perimeter of a well-behaved group
node gets a minus label, our upward propagation ensures that the whole
group subtree is pruned; if the minus label affects the subgroup node,
the empty perimeter is preserved. On the other hand, if the g node
content is a flat list of SVG elements (a situation which is discouraged
but not prevented by current SVG specifications), upward propagation
ensures that a minus on each contained node will make the group disap-
pear completely, including the perimeter (alternatively, a log event could
be generated instead to alert the application enforcing the policy).

prevails) and the denials take precedence principle for conflicts between authorizations whose
subjects are incomparable.

12

In this way consistency of the view is preserved (i.e., our algorithm
will not produce non-sense views where, for example, a door shows up in
an empty area). Of course, intelligent coordinates-based checking could
solve the problem by distinguishing objects lying “inside” and “outside”
other objects, but this would require our enforcement engine to provide
complex query computing capabilities. While such capabilities may well
turn out to be important in the long run, we chose not to include them
in the present version of our system. Note also that non-group nodes
(satisfying the FPL language predicates, if any) will be simply pruned
together with their subtrees; no guarantee is offered in this case that the
image semantics will be preserved.

5. CONCLUDING REMARKS

We have presented a technique for fine-grained feature protection of
XML-based graphics formats. While we developed this technique mainly
for controlled dissemination of graphical information representing con-
fidential or sensitive data, other interesting applications of feature pro-
tection techniques, mainly related to digital rights management and in-
tellectual property protection, are currently under discussion. These
applications promise to be an interesting direction in which extends the
proposal presented in this paper.

References

[1] P. Bonatti, E. Damiani, S. De Capitani di Vimercati, and P. Samarati. An access
control system for data archives. In 16th International Conference on Information
Security, Paris, France, June 2001.

[2] P. Bonatti, E. Damiani, S. De Capitani di Vimercati, and P. Samarati. A
component-based architecture for secure data publication. In 17th Annual Com-
puter Security Applications Conference, New Orleans, Louisiana, December 2001.

[3] E. Damiani, S. De Capitani di Vimercati, S. Paraboschi, and P. Samarati. A
fine-grained access control system for XML documents. ACM Transactions on
Information and System Security (TISSEC), 5(2):169-202, May 2002.

[4] S. Jajodia, P. Samarati, M.L. Sapino, and V.S. Subrahmanian. Flexible sup-
port for multiple access control policies. ACM Transactions on Database Systems,
26(2):18-28, June 2001.

[5] P. Samarati and S. De Capitani di Vimercati. Access control: Policies, models,
and mechanisms. In R. Focardi and R. Gorrieri, editors, Foundations of Security
Analysis and Design, LNCS 2171. Springer-Verlag, 2001.

[6] World Wide Web Consortium. Scalable Vector Graphics (SVG) 1.0 Specification,
September 2001.

[7] World Wide Web Consortium (W3C). Document Object Model (DOM).
http://www.w3.org/DOM/.

An Access Control System for SVG Documents 13

[8] World Wide Web Consortium (W3C). XSL Transformations (XSLT).
http://www.w3.org/Style/XSL.

[9] World Wide Web Consortium (W3C). XML Path Language (XPath) 2.0, Decem-
ber 2001. http://www.w3.org/ TR /xpath20.

[10] J. Ze Wang, M. Bilello, and G. Wiederhold. Textual information detection and
elimination system for secure medical image distribution. In Proc. of the 1997
American Medical Informatics Association (AMIA’97) Annual Fall Symposium
(formerly SCAMC), Nashville, Tennessee, October 1997.

[11] J. Ze Wang and G. Wiederhold. System for efficient and secure distribution of
medical images on the internet. In Proc. of the 1998 American Medical Informat-
ics Association (AMIA’98) Annual Fall Symposium, Orlando, Florida, November
1998.

