
Theory of Privacy and Anonymity

Valentina Ciriani, Sabrina De Capitani di Vimercati, Sara Foresti, Pierangela Samarati

University of Milan - 26013 Crema, Italy

{ciriani,decapita,foresti,samarati}@dti.unimi.it

Contents

1 Introduction 2

1.1 Privacy of the user . 3

1.2 Privacy of the communication . 4

1.3 Privacy of the information . 5

2 k-Anonymity: the problem 7

2.1 Generalization and suppression . 9

2.2 Classification of k-anonymity techniques . 11

3 k-Anonymity with hierarchy-based generalization 12

3.1 Problem complexity . 17

3.2 Algorithms for k-anonymity . 20

3.2.1 Samarati’s Algorithm . 20

3.2.2 Incognito . 25

3.2.3 Approximation algorithms . 28

4 k-Anonymity with recoding-based generalization 30

4.1 Algorithms for k-anonymity . 30

4.1.1 k-Optimize . 31

4.1.2 Mondrian multidimensional algorithm . 34

5 Attribute disclosure protection 37

6 Conclusions 41

2

1 Introduction

The increased power and interconnectivity of computer systems and the advances in memory sizes, disk

storage capacity, and networking bandwidth allow data to be collected, stored, and analyzed in ways that

were impossible in the past due to the restricted access to the data and the expensive processing (in both

time and resources) of them. Huge data collections can be analyzed by powerful techniques (e.g., data mining

techniques [12]) and sophisticated algorithms thus making possible linking attacks combining information

available through different sources to infer information that was not intended for disclosure. For instance,

by linking de-identified medical records (i.e., records where the explicit identifiers such as the Social Security

Numbers have been removed) with other publicly available data or by looking at unique characteristics found

in the released medical data, a data observer will most certainly be able to reduce the uncertainty about

the identities of the users to whom the medical records refer, or -worse- to determine them exactly. This

identity disclosure often implies leakage of sensitive information, for example, allowing data observers to infer

the illness of patients. The need for privacy is therefore becoming an issue that most people are concerned

about. Although there are many attempts to create a unified and simple definition of privacy, privacy by its

own nature is a multifacet concept that may encompass several meaning, depending on different contexts.

In this chapter, we focus our attention on the technological aspect of privacy within today’s global network

infrastructure, where users interact with remote information sources for retrieving data or for using on-line

services. In such a context, privacy involves the following three different but related concepts.

• Privacy of the user . It corresponds to the problem of protecting the relationship of users with a par-

ticular action and outcome. Since we focus on network infrastructures, we are interested in protecting

the relationship between a user and the messages she sends, which can be, for example, queries for

retrieving some information or requests for using a particular on-line service.

• Privacy of the communication. It corresponds to the classical problem of protecting the confidentiality

of personal information when transmitted over the network (or with other forms of communication),

and to the problem of protecting the privacy of a request to a service provider hiding the content of

the request from every party, as well as from the service provider.

• Privacy of the information. It involves privacy policies as well as technologies for ensuring proper data

protection. A basic requirement of a privacy policy is to establish both the responsibilities of the data

holder with respect to data use and dissemination, and the rights of the user to whom the information

refers to regulate such use and dissemination. Each user should be able to control further disclosure,

view data collected about her and, possibly, make or require corrections.

3

We now discuss these three aspects more in details.

1.1 Privacy of the user

Privacy of the user concerns protecting the identities of the parties that communicate through a network

to avoid possible attacks that have the main purpose to trace who is communicating with whom, or who

is interacting with which server or searching for which data. This problem can be solved by providing

techniques and protocols that guarantee an anonymous communication among different parties. In particular,

anonymous communication is about the protection of the relationship between senders and the messages they

send, called sender anonymity, between recipients and the messages they receive, called recipient anonymity,

or both, meaning that anonymous senders send messages to anonymous recipients. In the literature, there

are a number of approaches providing anonymous communication.

Mix networks , first proposed by Chaum [8], are a way of achieving anonymity on communication networks.

Intuitively, a mix is a special node in a network that relays messages in such a way that an outside observer

cannot link an outgoing message with an incoming message. Several mix nodes can also be chained to relay

a message anonymously. Since their introduction, a large amount of research on mixnets has been performed

and different mixnet topologies have been studied and compared [37].

Onion Routing [39] is another solution for ensuring anonymous connections. The main goal of Onion

Routing is to guarantee that malicious users cannot determine the contents of messages flowing from a sender

to a recipient, and that they cannot verify whether the sender and the recipient are communicating with

each other. Onion Routing also provides sender anonymity while preserving the ability of the recipient to

send a reply to the sender. With Onion Routing, a network includes a set of onion routers , which work as

the ordinary routers, combined with mixing properties. When a sender wants to communicate anonymously

with a particular recipient, an anonymous connection has to be setup. The sender therefore connects to a

particular onion router that prepares an onion. An onion is a layered data structure including information

about the route of the anonymous connection. In particular, the onion router randomly selects other onion

routers and generates a message for each of such a router, providing it with symmetric keys for decrypting

messages, and telling it which the next hop (an onion router or the final recipient) in the path will be. Note

that anonymity is only provided from the first to the last onion router. The connections from the sender to

the first onion router, and from the last onion router to the recipient are not anonymous.

Tor [17] allows users to communicate anonymously on the Internet. Tor is primarily used for anonymous

TCP-based applications. Basically, messages are encrypted and then sent through a randomly chosen path

of different servers in such a way that an observer cannot discover the source and the destination of the

4

message.

Crowds [35] provides anonymity based on the definition of groups of users, called crowds , who collectively

perform requests. In this way, each request is equally likely to originate from any user in the crowd. Each

user is represented by a local jondo stored on her machine that receives a request from the user and removes

from such a request all identifying information. A jondo acts as a web proxy that can forward both the

user’s and other users’ requests to the end server, or to another jondo. In this way, since a jondo cannot tell

whether or not a request has been initiated by the previous jondo (or the one before it, and so on), users

maintain their anonymity within the crowd. The communications along a path of jondos is encrypted and

such a path remains the same for the whole session, meaning that requests and replies follow the same path.

1.2 Privacy of the communication

Privacy of the communication is related to two aspects: i) protection of the confidentiality of personal

information sent through a network; and ii) protection of the content of requests to prevent, for example,

user profiling. The confidentiality of the personal information transmitted over the network can be ensured by

adopting protocols (e.g., SSL) that encrypt it. The need for protecting also the request content arises because

there are many real world scenarios where the request content could be misused by service providers. For

instance, consider a medical database that contains information about known illnesses, symptoms, treatment

options, specialists, and treatment costs. Suppose that a user submits a query to the medical database to

collect information about a specific illness. Any other user, including the database administrator, who is

able to observe such a query can then infer that the requestor, or a near relative/friend, might suffer from

that specific illness.

The problem of protecting the request content is known as Private Information Retrieval (PIR) prob-

lem [10]. There are many different ways for formally defining the PIR problem. The first formulation assumes

that a database can be modeled as a N -bit string and a user is interested in privately retrieving the i-th bit

of the N bits stored at the server, meaning that the server does not know which is the bit the user is inter-

ested in. Starting from this formulation, many results and advancements have been obtained. In particular,

depending on the assumptions about the computational power of the service provider, PIR proposals can be

classified into two main classes: theoretical PIR and computational PIR. Theoretical PIR does not make any

assumption about the computational power of the service provider and the privacy of the request must then

be provided independently from the computational power of an attacker. Computational PIR assumes that

a request is private if the service provider must solve a computationally intractable problem to break it. A

naive solution to the theoretical PIR problem consists in completely downloading the database at the client

5

side and performing the research on the local copy of the data. Such a solution however has a high commu-

nication cost, especially when the database contains a huge data collection. In [10] the authors prove that if

there is only one copy of the database stored on one service provider, there is no solution to the theoretical

PIR problem that is better than the solution corresponding to the download of the whole database. By con-

trast, if there are m copies of the data been stored at different non communicating servers, the theoretical

PIR problem can be solved by submitting m independent requests (each single request does not provide any

information about the bit on which the user is interested in) to the corresponding service providers. The m

results are then combined by the user to obtain the answer to her request [5, 10, 24]. The computational

PIR problem is typically solved by encrypting the request submitted to the service provider [7, 9, 27]. By

exploiting properties of the encryption function, the server computes the encrypted result of the request,

which can be decrypted only by the requestor.

Note that the PIR problem can also be seen as a Secure Multi-Party Computation (SMC) problem [19, 42].

The main goal of SMC is to allow a set of parties to compute the value of a function f on private inputs

provided by the parties without revealing to them the private inputs of the other parties. The SMC problem

is usually solved by modeling function f through a Boolean circuit, where gates correspond to protocols

that require the collaboration among parties, since they know the input and share knowledge on the output.

Other examples of SMC problems are represented by privacy-preserving statistical analysis [18] and privacy-

preserving data mining [4, 31]. The SMC problem will be discussed in more details in Chapter ??.

1.3 Privacy of the information

Privacy of the information is related to the definition of privacy policies expressing and combining different

protection requirements, as well as the development of technologies for ensuring proper data protection. An

important aspect of the data protection issue relates to the protection of the identities of the users to whom

the data refer, meaning that the anonymity of the users must be guaranteed. Anonymity does not imply that

no information at all is released, but requires that information released be non identifiable. More precisely,

given a collection of personal information about a user, the privacy of the user is protected if the value of

her personal information is kept private. Whenever a subset of the personal information can be used to

identify the user, the anonymity of the user depends on keeping such a subset private. For instance, a recent

study [23] shows that in 2000, 63% of the US population was uniquely identifiable by gender, ZIP code,

and full date of birth. This means that while these individual pieces of information do not identify a user

and therefore the user is anonymous according to the usual meaning of the term, the combined knowledge

of gender, ZIP code, and full date of birth may result in the unique identification of a user. Note also

6

that anonymity is always related to the identification of a user rather than the specification of that user. For

instance, a user can be univocally identified through her SSN but in the absence of an information source

that associates that SSN with a specific identity, the user is still anonymous. Ensuring proper anonymity

protection then requires the investigation of the following different issues [13].

• Identity disclosure protection. Identity disclosure occurs whenever it is possible to re-identify a user,

called respondent , from the released data. Techniques for limiting the possibility of re-identifying

respondents should therefore be adopted.

• Attribute disclosure protection. Identity disclosure protection alone does not guarantee privacy of

sensitive information because all the respondents in a group could have the same sensitive information.

To overcome this issue, mechanisms that protect sensitive information about respondents should be

adopted.

• Inference channel protection. Given the possibly enormous amount of data to be considered, and the

possible inter-relationships between data, it is important that the security specifications and enforce-

ment mechanisms provide automatic support for complex security requirements, such as those due to

inference and data association channels [15].

Protection of anonymity is a key aspect in many different contexts, where the identities of the users (or

organizations, associations, and so on) to whom the data refer have been removed, encrypted, or coded. The

identity information removed or encoded to produce anonymous data includes names, telephone numbers,

and Social Security Numbers. Although apparently anonymous, the de-identified data may contain other

identifying information that uniquely or almost uniquely distinguishes the user [14, 20, 21], such as the

gender, ZIP code, and full date of birth mentioned above. By linking such an information to publicly

available databases (e.g., many countries provide access to public records to their citizens thus making

available a broad range of personal information) associating them to the user’s identity, a data recipient can

determine to which user each piece of released information belongs, or restrict her uncertainty to a specific

subset of users. To avoid this, specific data protection norms apply to data collected for a given purpose

that state that such data can be further elaborated for historical, statistical or scientific purposes provided

that “appropriate safeguards” are applied. In general, the “appropriate safeguards” depend on the method

in which the data are released. In the past, data were principally released in the form of macrodata, which

are statistics on users or organizations usually presented as two-dimensional tables, and through statistical

databases , which are database whose users may retrieve only aggregate statistics [1]. Macrodata protection

techniques are based on the selective obfuscation of sensitive cells [13]. Techniques for protecting statistical

7

databases follow two main approaches [16]. The first approach restricts the statistical queries that can be

made (e.g., queries that identify a small/large number of tuples) or the data that can be published. The

second approach provides protection by returning to the user a modified result. The modification can be

enforced directly on the stored data or at run time (i.e., when computing the result to be returned to the

user). Many situations require today that the specific microdata, that is, data actually stored in the database

and not an aggregation of them, are released. The advantage of releasing microdata instead of specific pre-

computed statistics is an increased flexibility and availability of information for the users. At the same time,

however, microdata, releasing more specific information, are subject to a greater risk of privacy breaches.

Several techniques have been proposed in the literature to protect the disclosure of information that should

be kept private [11, 13]. In this chapter, we focus on k-anonymity [36], an approach that, compared to

the other commonly used approaches (e.g., sampling, swapping values, and adding noise to the data while

maintaining some overall statistical properties of the resulting table), has the great advantage of protecting

respondents’ identities while releasing truthful information.

In the remainder of this chapter, we describe the k-anonymity concept (Section 2) and illustrate some

proposals for its enforcement (Section 3 and Section 4). Note that k-anonymity protects identity disclosure,

while remaining exposed to attribute disclosure [36]. We will see then how some researchers have just started

proposing extensions to k-anonymity to protect also attribute disclosure [32] (Section 5).

2 k-Anonymity: the problem

Although k-anonymity is a concept that applies to any kind of data, for simplicity its formulation considers

data represented by a relational table. Formally, let A be a set of attributes, D be a set of domains, and dom:

A → D be a function that associates with each attribute A ∈ A a domain D = dom(A) ∈ D, containing the

set of values that A can assume. A tuple t over a set {A1,. . . ,Ap} of attributes is a function that associates

with each attribute Ai a value v ∈ dom(Ai), i = 1, . . . , p.

Definition 2.1 (Relational table) Let A be a set of attributes, D be a set of domains, and dom : A → D be

a function associating each attribute with its domain. A relational table T over a finite set {A1,. . . ,Ap}⊆ A

of attributes, denoted T (A1, . . . , Ap) is a set of tuples over the set {A1,. . . ,Ap} of attributes.

Notation dom(A, T) denotes the domain of attribute A in T , |T | denotes the number of tuples in T , and

t[A] represents the value v associated with attribute A in t. Similarly, t[A1, . . . , Ak] denotes the subtuple of

t containing the values of attributes {A1,. . . ,Ak}. By extending this notation, T [A1, . . . , Ak] represents the

subtuples of T containing the values of attributes {A1,. . . ,Ak}, that is, the projection of T over {A1,. . . ,Ak},

8

SSN Name ZIP MaritalStatus Sex Disease

1 22030 married F hypertension
2 22030 married F hypertension
3 22030 single M obesity
4 22032 single M HIV
5 22032 single M obesity
6 22032 divorced F hypertension
7 22045 divorced M obesity
8 22047 widow M HIV
9 22047 widow M HIV

10 22047 single F obesity

Figure 1: An example of private table PT

keeping duplicates.

In the remainder of this chapter, the relational table storing the data to be protected is called private

table, denoted PT. Each tuple t in PT reports data referred to a specific respondent (usually an individual).

For instance, Figure 1 illustrates an example of private table over attributes SSN, Name, Zip, MaritalStatus,

Sex, and Disease containing ten tuples. Here, the identity information, that is, attributes SSN and Name,

have been removed. The attributes (columns) of PT can be classified as follows.

• Identifiers. Attributes that uniquely identify a respondent. For instance, attribute SSN uniquely

identifies the person with which it is associated.

• Quasi-identifiers. Attributes that, in combination, can be linked with external information, reduc-

ing the uncertainty over the identities of all or some of the respondents to whom information in

PT refers. For instance, the set of attributes ZIP, MaritalStatus, and Sex may represent a quasi-

identifier that can be exploited for linking PT with an external information source that associates ZIP,

MaritalStatus, and Sex with Name and Address.

• Confidential attributes. Attributes that contain sensitive information. For instance, attribute Disease

can be considered sensitive.

• Non confidential attributes. Attributes that do not fall into any of the categories above, that is, they

do not identify respondents, cannot be exploited for linking, and do not contain sensitive information.

For instance, attribute FavoriteColor is a non confidential attribute.

Although all the explicit identifiers (e.g., SSN) are removed from a private table PT that is public or

semi-public released, the privacy of the respondents is at risk, since quasi-identifiers can be used to link each

tuple in PT to a limited number of respondents. The main goal of k-anonymity is therefore to protect the

released data against possible re-identification of the respondents to whom the data refer.

9

The k-anonymity requirement is formally stated by the following definition [36].

Definition 2.2 (k-anonymity requirement) Each release of data must be such that every combination

of values of quasi-identifiers can be indistinctly matched to at least k respondents.

The k-anonymity requirement implicitly assumes that the data owner knows how many respondents each

released tuple matches. This information can be known precisely only by explicitly linking the released

data with externally available data. Since it is not realistic to assume that the data owner knows the data

in external tables, the definition of k-anonymity translates the k-anonymity requirement in terms of the

released data themselves. k-anonymity requires each respondent to be indistinguishable with respect to at

least other k − 1 respondents in the released table, as stated by the following definition.

Definition 2.3 (k-anonymity) Let T (A1, . . . , Ap) be a table, and QI be a quasi-identifier associated with

it. T is said to satisfy k-anonymity with respect to QI iff each sequence of values in T [QI] appears at least

with k occurrences in T [QI].

The definition of k-anonymity represents a sufficient (but not a necessary) condition for the k-anonymity

requirement. As a matter of fact, if a subset of QI appears in a publicly available table, the combination of

the released k-anonymous table with the public table never allows an adversary to associate each released

tuple with less than k respondents. For instance, the private table in Figure 1 is 1-anonymous w.r.t. QI =

{ZIP, MaritalStatus, Sex}, since there are unique combinations of values of the quasi-identifying attributes

(e.g., 〈22030, single, M〉). However, the same table is 2-anonymous with respect to QI = {MaritalStatus}.

To correctly enforce k-anonymity, it is then necessary to identify the quasi-identifiers. The identification of

quasi-identifiers depends on which data are known to a potential adversary. Since different adversaries may

have different knowledge, and it seems highly improbable to exactly know which data are available to each

adversary, the original k-anonymity proposal [36] assumes to define a unique quasi-identifier for each private

table, including all attributes that are possibly externally available.

2.1 Generalization and suppression

Although different data disclosure protection techniques have been developed (e.g., scrambling, swapping

values, and adding noise), k-anonymity is typically enforced by combining two non-perturbative protecting

techniques, called generalization and suppression, which have the advantage of preserving the truthfulness

of the information, in contrast to other techniques that compromise the correctness of the information [13].

10

Generalization. Generalization consists in substituting the values in a column (or cell) of PT[QI] with

more general values. Each attribute A in PT is initially associated with a ground domain D = dom(A, PT).

The generalization maps each value v ∈ D to a more general value v′ ∈ D′, where D′ is a generalized

domain for D. Given a ground domain D, we distinguish two classes of generalizations depending on how

the generalized domain D′ is defined.

• Hierarchy-based generalization. This technique is based on the definition of a generalization hierarchy

for each attribute in QI, where the most general value is at the root of the hierarchy and the leaves

correspond to the most specific values (i.e., to the values in the ground domain for the attribute).

A hierarchy-based generalization maps the values represented by the leaf vertices with one of their

ancestor vertices at a higher level (see Section 3). As an example, attribute ZIP can be generalized by

suppressing, at each generalization step, the right most digit.

• Recoding-based generalization. This technique is based on the recoding into intervals protection

method [13] and typically assumes a total order relationship among values in the considered domain.

The ground domain of each attribute in QI is partitioned into possibly disjoint intervals and each

interval is associated with a label (e.g., the extreme interval values). A recoding-based generalization

maps the values in the ground domain with the intervals they belong to (see Section 4).

It is interesting to note that one of the main differences between hierarchy-based and recoding-based gener-

alizations is that while hierarchies need to be pre-defined, intervals for the recoding are usually computed at

runtime during the generalization process. Accordingly, the k-anonymity algorithms adopting a hierarchy-

based generalization will receive as an input the generalization hierarchies associated with attributes in QI,

while the k-anonymity algorithms adopting a recoding-based generalization will have the additional task of

defining the intervals.

Suppression. Suppression consists in removing from the private table a cell, a column, a tuple or a set

thereof. The intuition behind the introduction of suppression is that the combined use of generalization and

suppression can reduce the amount of generalization necessary to satisfy the k-anonymity constraint. As a

matter of fact, when a limited number of outliers (i.e., tuples with less than k occurrences) would force a

great amount of generalization, their suppression allows the release of a less general (more precise) table.

For instance, the suppression of tuples 3, 6, 7, and 10 of the private table in Figure 1 satisfies 2-anonymity

with respect to QI = {ZIP, MaritalStatus, Sex} without any generalization.

11

Suppression

Generalization Tuple Attribute Cell None

Attribute AG TS AG AS AG CS AG

≡ AG ≡ AG AS
Cell CG TS CG AS CG CS CG

not applicable not applicable ≡ CG ≡ CG CS
None TS AS CS

not interesting

Figure 2: Classification of k-anonymity techniques

2.2 Classification of k-anonymity techniques

Generalization and suppression can be applied at different granularity levels, which corresponds to different

approaches and solutions to the k-anonymity problem, and introduce a taxonomy of k-anonymity solu-

tions [11]. Such a taxonomy is orthogonal to the type of generalization (i.e., hierarchy- or recoding-based)

adopted.

Generalization can be applied at the level of:

• Attribute (AG): generalization is performed at the level of column; a generalization step generalizes

all the values in the column.

• Cell (CG): generalization is performed on individual cells; as a result a generalized table may

contain, for a specific column, values at different generalization levels.

Generalizing at the cell level has the advantage of allowing the release of more specific values (since

generalization can be confined to specific cells rather than hitting whole columns). However, be-

sides a higher complexity of the problem, a possible drawback in the application of generalization

at the cell level is the complication arising from the management of values at different generaliza-

tion levels within the same column.

Suppression can be applied at the level of:

• Tuple (TS): suppression is performed at the level of row; a suppression operation removes a whole

tuple.

• Attribute (AS): suppression is performed at the level of column; a suppression operation obscures

all the values of a column.

• Cell (CS): suppression is performed at the level of single cells; as a result a k-anonymized table

may wipe out only certain cells of a given tuple/attribute.

Figure 2 summarizes the different combinations of generalization and suppression at all possible granu-

larity levels (including combinations where one of the two techniques is not adopted). It is interesting to

12

note that the application of generalization and suppression at the same granularity level is equivalent to the

application of generalization only (AG ≡AG AS and CG ≡CG CS), since suppression can be modeled

as a generalization of all domain values to a unique value. Combinations CG TS (cell generalization, tuple

suppression) and CG AS (cell generalization, attribute suppression) are not applicable since the application

of generalization at the cell level implies the application of suppression at that level too.

3 k-Anonymity with hierarchy-based generalization

The problem of k-anonymizing a private table by exploiting generalization and suppression has been widely

studied and a number of approaches have been proposed. In this section we focus on those solutions that

adopt a hierarchy-based generalization (together with suppression) to achieve k-anonymity. Before discussing

such solutions, we first formally define how generalization can be performed by adopting a pre-defined

hierarchy and we then discuss the problem complexity.

For each ground domain D ∈ D, we assume the existence of a set of generalized domains. The set of all

ground and generalized domains is denoted Dom. The relationship between a ground domain and domains

generalization of it is formally defined as follows.

Definition 3.1 (Domain generalization relationship) Let Dom be a set of ground and generalized do-

mains. A domain generalization relationship, denoted ≤D, is a partial order relation on Dom that satisfies

the following conditions:

C1: ∀Di, Dj , Dz ∈ Dom: Di ≤D Dj, Di ≤D Dz ⇒ Dj ≤D Dz ∨ Dz ≤D Dj

C2: all maximal elements of Dom are singleton.

Condition C1 states that, for each domain Di, the set of its generalized domains is totally ordered

and each Di has at most one direct generalized domain Dj . This condition ensures determinism in the

generalization process. Condition C2 ensures that all values in each domain can always be generalized

to a single value. The definition of the domain generalization relationship implies the existence, for each

domain D ∈ Dom, of a totally ordered hierarchy, called domain generalization hierarchy and denoted DGHD.

Each DGHD can be graphically represented as a chain of vertices, where the top element corresponds to the

singleton generalized domain, and the bottom element corresponds to D.

Analogously, a value generalization relationship, denoted ≤V, can also be defined that associates with each

value vi ∈ Di a unique value vj ∈ Dj , where Dj is the direct generalization of Di. The definition of the value

generalization relationship implies the existence, for each domain D ∈ Dom, of a partially ordered hierarchy,

13

Z2 ={220 ∗ ∗}

Z1 =

OO

{2203∗,2204∗}

Z0 =

OO

{22030,22032,22045,22047}

220 ∗ ∗

2203∗

::vvvvvvvvv
2204∗

ddHHHHHHHHH

22030

OO

22032

ZZ444444

22045

DD

22047

OO

DGHZ0
VGHZ0

(a) ZIP

S1 = {not released}

S0 =

OO

{M,F}

not released

M

EE������
F

YY222222

DGHS0
VGHS0

(b) Sex

M2 = {not released}

M1 =

OO

{been married,never married}

M0 =

OO

{married,widow,divorced,single}

not released

been married

77ooooooooooo
never married

aaCCCCCCCC

married

@@�������
widow

OO

divorced

__???????
single

OO

DGHM0
VGHM0

(c) MaritalStatus

Figure 3: Examples of domain and value generalization hierarchies

called value generalization hierarchy and denoted VGHD. Each VGHD can be graphically represented as a

tree, where the root element corresponds to the unique value in the top domain in DGHD, and the leaves

correspond to the values in D. Figure 3 shows an example of domain and value generalization hierarchies

for attributes Zip, Sex, and MaritalStatus. Attribute ZIP, with domain Z0={22030, 22032, 22045, 22047},

is generalized by suppressing, at each step, the right-most digit. Attribute Sex, with domain S0={M, F},

is generalized to the not released value (domain S1). Attribute MaritalStatus, with domain M0={single,

married, divorced, widow}, is first generalized to the been married and never married values (domain M1),

and then to the not released value (domain M2).

Since most k-anonymity approaches work on sets of attributes, the definition of domain generalization

hierarchy is extended to tuples of domains. A domain tuple DT = 〈D1, . . . , Dn〉 is an ordered set of domains

composed through the Cartesian product to impose coordinate-wise order among domains. Since each

domain Di ∈ DT is characterized by a total order domain generalization hierarchy DGHDi
, domain tuple

DT is characterized by a domain generalization hierarchy DGHDT defined as DGHDT =DGHD1×. . .×DGHDn
.

DGHDT is a lattice where the bottom element is DT and the top element is the tuple composed of all top

elements in DGHDi
, i = 1, . . . , n. Each path from the bottom to the top element in DGHDT is called

generalization strategy and represents a possible strategy for generalizing quasi-identifier QI= {A1, . . . , An},

where dom(Ai) = Di, i = 1, . . . , n. Figure 4(a) illustrates the domain generalization hierarchy built on

the domain tuple 〈Z0, M0, S0〉 and obtained through the combination of the domain generalization hierarchies

14

〈Z2, M2, S1〉
OO

33

gggggggggggg kk

WWWWWWWWWWWW

〈Z2, M2, S0〉
OO

ll

ZZZZZZZZZZZZZZZZZZZZZZ 〈Z2, M1, S1〉
OO77

ooo
ooo
33

gggggggggggg 〈Z1, M2, S1〉
OO77

ooo
ooo
33

gggggggggggg

〈Z2, M1, S0〉
OO gg

OOO
OOO

〈Z2, M0, S1〉
77

ooo
ooo

gg

OOO
OOO

〈Z1, M1, S1〉
OO77

ooo
ooo

gg

OOO
OOO

〈Z1, M2, S0〉
gg

OOO
OOO

33

gggggggggggg
〈Z0, M2, S1〉

OO77

ooo
ooo

〈Z2, M0, S0〉 〈Z1, M1, S0〉 〈Z1, M0, S1〉 〈Z0, M1, S1〉 〈Z0, M2, S0〉

〈Z1, M0, S0〉

OO 77oooooo

33gggggggggggg
〈Z0, M1, S0〉

ggOOOOOO
77oooooo

33gggggggggggg
〈Z0, M0, S1〉

ggOOOOOO
kkWWWWWWWWWWWW

〈Z0, M0, S0〉

OO
kkWWWWWWWWWWWW

33gggggggggggg

(a) DGHDT

[2, 2, 1]

iiiiiiiiii

UUUUUUUUUU

[2, 2, 0]

XXXXXXXXXXXXXXXXXX [2, 1, 1]

sss
ss

iiiiiiiiii [1, 2, 1]

sss
ss

iiiiiiiiii

[2, 1, 0]

KKK
KK

[2, 0, 1]

sss
ss KKK

KK
[1, 1, 1]

sss
ss KKK

KK
[1, 2, 0]

KKK
KK

iiiiiiiiii
[0, 2, 1]

sss
ss

[2, 0, 0] [1, 1, 0] [1, 0, 1] [0, 1, 1] [0, 2, 0]

[1, 0, 0]

sssss

iiiiiiiiii
[0, 1, 0]

KKKKK
sssss

iiiiiiiiii
[0, 0, 1]

KKKKK
UUUUUUUUUU

[0, 0, 0]

UUUUUUUUUU

iiiiiiiiii

(b) VLDT

Figure 4: Domain generalization hierarchy (a) and distance vector hierarchy (b) for DT=〈Z0, M0, S0〉

ZIP MaritalStatus Sex

220 ∗ ∗ not released not released

220 ∗ ∗ not released not released

220 ∗ ∗ not released not released

220 ∗ ∗ not released not released

220 ∗ ∗ not released not released

220 ∗ ∗ not released not released

220 ∗ ∗ not released not released

220 ∗ ∗ not released not released

220 ∗ ∗ not released not released

220 ∗ ∗ not released not released
(a) 〈Z2, M2, S1〉

ZIP MaritalStatus Sex

220 ∗ ∗ been married F

220 ∗ ∗ been married F

220 ∗ ∗ never married M

220 ∗ ∗ never married M

220 ∗ ∗ never married M

220 ∗ ∗ been married F

220 ∗ ∗ been married M

220 ∗ ∗ been married M

220 ∗ ∗ been married M

(b) 〈Z2, M1, S0〉

ZIP MaritalStatus Sex

2203∗ been married F

2203∗ been married F

2203∗ never married M

2203∗ never married M

2203∗ never married M

2203∗ been married F

2204∗ been married M

2204∗ been married M

2204∗ been married M

(c) 〈Z1, M1, S0〉

Figure 5: Examples of generalized tables

DGHZ0
, DGHM0

, DGHS0
illustrated in Figure 3.

Given a private table PT and its quasi-identifier QI, the application of generalization and suppression

produces a generalized table T containing less information (more general values and less tuples) than PT,

formally defined as follows.

Definition 3.2 (Generalized table) Let Ti(A1,. . . ,An) and Tj(A1,. . . ,An) be two tables defined on the

same set of attributes. Table Tj is said to be a generalization (with tuple suppression) of table Ti, denoted

Ti�Tj, iff:

1. |Tj| ≤ |Ti|;

2. ∀A ∈ {A1, . . . , An}: dom(A, Ti) ≤D dom(A, Tj);

3. it is possible to define an injective mapping associating each tuple tj ∈ Tj with a tuple ti ∈ Ti, such

that ti[A] ≤V tj [A], for all A ∈ {A1, . . . , An}.

15

Given a private table PT and its quasi-identifier QI, there may exist different generalized tables that

satisfy k-anonymity. Among all possible generalized tables, we are interested in a table that minimizes

information loss, meaning that is k-anonymous and does not remove, through generalization and suppression,

more information than necessary. As an example, consider the private table in Figure 1 with QI = {Zip,

MaritalStatus, Sex} and suppose that k = 3. The generalized table in Figure 5(a) corresponding to the top

element 〈Z2, M2, S1〉 in DGHDT , which is composed of ten identical tuples (all the cells in each column have

been generalized to the same value), is 3-anonymous but it removes more information than necessary. In

fact, the generalized table corresponding to 〈Z2, M1, S0〉 in Figure 5(b) is 3-anonymous and it is more specific

than the table corresponding to 〈Z2, M2, S1〉, since it contains more specific values for MaritalStatus and

Sex attributes.

The goal of k-anonymity is to compute a generalized k-anonymous table, while maintaining as much

information as possible. This concept is captured by the definition of k-minimal generalization. The formal

definition of k-minimal generalization requires the introduction of the concept of distance vector .

Definition 3.3 (Distance vector) Let Ti(A1, . . . , An) and Tj(A1, . . . , An) be two tables such that Ti�Tj.

The distance vector of Tj from Ti is the vector DV i,j = [d1, . . . , dn], where dz, z = 1, . . . , n, is the length of

the unique path between dom(Az , Ti) and dom(Az , Tj) in the domain generalization hierarchy DGHDz
.

The dominance relationship ≤ on integers is then extended on the set of distance vectors as follows. Given

two distance vectors DV = [d1, . . . , dn] and DV ′ = [d′1, . . . , d
′
n], DV ≤ DV ′ iff di ≤ d′i, i = 1, . . . , n. For

each PT[QI] defined on domain tuple DT , we can therefore define a partially ordered hierarchy of distance

vectors , denoted VLDT , containing the distance vectors of all the generalized tables of PT[QI]. Each VLDT

can be graphically represented as an isomorphic lattice to DGHDT . The height of a distance vector DV

in VLDT , denoted height(DV ,VLDT), is equal to the sum of the elements in DV . The height of VLDT

corresponds to the height of its top element. As an example, Figure 4(b) illustrates the VLDT lattice defined

on DT=〈Z0, M0, S0〉 and therefore isomorphic to the DGH in Figure 4(a).

Note that given an element in DGHDT and the corresponding generalized table, Definition 3.2 allows any

amount of suppression to achieve k-anonymity. However, we are interested in a table obtained by suppressing

the minimum number of tuples necessary to achieve k-anonymity at a given level of generalization.

It is worth noting that, given a hierarchy of distance vectors VLDT , the generalized tables corresponding

to the distance vectors at the same height and ensuring minimality in suppression, may suppress a differ-

ent number of tuples. Since the joint use of generalization and suppression permits to maintain as much

information as possible in the released table, the question is whether it is better to generalize, loosing data

precision, or to suppress, loosing completeness. The compromise proposed by Samarati [36] consists in estab-

16

lishing a threshold MaxSup to the maximum number of tuples that can be suppressed; within this threshold,

generalization decides minimality. Given this threshold on the number of tuples that can be suppressed, a

k-minimal generalization is defined as follows.

Definition 3.4 (k-minimal generalization) Let Ti and Tj be two tables such that Ti � Tj, and let MaxSup

be the specified threshold of acceptable suppression. Tj is said to be a k-minimal generalization of table Ti

iff:

1. Tj satisfies k-anonymity enforcing minimal required suppression, that is, Tj satisfies k-anonymity and

∀Tz : Ti � Tz,DV i,z = DV i,j , Tz satisfies k-anonymity ⇒ |Tj| ≥ |Tz|

2. |Ti| − |Tj | ≤ MaxSup

3. ∀Tz : Ti � Tz and Tz satisfies conditions 1 and 2 ⇒ ¬(DV i,z < DV i,j).

This definition states that a generalization Tj of a table Ti is k-minimal if it satisfies k-anonymity

(condition 1), it does not suppress more tuples than MaxSup (condition 2), and there does not exist another

generalization of Ti satisfying these conditions and characterized by a distance vector lower than that of Ti

(condition 3). As an example, consider the private table in Figure 1 with QI = {Zip, MaritalStatus, Sex}

and suppose that k = 3 and MaxSup=2. The generalized table in Figure 5(c) is a k-minimal generalization

for PT. As a matter of fact, it is 3-anonymous (condition 1), it suppresses less than 2 tuples (condition 2), and

the generalized tables characterized by distance vectors lower than [1, 1, 0] do not satisfy these two conditions:

the generalized table corresponding to [1, 0, 0] requires to suppress at least 7 tuples; the generalized tables

corresponding to [0, 1, 0] and [0, 0, 0] require to suppress all the tuples.

Given a private table PT, there may exist more than one k-minimal generalization since DGHDT is a

lattice and two solutions may be non-comparable. Furthermore, the definition of k-minimal generalization

only captures the concept that the least amount of generalization and the minimal required suppression to

achieve k-anonymity is applied. Different preference criteria can be applied in choosing a preferred minimal

generalization, among which [36]:

• minimum absolute distance prefers the generalization(s) with the smallest absolute distance, that is,

with the smallest total number of generalization steps (regardless of the hierarchies on which they have

been taken);

• minimum relative distance prefers the generalization(s) with the smallest relative distance, that is, that

minimizes the total number of relative steps (a step is made relative by dividing it over the height of

the domain hierarchy to which it refers);

17

i

22
22

22
22

22

��
��
��
��
��

h

DD
DD

DD

zz
zz

zz

j k

T

i j k h

(i, j) 1 1 0 0
(i, k) 1 0 1 0
(j, k) 0 1 1 0

(i, h) 1 0 0 1
(j, h) 0 1 0 1
(k, h) 0 0 1 1

=⇒

TA (T anonymized)
i j k h

(i, j) ∗ ∗ ∗ 0
(i, k) ∗ ∗ ∗ 0
(j, k) ∗ ∗ ∗ 0

(i, h) ∗ ∗ ∗ 1
(j, h) ∗ ∗ ∗ 1
(k, h) ∗ ∗ ∗ 1

Figure 6: An example of construction of T from a graph, as described in the proof of Theorem 3.1

• maximum distribution prefers the generalization(s) with the greatest number of distinct tuples;

• minimum suppression prefers the generalization(s) that suppresses less tuples, that is, the one with

the greatest cardinality.

3.1 Problem complexity

All the models with hierarchies investigated in the literature (AG TS, AG , CG , and CS), as well as

AS, are NP-hard. The complexity results of all these models with hierarchies derive from the NP-hardness

of CS and AS. To formally prove the NP-hardness of such problems, and without loss of generality, each

table T can be seen as a matrix of m rows (tuples) and n columns (attributes). Each row xi, i = 1, . . . , m,

is a n-dimensional string defined on an alphabet Σ, where each c ∈ Σ corresponds to an attribute value. For

instance, the projection over QI of the private table in Figure 1 is a matrix with 10 rows and each row is a

string of three characters of the alphabet Σ= {22030, 22032, 22045, 22047, married, single, divorced, widow,

F,M}.

The NP-hardness of AS has been proved for |Σ| ≥ 2 [33], while the NP-hardness of the CS problem

for |Σ| ≥ 3 has been proved with a reduction from the “Edge Partition into Triangles” problem [3], which

is an improvement on the NP-hardness proved for AS when the size of alphabet Σ is equal to the number

n of attributes. NP-hardness of CS and AS clearly implies NP-hardness of CG and AG , respectively.

This implication holds since suppression can be considered as a special case of generalization, where all

hierarchies have height of 1. Note also that NP-hardness of AG implies NP-hardness of AG TS, where,

as in the existing proposals, tuple suppression is regulated with the specification of a maximum number of

tuples that can be suppressed. Nevertheless, the computational complexity of the general AG TS model

(where the number of tuples that can be suppressed is no more a constant value given as input, but it should

be minimized as part of the solution), is still an open issue. Note that the decisional versions of AS, CS,

AG , AG TS, and CG are obviously in NP [3].

We now give the proof of NP-hardness for CS and we briefly describe the result for AS.

18

T ′

i j k h i j k h i j k h

001 (i, j) 1 2 0 0 1 2 0 0 2 1 0 0
010 (i, k) 1 0 2 0 2 0 1 0 1 0 2 0
011 (j, k) 0 1 2 0 0 2 1 0 0 2 1 0

100 (i, h) 2 0 0 1 1 0 0 2 1 0 0 2
101 (j, h) 0 2 0 1 0 1 0 2 0 2 0 1
110 (k, h) 0 0 2 1 0 0 2 1 0 0 1 2

=⇒

T ′

A (T ′ anonymized)
i j k h i j k h i j k h

(i, j) ∗ ∗ ∗ 0 ∗ ∗ ∗ 0 ∗ ∗ ∗ 0
(i, k) ∗ ∗ ∗ 0 ∗ ∗ ∗ 0 ∗ ∗ ∗ 0
(j, k) ∗ ∗ ∗ 0 ∗ ∗ ∗ 0 ∗ ∗ ∗ 0

(i, h) ∗ ∗ ∗ 1 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
(j, h) ∗ ∗ ∗ 1 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
(k, h) ∗ ∗ ∗ 1 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

Figure 7: An example of construction of T ′ from the graph in Figure 6, as described in the proof of
Theorem 3.1

Theorem 3.1 The CS 3-anonymity problem is NP -hard even for a ternary alphabet.

Proof. The proof [3] is a reduction from the NP-hard problem of “Edge partition into triangles” [26], which

can be formulated as follows: given a graph G = (V, E) with |E| = 3m for some integer m, can the edges of

G be partitioned into m triangles with disjoint edges?

To facilitate the description of the reduction from “Edge partition into triangles”, the proof will first

describe the simpler reduction from “Edge partition into triangles and 4-stars” and then it will describe a

reduction from “Edge partition into triangles”. The overall proof therefore consists in two main steps. First,

we show that, given a graph G = (V, E) with |E| = 3m , we can construct a table T such that an optimal

3-anonymous solution for T costs at most 9m (i.e., T is obtained by suppressing at most 9m cells from PT)

if and only if G can be partitioned into a collection of m disjoint triangles and 4-stars (a 4-star is a graph

with 3 edges and 4 vertices, having one degree 3 and the others degree 1). Second, we show how to define a

table T ′ from G such that an optimal 3-anonymous solution for T ′ costs at most 9m ⌈log2(3m + 1)⌉ if and

only if G can be partitioned into a collection of m disjoint triangles. In the following, we use character ∗ to

denote suppressed cells.

Edge partition into triangles and 4-stars. Given a graph G = (V, E) with |E| = 3m and |V | = n, we

can construct a table T that contains 3m rows (one for each edge) and n attributes (one for each vertex).

The row corresponding to edge (i, j) has 1 in positions corresponding to attributes i and j; 0 otherwise.

Suppose that G can be partitioned into a collection of m disjoint triangles and 4-stars. Consider first a

triangle with vertices i, j, and k. By suppressing the cells in the rows corresponding to edges (i, j), (i, k), and

(j, k) and columns i, j, and k, we get 3 identical rows containing 3 ∗s each and 0 anywhere else. Consider now

a 4-star with vertices i, j, k, and h and edges (i, h), (j, h), and (k, h). By suppressing the cells in the rows

corresponding to edges (i, h), (j, h), and (k, h) and columns i, j, and k, we get 3 identical rows containing

3 ∗s each, with a single 1 (corresponding to attribute h) and 0 anywhere else. Since for each triangle and

for each 4-star we obtain three identical generalized tuples by suppressing 9 cells, table T is 3-anonymous

of cost 9m. As a simple example, consider the tables in Figure 6, where the first three rows correspond to

19

a triangle and the last three rows to a 4-star. The anonymized table on the right side shows the suppressed

cells.

Suppose to have a 3-anonymous table TA of cost at most 9m that is a generalization of T . We want to

show that the graph G corresponding to T can be partitioned into a collection of m disjoint triangles and

4-stars. Since G is a simple graph and therefore there are no edges with the same end vertices, any 3 rows

in the corresponding table T are distinct and differ in at least 3 positions; otherwise there would be multiple

edges. This implies that each modified row in the anonymized table TA contains at least 3 ∗s, as explained

above, and the overall number of ∗s in TA is at least 9m. From the previous hypothesis, we have that the

cost of TA is exactly 9m, and each row of TA contains 3 ∗s. Therefore TA contains only clusters of 3 identical

rows. In fact, any tuple in the anonymized table TA belonging to a group of more than 3 equal tuples

would contain at least 4 ∗s. The corresponding graph contains then only edges composing either triangles or

4-stars. In fact, while each modified row in a triangle has 3 ∗s and 0 elsewhere (see Figure 6), each modified

tuple in a 4-star contains 3 ∗s, a single 1, and 0 elsewhere (see Figure 6). No other configuration is possible.

The overall solution corresponds to a partition of edges into triangles and 4-stars.

We now show the reduction from the “Edge partition into triangles” problem.

Edge partition into triangles. To prove that CS 3-anonymity is reduced from “Edge partition into

triangles”, the informal idea is to make 4-stars costing more ∗s then triangles. A slightly different construction

of the table from a graph G = (V, E) with |E| = 3m and |V | = n is then required. Let t = ⌈log2(3m + 1)⌉.

We define a new table T ′ where each row has t blocks of n columns. Consider an arbitrary ordering of

the edges in E and express the rank of an edge e = (v1, v2) in binary notation b1b2 . . . bt. In the tuple

corresponding to edge e, each block has 0 in all columns but the columns corresponding to the vertices v1

and v2, for which two configurations are possible: conf0 has a 1 in column v1 and a 2 in column v2, and conf1

has a 2 in column v1 and a 1 in column v2. The l-th block in the row corresponding to e has configuration

confbl
. For instance, with respect to the graph shown in Figure 6, the edges are ranked from 1 (001 in

binary notation) to 6 (110 in binary notation). Figure 7 illustrates table T ′ corresponding to the graph. We

now show that the cost of the optimal 3-anonymity solution of T ′ is at most 9mt if and only if E can be

partitioned into m disjoint triangles.

Suppose that E can be partitioned into m disjoint triangles. As previously discussed, every triangle in

such a partition corresponds to a cluster with 3t ∗s in each tuple. Thus, we get a 3-anonymity solution of

cost 9mt.

Suppose to have a 3-anonymity solution of cost at most 9mt. Again, any 3 tuples differ in at least 3t

columns and the cost of any solution is at least 9mt. Hence, the solution cost is exactly 9mt and each

modified row has exactly 3t ∗s. Thus, each cluster has exactly 3 equal rows. We now show, by contradiction,

20

that the corresponding edges form a triangle and cannot be a 4-star. Suppose, on the contrary, that the 3

rows form a 4-star. Let h be the common vertex and consider the integer {1, 2} assigned by each of the 3

edges to h in conf0. Two of the three edges must have assigned the same digit to h. However, since these

two edges differ in rank, there must exist at least one block where they have a differen configuration (and

therefore, a different digit in the column corresponding to h). Thus, the rows corresponding to the 3 edges

contain an additional ∗ corresponding to column h in addition to the 3t ∗s corresponding to the remaining

3 columns (e.g., see the last 3 tuples of Figure 7). This contradicts the fact that each row has exactly 3t ∗s.

Therefore, E can be partitioned into m disjoint triangles.

The corresponding theorem for AS has been proved with a proof similar to the one that was proposed

for CS [33]. The result is the following.

Theorem 3.2 The AS problem for k > 2 is NP -hard for any alphabet Σ such that |Σ| ≥ 2.

The proof is a reduction from the “k-dimensional perfect matching” problem: given a k-hypergraph

G = (V, E) is there a subset S of G with |V |/k hyperedges such that each vertex of G is contained in exactly

one hyperedge of S?

By orchestrating Theorems 3.1 and 3.2 and the observations given in this section, we have the following

result.

Corollary 3.1 Problems AS, CS, AG , AG TS, and CG are NP -hard for k > 2, and for any alphabet

Σ such that |Σ| > 2.

3.2 Algorithms for k-anonymity

Since the hierarchy-based generalization has been proposed first, the solutions based on such a type of

hierarchy have been studied in more depth than the ones based on the recoding-based generalization. Here,

we present two exact algorithms, both belonging to the AG TS class, and both aimed at finding a k-minimal

solution for a given PT [29, 36]. We also briefly describe the most important approximation algorithms

proposed for k-anonymizing a private table.

Besides the two exact algorithms described in the following, Sweeney [38] proposed an exact algorithm

(AG TS class) that exhaustively examines all potential generalizations (with suppression) for identifying a

minimal one satisfying the k-anonymity requirement. This approach is however impractical for large datasets.

3.2.1 Samarati’s Algorithm

The first algorithm introduced for k-anonymizing a private table PT was proposed along with the definition

of k-anonymity [36]. This algorithm follows the minimum absolute distance criterion (see Section 3) to

21

determine a k-minimal generalization of PT.

Given a private table PT such that |PT| ≥ k,1 the algorithm restricts its analysis to PT[QI], where

QI={A1,. . . ,An} is defined on the domain tuple DT = 〈D1, . . . , Dn〉 (i.e., dom(Ai, PT) = Di, i = 1, . . . , n).

Given a domain generalization hierarchy DGHDT , each path from the bottom to the top element in

DGHDT represents a generalization strategy that is characterized by a locally minimal generalization defined

as follows.

Definition 3.5 (Locally minimal generalization) Let DGHDT be a domain generalization hierarchy, k

be the anonymity threshold, and MaxSup be the suppression threshold. Any path in DGHDT is characterized

by a locally minimal generalization, which is the lowest generalization in the path that satisfies k-anonymity

and suppresses a number of tuples lower than MaxSup.

A locally minimal generalization represents the k-anonymous generalization that maintains the most

information with respect to a given generalization strategy.

Example 3.1 Consider the table in Figure 1 and the domain generalization and distance vector hierarchies

in Figure 4. If k = 3 and MaxSup = 2, along path 〈Z0, M0, S0〉 → 〈Z1, M0, S0〉 → 〈Z2, M0, S0〉 → 〈Z2, M1, S0〉 →

〈Z2, M2, S0〉 → 〈Z2, M2, S1〉, the generalized table corresponding to 〈Z2, M1, S0〉 (see Figure 5(b)) is a locally

minimal generalization.

The definition of locally minimal generalization can be exploited to compute k-minimal generalizations,

on the basis of the following theorem.

Theorem 3.3 [36] Let Ti(A1,. . . ,An)=PT[QI] be a table to be generalized and let DT = 〈D1, . . . , Dn〉

(Dz = dom(Az , Ti), z = 1, . . . , n) be the domain tuple of its attributes. Every k-minimal generalization of

Ti is a locally minimal generalization for some strategy in DGHDT .

Note that a locally minimal generalization may not correspond to a k-minimal generalization, since a

generalization may be locally minimal along one path but not along another one. With respect to Exam-

ple 3.1, the locally minimal generalization 〈Z2, M1, S0〉 is not a k-minimal generalization, since the generalized

table corresponding to 〈Z1, M1, S0〉 (see Figure 5(c)) is k-anonymous, suppresses a number of tuples lower than

MaxSup and contains more specific values for the Zip attribute. Exploiting Theorem 3.3, a naive method

to compute a k-minimal generalization consists in finding all locally minimal generalizations by visiting all

the paths in DGHDT , starting from the bottom and stopping at the first generalization that both satisfies

k-anonymity and suppresses a number of tuples lower than MaxSup. By discarding the locally minimal gen-

eralizations that are dominated by other locally minimal generalizations, only k-minimal generalizations of

1Note that if 1 ≤ |PT| < k, a k-anonymous version of PT does not exist.

22

Algorithm 3.1 (Samarati’s Algorithm)

INPUT
T = PT[QI]: private table
k: anonymity requirement
MaxSup: suppression threshold
∀A ∈ QI, DGHA: domain generalization hierarchies

OUTPUT
sol: distance vector corresponding to the k-minimal generalization of PT[QI]

MAIN
Let VLDT be the distance vector hierarchy
/* matrix initialization phase */
Outlier := ∅ /* set of outlier values */
order(T) /* order the tuples in the table */
V := ∅ /* set of distinct tuples */
counter [t1] := 1 /* first tuple */
for i:=2. . . |T| do

if ti 6= t(i−1) then /* if the i-th is different from the (i − 1)th tuple */
V := V∪{ti}
counter [ti] := 1
if counter [t(i−1)]< k then Outlier := Outlier∪{t(i−1)}

else counter [ti] := counter [ti] + 1
for j :=1. . . |V | do

for i:=1. . . |Outlier| do
VT[i,j] := distance(vj ,outlier i)

/* binary search phase */
low := 0
high := height(⊤,VLDT)
sol := ⊤
while low<high do

h := ⌊ low+high
2 ⌋

Vectors := {vec|height(vec,VLDT)=h}
reach k := false

while Vectors 6= ∅ ∧ reach k 6=true do
let vec be a vector in Vectors

Vectors := Vectors − {vec}
if Satisfy(T,vec,VT,|Outlier|,|V |) then

sol := vec

reach k := true

if reach k=true then high := h

else low := h+1
return(sol)

SATISFY(T,vec,VT,rows,columns)
req sup := 0
for i:=1. . . rows do

c := 0
for j :=1. . . columns do

if VT[i,j]≤vec then
c := c + counter [vj]

if c<k then req sup := req sup + c

if req sup<MaxSup then return(true)
else return(false)

Figure 8: Algorithm that computes a k-minimal generalization [36]

PT are maintained. However, since the number of paths in DGHDT may be very high, such a naive strategy

is not viable. The key idea exploited by Algorithm 3.1 in Figure 8 to reduce the computational time is that

the number of tuples that need to be suppressed to satisfy k-anonymity decreases while going up in a path.

Theorem 3.4 [36] Let Ti=PT[QI] be a table to be generalized and Tj and Tz be two of its generalizations

(i.e., Ti�Tj and Ti�Tz) enforcing minimal required suppression. Then, DV i,j < DV i,z ⇒ |Tj | ≤ |Tz|.

From Theorem 3.4, it follows that given two generalized tables Tj and Tz of PT such that DVi,j < DVi,z ,

if Tj is k-anonymous and suppresses a number of tuples lower than MaxSup, also Tz is k-anonymous and

suppresses a number of tuples lower than MaxSup. Furthermore, if there is no a solution that guarantees

23

1 2 3 4 5 6 7
t1/t2 t3 t4/t5 t6 t7 t8/t9 t10

1 t1/t2 [0,0,0] [0,2,1] [1,2,1] [1,1,0] [2,1,1] [2,1,1] [2,2,0]
2 t3 [0,2,1] [0,0,0] [1,0,0] [1,2,1] [2,2,0] [2,2,0] [2,0,1]
3 t4/t5 [1,2,1] [1,0,0] [0,0,0] [0,2,1] [2,2,0] [2,2,0] [2,0,1]
4 t6 [1,1,0] [1,2,1] [0,2,1] [0,0,0] [2,0,1] [2,1,1] [2,2,0]
5 t7 [2,1,1] [2,2,0] [2,2,0] [2,0,1] [0,0,0] [1,1,0] [1,2,1]
6 t8/t9 [2,1,1] [2,2,0] [2,2,0] [2,1,1] [1,1,0] [0,0,0] [0,2,1]
7 t10 [2,2,0] [2,0,1] [2,0,1] [2,2,0] [1,2,1] [0,2,1] [0,0,0]

Figure 9: An example of the VT matrix computed with respect to the table in Figure 1

k-anonymity suppressing a number of tuples lower than MaxSup at height h, there cannot exist a solution

at height h′ < h that guarantees it. Such a consequence is exploited by the Algorithm 3.1 to compute a

k-minimal generalization for PT[QI], by performing a binary search on the heights of distance vectors.

The algorithm takes as input the projection T over quasi-identifying attributes of the private table PT,

the anonymity constraint k, the suppression threshold MaxSup, and the domain generalization hierarchies

for the attributes composing the quasi-identifier. During the initialization phase, the algorithm first builds

VLDT (i.e., the distance vector lattice based on the domain generalization hierarchies) and a matrix VT,

with a row for each distinct tuple t in T with less than k occurrences and a column for each distinct tuple in

T . Each entry VT[x, y] of the matrix contains the distance vector [d1, . . . , dn] between tuples x = 〈v1 . . . vn〉

and y = 〈v′1 . . . v′n〉, where di, i = 1, . . . , n, is the distance from the domain of vi and v′i to the domain to

which they generalize to the same value. The binary search phase visits the lattice VLDT as follows. Variable

high is first initialized to the height of VLDT and all the generalized tables corresponding to distance vectors

at height ⌊high
2 ⌋ are first evaluated. If there is at least one generalized table satisfying k-anonymity and

suppressing a number of tuples lower than MaxSup, the algorithm evaluates the generalized tables at height

⌊high
4 ⌋, otherwise those at height ⌊ 3high

4 ⌋, and so on. The algorithm stops when it reaches the lowest height

in VLDT where there is at least a generalized table satisfying k-anonymity and the MaxSup constraint.

To check whether or not at a given height h there is a table that satisfies k-anonymity and the MaxSup

suppression threshold, for each distance vector vec at height h the algorithm calls function Satisfy. Function

Satisfy computes the number of tuples req sup that need to be suppressed for achieving k-anonymity in

table Tvec corresponding to the vec distance vector. For each row x in VT, Satisfy computes the sum c of

the occurrences of tuples y (column of the matrix) such that VT[x, y]≤vec. As a matter of fact, all tuples

such that VT[x, y]≤vec will be generalized to the same value in Tvec as x. Therefore, if c < k, c is added

to req sup since the considered tuples will be outliers for Tvec and will be therefore suppressed to satisfy

k-anonymity. If req sup is lower than MaxSup, Tvec satisfies k-anonymity and the MaxSup threshold and

Satisfy returns true; otherwise it returns false.

24

Example 3.2 Consider the private table in Figure 1 with QI = {Zip, MaritalStatus, Sex} and the cor-

responding hierarchies in Figure 4. Also, suppose that k = 3, and MaxSup=2. The algorithm builds matrix

VT illustrated in Figure 9, which is composed of seven rows (all quasi-identifying values appear less than 3

times in PT) and 7 columns since there are 7 distinct values for QI in PT (t1 = t2, t4 = t5, and t8 = t9).

By exploiting the hierarchies in Figure 4, the algorithm computes the distance vectors between pairs

of tuples. For instance, VT[1,4]=[1, 1, 0], which is the distance vector of the generalized table at which

t1=t2=〈22030, married, F〉 and t6=〈22032, divorced, F〉 are generalized to the same value 〈2203*,

been married, F〉.

Once VT has been computed, the algorithm starts with the binary search phase and evaluates first the

generalizations at height ⌊5/2⌋ = 2, that is, the tables corresponding to distance vectors [2, 0, 0], [1, 1, 0],

[1, 0, 1], [0, 1, 1], and [0, 2, 0]. The table corresponding to [1, 1, 0] satisfies 3-anonymity suppressing only one

tuple. It is easy to see that for each row but the last one of the VT matrix in Figure 9, there are 3 tuples that

are generalized to the same tuple. The algorithm then evaluates tables at height ⌊5/4⌋ = 1, that is, the tables

corresponding to distance vectors [1, 0, 0], [0, 1, 0], and [0, 0, 1]. Since none of these tables is 3-anonymous

and suppresses a number of tuples lower than MaxSup, the solution returned by the algorithm is [1, 1, 0],

which corresponds to 〈Z1, M1, S0〉.

The time complexity of the algorithm in Figure 8 is exponential in the number (n) of attributes in QI.

First, the algorithm builds the domain generalization hierarchy for QI (VLDT) from the given domain

generalization hierarchies of the individual attributes in QI. This step requires a complexity of O(|DGH|) in

time. The algorithm then sorts the tuples in the table with a standard sorting algorithm in polynomial time.

The third step initializes the matrix VT, and it requires a time proportional to its dimension (O(m2 ·n)). The

last step computes a minimal generalization with a binary search in the lattice that verifies the anonymity of

the generalized tables corresponding to each node of the lattice considered. Note that, even if this is a binary

search, the lattice contains, in the middle level, a huge number of possible generalizations. For instance, even

if we assume that QI contains only attributes with domain generalization hierarchies of height 2, the number

of possible generalizations in the middle level of the corresponding DGH is
(

n
n/2

)

∈ O(2n/2). Therefore, in

the worst case, the time complexity of the binary search phase is upperbounded by |DGH| · (n · m), where

|DGH| = n ·
∏n

i=1 hi with hi the height of the domain generalization hierarchy of the single attribute Ai in QI.

The overall time complexity of the algorithm is then O((n ·m) · (m+ |DGH|)), where |DGH| ∈ O(n · (hmax)n)

and hmax = max{h1, . . . , hn}.

25

3.2.2 Incognito

The Incognito algorithm [29] has been proposed for computing a k-minimal generalization by using a domain

generalization hierarchy DGHDT on the domain tuple of the quasi-identifier, where the vertices in DGHDT

are only the vertices that correspond to k-anonymous generalized tables.

Since the computational cost of the k-anonymization algorithms is mainly due to the verification of the

k-anonymity condition on a great number of generalizations of the private table PT, Incognito reduces the

number of tables for which this verification is necessary by exploiting the observation that if a table T with

quasi-identifier QI is k-anonymous, T is k-anonymous with respect to any quasi-identifiers Q⊂QI.

Definition 3.6 (Subset property) Let T(A1,. . . ,An) be a table and QI={A1,. . . ,Am} be its quasi-

identifier. If T is k-anonymous with respect to QI, T is k-anonymous with respect to any Q ⊆QI.

This subset property represents a necessary (not sufficient) condition for k-anonymity. As a matter of

fact, a table T can be k-anonymous with respect to QI only if T is k-anonymous with respect to any subset of

QI. Incognito then excludes a priori the generalizations in DGHDT that cannot be k-anonymous with respect

to QI. To this purpose, Incognito iteratively builds all the domain generalization hierarchies on subsets of

QI, excluding at each step the vertices representing generalizations that do not satisfy k-anonymity (see

Figure 10).

At the first iteration, for each Ai∈QI, Incognito builds DGHDi
with Di = dom(Ai, PT). For each DGHDi

,

Incognito then follows a bottom-up breadth first search on the domain generalization hierarchy. If a table

Tv corresponding to vertex v in DGHDi
satisfies k-anonymity, Incognito marks true v and all vertices v′,

such that v ≤ v′, without explicitly computing the generalizations corresponding to v′ to check if they are

k-anonymous.2

At the second iteration, for each subset {Ai,Aj}⊆QI, Incognito builds DGH〈Di,Dj〉 with Di = dom(Ai, PT)

and Dj = dom(Aj , PT). The domain generalization hierarchy DGH〈Di,Dj〉 is built by combining (through

function Compose) DGHDi
and DGHDj

. For the subset property the Compose function removes from

DGH〈Di,Dj〉 all those vertices that represent domain tuples containing generalized domains for Di (or Dj)

marked false in DGHDi
(or DGHDj

).

At iteration i, the algorithm builds the domain generalization hierarchies on subsets of QI composed of

i attributes, using the vertices marked true in the domain generalization hierarchies computed at iteration

i−1. It terminates at iteration i = |QI|, when it evaluates the domain generalization hierarchy for the whole

quasi-identifier.

2Incognito applies the monotonicity property of k-anonymity stating that if a table T is k-anonymous all its generalized
tables are k-anonymous.

26

Algorithm 3.2 (Incognito Algorithm)

INPUT
T = PT[QI]: private table where QI = {A1, . . . , An} and DT = 〈dom(A1,PT),. . . ,dom(An,PT)〉
k: anonymity requirement
∀D ∈ DT , DGHD : domain generalization hierarchies where for all v ∈ DGHD , mark(v) is set false

OUTPUT
DGHD : restricted version of DGHDT

MAIN
for i=1. . .n do

Di := {D|D⊆ DT ∧ |D| = i} /* all subsets of i elements in QI */
for each D∈ Di do

if i 6= 1 then DGHD := Compose(D)
for h=0. . .height(⊤) do /* ⊤ represents the root node in DGHD */

/* height(v) denotes the length of the path from the bottom element in DGHD to v */

Vh := {v|v ∈ DGHD ∧ height(v)=h ∧ mark(v)=false}
for each v ∈ Vh do

let Tv be the generalized table corresponding to vertex v
if Satisfy(Tv,k) then

for each v′|v′ ∈ DGHD ∧ v ≤ v′ do mark(v′):=true

return(DGHD)

COMPOSE(D)
DGHD := (V ,E)
i := 1
for each Di ∈ {D′ ⊂D:|D′| = |D| − 1} do

V i := {v|v ∈ DGHDi
∧ mark(v)=true}

i := i + 1
V := V1 × . . . × Vi

for each v ∈ V do mark(v) := false

E := {(vi,vj)|vi,vj∈V ,vi ≤ vj , 6 ∃vz ∈V ,vi ≤ vz ∧ vz ≤ vj}
return(DGHD)

Figure 10: Algorithm that computes reduced generalization hierarchies [29]

Example 3.3 Consider the private table in Figure 1 with QI = {ZIP, MaritalStatus, Sex} and assume

that k = 3 and MaxSup=2. Figure 11 illustrates, on the left-hand side, the complete domain generalization

hierarchies for all the subsets of QI, and on the right-hand side, the sub-hierarchies computed by Incognito

at each iteration.

Iteration 1.

• DGH〈Z0〉. Vertices 〈Z0〉, 〈Z1〉, and 〈Z2〉 are marked true, since table T〈Z0〉 satisfies 3-anonymity by

suppressing a number of tuples lower than MaxSup.

• DGH〈M0〉. Vertex 〈M0〉 is marked false, since to satisfy 3-anonymity, in table T〈M0〉 we need to suppress

more than 3 tuples. Vertex 〈M1〉 and vertex 〈M2〉 are marked true since table T〈M1〉 satisfies 3-anonymity

by suppressing number of tuples lower than MaxSup.

• DGH〈S0〉. Vertices 〈S0〉 and 〈S1〉 are marked true, since table T〈S0〉 satisfies 3-anonymity by suppressing

a number of tuples lower than MaxSup.

Iteration 2.

• DGH〈Z0,M0〉. Since 〈M0〉 has been marked false in the previous iteration, this hierarchy does not in-

clude vertices 〈Z0, M0〉, 〈Z1, M0〉, and 〈Z2, M0〉. Vertex 〈Z0, M1〉 is marked false, since T〈Z0,M1〉 satisfies

27

3-anonymity only if more than 3 tuples are suppressed. Vertices 〈Z0, M2〉, 〈Z1, M2〉, 〈Z2, M2〉, 〈Z1, M1〉, and

〈Z2, M1〉 are instead marked true, since tables T〈Z0,M2〉 and T〈Z1,M1〉 satisfy 3-anonymity by suppressing a

number of tuples lower than MaxSup.

• DGH〈Z0,S0〉. Vertex 〈Z0, S0〉 is marked false since T〈Z0,S0〉 satisfies 3-anonymity only if more than MaxSup

tuples re suppressed. Vertices 〈Z0, S1〉, 〈Z1, S1〉, 〈Z2, S1〉, 〈Z1, S0〉, and 〈Z2, S0〉 are marked true, since

tables T〈Z0,S1〉 and T〈Z1,S0〉 satisfy 3-anonymity by suppressing a number of tuples lower than MaxSup.

• DGH〈M0,S0〉. Since 〈M0〉 has been marked false in the previous iteration, this hierarchy does not include

vertices 〈M0, S0〉 and 〈M0, S1〉. All the other vertices in the hierarchy are marked true, since table T〈M1,S0〉

satisfies 3-anonymity by suppressing a number of tuples lower than MaxSup.

Iteration 3.

• DGH〈Z0,M0,S0〉. Since DGH〈Z0,M0〉 does not contain vertices 〈Z0, M0〉, 〈Z1, M0〉, and 〈Z2, M0〉 and vertex 〈Z0, M1〉

has been marked false, this hierarchy does not contain vertices 〈Z0, M0, S0〉, 〈Z1, M0, S0〉, 〈Z2, M0, S0〉,

〈Z0, M0, S1〉, 〈Z1, M0, S1〉, 〈Z2, M0, S1〉, 〈Z0, M1, S0〉, and 〈Z0, M1, S1〉. Analogously, since vertex 〈Z0, S0〉 has

been marked false in DGH〈Z0,S0〉, this hierarchy does not contain vertex 〈Z0, M2, S0〉. Vertices 〈Z1, M1, S0〉,

〈Z1, M1, S1〉, 〈Z1, M2, S0〉, 〈Z1, M2, S1〉, 〈Z2, M1, S0〉, 〈Z2, M1, S1〉, 〈Z2, M2, S0〉, and 〈Z2, M2, S1〉 are marked true,

since table T〈Z1,M1,S0〉 satisfies 3-anonymity by suppressing a number of tuples lower than MaxSup. Anal-

ogously, vertex 〈Z0, M2, S1〉 is marked true, since table T〈Z0,M2,S1〉 satisfies 3-anonymity by suppressing a

number of tuples lower than MaxSup.

Incognito iteratively builds the domain hierarchies of increasing dimension until the hierarchy DGHDT

containing the entire QI is built. While in most cases some hierarchies are not built entirely, since some

vertices are removed at iteration i due to the results obtained at iteration i − 1, in the worst case all the

hierarchies are completely built. Let Dom be the set of all ground and generalized domains for the quasi-

identifier QI, n be the number of attributes composing QI, and m be the number of tuples in PT. We can

note that each subset of Dom appears exactly in one of the domain generalization hierarchies on subsets of

QI, therefore the cost of all the hierarchies computed in the worst case by Incognito is upperbounded by

(n · 2Dom), where n is the upperbound of the cost of each single vertex (since each vertex has at most one

component for each attribute in QI) and 2Dom is the number of possible vertices. Since Incognito, in the

worst case, tests if table PT, generalized according to each subset of Dom, is k-anonymous and suppresses a

number of tuples lower than MaxSup, its complexity is in O((n · m) · n · 2Dom).

28

Complete hierarchies Incognito sub-hierarchies

Iteration 1 〈Z2〉 〈M2〉

〈Z1〉

OO

〈M1〉

OO

〈S1〉

〈Z0〉

OO

〈M0〉

OO

〈S0〉

OO

〈Z2〉 〈M2〉

〈Z1〉

OO

〈M1〉

OO

〈S1〉

〈Z0〉

OO

〈S0〉

OO

Iteration 2 〈Z2, M2〉

〈Z1, M2〉

<<yyyyy
〈Z2, M1〉

bbEEEEE

〈Z0, M2〉

OO

〈Z1, M1〉

bbEEEEE

<<yyyyy
〈Z2, M0〉

OO

〈Z0, M1〉

OO <<yyyyy
〈Z1, M0〉

OObbEEEEE

〈Z0, M0〉

bbEEEEE

<<yyyyy

〈Z2, M2〉

〈Z1, M2〉

<<yyyyy
〈Z2, M1〉

bbEEEEE

〈Z0, M2〉

OO

〈Z1, M1〉

bbEEEEE

<<yyyyy

〈Z2, S1〉

〈Z1, S1〉

<<yyyyy
〈Z2, S0〉

bbEEEEE

〈Z0, S1〉

OO

〈Z1, S0〉

OOhhRRRRRRRRR

〈Z0, S0〉

<<yyyyy

bbEEEEE

〈Z2, S1〉

〈Z1, S1〉

<<yyyyy
〈Z2, S0〉

bbEEEEE

〈Z0, S1〉

OO

〈Z1, S0〉

OOhhRRRRRRRRR

〈M2, S1〉

〈M1, S1〉

<<yyyyy
〈M2, S0〉

bbEEEEE

〈M0, S1〉

OO

〈M1, S0〉

OOhhRRRRRRRRR

〈M0, S0〉

<<yyyyy

bbEEEEE

〈M2, S1〉

〈M1, S1〉

<<yyyyy
〈M2, S0〉

bbEEEEE

〈M1, S0〉

OOhhRRRRRRRRR

Iteration 3 〈Z2, M2, S1〉
OO

33

ffffffffff kk

XXXXXXXXXX

〈Z2, M2, S0〉
OO

mm

ZZZZZZZZZZZZZZZZZZZ 〈Z2, M1, S1〉
OO66

nnn
nn
33

ffffffffff 〈Z1, M2, S1〉
OO66

nnn
nn
33

ffffffffff

〈Z2, M1, S0〉
OO hh

PPP
PP

〈Z2, M0, S1〉
66

nnn
nn hh

PPP
PP

〈Z1, M1, S1〉
OO66

nnn
nn hh

PPP
PP

〈Z1, M2, S0〉
hh

PPP
PP33

ffffffffff 〈Z0, M2, S1〉
OO66

nnn
nn

〈Z2, M0, S0〉 〈Z1, M1, S0〉 〈Z1, M0, S1〉 〈Z0, M1, S1〉 〈Z0, M2, S0〉

〈Z1, M0, S0〉

OO 66nnnnn
33ffffffffff
〈Z0, M1, S0〉

hhPPPPP
66nnnnn

33ffffffffff
〈Z0, M0, S1〉

hhPPPPP
kkXXXXXXXXXX

〈Z0, M0, S0〉

OO
kkXXXXXXXXXX

33ffffffffff

〈Z2, M2, S1〉
OO

33

ffffffffff kk

XXXXXXXXXX

〈Z2, M2, S0〉
OO

mm

ZZZZZZZZZZZZZZZZZZZ 〈Z2, M1, S1〉
OO

33

ffffffffff 〈Z1, M2, S1〉
OO66

nnn
nn

〈Z2, M1, S0〉
hh

PPP
PP

〈Z1, M1, S1〉
66

nnn
nn

〈Z1, M2, S0〉
33

ffffffffff 〈Z0, M2, S1〉

〈Z1, M1, S0〉

Figure 11: Sub-hierarchies computed by Incognito for the table in Figure 1

3.2.3 Approximation algorithms

Exact algorithms for solving the k-anonymity problem for AG TS and AG are, due to the complexity of

the problem, exponential in the size of the quasi-identifier. The exact algorithms for models CS and CG

can be much more expensive, since the computational time can be exponential in the number of cells in the

29

table.

The first approximation algorithm for CS was proposed by Meyerson and Williams [33] and guarantees

a O(k log(k))-approximation. The best-known polynomial approximation algorithm for CS guarantees a

O(k)-approximate solution [2]. Such an O(k)-approximate algorithm constructs a complete weighted graph

from the original private table PT. Each vertex in the graph corresponds to a tuple in PT, and the edges

are weighted with the number of different attribute values between the two tuples represented by extreme

vertices. The algorithm then constructs, starting from the graph, a forest composed of trees containing at

least k vertices each, which represent the groups of tuples of at least k elements that are generalized to the

same value for k-anonymization. Some cells in the vertices are suppressed to guarantee that all the tuples

in the same tree have the same quasi-identifier value (i.e., to achieve k-anonymity). The cost of a vertex is

evaluated as the number of cells suppressed, and the cost of a tree is the sum of the costs of its vertices.

The cost of the final solution is equal to the sum of the costs of its trees. In constructing the forest, the

algorithm limits the maximum number of vertices in a tree to be 3k − 3. Partitions with more than 3k − 3

elements are decomposed, without increasing the total solution cost. With the construction of trees with no

more than 3k − 3 vertices, the authors prove that their solution is a O(k)-approximation.

An approximation algorithm for CG is described in [3] as a direct extension of the approximation

algorithm for CS [2]. For taking into account the generalization hierarchies, each edge has a weight that

is computed as follows. Given two tuples ti and tj and an attribute A, the generalization cost hti,tj
(A)

associated with A is the lowest level of the value generalization hierarchy VGHdom(A,PT) such that tuples

ti and tj have the same generalized value for A. The weight w(e) of the edge e = (ti, tj) is therefore

w(e) = ΣAhti,tj
(A)/lA , where lA is the number of levels in VGHdom(A,PT). The solution of this algorithm is

guaranteed to be a O(k)-approximation.

Recently, Park and Shim [34] described an algorithm for CS with O(log k)-approximation ratio, but the

overall time complexity is O((nm)2k).

Besides algorithms that compute k-anonymized tables for any value of k, ad-hoc algorithms for specific

values of k have also been proposed. For instance, to find better results for Boolean attributes, in the cases

where k = 2 or k = 3, an ad-hoc approach has been provided [3]. The algorithm for k = 2 exploits the

minimum-weight [1, 2]-factor built on the graph constructed for the 2-anonymity. The [1, 2]-factor for a graph

G is a spanning subgraph of G built using only vertices with no more than 2 outgoing edges. Such a subgraph

is a vertex-disjoint collection of edges and pairs of adjacent vertices and can be computed in polynomial time.

Each component in the subgraph is treated as a cluster, and a 2-anonymized table is obtained by suppressing

each cell for which the vectors in the cluster differ in value. This procedure is a 1.5-approximation algorithm.

The approximation algorithm for k = 3 is similar and guarantees a 2-approximation solution.

30

4 k-Anonymity with recoding-based generalization

The algorithms described in the previous section assume that the generalizations follow a predefined hierar-

chy. However, also a recoding-based generalization can be adopted for k-anonymity [6, 25, 28] that exploits

an order relationship among values in the attribute domains. The algorithms adopting a recoding-based

generalization are therefore not forced to follow a pre-defined strategy for generalizing values.

Definition 4.1 (Recoding function) Let D={v1, . . . , vx} be a domain on which a total order relationship

is defined. A recoding function ρ : D → 2|D| for D partitions the domain in a set of (possibly disjoint)

intervals I1, . . . , Iy (y ≤ x), such that
⋃y

i=1 Ii = D and ∀vi ∈ Ia, ∀vj ∈ Ib, with a 6= b, vi ≤ vj iff a < b.

As an example, consider attribute MaritalStatus and the VGHM0
in Figure 3. A possible order among

the values in M0 is {married, widow, divorced, single}. A recoding function can partition M0 into two intervals

I1=[married, widow] and I2 = [divorced, single].

Recoding-based generalization associates with each interval Ij a value vj representing the values of the

ground domain belonging to Ij . Any value in PT that belongs to Ij is then generalized to vj .

The main advantage of a recoding-based generalization strategy is that it is possible to analyze solutions

that would not be investigated adopting a hierarchy-based generalization, and this might improve the quality

of the final solution. However, since recoding-based generalization strategies are based on the total order

among attribute values, they are influenced by such an ordering, which may be difficult to define when the

attribute domain does not have a characterizing ordering relationship. Furthermore, when the domain is

categorical,3 it might be difficult to represent the values obtained by the generalization process, since the

set of values that need to be indistinguishable in the released table might not be similar. In some cases, the

only way to describe an interval of values is the direct enumeration of its elements. For instance, the two

subsets [married, widow] and [divorced, single] are described by enumerating their elements, while the set

[married, widow, divorced] can be described as been married.

4.1 Algorithms for k-anonymity

We now describe two k-anonymization algorithms adopting recoding-based generalization: k-Optimize and

Mondrian multidimensional k-anonymity.

3An attribute is categorical if it can assume a limited and specified set of values on which arithmetic operations cannot be
defined. For instance, attribute MaritalStatus is categorical.

31

ZIP MaritalStatus Sex

〈[22030] [22032] [22045] [22047] 〉 〈[married] [widow] [divorced] [single]〉 〈[M] [F]〉
1 2 3 4 5 6 7 8 9 10

Figure 12: Index assignment to attributes ZIP, MaritalStatus, and Sex

4.1.1 k-Optimize

Bayardo and Agrawal [6] propose an AG TS algorithm called k-Optimize, based on a recoding-based general-

ization defined on the quasi-identifying attributes. k-Optimize determines a solution minimizing a predefined

cost function that measures the loss of information due to generalization and suppression.

k-Optimize assumes the existence of a total order relationship among the attributes composing QI, and

a total order relationship on each of the domains of the quasi-identifying attributes. It uses these total

order relationships to associate an integer value, called index, with each interval in any domain of the quasi-

identifier attributes. Note that, at initialization time, any value in any domain of QI represents an interval

itself. The index assignment reflects the total order relationship among quasi-identifying attributes and

within their domains.

Example 4.1 Consider the private table in Figure 1 with QI = {ZIP, MaritalStatus, Sex} and suppose that

ZIP precedes MaritalStatus that, in turn, precedes Sex. Suppose also that the values within the domain of

each of these attributes follow the same order as the leaves in the hierarchies in Figure 3. Figure 12 illustrates

the index values assigned assuming that each value represents an interval. As it is visible from the figure,

due to the order among attributes, the index values associated with the intervals of the Zip domain are lower

than the index values associated with the intervals of the domains of MaritalStatus and Sex. Furthermore,

within each domain the assignment of the index values follow the total order among intervals.

Given a set of indexes I, a generalization is represented by the union of individual index values. As

an example, with reference to Figure 12, the union of index values 1 and 2 means that the ZIP values

22030 and 22032 have been generalized to the same indistinguishable value. Since only contiguous index

values can be unioned for generalization purposes, their union is represented by the least index value.

This implies that given a set I of index values, if an index value I does not appear in I, the index I

has been generalized to the nearest value appearing in I and lower than I. For instance, with respect

to the set of indexes in Figure 12, the set I = {1, 3, 5, 8, 9, 10} implicitly indicates that index 2 has been

generalized to the same value as 1, 4 to the same value as 3, and 6 and 7 to the same value as 5. Since

the least value in any attribute domain will certainly appear in any generalization, it can be omitted in the

representation of I, assuming that it always implicitly belongs to the generalized domain. Consequently, the

set I = {1, 3, 5, 8, 9, 10} can be represented as I = {3, 8, 10}. This set of index values represents the following

32

Algorithm 4.1 (k-Optimize Algorithm)

INPUT
I: set of index values corresponding to the original domains of PT[QI]
k: anonymity requirement

OUTPUT
I′: set of index values representing the k-anonymous generalized table

MAIN
root := { }
best.cost := ∞
best.sol := null

Optimize(root,best)

OPTIMIZE(node,best)
if Satisfy(node) then

cost := Cost(node)
if cost≤best.cost then

best.cost := cost

best.sol := node

for each i∈ {idx |idx ∈ I ∧ (∀j ∈ node, idx ≥ j ∨ node = ∅)} do
child := node ∪ {i}
lb := LowerBound(child)
if lb≤best.cost then

best := Optimize(child,best)
else

Prune(root,node) /* prune nodes having node as a subset */
return(best)

Figure 13: k-Optimize algorithm adopting a pre-order traversal strategy [6]

interval values: {[1,2],[3,4]}, corresponding to {[22030,22032],[22045,22047]}; {[5,6,7],[8]}, corresponding to

{[married,widow,divorced],[single]}; and {[9],[10]}, corresponding to {[M],[F]}. Note that the empty set { }

represents the most general anonymization. For instance, with reference to Example 4.1, { } corresponds

to the generalizations {1} for attribute ZIP, {5} for attribute MaritalStatus, and {9} for attribute Sex,

which in turn correspond to the generalized values ZIP: {[22030, 22032, 22045, 22047]}; MaritalStatus:

{[married,widow,divorced,single]}; and Sex: {[M,F]}.

Each generalized table that can be obtained from PT adopting a recoding-based generalization can be

represented as a subset of the indexes I associated with the original domains of quasi-identifying attributes.

Each of these solutions is associated with a cost, reflecting the information loss caused by the chosen gener-

alization and by the tuples suppressed to achieve k-anonymity.

To compute the optimal generalized table, k-Optimize builds a set enumeration tree over the set I of

index values, where each node corresponds to a generalized table of the original private table PT. The root

node of the tree is the empty set. The children of a node node enumerate the sets that can be formed by

appending a single element of I to node, with the restriction that this single element must follow every

element already in node, according to the given total order. Figure 14 illustrates a set enumeration tree over

I = {2, 3, 4} (e.g., this tree could represent the set enumeration tree for attribute ZIP). The consideration

of a tree guarantees the existence of a unique path between the root and each node. The visit of the set

enumeration tree using a standard traversal strategy is equivalent to the evaluation of each possible solution

33

{ }

{2}

�������
{3}

9999999

{4}

JJJJJJJJJJ

{2, 3} {2, 4}

=======

{3, 4}

{2, 3, 4}

Figure 14: An example of set enumeration tree over set I = {2, 3, 4} of indexes

to the k-anonymity problem.

Algorithm k-Optimize (see Figure 13) visits the set enumeration tree built on the basis of the given

private table PT, keeping track of the best generalization (variable best) found at each step. For each visited

node node in the tree that satisfies the k-anonymity constraint (function Satisfy), it computes (function

Cost) the cost cost of the generalization strategy represented by node. If the cost of the solution associated

with node is lower than best.cost , that is, the lowest cost found during the visit at that point, node becomes

the new locally best solution and its cost becomes the comparison term for the following visited nodes.

Since the number of nodes in the tree is 2|I|, this approach is not practical and the authors have therefore

proposed heuristics and pruning strategies to reduce the computational costs of the k-Optimize algorithm [6].

The idea is that if none of the nodes in the subtree rooted at a child child of node can have a cost lower

than the locally optimal solution computed before visiting child , k-Optimize prunes the subtree rooted at

child without visiting the solutions it contains. To this purpose, for each visited node node, k-Optimize

computes the lower bound of the cost function for the subtree rooted at each of its children child (function

LowerBound), that is, the lowest possible cost that a solution in the subtree can have. The lower bound

for a subtree child is computed by noting that the solutions in the subtree rooted at child need to suppress a

greater number of tuples than node to guarantee k-anonymity, since they represent more specific solutions.

If this lower bound is higher than the locally optimal solution, the subtree rooted at child is pruned. Note

that when a subtree is pruned also additional nodes can be removed from the tree (procedure Prune). For

instance, consider the set enumeration tree in Figure 14 and suppose that node {2, 4} is pruned. This means

that all the solutions that contain index values 2 and 4 are not optimal, therefore also node {2, 3, 4} can be

pruned.

k -Optimize can always compute the best solution in the space of the generalization strategies. Since the

algorithm tries to improve the solution at each visited node evaluating the corresponding generalization

strategy, it is possible to set a maximum computational time, and obtain a good, but non optimal, solution.

34

M
 F

married

widow

divorced

single

2

2

1
1

1
3

MaritalStatus Sex

married F
married F
single M
single M
single M
[widow,divorced,single] F
[married,widow,divorced] M
[married,widow,divorced] M
[married,widow,divorced] M
[widow,divorced,single] F

(a) (b)

Figure 15: An example of strict multidimensional partitioning (a) and corresponding generalized table (b)

4.1.2 Mondrian multidimensional algorithm

LeFevre et al. [28] propose a CG algorithm for anonymizing a private table PT based on multidimensional

global recoding, by extending the single-dimension recoding-based generalization to the multi-dimensional

case.

On the basis of the order of values defined for all the domains of attributes composing QI, a multi-

dimensional generalization function defines a set of multidimensional regions. These regions correspond

to the intervals defined in the single-dimensional scenario. Let QI={A1, . . . , An} be a quasi-identifier and

D={D1, . . . , Dn} be the set of ground domains of the attributes A1, . . . , An. Each domain in D is a dimension

for the multidimensional space, where PT[QI] can be represented as a set of points: each tuple t ∈ PT[QI]

represents a point in the multidimensional space defined by D and its coordinates are the values assumed by

the quasi-identifying attributes in t.

A multidimensional region within such a space is represented by two tuples p=(p1, . . . , pn) and v=(v1,

. . . , vn) such that pi ≤ vi, i = 1, . . . , n. A tuple t=(t1, . . . , tn) belongs to the region represented by 〈p, v〉 if

pi ≤ ti ≤ vi, i = 1, . . . , n. A multidimensional region can therefore be seen as a n-dimensional rectangular,

whose edges are parallel to the axis. As an example, consider the private table in Figure 1 and suppose

that QI={MaritalStatus, Sex}. Figure 15(a) provides a graphical representation of the multidimensional

space determined by D={M0, S0}, where the domain of attribute Sex is represented on the x-axis and the

domain of attribute MaritalStatus is represented on the y-axis. Regions are delimited by lines parallel

to the axis and points are associated with the number of occurrences of the corresponding quasi-identifier

values in PT[QI]. A strict multidimensional partitioning is a set of multidimensional regions that cover the

whole space defined on D.

Definition 4.2 (Strict multidimensional partitioning) Let QI be a quasi-identifier and D =

35

{D1, . . . , Dn} be the set of domains for the attributes composing it. A strict multidimensional partition-

ing is a set of non-overlapping multidimensional regions covering the space defined by D.

A strict multidimensional partitioning of the space defined by D represents the generalized table T

obtained by making all the tuples belonging to the same multidimensional region indistinguishable, that

is, by generalizing the tuples in the same region to the same generalized tuple. For instance, Figure 15(b)

represents a possible generalized table corresponding to the regions in Figure 15(a), where the generalized

values of attributes MaritalStatus and Sex are obtained by listing all values that belong to a given region.

A strict multidimensional partitioning for a private table PT is k-anonymous if any multidimensional

region in the space defined by D contains either zero or at least k tuples of PT. The problem of computing

the optimal (i.e., the one that minimizes information loss) strict k-anonymous multidimensional partitioning

is NP-hard, since its decisional version can be reduced from the well known partition problem [28]. It is

important to note here that this result is not implied by the NP-hardness of the hierarchy-based k-anonymity

problem demonstrated in [33], since the two problems are different and cannot be reduced one to the other.

Given the set of points along with the number of their occurrences induced by private table PT on the

multidimensional space defined by D, a multidimensional cut for such a set of points is an axis-parallel

cut that produces two disjoint sets of points. A multidimensional cut perpendicular to dimension Di,

corresponding to attribute Ai in QI, is performed at a given value v of Di. Any tuple t such that t[Ai] ≤ v will

belong to one partition, while any tuple t such that t[Ai] > v will belong to the other one. A multidimensional

cut is allowable with respect to a given k-anonymity constraint if and only if the resulting regions contain a

set of points representing at least k tuples of the original table (i.e., the sum of the occurrences of the points

in the region obtained is at least k). The recursive application of allowable multidimensional cuts on the

original set of points representing PT generates a multidimensional strict partitioning.

Definition 4.3 (Minimal strict multidimensional partitioning) A strict multidimensional partition-

ing, composed of regions R1, . . . , Rr, is minimal if there does not exist an allowable multidimensional cut for

any of the sets of points in its regions.

For instance, for k = 2, the strict multidimensional partitioning in Figure 15(a) is minimal, since none

of its regions can be further split obtaining two regions containing at least 2 tuples each.

The maximum number of points contained in any region Ri in a minimal strict multidimensional par-

titioning is 2n(k − 1) + o, where n = |QI| is the number of dimensions (i.e., attributes composing the

quasi-identifier), k is the k-anonymity constraint, and o is the maximum number of occurrences of a quasi-

identifier value in PT (i.e., the maximum number of copies of the same point in the multidimensional space),

as formally proved in [28].

36

Algorithm 4.2 (Mondrian Algorithm)

INPUT
partition={p|p = 〈p1, . . . , pn〉 ∧ pi ∈ Di, i = 1, . . . , n〉}: set of points that represent private table PT[QI]
k: anonymity requirement

OUTPUT
T : k-anonymized table for PT[QI]

MAIN
Anonymize(partition)

ANONYMIZE(partition)
if(no allowable multidimensional cut for partition) then

return Generalize(partition) /* generalize all the tuples in partition to the same value */
else

dim := ChooseDimension(partition) /* choose the dimension for the cut */
fs := frequency set(partition, dim) /* frequency of the values in the domain of dim */
split val := find median(fs) /* find the split point as the median for dim wrt fs */
lhs := {p∈partition|pdim≤split val} /* first partition created */
rhs := {p∈partition|pdim>split val} /* second partition created */
return Anonymize(rhs)∪Anonymize(lhs) /* recursive call */

Figure 16: Mondrian multidimensional k-anonymity algorithm [28]

The algorithm proposed in [28], and illustrated in Figure 16, is a greedy solution to the minimal mul-

tidimensional k-anonymity problem. The algorithm receives in input the set partition of points together

with their occurrences that represent a private table PT, and the k value. The algorithm cuts the given

n-dimensional space in two non overlapping spaces and is recursively applied to each resulting space, until

the minimal strict multidimensional partitioning is reached. At each recursive call, the algorithm chooses

the dimension with the widest (normalized) range of values. It then splits the region by performing a strict

multidimensional cut perpendicular to the chosen dimension, adopting as a split value the median of parti-

tion projected on the chosen dimension. If the cut is allowable, the algorithm is recursively called on each

of the two regions obtained; otherwise the cut is not performed. As an example, consider the private table

in Figure 1 and suppose that QI={MaritalStatus, Sex}. Figure 17 represents an example of step by step

execution of the algorithm in Figure 16, where k = 2. The algorithm first chooses the Sex dimension and

performs a cut at value ‘M’, obtaining the regions in Figure 17(b). The algorithm is then recursively called

on the region characterized by Sex=M. This call causes a cut on attribute MaritalStatus at value ‘single’.

The two resulting regions (Figure 17(c)) cannot be further partitioned and, therefore the algorithm executes

the recursive call on the region characterized by Sex=F. This call causes a cut on attribute MaritalStatus

at value ‘widow’. The two resulting regions cannot be further partitioned. The result obtained by the

algorithm is then represented in Figure 17(d).

This algorithm is greedy, since it chooses the dimension to exploit for the next cut on the basis of the local

properties of the multidimensional region. It represents a O(n)-approximation algorithm for the k-anonymity

problem (with recoding-based generalization and adopting strict multidimensional cuts), supposing o/k to

be a constant ratio. The time complexity for the given algorithm is O((n · m) · log(n · m)), when (n · m) is

37

M
 F

married

widow

divorced

single

2

2

1
1

1
3

(a)

M
 F

married

widow

divorced

single

2

2

1
1

1
3

(b)

M
 F

married

widow

divorced

single

2

2

1
1

1
3

(c)

M
 F

married

widow

divorced

single

2

2

1
1

1
3

(d)

Figure 17: Spatial representation (a) and possible partitioning (b)-(d) of the table in Figure 1

the number of cells composing the original private table.

Besides strict multidimensional partitioning, also relaxed multidimensional partitioning can be adopted

for the k-anonymity problem. The main difference of relaxed multidimensional partitioning with respect to

strict multidimensional partitioning is that the regions covering the multidimensional space defined by D

can be potentially overlapping. When adopting relaxed multidimensional partitioning, each tuple in PT is

generalized following the values of one of the regions to which the point corresponding to the tuple belongs.

Therefore, duplicate values in PT can be generalized to different values in the released table. The Mondrian

algorithm proposed can be adapted to operate also with relaxed multidimensional partitioning. In this case,

it computes a 2-approximate solution of the problem.

5 Attribute disclosure protection

Even if k-anonymity represents a solution to the problem of identity disclosure, since it protects respondents

from attacks aimed at reducing the uncertainty about their identities, it does not protect from attribute

disclosure. As a matter of fact, attribute disclosure is possible even on tables protected against identity

disclosure.

Machanavajjhala, Gehrke, and Kifer define two possible attacks to k-anonymous tables: homogeneity

attack (already noted in [36]) and background knowledge attack [32]. Consider a k-anonymized table, where

there is a sensitive attribute and suppose that all tuples with a specific value for the quasi-identifier have

the same sensitive attribute value. Under these homogeneity assumptions, if an attacker knows the quasi-

identifier value of a respondent and knows that this respondent belongs to the population represented in

the table, the attacker can infer which is the value for the sensitive attribute for the known respondent,

38

ZIP MaritalStatus Sex Disease

2203∗ been married F hypertension
2203∗ been married F hypertension
2203∗ never married M obesity
2203∗ never married M HIV
2203∗ never married M obesity
2203∗ been married F hypertension
2204∗ been married M obesity
2204∗ been married M HIV
2204∗ been married M HIV

Figure 18: An example of 3-anonymous table

since all the tuples with the given quasi-identifier value have the same value for the sensitive attribute. For

instance, consider the 3-anonymous table in Figure 18, where Disease is a sensitive attribute. If Alice

knows that her friend Hellen is a married female living in an area with ZIP code 22030, she can infer that

Hellen suffers from hypertension, since all tuples with 〈2203*,been married,F〉 as a quasi-identifier value

are characterized by Disease=‘hypertension’.

The background knowledge attack is instead based on a-priori knowledge of the attacker of some additional

external information. For instance, with reference to the 3-anonymous table in Figure 18, suppose that Alice

knows that Bob is a single man living in 22032 area. Alice can then infer that Bob suffers of obesity or

HIV. Suppose now that Alice knows that Bob is thin. Alice can infer with probability equal to 1 that Bob

suffers of HIV.

To prevent homogeneity and background knowledge attacks, Machanavajjhala, Gehrke, and Kifer intro-

duce the notion of ℓ-diversity [32].

Definition 5.1 (ℓ-diversity principle) Let T(A1,. . . ,An,S) be a table, QI={Ai,. . . ,An} be its quasi-

identifier, ℓ be a user-defined threshold, and S be a sensitive attribute. A set of tuples in T having the

same value for QI, called q-block, is said to be ℓ-diverse if it contains at least ℓ different values for S. T is

said to be ℓ-diverse if all its q-blocks are ℓ-diverse.

If a k-anonymous table is ℓ-diverse, the homogeneity attack is no more applicable, since each q-block has

at least ℓ (≥ 2) distinct sensitive attribute values. Analogously, the background knowledge attack becomes

more complicate as ℓ increases, because the attacker needs more knowledge to individuate a unique value

associable with a predefined respondent. For instance, if ℓ=2, only two of the three q-blocks in the table in

Figure 18 are ℓ-diverse, while the third is not ℓ-diverse (ℓ = 1).

Machanavajjhala, Gehrke, and Kifer [32] prove that ℓ-diversity satisfies the monotonicity property with

respect to DGHDT . Monotonicity means that if Ti guarantees ℓ-diversity, any Tj , such that Ti�Tj satisfies

39

ℓ-diversity. This implies that any algorithm originally thought for k-anonymity can also be used to achieve

ℓ-diversity, by simply checking the ℓ-diversity property every time a table is tested for k-anonymity.

Note that the original definition of ℓ-diversity considers the presence of one sensitive attribute only and

cannot be simply extended to sets of attributes, since ℓ-diversity may be violated even if each sensitive

attribute separately satisfies it. If the private table contains more than one sensitive attribute, ℓ-diversity

can be achieved by ensuring that the given table is ℓ-diverse with respect to each sensitive attribute Si

separately, running the algorithm considering, as a quasi-identifier, QI unioned with all sensitive attributes

but Si.

After the introduction of ℓ-diversity, the problem of attribute disclosure has received much attention, and

different proposals have been studied [40, 41]. p-sensitive k-anonymity [40] is another approach very similar

to ℓ-diversity that considers the case of table PT with more than one sensitive attribute.

(α, k)-anonymity [41] takes a different approach to the attribute disclosure problem. It supposes that

not all the values in the domain of a sensitive attribute are equally sensitive. For instance, the obesity

value for attribute Disease is not sensitive, while the HIV value is sensitive. To the aim of protecting the

association of quasi-identifying values with sensitive values, (α, k)-anonymity imposes a different constraint

to k-anonymous tables. If dom(S, PT) has only one sensitive value s, every q-block must have a relative

frequency of s not greater than α, meaning that the number of occurrences of s in the block divided by the

cardinality of the block cannot be greater than α.

Definition 5.2 ((α, k)-Anonymity) Let Ti(A1,. . . ,An,S) and Tj(A1,. . . ,An,S) be two tables with

QI={A1,. . . ,An} such that Ti[QI]�Tj [QI], S be a sensitive attribute, s be the only sensitive value in

dom(S, Ti), and 0 < α < 1 be a user-defined threshold. Tj is α-deassociated with respect to QI and s if

the relative frequency of s in every q-block is not greater than α. Tj is said to be (α, k)-anonymous if it

satisfies both the k-anonymity and the α-deassociation constraints.

For instance, consider the 3-anonymous table in Figure 18, and suppose that the unique sensitive value

for Disease is HIV. Suppose also that α = 0.4 and k = 3. The table in Figure 18 is not (0.4, 3)-anonymous

because the last q-block does not satisfy the 0.4-deassociation constraint, since the sensitive value appears

twice in a block of 3 tuples with a relative frequency of 0.67. The other two q-blocks are 0.4-deassociated.

The (α, k)-anonymization problem is NP-hard since, considering a binary alphabet, it can be reduced

from the edge partition into the 4-cliques problem [41]. Since also (α, k)-anonymity is a monotonic property

with respect to DGHDT , the classical k-anonymity algorithms can be adopted to achieve it. However,

a local recoding strategy that adopts a top-down approach (i.e., starting from a completely generalized

table, it selectively specializes the table without violating (α, k)-anonymity constraint) can produce better

40

ZIP Marital status Sex Diabetes Cholesterol

2203∗ been married F N 230
2203∗ been married F N 220
2203∗ never married M Y 250
2203∗ never married M Y 260
2203∗ never married M N 250
2203∗ been married F N 275
2204∗ been married M N 285
2204∗ been married M Y 210
2204∗ been married M N 190

Figure 19: An example of 3-anonymous and 2-diverse table

results [41].

Although ℓ-diversity protects data against attribute disclosure, this protection leaves space to attacks

based on the distribution of values inside q-blocks. Li, Li, and Venkatasubramanian [30] show that ℓ-diversity

suffers from two attacks: the skewness attack and the similarity attack. As an example of skewness attack,

consider the 2-diverse table in Figure 19 and the binary sensitive attribute Diabetes, which is characterized

by a skewed distribution. The table has a q-block having 2 out of 3 tuples with a positive value for Diabetes

and only one tuples with a negative value for it. Even if the table satisfies 2-diversity, it is possible to infer

that respondents in the given q-block have 67% probability of contracting diabetes, compared to the 30%

of the whole population. Furthermore, if the values for the sensitive attribute S in a q-block are distinct

but semantically similar, an external recipient can however infer important information on it by applying

a similarity attack. For instance, with reference to the table in Figure 19, it is possible to infer that single

males living in the 2203∗ area have the cholesterol value between 250 and 260, since all the tuples in this

q-block have these values for the considered sensitive attribute.

To counteract these attacks, Li, Li, and Venkatasubramanian [30] introduce the t-closeness requirement,

which is a stronger requirement than ℓ-diversity.

Definition 5.3 (t-Closeness Principle) Let Ti(A1,. . . ,An,S) and Tj(A1,. . . ,An,S) be two tables such that

Ti[A1,. . . ,An]�Tj[A1,. . . ,An], S be a sensitive attribute, and t be a user-defined threshold. A q-block in Tj

satisfies t-closeness if the distance between the distribution of S in this q-block and the distribution of S in

Ti is lower than t. Tj satisfies t-closeness if all its q-blocks satisfy t-closeness.

By imposing that the distribution of sensitive values in the released table must be similar to the distribu-

tion in the private table, t-closeness helps in preventing both skewness and similarity attacks. As a matter

of fact, all the sets of tuples with the same QI value in the released table have approximately the same

sensitive value distribution as the whole original population. t-closeness is a difficult property to achieve

41

since t-closeness requires to measure the distance between two distributions of values, either numerical or

categorical. In [30], the authors propose to adopt the Earth Mover’s Distance (EMD) measure. The advan-

tage of this measure is that, as demonstrated in the paper, it can be easily integrated with the Incognito

algorithm due to its generalization and subset properties, which imply monotonicity with respect to both

the number of attributes and the generalization level chosen.

6 Conclusions

The management of privacy in today’s global infrastructure is a complex issue, since it requires the combined

application of solutions coming from technology (technical measures), legislation (law and public policy),

ethics, and organizational/individual policies and practices. We focused on the technological aspect of pri-

vacy, which involves three different but related dimensions: privacy of the user, privacy of the communication,

and privacy of the information (data protection). The chapter discussed the data protection dimension of

privacy, which is more generally related to the collection, management, use, and protection of personal infor-

mation. The data protection aspect requires the investigation of different problems including the problem of

protecting the identities (anonymity) of the users to whom the data refer. This problem is becoming more

and more difficult because of the increased information availability and ease of access as well as the increased

computational power provided by today’s technology. Many techniques have been developed for protecting

data released publicly or semi-publicly from improper disclosure.

In this chapter, we presented a specific technique that has been receiving considerable attention recently,

and that is captured by the notion of k-anonymity. We discussed the concept of k-anonymity and described

two classes of algorithms for its enforcement, which differ by the generalization technique (i.e., hierarchy-

based or recoding-based) adopted. We also discussed recent proposals for attribute disclosure protection,

which are aimed at extending the k-anonymity algorithms with additional properties.

Acknowledgements

This work was supported in part by the EU, within the Seventh Framework Programme (FP7/2007-2013)

under grant agreement no 216483, and by the Italian MIUR, within PRIN 2006, under project 2006099978.

42

References

[1] N. Adam and J. Wortman. Security-control methods for statistical databases: A comparative study.

ACM Computing Surveys, 21(4):515–556, 1989.

[2] G. Aggarwal, T. Feder, K. Kenthapadi, R. Motwani, R. Panigrahy, D. Thomas, and A. Zhu. Anonymiz-

ing tables. In Proc. of the 10th International Conference on Database Theory (ICDT’05), Edinburgh,

Scotland, January 2005.

[3] G. Aggarwal, T. Feder, K. Kenthapadi, R. Motwani, R. Panigrahy, D. Thomas, and A. Zhu. Approxi-

mation algorithms for k-anonymity. Journal of Privacy Technology, November 2005.

[4] R. Agrawal and R. Srikant. Privacy-preserving data mining. In Proc. of the ACM SIGMOD Conference

on Management of Data, Dallas, Texas, USA, May 2000.

[5] A. Ambainis. Upper bound on communication complexity of private information retrieval. In Proc.

of the 24th International Colloquium on Automata, Languages and Programming, Bologna, Italy, July

1997.

[6] R. J. Bayardo and R. Agrawal. Data privacy through optimal k-anonymization. In Proc. of the 21st

International Conference on Data Engineering (ICDE’05), Tokyo, Japan, April 2005.

[7] C. Cachin, S. Micali, and M. Stadler. Computationally private information retrieval with polylogarithmic

communication. In Proc. of EUROCRYPT’99, Prague, Czech Republic, May 1999.

[8] D. Chaum. Untraceable electronic mail, return addresses, and digital pseudonyms. Communications of

the ACM, 24(2):84–88, February 1981.

[9] B. Chor and N. Gilboa. Computationally private information retrieval (extended abstract). In Proc. of

the 29th Annual ACM Symposium on Theory of Computing, El Paso, Texas, USA, May 1997.

[10] B. Chor, E. Kushilevitz, O. Goldreich, and M. Sudan. Private information retrieval. Journal of ACM,

45(6):965–981, April 1998.

[11] V. Ciriani, S. De Capitani di Vimercati, S. Foresti, and P. Samarati. k-anonymity. In T. Yu and

S. Jajodia, editors, Security in Decentralized Data Management. Springer, Berlin Heidelberg, 2007.

[12] V. Ciriani, S. De Capitani di Vimercati, S. Foresti, and P. Samarati. k-anonymous data mining: A sur-

vey. In C. C. Aggarwal and P. S. Yu, editors, Privacy-Preserving Data Mining: Models and Algorithms.

Springer-Verlag, 2007.

43

[13] V. Ciriani, S. De Capitani di Vimercati, S. Foresti, and P. Samarati. Microdata protection. In T. Yu

and S. Jajodia, editors, Security in Decentralized Data Management. Springer, Berlin Heidelberg, 2007.

[14] L. Cox. A constructive procedure for unbiased controlled rounding. Journal of the American Statistical

Association, 82(398):520–524, 1987.

[15] S. Dawson, S. De Capitani di Vimercati, P. Lincoln, and P. Samarati. Maximizing sharing of protected

information. Journal of Computer and System Sciences, 64(3):496–541, May 2002.

[16] D. Denning. Inference controls. In Cryptography and Data Security. Addison-Wesley Publishing Com-

pany, 1982.

[17] R. Dingledine, N. Mathewson, and P. Syverson. Tor: The second-generation onion router. In Proc. of

the 12th USENIX Security Symposium, San Diego, California, USA, August 2004.

[18] W. Du and M. Atallah. Privacy-preserving cooperative statistical analysis. In Proc. of the 17th Annual

Computer Security Applications Conference, New Orleans, Louisiana, USA, December 2001.

[19] W. Du and M. Atallah. Secure multi-party computation problems and their applications: a review and

open problems. In Proc. of the 2001 Workshop on New Security Paradigms, Cloudcroft, New Mexico,

September 2001.

[20] G. Duncan, S. Keller-McNulty, and S. Stokes. Disclosure risk vs. data utility: The R-U confidentiality

map. Technical report, Los Alamos National Laboratory, 2001. LA-UR-01-6428.

[21] Federal Committee on Statistical Methodology. Statistical policy working paper 22, May 1994. Report

on Statistical Disclosure Limitation Methodology.

[22] A. Gionis, A. Mazza, and T. Tassa. k-Anonymization revisited. In Proc. of the International Conference

on Data Engineering, Cancun, Mexico, 2008.

[23] P. Golle. Revisiting the uniqueness of simple demographics in the us population. In Proc. of the

Workshop on Privacy in the Electronic Society, Alexandria, Virginia, USA, October 2006.

[24] Y. Ishai and E. Kushilevitz. Improved upper bounds on information-theoretic private information

retrieval (extended abstract). In Proc. of the 31st annual ACM Symposium on Theory of Computing,

Atlanta, Georgia, USA, May 1999.

[25] V. S. Iyengar. Transforming data to satisfy privacy constraints. In Proc. of the 8th ACM SIGKDD

Internationale Conference on Knowledge Discovery and Data Mining, Edmonton, Alberta, Canada,

2002.

44

[26] V. Kann. Maximum bounded h-matching is max snp-complete. Information Processing Letters,

49:309318, 1994.

[27] E. Kushilevitz and R. Ostrovsky. Replication is not needed: Single database, computationally-private

information retrieval. In Proc. of the 38th Annual Symposium on Foundations of Computer Science,

Miami Beach, Florida, USA, October 1997.

[28] K. LeFevre, D. DeWitt., and R. Ramakrishnan. Mondrian multidimensional k-anonymity. In Proc. of

the International Conference on Data Engineering (ICDE’06), Atlanta, Georgia, USA, April 2006.

[29] K. LeFevre, D. J. DeWitt, and R. Ramakrishnan. Incognito: Efficient full-domain k-anonymity. In

Proc. of ACM SIGMOD Conference on Management of Data, Baltimore, Maryland, USA, June 2005.

[30] N. Li, T. Li, and S. Venkatasubramanian. t-closeness: Privacy beyond k-anonymity and ℓ-diversity. In

Proc. of the 23nd International Conference on Data Engineering, Istanbul, Turkey, April 2007.

[31] Y. Lindell and B. Pinkas. Privacy preserving data mining. Journal of Cryptology, 15(3):177–206, June

2002.

[32] A. Machanavajjhala, J. Gehrke, and D. Kifer. ℓ-density: Privacy beyond k-anonymity. In Proc. of the

International Conference on Data Engineering (ICDE’06), Atlanta, Georgia, USA, April 2006.

[33] A. Meyerson and R. Williams. On the complexity of optimal k-anonymity. In Proc. of the 23rd ACM-

SIGMOD-SIGACT-SIGART Symposium on the Principles of Database Systems, Paris, France, June

2004.

[34] H. Park and K. Shim. Approximate algorithms for k-anonymity. In Proc. of the ACM SIGMOD

International Conference on Management of Data, Beijing, China, June 2007.

[35] M. Reiter and A. Rubin. Anonymous Web transactions with crowds. Communications of the ACM,

42(2):32–48, February 1999.

[36] P. Samarati. Protecting respondents’ identities in microdata release. IEEE Transactions on Knowledge

and Data Engineering, 13(6):1010–1027, November 2001.

[37] K. Sampigethaya and R. Poovendran. A survey on mix networks and their secure applications. Pro-

ceedings of the IEEE, 94(12):2142–2181, December 2006.

[38] L. Sweeney. Achieving k-anonynity privacy protection using generalization and suppression. Interna-

tional Journal on Uncertainty, Fuzziness and Knowledge-based Systems, 10(5):571–588, 2002.

45

[39] P. Syverson, D. Goldschlag, and M. Reed. Anonymous connections and onion routing. In Proc. of the

18th Annual Symposium on Security and Privacy, Oakland, California, USA, May 1997.

[40] T. M. Truta and B. Vinay. Privacy protection: p-sensitive k-anonymity property. In Proc. of the 22nd

International Conference on Data Engineering Workshop (ICDEW’06), Atlanta, Georgia, USA, April

2006.

[41] R. C.-W. Wong, J. Li, A. W.-C. Fu, and K. Wang. (α,k)-anonymity: an enhanced k-anonymity model

for privacy preserving data publishing. In Proc. of the 12th ACM SIGKDD International Conference

on Knowledge Discovery and Data Mining, Philadelphia, Pennsylvania, USA, August 2006.

[42] A. Yao. Protocols for secure computations. In Proc. of the 23rd Annual IEEE Symposium on Foundations

of Computer Science, Chicago, Illinois, USA, November 1982.

