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Abstract. The problem of enabling privacy-preserving data releases has
become more and more important in the last years thanks to the increas-
ing needs of sharing and disseminating information. In this paper we
address the problem of computing data releases in the form of fragments
(vertical views) over a relational table, which satisfy both confidential-
ity and visibility constraints, expressing needs for information protection
and release, respectively. We propose a modeling of constraints and of
the data fragmentation problem based on Boolean formulas and Ordered
Binary Decision Diagrams (OBDDs). Exploiting OBDDs, we efficiently
manipulate Boolean formulas, thus easily computing data fragments that
satisfy the constraints.

Keywords: Privacy, fragmentation, confidentiality and visibility constraints,
OBDDs.

1 Introduction

Information sharing and dissemination are typically selective processes. While on
one side, there is a need - or demand - for making certain information available
to others, there is on the other side an equally strong need to ensure proper
protection of sensitive information. It is therefore important to provide data
holders with means to express and enforce possible constraints over their data,
modeling the need for information of the data recipients (visibility constraints)
and the need for protecting confidential information from an improper disclosure
(confidentiality constraints).

Recent proposals considering confidentiality and visibility constraints have
put forward the idea of computing vertical fragments over the original data
structure (typically a relation) in such a way that constraints are satisfied [1, 7,
8, 10]. While such proposals have been introduced as a way of departing from
data encryption when relying on external storage services, data fragmentation
can result appealing also in data publication scenarios. In fact, data fragments
can be seen as different (vertical) views that a data holder can release to external
parties to satisfy their demand for information while at the same time guaran-
teeing that confidential information is not disclosed. The problem of computing
data views in a way that explicitly takes into consideration both privacy needs
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and visibility requirements makes however the data fragmentation problem far
from trivial. In particular, ensuring some meaningful form of minimality of the
computed fragments (to the aim of avoiding unnecessary fragmentation), makes
the problem NP-hard [10].

In this paper we propose a new modeling of the fragmentation problem
that exploits the representation of confidentiality and visibility constraints as
Boolean formulas, and of fragments as truth assignments over Boolean variables
corresponding to attributes in the original relation. In this way, the compu-
tation of a fragmentation that satisfies the given constraints greatly relies on
the efficiency with which Boolean formulas are manipulated and represented.
Since the classical methods for operating on Boolean formulas are impractical
for large-scale problems, we exploit reduced Ordered Binary Decision Diagrams
(OBDDs). OBDDs are a canonical form for Boolean formulas that can be manip-
ulated efficiently, thus being suitable for compactly representing large Boolean
formulas [18]. The size of an OBDD does not directly depend on the size of
the corresponding formula and therefore the complexity of the Boolean oper-
ators depends on the OBBD size only. Although the size of an OBDD could
be, in the worst case, exponential in the number of variables appearing in the
formula, the majority of Boolean formulas can be represented by very compact
OBDDs. Our approach then consists in transforming all the inputs of the frag-
mentation problem into Boolean formulas, and in exploiting their representation
through OBDDs to process different constraints simultaneously, and to easily
check whether a fragmentation reflects the given confidentiality and visibility
constraints.

The remainder of this paper is organized as follows. Section 2 introduces con-
fidentiality and visibility constraints, and describes the fragmentation problem.
Section 3 presents our modeling of the problem, defining OBDDs corresponding
to constraints and truth assignments satisfying them, and illustrating how truth
assignments can be composed for computing a solution to the problem. Section 4
illustrates an algorithm exploiting the OBDD-based modeling for determining a
fragmentation. Section 5 discusses related work. Finally, Section 6 reports our
conclusions.

2 Preliminary Concepts

We consider a scenario where, consistently with other proposals (e.g., [1, 8, 10,
19]), the data undergoing possible external release are represented with a single
relation r over a relation schema R(a1, . . . , an). We use standard notations of
relational database theory and, when clear from the context, we will use R to
denote either the relation schema R or the set {a1, . . . , an} of attributes in R .
We consider two kinds of constraints on data: confidentiality constraints that
impose restrictions on the (joint) visibility of values of attributes in R , and
visibility constraints expressing requirements on data views [8, 10].

Definition 1 (Confidentiality constraint). Given a relation schema
R(a1, . . . , an), a confidentiality constraint c over R is a subset of {a1, . . . , an}.



CensusData
SSN Name Birth ZIP Job Employer

123-45-6789 Alice 56/12/07 94101 spy special units
234-56-7654 Bob 79/03/01 94123 agent FBI
345-67-8123 Carol 51/11/11 95173 sniper army
456-78-9876 David 67/05/09 96234 undercover agent FBI
567-89-0534 Emma 80/11/12 94143 scientist army

C
c1 = {SSN}
c2 = {Name, Job}
c3 = {Name, Employer}
c4 = {Birth, ZIP, Job}
c5 = {Birth, ZIP, Employer}

V
v1 = ZIP ∨ Employer
v2 = SSN ∨ (Birth ∧ ZIP)
v3 = Job ∧ Employer

(a) (b) (c)

Fig. 1. An example of relation (a), confidentiality (b) and visibility constraints (c)

Confidentiality constraints state that the values assumed by an attribute (single-
ton constraint) or the associations among the values of a given set of attributes
(association constraint) are sensitive and should not be visible. More precisely, a
singleton constraint {a} states that the values of attribute a should not be visi-
ble. An association constraint {ai1 , . . . , aim} states that the values of attributes
ai1 , . . . , aim should not be visible in association. For instance, Figure 1(b) illus-
trates one singleton (c1) and four association (c2,. . . ,c5) constraints for relation
CensusData in Figure 1(a).

Visibility constraints are defined as follows.

Definition 2 (Visibility constraint). Given a relation schema R(a1, . . . , an),
a visibility constraint v over R is a monotonic Boolean formula over attributes
in R.

Intuitively, a visibility constraint imposes the release of an attribute or the joint
release of a set of attributes. Visibility constraint v=a states that the values
assumed by attribute a must be visible. Visibility constraint v=v i∧v j states
that v i and v j must be jointly visible (e.g., constraint v3 in Figure 1(c) requires
the joint release of attributes Job and Employer since the associations between
their values must be visible). Visibility constraint v=v i∨v j states that at least
one between v i and v j must be visible (e.g., constraint v1 in Figure 1(c) requires
that the values of attribute ZIP or the values of attribute Employer are released).
Note that negations are not used in the definition of visibility constraints since
they model requirements of non-visibility, which are already captured by confi-
dentiality constraints.

Confidentiality and visibility constraints can be enforced by splitting (frag-
menting) attributes in R in different sets (fragments). A fragmentation of rela-
tion R is a set of fragments, as formally defined in the following.

Definition 3 (Fragmentation). Given a relation schema R(a1, . . . , an), a
fragmentation F of R is a set {F 1, . . . ,F l} of fragments, where each fragment
F i, i = 1, . . . , l, is a subset of {a1, . . . , an}.

Given a relation R , a set C of confidentiality constraints, and a set V of
visibility constraints, a fragmentation F of R is correct if it satisfies all the
confidentiality constraints in C and all the visibility constraints in V . Formally,
a correct fragmentation is defined as follows.

Definition 4 (Correctness). Given a relation schema R(a1, . . . , an), a set C
of confidentiality constraints over R, and a set V of visibility constraints over
R, a fragmentation F of R is correct with respect to C and V iff:



F1

Birth ZIP

56/12/07 94101
79/03/01 94123
51/11/11 95173
67/05/09 96234
80/11/12 94143

F2

Job Employer

spy special units
agent FBI
sniper army
undercover agent FBI
scientist army

Fig. 2. An example of correct fragmentation of relation CensusData in Figure 1(a)

1. ∀c∈C, ∀F∈F : c ̸⊆F (confidentiality);
2. ∀v∈V , ∃F∈F : F satisfies v (visibility);
3. ∀F i,F j∈F , i ̸= j: F i∩F j=∅ (un-linkability).

Condition 1 ensures that neither sensitive attributes nor sensitive associations are
visible in a fragment. Condition 2 ensures that visibility constraints are satisfied.
Condition 3 ensures that fragments do not have common attributes and therefore
that association constraints cannot be violated by possibly joining fragments.
We note that singleton constraints can be satisfied only by not releasing the
corresponding sensitive attributes. Association constraints can be satisfied either
by not releasing at least one of the attributes in the constraints, or by distributing
the attributes among different (un-linkable) fragments. Visibility constraints are
satisfied by ensuring that each constraint is satisfied by at least one fragment.

Given a set of confidentiality and visibility constraints, we are interested in
a fragmentation that does not split attributes among fragments when it is not
necessary for constraint satisfaction. The rationale is that maintaining a set of
attributes in the same fragment releases their values and also their associations,
thus maximizing the visibility over the data. Our goal is then to compute a
minimal fragmentation, that is, a fragmentation that does not include fragments
that can be merged without violating confidentiality constraints. The problem
of computing a minimal fragmentation can be defined as follows.

Problem 1 (Min-Frag). Given a relation schema R(a1, . . . , an), a set C of con-
fidentiality constraints over R , and a set V of visibility constraints over R , deter-
mine (if it exists) a correct fragmentation F of R with respect to C and V such
that there does not exist another correct fragmentation F ′ obtained by merging
fragments in F .

For instance, the fragmentation in Figure 2 is a minimal fragmentation since
merging F 1 with F 2 would violate confidentiality constraints c4 and c5.

3 OBDD-based Modeling of the Fragmentation Problem

We model the fragmentation problem as the problem of managing a set of
Boolean formulas that are conveniently represented through reduced and ordered
binary decision diagrams (OBDDs) [3]. OBDDs allow us to efficiently manipu-
late confidentiality and visibility constraints, and to easily compute a minimal
fragmentation (see Section 4).



B C V
SSN c1 = SSN v1 = ZIP∨Employer
Name c2 = Name∧Job v2 = SSN∨(Birth∧ZIP)
Birth c3 = Name∧Employer v3 = Job∧Employer
ZIP c4 = Birth∧ZIP∧Job
Job c5 = Birth∧ZIP∧Employer
Employer

Fig. 3. Boolean interpretation of the inputs of the Min-Frag problem in Figure 1

3.1 OBDD Representation of Constraints

In our modeling, attributes in R are interpreted as Boolean variables. Visibility
constraints have already been defined as Boolean formulas (Definition 2). Each
confidentiality constraint in C can be represented as the conjunction of the vari-
ables corresponding to the attributes in the constraint. For instance, Figure 3
represents the Boolean interpretation of the inputs of the Min-Frag problem
in Figure 1, where B denotes the set of Boolean variables.

We use OBDDs as an effective and efficient solution to represent and ma-
nipulate Boolean formulas. An OBDD represents a Boolean formula as a rooted
directed acyclic graph with two leaf nodes labeled 1 (true) and 0 (false), respec-
tively, corresponding to the truth values of the formula. Each internal node in
the graph represents a Boolean variable in the formula and has two outgoing
edges, labeled 1 and 0, representing the assignment of values 1 and 0, respec-
tively, to the variable. The variables occur in the same order on all the paths of
the graph. Also, to guarantee a compact representation of the Boolean formula,
the subgraphs rooted at the two direct descendants of each internal node in the
graph are disjoint, and any possible pair of subgraphs rooted at two different
nodes are not isomorphic. Figure 4 and Figure 5 illustrate the OBDDs of the
Boolean formulas in Figure 3 that model the confidentiality and visibility con-
straints, respectively, in Figure 1. Here and in the following, edges labeled 1 are
represented by solid lines, and edges labeled 0 are represented by dashed lines.
A truth assignment to the Boolean variables in a formula corresponds to a path
from the root to one of the leaf nodes of the OBDD of the formula. The outgoing
edge of a node in the path is the value assigned to the variable represented by
the node. For instance, with respect to the OBDD of v1 in Figure 5, path ⟨ZIP,
Employer, 1⟩ represents truth assignment [ZIP=0, Employer=1] since the edge
in the path outgoing from node ZIP is labeled 0, and the edge in the path outgo-
ing from node Employer is labeled 1. We call one-paths (zero-paths, respectively)
all the paths of an OBDD that reach leaf node 1 (0, respectively), which corre-
spond to the assignments that satisfy (do not satisfy, respectively) the formula.
For instance, with respect to the OBDD of v1 in Figure 5, path ⟨ZIP, Employer,
1⟩ is a one-path of the OBDD. Variables in the formula that do not occur in a
path from the root to a leaf node are called don’t care variables, that is, variables
whose values do not influence the truth value of the formula. For instance, with
respect to the one-path ⟨ZIP, 1⟩ of the OBDD of v1 in Figure 5, Employer is a
don’t care variable. If there is at least a don’t care variable along a path, the
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SSN

1 0

Job

Name
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Birth

Zip

Job

1 0

Birth

Zip

Empl.

c1=SSN c2=Name∧Job c3= Name∧Employer c4=Birth∧ZIP∧Job c5=Birth∧ZIP∧Employer

Fig. 4. OBDDs representing the confidentiality constraints in Figure 3
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Zip

1 0

Zip

Birth

SSN

1 0

Empl.

Job

v1=ZIP∨Employer v2=SSN∨(Birth∧ZIP) v3=Job∧Employer

Fig. 5. OBDDs representing the visibility constraints in Figure 3

corresponding truth assignment is partial (in contrast to complete), since only a
subset of the variables in the formula is assigned a value. We note that a partial
truth assignment with k don’t care variables is a compact representation of a
set of 2k complete truth assignments, obtained by assigning to the don’t care
variables value 1 or 0. For instance, the OBDD of v1 in Figure 5 has two one-
paths, corresponding to truth assignments [ZIP=1] and [ZIP=0, Employer=1].
Partial truth assignment [ZIP=1] is a shorthand for [ZIP=1, Employer=1] and
[ZIP=1, Employer=0], where don’t care variable Employer has value 1 and 0,
respectively.

3.2 Truth Assignments

In the Boolean modeling of the fragmentation problem, a fragment F∈F can
be interpreted as a complete truth assignment, denoted IF , over the set B of
Boolean variables. Function IF assigns value 1 to each variable corresponding to
an attribute in F , and value 0 to all the other variables. A fragmentation is then
represented by a set of complete truth assignments, which is formally defined as
follows.

Definition 5 (Set of truth assignments). Given a set B of Boolean variables,
a set I of truth assignments is a set {I1 , . . . , Il} of functions, such that each Ii
in I , i = 1, . . . , l, is defined as Ii :B→{0,1}.



With a slight abuse of notation, we use I to denote also the list of truth
values assigned by I to variables in B. For instance, fragmentation F in Fig-
ure 2 corresponds to the set I={IF1 ,IF2 } of truth assignments, where IF1 =
[SSN=0, Name=0, Birth=1, ZIP=1, Job=0, Employer=0] and IF2 = [SSN=0,
Name=0, Birth=0, ZIP=0, Job=1, Employer=1]. Given a Boolean formula f ,
defined over Boolean variables B, and a truth assignment I, I(f) denotes the
result of the evaluation of f with respect to truth assignment I. A set I of truth
assignments corresponds to a correct fragmentation if it satisfies all confidential-
ity and visibility constraints and each Boolean variable is set to true by at most
one truth assignment, as formally defined in the following.

Definition 6 (Correct set of truth assignments). Given a set B of Boolean
variables, a set C of confidentiality constraints over B, and a set V of visibility
constraints over B, a set I of truth assignments is correct with respect to C and
V iff:

1. ∀c ∈ C, ∀I ∈ I : I(c) = 0 (confidentiality);
2. ∀v∈V, ∃I ∈ I : I(v ) = 1 (visibility);
3. ∀Ii ,Ij∈ I , i ̸= j, ∀a ∈ B s.t. Ii(a ) = 1: Ij (a ) = 0 (un-linkability).

Condition 1 ensures that the evaluation of any confidentiality constraint with
respect to any truth assignment (fragment) is false (i.e., no confidentiality con-
straint is violated). Condition 2 ensures that, for each visibility constraint, there
is at least one truth assignment (fragment) that makes the visibility constraint
true (i.e., all visibility constraints are satisfied). Condition 3 ensures that there
is at most one truth assignment (fragment) that sets a variable to true (i.e., dif-
ferent fragments do not have common attributes). It is immediate to see that a
set of truth assignments is correct with respect to C and V iff the corresponding
fragmentation is correct with respect to C and V (i.e., Definition 6 is equivalent
to Definition 4). The correctness of a set I of truth assignments can be efficiently
verified by using the OBDDs representing the confidentiality and visibility con-
straints: i) each assignment I must correspond to a zero-path in all the OBDDs
of the confidentiality constraints; and ii) for each visibility constraint, at least
one assignment I must correspond to a one-path in the OBDD of the constraint.
For instance, consider the OBDDs of confidentiality and visibility constraints in
Figure 4 and Figure 5 and the set I = {IF1 , IF2 } of truth assignments represent-
ing the fragmentation in Figure 2. I is correct, since: 1) IF1 and IF2 correspond
to zero-paths of the OBDDs of the confidentiality constraints (confidentiality);
2) IF2 corresponds to a one-path of the OBDDs of v1 and v3, and IF1 corre-
sponds to a one-path of the OBDD of v2 (visibility); and 3) each variable in B
is set to 1 by at most one between IF1 and IF2 (un-linkability).

Note that given two fragments F i and F j and the corresponding truth
assignments IF i and IF j , the truth assignment representing merged fragment
F ij=F i∪F j is IF ij=IF i∨IF j . The Min-Frag problem can now be reformulated
as follows.

Problem 2 (Min-Truth). Given a set B of Boolean variables, a set C of confiden-
tiality constraints over B, and a set V of visibility constraints over B, determine
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Fig. 6. OBDD representing the disjunction (c1 ∨ c2 ∨ c3 ∨ c4 ∨ c5)

(if it exists) a correct set I of truth assignments such that there does not exist
another correct set I ′ of truth assignments obtained by combining two truth
assignments in I through the or operator.

Our approach to solve the Min-Truth problem exploits properties of the
OBDDs to efficiently check if a set of truth assignments is correct. In principle,
a set of truth assignments should be checked for correctness against each confi-
dentiality and each visibility constraint. We can cut down on such controls by
noting that if a truth assignment I does not make true any confidentiality con-
straint, Boolean formula c1∨. . .∨cm evaluates to false with respect to I. Also,
if truth assignment I makes true at least one of the confidentiality constraints
in C, Boolean formula c1∨. . .∨cm evaluates to true with respect to I. In other
words, we can check all the confidentiality constraints together in a single step.
Formally, this observation is expressed as follows.

Observation 1 Given a set B = {a1, . . . , an} of Boolean variables, a set C =
{c1, . . . , cm} of confidentiality constraints over B, and a truth assignment I:

∀c ∈ C, I(c) = 0 ⇐⇒ I(c1 ∨ . . . ∨ cm) = 0.

To verify whether a truth assignment I satisfies the confidentiality con-
straints, we can then simply check if I characterizes a zero-path of the OBDD
representing the disjunction of confidentiality constraints. For instance, consider
the confidentiality constraints in Figure 3, the OBDD representing their disjunc-
tion in Figure 6, and truth assignment IF2 = [SSN=0, Name=0, Birth=0, ZIP=0,
Job=1, Employer=1], representing fragment F 2 in Figure 2. IF2 corresponds to
a zero-path in the OBDD in Figure 6, implying that IF2 does not violate the
confidentiality constraints.

For each visibility constraint v , a correct set of truth assignments must in-
clude at least a truth assignment I satisfying v , while not violating confiden-
tiality constraints (i.e., I(v )=1 and I(c1∨. . .∨cm)=0). This is equivalent to say



v1∧¬(c1∨c2∨c3∨c4∨c5) v2∧¬(c1∨c2∨c3∨c4∨c5) v3∧¬(c1∨c2∨c3∨c4∨c5)
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SSN Name Birth ZIP Job Employer

0 0 0 1 - -
0 0 0 0 - 1
0 0 1 0 - 1
0 1 - 1 0 0
0 0 1 1 0 0

SSN Name Birth ZIP Job Employer

0 - 1 1 0 0

SSN Name Birth ZIP Job Employer

0 0 0 - 1 1
0 0 1 0 1 1

Fig. 7. OBDDs representing the composition of each visibility constraint in Figure 5
with the negated disjunction of the confidentiality constraints in Figure 4, and their
one-paths

that the evaluation of Boolean formula v∧¬(c1∨. . .∨cm) with respect to truth
assignment I is true, as formally observed in the following.

Observation 2 Given a set B = {a1, . . . , an} of Boolean variables, a set C =
{c1, . . . , cm} of confidentiality constraints over B, a visibility constraint v over
B, and a truth assignment I:

I(v ) = 1 and I(c1 ∨ . . . ∨ cm) = 0 ⇐⇒ I(v ∧ ¬(c1 ∨ . . . ∨ cm)) = 1.

In other words, the one-paths of the OBDD, denoted Oi, of Boolean formula
v i∧¬(c1∨. . .∨cm), represent in a compact way all and only the truth assign-
ments that satisfy v i and that do not violate any confidentiality constraint.
Note that all variables in B not appearing in the formula are considered as
don’t care variables. For instance, consider the confidentiality and visibility con-
straints in Figure 4 and in Figure 5. Figure 7 illustrates the OBDDs of for-
mulas v i∧¬(c1∨. . .∨c5), i = 1, . . . , 3, along with their one-paths. In the figure
and in the remainder of the paper, we use ‘-’ as value for the don’t care vari-
ables. For instance, attribute Name does not appear in the OBDD representing
v2∧¬(c1∨. . .∨c5) and therefore it appears as a don’t care variable in the one-
path of O2 (i.e., [SSN=0, Name=-, Birth=1, ZIP=1, Job=0, Employer=0]). To
satisfy Condition 1 (confidentiality) and Condition 2 (visibility) in Definition 6,



a set I of truth assignments must include, for each v i∈V , one truth assignment
in the set of one-paths of Oi. However, not all the sets of truth assignments
that include one of the one-paths of Oi for each v i∈V are correct, since they
may violate Condition 3 in Definition 6 (un-linkability). In the following, we
discuss how to combine truth assignments representing one-paths of O1, . . . ,Ok

to incrementally compute a correct set I of truth assignments. We note that
one-paths of Oi may represent partial truth assignments, while a correct set of
truth assignments is composed of complete assignments only (Definition 5). As
a consequence, don’t care variables must be set either to 0 or 1 before inserting
one-paths of O1, . . . ,Ok into I .

3.3 Comparison of Assignments

Goal of our approach is to incrementally create a correct set of truth assign-
ments that solves the Min-Truth problem and that corresponds to a correct
and minimal fragmentation. To this purpose, we first introduce the concepts of
linkable and mergeable truth assignments.

Definition 7 (Linkable truth assignments). Given two assignments Ii and
Ij over Boolean variables B, we say that Ii and Ij are linkable iff ∃a ∈ B :
Ii(a ) = Ij (a ) = 1.

According to Definition 7, two assignments are linkable iff there is a Boolean
variable in B such that the truth value of the variable is 1 with respect to the
given assignments. Intuitively, this implies that the fragments corresponding to
them have an attribute in common. For instance, the two assignments [SSN=0,
Name=0, Birth=0, ZIP=-, Job=1, Employer=1] and [SSN=0, Name=0, Birth=0,
ZIP=-, Job=1, Employer=-] are linkable since they both assign 1 to variable Job.

Definition 8 (Mergeable truth assignments). Given two assignments Ii
and Ij over Boolean variables B, we say that Ii and Ij are mergeable iff ∀a ∈ B
s.t. Ii(a)=1, Ij (a)=1 or Ij (a)=- and vice versa.

According to Definition 8, two truth assignments are mergeable iff for each
variable a in B the truth values of the variable in the two assignments are not
in contrast, where being in contrast for variable a means that a is assigned 1 by
one assignment while being assigned 0 by the other one. Intuitively, two merge-
able assignments define the truth value of variables in a way that they can be
represented through a single assignment. As an example, consider the two as-
signments [SSN=0, Name=-, Birth=0, ZIP=-, Job=-, Employer=1] and [SSN=0,
Name=0, Birth=-, ZIP=1, Job=-, Employer=-]. For each variable set to 1 in
one of these assignments, the correspondent truth value in the other assignment
is either 1 or -, and therefore the two assignments are mergeable. Assignments
[SSN=0, Name=0, Birth=1, ZIP=0, Job=-, Employer=1] and [SSN=0, Name=0,
Birth=1, ZIP=1, Job=0, Employer=-] are linkable (Birth is set to 1 by both
assignments) but not mergeable since there is a conflict on variable ZIP. Note



⊙ 0 1 -

0 0 n.a. 0
1 n.a. 1 1
- 0 1 -

Fig. 8. Assignment composition operator

that the presence of don’t care variables does not influence the linkability or
mergeability of two truth assignments.

Mergeable assignments can be composed according to the composition op-
erator ⊙ in Figure 8. The composition of two mergeable truth assignments Ii
and Ij results in a new truth assignment, where the truth value of a variable
coincides with its truth value in the assignment in which it does not appear as a
don’t care variable. If a variable appears as a don’t care variable in both Ii and
Ij , then its value in the new assignment remains don’t care. For instance, as-
signments [SSN=0, Name=-, Birth=0, ZIP=-, Job=-, Employer=1] and [SSN=0,
Name=0, Birth=-, ZIP=1, Job=-, Employer=-] are mergeable and the result
of their composition is assignment [SSN=0, Name=0, Birth=0, ZIP=1, Job=-,
Employer=1].

4 Computing a Minimal Set of Truth Assignments

Figure 9 illustrates our heuristic algorithm for computing a solution to the Min-
Truth problem (Problem 2). The algorithm takes as input a set B of Boolean
variables, a set C = {c1, . . . , cm} of confidentiality constraints, and a set V =
{v1, . . . , vk} of visibility constraints. It incrementally builds a correct set of truth
assignments by inserting, for each v in V , a truth assignment satisfying v while
not violating confidentiality constraints. A truth assignment can be inserted in
an existing set either as a new truth assignment (if it is not linkable with any
assignment in the set) or by composing it with an existing assignment (if it
is linkable and mergeable with an assignment in the set). It returns a correct
and minimal set Isol of truth assignments, if such a set exists; it returns null,
otherwise.

The algorithm first defines, for each v i∈V , the OBDD representing Boolean
formula v i∧¬(c1∨. . .∨cm), extracts the set Iv i of one-paths, and orders them
by decreasing number of don’t care variables (lines 1-4). The reason for this
ordering is that truth assignments with a high number of don’t care variables
impose less constraints on subsequent choices, and therefore are less likely to be
in contrast with them. Also, Iv1 ,. . . ,Ivk

are ordered by increasing number of
truth assignments (line 5). The reason for such ordering is to consider first sets
for which fewer truth assignments are possible.

The algorithm calls function DefineAssignments (line 6), which receives
as input a set Isol of truth assignments and an integer number i , 1 ≤ i ≤ k,
indicating that Isol has been obtained by combining one truth assignment from



INPUT
B = {a1,. . . ,an} /* Boolean variables */
C = {c1,. . . ,cm} /* Boolean interpretation of confidentiality constraints */
V = {v1,. . . ,vk} /* visibility constraints */

OUTPUT
Isol = {I1 ,. . . ,Il} /* correct and minimal set of truth assignments */

MAIN
1: for each vi∈V do /* define the OBDDs representing the constraints */
2: let Oi be the OBDD representing vi∧¬(c1∨. . .∨cm)
3: let Ivi

be the set of one-paths of Oi

4: order Ivi
by decreasing number of -

5: let [I1 ,. . . ,Ik ] be the list obtained ordering {Iv1 ,. . . ,Ivk
} by increasing number of one-paths

6: Isol := DefineAssignments(∅,1) /* compute a correct set of truth assignments */
7: if Isol ̸=null then /* a correct set of truth assignments exists */
8: for i:=1,. . . ,(|Isol | − 1) do /* compose truth assignments to make Isol minimal */
9: for j :=(i + 1),. . . ,|Isol | do
10: if Mergeable(Isol [i],Isol [j ]) then
11: Isol [i] := Isol [i] ⊙ Isol [j ]
12: remove Isol [j ] from Isol

13: for each I∈Isol do assign 0 to don’t care variables in I
14: return(Isol )

DEFINEASSIGNMENTS(Isol ,i)
15: for j :=1,. . . ,|Ii | do
16: satisfied := true /* true if I′

sol includes a truth assignment from Ii */
17: LinkableAssignments := {I∈Isol :Linkable(Ii [j ],I)} /* assignments linkable with Ii [j ] */
18: I′

sol :=Isol\LinkableAssignments /* remove assignments linkable with Ii [j ] */
19: Inew :=Ii [j ]
20: while(satisfied and LinkableAssignments ̸= ∅) do
21: I:= ExtractAssignment(LinkableAssignments)
22: if Mergeable(Inew ,I) then Inew := Inew ⊙ I /* compose truth assignments */
23: else satisfied := false /* I is linkable but not mergeable with Inew */
24: if satisfied then
25: I′

sol :=Isol∪{Inew}
26: if i=k then return(I′

sol ) /* I′
sol is correct */

27: I′
sol := DefineAssignments(I′

sol ,i + 1) /* recursive call */
28: if I′

sol ̸=null then return(I′
sol ) /* I′

sol is correct */
29: return(null)

Fig. 9. Algorithm that computes a correct and minimal set of truth assignments

each Ij , j = 1, . . . , (i − 1). Function DefineAssignments tries to insert into
Isol a truth assignment that belongs to Ii , possibly composing it, through the ⊙
operator, with a truth assignment in Isol if they are linkable and mergeable. For
the j-th truth assignment Ii [j ] in Ii (j = 1, . . . , |Ii |), the function first identi-
fies the set LinkableAssignments of truth assignments in Isol linkable with Ii [j ]
(line 17) and iteratively composes them with Ii [j ], obtaining truth assignment
Inew (lines 19-23). We note that mergeable assignments that are not linkable are
kept separate, even if they could be composed without violating any confidential-
ity constraint. In fact, by composing a pair of not linkable truth assignments, the
algorithm would discard, without evaluation, all the correct solutions where the
two truth assignments are kept separate. If Ii [j ] and LinkableAssignments are
not mergeable, Ii [j ] can be inserted into Isol neither as an un-linkable assign-
ment nor by composing it with existing assignments (variable satisfied=false).
Otherwise, I ′

sol is obtained removing LinkableAssignments and including Inew
into Isol (line 25). If i=k , I ′

sol represents a correct fragmentation and is re-
turned (line 26); DefineAssignments is recursively called over I ′

sol and i+ 1,



otherwise (line 27). If the set I ′
sol resulting from the recursive call is not null,

it is correct and is returned (line 28). If no assignment in Ii can be inserted into
Isol , the function returns null (line 29).

The set Isol computed by function DefineAssignments may not be mini-
mal, since it may include mergeable truth assignments that are not linkable. The
algorithm therefore possibly composes each truth assignment Isol [i ] with each
Isol [j ], j > i (lines 7-12). We note that it is not necessary to check the truth
assignment resulting from the composition with assignments Isol [l ], l < i, since
if Isol [l ] and Isol [i ] are not mergeable, then also Isol [l ] and Isol [i ]⊙Isol [j ] are
not mergeable. The algorithm finally assigns 0 to don’t care variables in Isol and
returns Isol (lines 13-14).

Example 1. Consider relation CensusData and the confidentiality and visibil-
ity constraints over it in Figure 1. First, the algorithm builds O1, O2, and O3

in Figure 7, representing the conjunction of each visibility constraint (v1, v2,
and v3) with the disjunction (c1∨. . .∨c5) of confidentiality constraints. It then
extracts their one-paths, orders the one-paths of each Iv by decreasing num-
ber of -, and orders the set of Iv by increasing number of one-paths. The or-
dered list [I1 ,I2 ,I3 ] of sets of truth assignments is illustrated in Figure 10,
where I1=Iv2 , I2=Iv3 , and I3=Iv1 . Figure 10 presents the recursive calls to
function DefineAssignments illustrating for each execution: the value of in-
put parameters Isol and i ; the candidate truth assignment Ii [j ] in Ii ; the set
LinkableAssignments of assignments in Isol that are linkable with Ii [j ]; the it-
erative composition of Ii [j ] with the assignments in LinkableAssignments and
the resulting truth assignment Inew ; and the computed set I ′

sol . In the figure,
for simplicity, we do not report attribute names in truth assignments and we
assume that truth values are assigned, in the order, to SSN, Name, Birth, ZIP,
Job, Employer. The fragmentation corresponding to the set of truth assignments
returned by the algorithm is illustrated in Figure 2.

The correctness and complexity of the algorithm in Figure 9 are stated by the
following theorems. The proofs of the theorems are omitted for space constraints.

Theorem 1 (Correctness). Given a set B of Boolean variables, a set C of
confidentiality constraints over B, and a set V of visibility constraints over B,
the algorithm in Figure 9 terminates and computes, if it exists, a correct and
minimal set of truth assignments with respect to C and V .

Theorem 2 (Complexity). Given a set B of Boolean variables, a set C of
confidentiality constraints over B, and a set V of visibility constraints over
B, the complexity of the algorithm in Figure 9 is O(

∏
v∈V |Iv | · |B| + (|V | +

|C|)2|B|) in time, where Iv is the set of one-paths of the OBDD representing
v∧¬(c1∨. . .∨cm).

The computational cost of the algorithm is obtained as the sum of the cost

of building the OBDDs, which is O((|V |+ |C|)2|B|), and the cost of determining
Isol through recursive function DefineAssignments, which is O(

∏
v∈V |Iv | ·



I1 :=([0,-,1,1,0,0])
I2 :=([0,0,0,-,1,1],[0,0,1,0,1,1])
I3 :=([0,0,0,1,-,-],[0,0,0,0,-,1],[0,0,1,0,-,1],[0,1,-,1,0,0],[0,0,1,1,0,0])

DefineAssignments(∅,1)
I1 [1]=[0,-,1,1,0,0]
LinkableAssignments:=∅
Inew :=[0,-,1,1,0,0]
I′
sol :={[0,-,1,1,0,0]}

DefineAssignments({[0,-,1,1,0,0]},2)
I2 [1]=[0,0,0,-,1,1]
LinkableAssignments:=∅
Inew :=[0,0,0,-,1,1]
I′
sol :{[0,-,1,1,0,0],[0,0,0,-,1,1]}

DefineAssignments({[0,-,1,1,0,0],[0,0,0,-,1,1]},3)
I3 [1]=[0,0,0,1,-,-]
LinkableAssignments:={[0,-,1,1,0,0]}
Inew :=[0,0,0,1,-,-]
Mergeable([0,0,0,1,-,-],[0,-,1,1,0,0])=false
I3 [2]=[0,0,0,0,-,1]
LinkableAssignments:={[0,0,0,-,1,1]}
Inew :=[0,0,0,0,-,1]
Mergeable([0,0,0,0,-,1],[0,0,0,-,1,1])=true
Inew :=[0,0,0,0,-,1] ⊙ [0,0,0,-,1,1]:=[0,0,0,0,1,1]
return({[0,-,1,1,0,0],[0,0,0,0,1,1]})

Fig. 10. Example of the execution of the algorithm in Figure 9 with the inputs in
Figure 3

|B|). We note that the computational cost of the construction of the OBDDs
is exponential in the worst case, but in the majority of real-world applications
OBBD-based approaches are computationally efficient [3, 16].

5 Related Work

Data fragmentation has been studied as a solution to enforce confidentiality
constraints while ensuring an efficient query execution in outsourcing scenarios,
where data are stored and managed at external honest-but-curious servers [9,
14, 20]. In particular, the proposals based on fragmentation can be classified as
solutions that: 1) combine fragmentation and encryption and split data between
two fragments stored on two non-communicating servers [1], or among multiple
fragments [8], possibly stored on a single server, in such a way to minimize query
execution costs [6]; 2) depart from encryption [7, 21] and satisfy confidentiality
constraints by splitting the data over two fragments, one of which is stored at
the data owner. Although our approach shares with these proposals the use
of fragmentation for properly protecting sensitive data and/or associations, we



take into consideration a different scenario and address a different problem.
In fact, our proposal considers a data publishing scenario, in contrast to data
outsourcing, and aims at satisfying also visibility constraints, which have been
introduced in [10] where the authors exploit SAT solvers to compute a correct
fragmentation.

The work presented in this paper has some affinity with the proposals that
introduce a policy based classification of the data to protect their confidentiality
(e.g., [2]). Such solutions however do not use fragmentation and are concerned
with returning to users query results that do not contain combinations of values
that are sensitive or that can be exploited for inferring sensitive information.

Other related work is represented by proposals that introduce OBDD-based
approaches for solving constraint satisfaction problems (or CSPs, e.g. [13, 15,
17]). These approaches aim at computing a truth assignment for a set of vari-
ables that satisfies a set of constraints among the variable values. The solution
described in this paper differs from the techniques proposed for general constraint
satisfaction problems, since our approach takes advantage of the monotonicity of
confidentiality and visibility constrains and therefore fully exploits the implicit
representation of sets of truth assignments provided by OBDDs. These peculiar-
ities of the minimal fragmentation problem permit to limit the computational
effort required to compute an optimal solution.

6 Conclusions

We presented a novel OBDD-based approach for computing a fragmentation
that fulfills both the need of properly protecting sensitive data and the need
of guaranteeing visibility requirements when a dataset is publicly released. Our
modeling of the fragmentation problem relies on the interpretation of both con-
fidentiality and visibility constraints as Boolean formulas and of fragments as
truth assignments to variables. OBDDs allow us to compactly represent multiple
constraints and to simply check whether a fragmentation satisfies them.
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