
Assessing Query Privileges via
Safe and Efficient Permission Composition

Sabrina De Capitani di Vimercati
DTI - Università di Milano

26013 Crema - Italy
decapita@dti.unimi.it

Sara Foresti
DTI - Università di Milano

26013 Crema - Italy
foresti@dti.unimi.it

Sushil Jajodia
CSIS - George Mason University

Fairfax, VA 22030-4444
jajodia@gmu.edu

Stefano Paraboschi
DIIMM - Università di Bergamo

24044 Dalmine - Italy
parabosc@unibg.it

Pierangela Samarati
DTI - Università di Milano

26013 Crema - Italy
samarati@dti.unimi.it

ABSTRACT
We propose an approach for the selective enforcement of ac-
cess control restrictions in, possibly distributed, large data
collections based on two basic concepts: i) flexible autho-
rizations identify, in a declarative way, the data that can be
released, and ii) queries are checked for execution not with
respect to individual authorizations but rather evaluating
whether the information release they (directly or indirectly)
entail is allowed by the authorizations. Our solution is based
on the definition of query profiles capturing the information
content of a query and builds on a graph-based modeling of
database schema, authorizations, and queries. Access con-
trol is then effectively modeled and efficiently executed in
terms of graph coloring and composition and on traversal
of graph paths. We then provide a polynomial composition
algorithm for determining if a query is authorized.

Categories and Subject Descriptors
H.2.7 [Database Management]: Database Administra-
tion—Security, integrity, and protection; H.2.4 [Database
Management]: Systems—Relational databases; H.2.4
[Database Management]: Systems—Query processing ;
K.6.5 [Management of Computing and Information
Systems]: Security and Protection

General Terms
Security, Management

Keywords
Access control, authorization composition

1. INTRODUCTION
A crucial goal of research in computer security is the de-

sign of effective policies able to flexibly represent, at an ab-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CCS’08, October 27–31, 2008, Alexandria, Virginia, USA.
Copyright 2008 ACM 978-1-59593-810-7/08/10 ...$5.00.

stract level, access privileges. Flexible and abstract policies
facilitate the work of the security designer and reduce errors
in the specification, decreasing direct and indirect costs of a
security system. The deployment of flexible and expressive
policy representations has often been hampered by the ab-
sence of efficient mechanisms for their evaluation. A critical
success factor for an access control model is to be able to
scale well to the size of modern information systems, with
large numbers of resources that must be protected.

In this paper, we consider the protection of large data
collections, possibly stored at different sites, which different
parties (users, applications, servers) may be authorized to
access selectively. In other words, different parties may be
allowed to see different portions of the data [7]. The explicit
reference of our model to relational databases is justified by
the fact that relational databases have a central role in the
management of large data collections today and promise to
have an increasing role in future applications. We observe,
however, that our solution is directly applicable to other
data models and can be easily adapted to other scenarios,
like web service integration or XML querying.

Current approaches for the specification and enforcement
of authorizations in relational databases claim flexibility and
expressiveness because of the possibilities of referring to
views. Users can be given access to a specific portion of
the data by the definition of the corresponding view (in the
database schema) and the consequent granting of the autho-
rization on the view to the user. It is then responsibility of
the user to query the view itself. Queries on a table (base
relation or view) are controlled with respect to authoriza-
tions specified on the tables themselves and are permitted
only if the base tables are explicitly authorized. When the
diversity of users and possible views is considerable and dy-
namic, such an approach clearly results limiting, because: i)
it potentially requires to explicitly define a view for each pos-
sible access need and ii) it imposes on the user/application
the burden of knowing and directly querying the view. The
evaluation of query compliance in terms of existing autho-
rization views has been considered in [14, 16, 17, 18].

We propose an expressive, flexible, and powerful, yet sim-
ple approach for the specification and enforcement of autho-
rizations that overcomes such limitations. Our authoriza-
tions express privileges not on specific existing views but
on stable components of the database schema, exploiting

Sara
Line

both i) relations and ii) joins between them; thus effec-
tively identifying the specific portion of the data whose ac-
cess is being authorized. Another important aspect of our
approach is that we do not limit ourselves to a simple query-
authorization control but allow a query to be executed when-
ever the information carried by the query (either directly in
the result or indirectly due to the dependence of the result
with other data not explicitly released) is legitimate accord-
ing to the specified authorizations. This is an important
paradigm shift with respect to current solutions, departing
from the need of specifying views to identify the portion of
the data to be authorized but explicitly supporting such a
specification in the authorizations themselves.

The remainder of the paper is organized as follows. Sec-
tion 2 illustrates the preliminary concepts of relational
databases. Section 3 presents the basic components of our
authorization model. Section 4 illustrates a graph-based rep-
resentation of the components of our authorization model
(database schema, queries, and permissions) which is then
exploited for assessing if a query can be safely executed. Sec-
tion 5 defines when a query is authorized (and therefore can
be safely executed) by either an individual permission or a
combination of permissions. Section 6 illustrates an algo-
rithm to determine if a query can be considered authorized
by a set of permissions avoiding computation of all possible
permission compositions. Section 7 discusses related work.
Finally, Section 8 draws some conclusions.

2. PRELIMINARY CONCEPTS
We consider a reference scenario where data are stored in a

relational database against which subjects, which can be ei-
ther users, servers, or processes, can execute queries. In the
following, the set of subjects and relations in the reference
scenario is denoted by S and R, respectively. At the schema
level, a relation is characterized by a name r and a set {a1,
. . . , an} of attributes and is denoted by r (a1,. . . ,an); r .∗
refers to the set {a1, . . . , an} of attributes in the relation.
At the instance level, a relation r (a1,. . . ,an) is a set of tu-
ples over set {a1,. . . ,an}, where each tuple t is a mapping
from attributes to values in their domain. For simplicity,
when clear from the context, we will use r to denote either
the schema or the instance of relation r . Given an attribute
a and a set A of attributes, t [a] denotes the value of at-
tribute a in t and t [A] the sub-tuple composed of all values
of attributes in A.

Each relation has a primary key which is the attribute, or
the set of attributes, that uniquely identifies each tuple in
the relation. Given a relation r i, Ki ⊆ r i.∗ denotes r i’s pri-
mary key attributes. Primary key attributes cannot assume
null values and two tuples in the relation cannot assume
the same value for the primary key. This latter condition
implies the existence of a functional dependency between
the primary key of a relation and any other attribute in the
relation. Given a relation r (a1,. . . ,an) and two non-empty
subsets Ai and Aj of the attributes {a1,. . . ,an}, there is a
functional dependency on r between Ai and Aj if for each
pair of tuples t l, tm of r with the same values on attributes in
Ai, t l and tm have also the same values on attributes in Aj .
Without loss of generality, we assume that only functional
dependencies given by the primary key hold in the relations.
This assumption does not limit the applicability of our so-
lution since it is similar to the common database schema re-
quirement that the relations satisfy the Boyce-Codd Normal

R Employee(ssn,job,salary)
Patient(ssn,dob,race)
Treatment(ssn,iddoc,type,cost,duration)
Doctor(iddoc,name,specialty)

I 〈Treatment.ssn,Patient.ssn〉
〈Treatment.iddoc,Doctor.iddoc〉

J 〈Employee.ssn,Patient.ssn〉
Figure 1: An example of relations, referential in-
tegrity constraints, and joins

Form (BCNF), to avoid redundancies and undesirable side-
effects during update operations, and it is usually achievable
using adequate decomposition procedures [3].

Figure 1 illustrates an example of a set R of four relation
schemas. Primary key attributes appear underlined.

The primary key Ki of a relation r i can also appear in,
or more precisely, be referenced by, a set of attributes Fj , in
another relation r j . In such a case, Fj , called foreign key ,
can assume only values that appear for Ki in the instance of
r i. This is formalized by the definition of referential integrity
constraint which, assuming for simplicity absence of null
values for the foreign key, is as follows.

Definition 2.1 (Referential integrity). Given
two relation schemas r i,r j ∈ R and a set of attributes
Fj ⊆ r j .∗, there is a referential integrity constraint from Fj

to Ki if and only if for any possible instance r i
′ of r i and

r j
′ of r j, ∀tj ∈ r j

′ there exists a tuple t i ∈ r i
′ such that

tj [Fj] = t i[Ki].

In the following, we use 〈Fj , Ki〉 to denote a referential
integrity constraint between Fj and Ki. Also, I denotes the
set of all referential integrity constraints defined over R.

For instance, with respect to the relation schemas in
Figure 1, there are two referential integrity constraints:
〈Treatment.ssn,Patient.ssn〉, implying that treatments
can only be given to patients (values appearing for ssn in
Treatment can be only values appearing for ssn in Patient),
and 〈Treatment.iddoc,Doctor.iddoc〉, implying that treat-
ments can only be prescribed by doctors (values appearing
for iddoc in Treatment can be only values appearing for
iddoc in Doctor).

Information in different relations can be combined by us-
ing the join operation, which allows the combination of tu-
ples belonging to different relations imposing conditions on
how tuples can be combined. For simplicity of exposition, we
assume that attributes that can be joined appear with the
same name in the different relations, and consider then all
joins to be natural joins, that is, joins whose conditions are
conjunctions of equality conditions that compare the value
of two attributes with the same name. We denote a con-
junction of equality conditions with a pair 〈Al, Ar〉, where
Al (Ar, resp.) is the list of attributes of the left (right,
resp.) operand of the join. Note that while possible joins
obviously include all referential integrity constraints, other
joins are possible; in the following we denote with J the set
of pairs representing the equality conditions of such addi-
tional joins. As an example, with respect to the relations
in Figure 1, Employee and Patient can be joined over at-
tribute ssn (retrieving all people that are both employees
and patients). Like the set of relations and the referential
integrity constraints, possible joins are also specified at the
time of database design [3].

We assume all attributes in the different relations to have
distinct names, apart from attributes that can be joined,
which appear instead with the same name. The intuitive
rationale behind such a homonymity is that attributes that
can be joined actually represent the same concept of the real
world. For instance, ssn denotes social security numbers of
people, who can then appear, for example, as patients or
employees. We adopt the usual dot notation, when neces-
sary, to distinguish the attribute in a specific relation. For
instance, Employee.ssn denotes the social security numbers
of employees and Patient.ssn denotes the social security
numbers of patients.

Different join operations can also be used to combine tu-
ples belonging to more than two relations. The following
definition introduces a join path as a sequence of natural
join conditions.

Definition 2.2 (Join path). A join path over a se-
quence of relation schemas r1,. . . ,rn is a sequence of n− 1
joins J1, . . . , Jn such that ∀i = 1, . . . , n− 1, Ji = 〈Ali, Ari〉
∈ (I ∪ J) and Ali are attributes of a relation appearing in
a join Jk, with k < i.

While noting that the permission model we propose in the
next section can be applied to any schema, in this paper we
assume that the schema is acyclic and lossless [1, 2]. Acyclic-
ity implies that the join path over any subset of the relations
{r1,. . .,rn} in the schema, denoted joinpath({r1,. . .,rn}), is
unique. Acyclicity rules out schemas that present recur-
sion or multiple independent join conditions among the same
relations. Acyclicity can be immediately evaluated on the
schema graph (see Section 4), considering arcs without ori-
entation. Losslessness of the schema guarantees that joins
among relations produce only correct information (accord-
ing to the real world). Intuitively, two relations produce
a lossless join if the join among them does not produce
spurious tuples. Losslessness can be evaluated by means
of attribute intersections and functional dependencies (see
Section 4). Acyclicity and losslessness assumptions are of-
ten used in relational databases, because they permit the
realization of simple and efficient procedures on the data, at
the same time capturing the requirements of most real-word
situations [1].

We consider select-from-where queries of the form: “se-
lect Attributes from Joined relations where Conditions”,
retrieving a set of Attributes from the tuples in the relation
resulting from joining the specified Joined relations that sat-
isfy the given Conditions.

Example 2.1. Consider the relations in Figure 1. Query:

select Employee.ssn, salary
from Employee join Patient

on Employee.ssn=Patient.ssn

join Treatment on Treatment.ssn=Patient.ssn

where cost> 250

retrieves the ssn (of employee) and salary for all hospital-
ized employees under some treatment whose cost is greater
than $250.

3. SECURITY MODEL
We first present our simple, while expressive, permissions,

regulating how data can be released to each subject. We
then characterize the information content of queries by in-
troducing the concept of query profile.

p1: [(ssn,dob,race),(Patient)] →Alice
p2: [(ssn,type,cost,duration),(Treatment)] →Alice
p3: [(race,specialty),(Treatment,Patient,Doctor)] →Alice
p4: [(ssn,job,salary),(Employee)] →Alice
p5: [(name),(Treatment,Doctor)] →Alice

Figure 2: Examples of permissions

3.1 Permissions
Different subjects in the system may be authorized to view

different portions of the whole database content. We con-
sider permissions in a simple, yet powerful form, specifying
visibility permissions for subjects to view certain schema
components. Formally, permissions are defined as follow.

Definition 3.1 (Permission). A permission p is a
rule of the form [A, R]→S where:

• A is a set of attributes, belonging to one or more rela-
tions, whose release is being authorized;

• R is a set of relations such that for every attribute in
A there is a relation including it;

• S is a subject in S.

Permission [A, R]→S states that subject S can view the
sub-tuples over the set of attributes A belonging to the join
among relations R (on conditions joinpath(R)).

Note that, according to the definition, only attribute
names (without indication of the relation) appear in the
first component of the permission, whereas the relation (or
relations) to which the attribute belongs is specified in the
second component. This occurs even when the attribute ap-
pears in more than one relation (specified in R), consistently
with the semantics that the two occurrences represent the
same entity in the real world.

Example 3.1. Figure 2 illustrates some permissions on
the relations in Figure 1 that give Alice the visibility of:

• ssn, date of birth, and race of all patients (p1);

• ssn of treated patients, together with type, cost, and
duration of their treatments (p2);

• race of patients and specialty of their caring doctors
(p3);

• ssn, job, and salary of all employees (p4);

• name of doctors who have prescribed some treatment
(p5).

Note that the presence of a relation (and therefore the
enforcement of the corresponding join conditions) in a per-
mission may decrease the set of tuples that are made visible
(to only those tuples that participate in the join). However,
such an elimination of tuples does not correspond to less in-
formation, rather it adds information on the fact that the
visible tuples actually join with (i.e., have values appearing
in) other tuples of the joined relations. For instance, permis-
sion p5 while restricting the set of doctor’s names visible to
Alice to only the names of the doctors who have prescribed
treatments, it allows Alice to see that such doctors have

prescribed treatments (i.e., they appear in relation Treat-

ment).
The only case where including an additional relation in

the permission does not influence the result, and therefore
does not imply an indirect information disclosure, occurs
when the additional relations are reachable via referential
integrity constraints (from the foreign key to the primary
key it references). For instance, permissions p2 in Figure 2
and a permission with the same first component as p2 and
having (Treatment,Patient,Doctor) as a second component,
are completely equivalent as they permit (direct or indirect)
release of exactly the same information. Indeed, given the
existing referential integrity constraints (see I in Figure 1),
all ssn and all iddoc appearing in Treatment also appear
in Patient and Doctor, respectively. The added joins are
therefore ineffective.

Note also that the set R of relations in a permission may
also include relations whose attributes do not appear in the
set A of attributes. This may be due to either:

• connectivity constraints, where these relations are
needed to build the association among attributes of
other relations. For instance, in permission p3, re-
lation Treatment establishes the associations between
attributes of patients and of their caring doctors, but
none of its attributes is released.

• instance-based restrictions, where these relations are
needed to restrict the attributes to be released to only
those values appearing in tuples that can be associated
with such relations. For instance, in permission p5 as
just commented.

3.2 Queries
Permissions restrict the data (view) that can be released

to a subject. To determine whether a subject can execute
a query, we need then to check the subject’s permissions
against the query to determine whether the query execu-
tion would allow the subject to view information that s/he
should not be allowed to view (according to the specified
permissions). To this purpose, we introduce the concept of
query profile, which captures the information content of the
query, as follows.

Definition 3.2 (Query profile). Given a select-
from-where query q, the query profile of q is a pair [Aq ,Rq],
where Aq is the set of attributes appearing in the select
and/or in the where clauses and Rq is the set of relations
appearing in the from clause.

Intuitively, the semantics of a query profile [Aq ,Rq] is that
the query result bears information (and therefore needs per-
mission for execution) on attributes Aq appearing in the re-
lation obtained by joining the relations Rq . As an example,
the profile of the query in Example 2.1 is [(ssn,salary,cost),
(Employee,Patient,Treatment)].

The reason why both, i) the attributes being returned as
result (i.e., the attributes in the select clause) and ii) the
attributes on which the query imposes conditions (i.e., the
attributes in the where clause), appear in the profile reflects
the fact that the query result returns indeed information on
both (or, equivalently, the subject needs permissions to view
both for query execution).

Note also that, like for permissions, only attribute names
(without indication of the relation) appear in the first com-
ponent of the query profile, where the relation (or relations)

Figure 3: Schema graph for the relations in Figure 1

to which the attributes belong is specified in the second com-
ponent. Indeed, if an attribute belongs to more than one
relation (and therefore participates in the join), the com-
mon values of such an attribute in all relations are released
by the query, regardless of the specific relation mentioned
in the select clause, which is needed for disambiguating
attribute names. The consideration of the attribute names
allows us to conveniently capture this aspect regardless of
the specific way in which the query has been written. For
instance, with respect to the query in Example 2.1, the set
of social security numbers released by the query is the inter-
section of the set of ssn values of patients and employees, as
captured in the profile. As a matter of fact, a query equal
to the query in Example 2.1 but releasing Patient.ssn in-
stead of Employee.ssn, while slightly different in the syntax,
would carry exactly the same information content and, con-
sequently, would have the same profile.

Our goal in this paper is to evaluate a query issued by
a subject against her permissions and to determine if the
query can be executed. In the following sections, we first in-
troduce a graph-based model for representing the database
schema, permissions, and queries. We then present an ap-
proach based on such a graph-based model for the evaluation
of permissions.

4. GRAPH-BASED MODEL
We model database schema, permissions, and queries via

mixed graphs, that is, graphs with both undirected and di-
rected arcs.

The schema graph of a set R of relations is a mixed graph
whose nodes correspond to the different attributes of the
relations and whose arcs correspond to: non-oriented arcs
representing the possible joins (J); and oriented arcs rep-
resenting the referential integrity constraints (I) and the
functional dependencies between the primary key of a rela-
tion and its non-key attributes. Attributes appearing with
the same name in more than one relation appear as differ-
ent nodes. To disambiguate, nodes are identified with the
usual dot notation by the pair relation.attribute. This is
formalized by the following definition.

Definition 4.1 (Schema graph). Given a set R of
relations, a set I of referential integrity constraints over R,
and a set J of join conditions over R, a schema graph is a
graph G(N , E) where:

• N = {r i.∗ | ri ∈ R}
• E = J ∪ I ∪ {(r i.K, r i.a) | r i ∈ R ∧ a 6∈ K}

Figure 3 represents the schema graph corresponding to
the set of relations, referential integrity constraints, and join
conditions in Figure 1 (for simplicity, we only report the
initials of the relations).

In the following, we refer our discussion to permissions
and queries of a specific subject and omit the subject com-
ponent of permissions in the formalization. Permissions and
queries correspond to views over the set R of relations and,
as already discussed, are characterized by a pair [A,R], cor-
responding to attributes/relations appearing in the permis-
sions and in the query profiles, respectively.

In the characterization of views, we take into consider-
ation the fact that referential integrity constraints can be
used to extend the relations in R to include all relations
reachable from the ones appearing in R by following refer-
ential integrity connections from a foreign key to the refer-
enced primary key and without adding information (see Sec-
tion 3.1). We can then include such relations in the set R.
Given a set R of relations, R∗ denotes the relations obtained
by closing R with respect to referential integrity constraints.
For instance, with respect to the schema graph in Figure 3,
the closure of R={Treatment} is R∗={Treatment, Patient,
Doctor}.

Given a query/permission, we graphically represent the
view entailed by it as a view graph obtained by coloring
the original schema graph with three colors: black for in-
formation that the view carries (i.e., it explicitly contains
or indirectly conveys); white for all the non-black attributes
belonging to relations in R∗ and the arcs connecting them
to the primary key; and clear for any other attribute or
arc. Intuitively, clear nodes/arcs are attributes/arcs belong-
ing to the original graph that are ineffective with respect
to the evaluation and composition of permissions. The rea-
son for maintaining them in the view graphs is so that every
query/permission is a coloring (in contrast to a subgraph) of
the schema graph. View graph is formally defined as follows.

Definition 4.2 (View graph). Given a set R of
relations characterized by schema graph G(N , E) and
a permission/query profile V = [A,R] on it, the view
graph of V over G is a graph GV (N , E , λV), where
λV : {N ∪ E} →{black,white,clear} is a coloring function
defined as follows.

λV (n)=





black, n=r .a , r ∈ R∗ ∧ a ∈ A

white, n=r .a , r ∈ R∗ ∧ a 6∈ A

clear, otherwise

λV (ni, nj)=





black, (ni,nj) ∈ joinpath(R∗) ∨
(ni=r .K, nj=r .a , r ∈ R∗,
(a ∈ A ∨ r .a appears in joinpath(R∗)))

white, ni=r .K, nj=r .a , r ∈ R∗,
¬(a ∈ A ∨ r .a appears in joinpath(R∗)))

clear, otherwise

According to this definition, a node is colored as: black
if it appears in A, white if it is not black and it belongs
to a relation appearing in R∗, and clear otherwise. An arc
is colored: black if either it belongs to joinpath(R∗) or it
is an arc going from the key of a relation in R∗ to an at-

COLOR GRAPH(G,[A,R])
NV := N
EV := E
for each n∈NV do λV (n) := clear
for each (ni,nj)∈EV do λV (ni, nj) := clear
for each r∈R∗ do
for each a∈r .∗ do /* color nodes */
if a∈A then λV (r .a) := black
else λV (r .a) := white

for each (ni,nj)∈joinpath(R∗) do /* color the join path */
λV (ni, nj) := black

for each (ni,nj)∈{(ni,nj)|∃r∈R∗, ni=r .K ∧nj⊆r .∗} do
if λV (nj)=black ∨ nj appears in joinpath(R∗) then

λV (ni, nj) := black
else λV (ni, nj) := white

GV := (NV ,EV ,λV)
return(GV)

Figure 4: Function for coloring a view graph

tribute which either belongs to A or appears in joinpath(R∗);
white if it is an arc from the key of a relation in R∗ to one
of its attributes which neither belongs to A nor appears in
joinpath(R∗); clear otherwise.

Figure 4 illustrates the Color Graph function that given
the schema graph G and a pair [A,R] denoting either a per-
mission or a query profile, implements Definition 4.2 and re-
turns the corresponding view graph. Color Graph, whose
interpretation is immediate, starts by assigning a clear color
to all nodes and arcs and proceeds coloring black and white
arcs and nodes as prescribed by the definition.

Figure 5 reports the view graphs corresponding to the
permissions in Figure 2. Here, black nodes and arcs are
represented by filled nodes and bold lines, white nodes and
arcs are represented by continuous nodes and lines, and clear
nodes and arcs are represented by dotted nodes and lines.
Figure 6 reports some examples of queries over the schema
of Figure 3 together with their corresponding view graphs.

Before closing this section, we introduce two dominance
relationships between view graphs that will be used in the
remainder of the paper.

Definition 4.3 (¹N , ¹NE). Given a schema graph
G(N , E), and two view graphs GVi (N , E , λVi) and
GVj (N , E , λVj) over G, the following dominance rela-
tionships are defined:

• GVi¹NGVj , when ∀n∈ N and ∀(nh, nk) ∈ (J ∪ I):

– λVi(n) = black =⇒ λVj (n)=black, and
– λGi(nh, nk) = black ⇐⇒ λGj (nh, nk) = black.

• GVi¹NEGVj , when ∀n∈ N and ∀(nh, nk) ∈ E:
– λVi(n) = black =⇒ λVj (n)=black, and
– λGi(nh, nk) = black =⇒ λGj (nh, nk) = black.

According to this definition, given two graphs GVi and
GVj on the same database schema, GVi ¹N GVj if they have
exactly the same black referential integrity and join arcs and
the black nodes of GVi are a subset of the black nodes of
GVj . GVi ¹NE GVj if the black arcs and nodes of GVi are
a subset of the black arcs and nodes of GVj . For instance,
with reference to the view graphs in Figures 5 and 6, it is
easy to see that: Gp1¹NEGq2 and that Gp3¹NGq3 .

5. QUERY ANALYSIS
To evaluate a query requested by a subject against her

permissions and to determine if the query can be executed,
we implement the following intuitive concept.

p1:[(ssn,dob,race),(Patient)]→Alice

p2:[(ssn,type,cost,duration),(Treatment)]→Alice

p3:[(race,specialty),(Treatment,Patient,Doctor)]→Alice

p4:[(ssn,job,salary),(Employee)]→Alice

p5:[(name),(Treatment,Doctor)]→Alice

Figure 5: Examples of permissions and their view
graphs

q1

select E.ssn,salary
from Employee as E

join Patient as P
on E.ssn=P.ssn
join Treatment as T
on T.ssn=P.ssn

where cost> 250

q2

select P.ssn,dob
from Employee as E

join Patient as P
on E.ssn=P.ssn

where race=‘asian’

q3

select P.ssn,race
from Patient as P

join Treatment as T
on T.ssn=P.ssn
join Doctor as D
on T.iddoc=D.iddoc

where specialty=‘cardiology’

Figure 6: Examples of queries and their view graphs

Principle 5.1. A query can be executed if the subject has
permissions to view the information content carried by the
query.

We first discuss when a permission authorizes a query ex-
ecution. We will then address permission composition.

5.1 Authorizing permissions
Intuitively, a permission authorizes the execution of a

query if and only if the information (directly or indirectly)
released by the query is a subset of the information that the
permission authorizes to view.

Note that this is different from saying that the query re-
sult should contain only data that are a subset of the data
authorized by the permission, as this denotes only the infor-
mation directly released. A correct enforcement should also
ensure that no indirect release occurs. There are two main
sources of indirect release: i) the presence, in the query,
of conditions on attributes that are not returned (i.e., at-
tributes that appear in the where clause but do not appear
in the select clause); and ii) the presence of join condi-
tions restricting the tuples returned by the query. The first
aspect is easily taken into consideration as it is already cap-
tured by the inclusion, in the query profile (Definition 3.2),
of all the attributes accessed by the query. To illustrate the
problem of the second aspect, consider permission p1 in Fig-
ure 5, which allows Alice to view the complete information
in Patient, and therefore the whole tuples representing all
patients. Permission p1 by itself is then sufficient to grant
Alice the ability to execute a query retrieving the data of

all patients (“select P.ssn,dob from Patient as P where
race=‘asian’ ”). Suppose instead that Alice issues query
q2 in Figure 6. This latter query returns a subset of all the
tuples of patients, and therefore only tuples that Alice, ac-
cording to p1, is authorized to see. However, permission p1

is not sufficient for granting such a query since the query
result conveys the additional information that the returned
tuples refer to patients who are also employees of the given
company (information which permission p1 does not autho-
rize).

As already commented in Section 4, the only case when
joins do not add information is when there is a referential
integrity constraint among the involved relations. Consider,
for example, permission p2 authorizing the release of dif-
ferent attributes in Treatment. For instance, query “se-
lect T.ssn from Treatment as T” is clearly authorized by
p2. Consider then the same query containing, in the from
clause, also relations Patient and Doctor with the corre-
sponding joins. Despite the presence of the additional joins,
such a query does not bear additional information (indirect
release) and should therefore be authorized by p2. As a mat-
ter of fact, because of the referential integrity constraints
between the involved relations, all ssn’s and iddoc’s ap-
pearing in Treatment also appear in Patient and Doctor,
respectively, and therefore the joins do not impose restric-
tions. The consideration of the peculiar characteristics of
joins due to referential integrity constraints is easily taken
into account as it is already captured by the coloring, in
the view graph, of all the relations reachable from the ones
appearing in the query, by following referential integrity con-
straints (Definition 4.2).

Let us then proceed to formally define when a permission
authorizes a query. We start by identifying permissions ap-
plicable to a query. Intuitively, a permission applies to a
query when it refers to the complete set of tuples requested
by the query. Since tuple restriction is due to joins not fol-
lowing the direction from a foreign key to the referenced key
in a referential integrity constraint (as commented above),
this is equivalent to saying that the permission applies to a
query if it does not contain additional joins (apart from those
corresponding to referential integrity constraints). This is
formalized by the following definition.

Definition 5.1 (Applicable). A permission p =
[Ap ,Rp] is applicable to a query q=[Aq ,Rq] iff R∗p⊆R∗q .

In terms of view graphs, this definition is equivalent to
say that the black and white nodes of Gp should be a subset
of the black and white nodes of Gq.

According to the discussion above, a permission autho-
rizes a query if and only if the permission applies to the
query and authorizes the release, either direct of indirect,
of information in the query. This means that the permis-
sion should include (at least) all attributes accessed by the
query as well as all the join conditions. In terms of the view
graphs, this is equivalent to say that the view graph Gq of
the query and the view graph Gp of the permission have ex-
actly the same black arcs and that all nodes that are black
in the view graph of the query are also black in the view
graph of the permission, that is, Gq¹NGp . This is formally
captured by the following definition.

Definition 5.2 (Authorizing permission). Given a
permission p=[Ap ,Rp] applicable to a query q=[Aq ,Rq], p
authorizes q iff Gq¹NGp .

COMPOSE(G,pi,pj)
p := [Ai∪Aj ,Ri∪Rj]
Np := N
Ep := E
for each n∈Np do λV (n) := clear
for each (ni,nj)∈Ep do λV (ni, nj) := clear
for each n∈Np do
if λpi

(n)=black∨λpj
(n)=black then λp (n)=black

else if λpi
(n)=white∨λpj

(n)=white then

λp (n)=white
for each (nh,nk)∈Ep do
if λpi

(nh, nk)=black∨λpj
(nh, nk)=black∨

(λp (nh)=black∧λp (nk)=black) then λp (nh, nk)=black
else if λpi

(nh, nk)=white∨λpj
(nh, nk)=white then

λp (nh, nk)=white
return(p)

Figure 7: Composition of two permissions

As an example, with reference to the authorizations in
Figure 5 and query q2 in Figure 6, the set of authorizations
applicable includes p1 and p4. However, neither p1 nor p4

authorize the query. By contrast, considering query “se-
lect P.ssn,dob from Patient as P where race=‘asian’ ”,
permission p1 is the only applicable permission that also
authorizes the query.

5.2 Composition of permissions
Checking queries against individual permissions is not suf-

ficient for a true enforcement of Principle 5.1. Indeed, it
might be that for a query there is no permission that sin-
gularly taken authorizes the query, however information re-
leased (directly or indirectly) by the query is authorized. As
an example, consider permissions p1 and p4 in Figure 5 and
suppose that Alice requests query q2 in Figure 6, returning
the tuples associated with employees whose ssn appears also
in the Patient relation. While neither p1 nor p4 authorize
the query (as, for each of them, the query has the additional
join condition that the permission does not authorize), it is
clear that the query does not release any information that
Alice is not authorized to see. As a matter of fact, Alice
could indeed separately query both relations and then join
the two results. In the spirit of Principle 5.1, Alice’s query
should therefore be authorized. To enforce this, we compose
permissions and consider a query authorized if there exists
a composition of permissions that authorizes it.

Composition of permissions must however be performed
carefully to ensure that composition does not authorize addi-
tional queries that were authorized by neither of the original
permissions. To illustrate, consider again the permissions in
Figure 5 and suppose that Alice issues query q3. One could
think that such a query can be authorized by composing
p3 in Figure 5 (authorizing the release of race’s and spe-

cialty’s) and p2 (authorizing, in particular, the release of
ssn’s of patients under treatment). However, such a com-
position does not authorize the query. Indeed, the query
conveys the associations between a patient and her caring
doctor, which neither of the individual permissions autho-
rizes and which Alice would not be able to reconstruct by
separately exploiting the privileges granted by the two per-
missions. The problem in this case is that the composition
of the two permissions returns more information than that
entailed by the two permissions. Therefore, the two permis-
sions should not be composed.

To determine when two permissions can be composed, we
exploit one of the foundational results of the theory of joins

for relational databases, expressed by the theorem presented
in [2], which states that two relations produce a lossless join
if and only if at least one of the two relations functionally
depends from the intersection of their attributes. The re-
lations that are considered in the theorem correspond to
generic projections on the set of attributes that character-
izes the“universal relation”obtained joining all the relations
of our lossless acyclic schema; this means that each permis-
sion corresponds to a relation and that the composition of
permissions is correct only if the above requirement is sat-
isfied. For instance, consider the previous examples and the
permissions in Figure 5. Permissions p1 and p4 can be com-
bined because their intersection is represented by attribute
ssn, which is a key for all the attributes in p1 (and p4).
Permissions p1 and p3 cannot be combined because their
intersection is represented by attribute race, and neither p1

nor p3 functionally depend on it.
The application of this basic result of the theory of joins in

our scenario is slightly complicated by the fact that the views
corresponding to given permissions may include attributes
from different relations. (We note here that intersection of
permissions is computed based only on the attribute names,
without considering the relation they belong to, since at-
tributes with the same name represent the same real world
concept and natural joins impose them to be equal in all the
resulting tuples.) Given two permissions pi=[Ai,Ri] and
pj=[Aj ,Rj] their composability depends on the intersection
of their visible attributes (i.e., Ai ∩ Aj) but the functional
dependency of the visible attributes of one of the two permis-
sions from the common attributes needs to be evaluated by
taking into account also the referential integrity constraints.
This concept can be easily captured by analyzing the view
graphs Gpi and Gpj corresponding to the two permissions.
The basic idea is that there is a dependence between pi and
pj when there is a black path from nodes corresponding to
the attributes that are listed both in Ai and in Aj to all
the black nodes in Gpi or in Gpj . This intuitive concept of
dependency is formalized as follows.

Definition 5.3 (Dependence). Given two permis-
sions pi=[Ai,Ri] and pj=[Aj,Rj] with view graphs
Gpi(N , E , λpi

) and Gpj (N , E , λpj
), respectively, let Bj be

the set of nodes corresponding to {Ai ∩ Aj} in Gpj . We
say that pj depends on pi, denoted pi→pj, iff ∀nj∈N such
that λpj

(nj)=black, ∃n ∈ Bj such that there is a path of
only directed black arcs from n to nj in Gpj .

In the following, notation pi↔pj denotes that both pi→pj

and pj→pi hold. Similarly, pi 6↔pj denotes that neither
pi→pj nor pj→pi hold.

For instance, with reference to the permissions in Figure 5,
as already noted, p2→p1, since common attribute ssn is
key for the Patient relation authorized by p1, and p1 6→p2,
since the attributes released by p2 depend on the pair of
attributes ssn and iddoc. We also note that p1↔p4, since
the ssn attribute, common to the two permissions, is the
key of both the Patient and Employee relations. On the
contrary, as already pointed out, p1 6↔p3.

If pi→pj (or pj→pi, resp.), then the two permissions can
be safely composed , as formally stated by the following def-
inition.

Definition 5.4 (Safe composition). Given two per-
missions pi=[Ai,Ri] and pj=[Aj,Rj], pi and pj can be safely
composed when pi→pj, pj→pi, or both.

For instance, p1 can be safely composed with p2, since
p2→p1. Also, since p1↔p4, p1 can be safely composed with
p4.

Similarly to the composition of relations presented in the
theory of normal forms for relational databases, the composi-
tion of pi with pj generates a new permission that combines
the viewing privileges of the two, as stated by the following
definition.

Definition 5.5 (Composed permission). Given two
permissions pi=[Ai,Ri] and pj=[Aj,Rj], their composition
is the permission pi⊗pj=[Ai∪Aj,Ri∪Rj].

It is easy to see that the view graph of the resulting com-
posed permission is obtained from the view graphs of the
components as follows. A node in Gpi⊗pj

is: black if it is
black in either Gpi or Gpj ; white if it is not black and it is
white in either Gpi or Gpj ; it is clear otherwise. An arc in
Gpi⊗pj

is: black if it is black in either Gpi or Gpj or if it
is incident on only black nodes in Gpi⊗pj

; white if it is not
black and is white in either Gpi or Gpj ; it is clear otherwise.
Figure 8 represents the view graphs resulting from a subset
of the safe compositions of the privileges in Figure 5, that
is, p1⊗p2, p1⊗p4, and p1⊗p2⊗p4.

It might be that the permission pi ⊗ pj obtained by com-
posing permissions pi and pj can be composed with a per-
mission pk that did not satisfy the composition requirements
with pi nor with pj . In general, each new permission pro-
duces new opportunities for composition that have to be
considered. The consideration of all the potential composi-
tions is modeled by the following concept.

Definition 5.6 (Composition closure). Given a
set of permissions P, the closure on composition of P,
denoted P⊗, is the set of permissions obtained as a fixpoint
by the procedure which repeatedly extends P with all permis-
sions obtained by the safe composition of the permissions in
P.

For instance, with reference to the set of permissions in
Figure 5, their closure is P⊗={p1, p2, p3, p4, p5, p1⊗p2,
p1⊗p4, p2⊗p4, p1⊗p2⊗p4}.

The closure represents the greatest representation of the
permissions available to a subject. This concept permits to
identify in a complete way if a specific query is authorized
for a subject.

Definition 5.7 (Authorized query). Given a set P
of permissions applicable to a query q=[Aq ,Rq], P autho-
rizes q iff ∃p ∈ P⊗ such that p authorizes q (according to
Definition 5.2).

The computation of the closure on composition of per-
missions is potentially an expensive procedure. In the next
section, we present an efficient algorithm that avoids com-
puting the composition closure while ensuring completeness
of control needed to evaluate if a query is authorized.

6. ALGORITHM
Given a set P of n permissions applicable to a query q,

the composition operation does not require to compute all
the possible 2n−1 permission compositions, since given two
permissions pi and pj , if pj→pi then pj is subsumed by
pi⊗pj , and whenever a permission pk can be composed with
pj , pk can also be composed with pi⊗pj , as stated by the
following theorem.

Gp1 Gp2 Gp1⊗p2

⊗ =

Gp1 Gp4 Gp1⊗p4

⊗ =

Gp1⊗p2 Gp1⊗p4 Gp1⊗p2⊗p4

⊗ =

Figure 8: Examples of permission compositions

Theorem 6.1 (Permission implication). Given two
permissions pi=[Ai,Ri], pj=[Aj ,Rj] ∈ P such that pj→pi,
∀pk=[Ak,Rk] ∈ P:

1. pj→pk ⇒ (pi⊗pj)→pk;

2. pk→pj ⇒ pk→(pi⊗pj).

This theorem implies that when adding pi⊗pj , permis-
sion pj can be removed from set P without compromising
the composition process. It is also easy to see that since
the composed permission is again applicable to q, the set
of permissions to be composed always contains at most n
permissions (i.e., the composed permission substitutes one,
or both, of the composing permissions). Function Autho-
rized in Figure 9 applies this observation to check whether a
query q is authorized. The function takes as input the view
graph Gq representing the profile of query q and, on the
basis of the set of applicable permissions, returns true or
false depending on whether or not the query is authorized.

Initially, Authorized determines the set Applicable of
applicable permissions and checks if one of these permis-
sions dominates (¹N) Gq. If this is the case, function Au-
thorized returns true. Otherwise, the function starts the

composition process that exploits Theorem 6.1. The appli-
cable permissions are first ordered according to a numeric
identifier id, ranging from 1 to |Applicable|, which is as-
sociated with each permission. In the repeat-until loop,
each permission pi is compared with a permission pj such
that pi.id<pj .id . If the set of black nodes and arcs of Gpi

is not a subset of the set of black nodes and arcs of Gpj

(i.e., Gpi 6¹NEGpj , meaning that pj has not been computed
in a previous iteration by composing pi with another au-
thorization) and vice versa, function Authorized checks
whether pi and pj can be composed (i.e., pj→pi or pi→pj).
If so, the identifier of the resulting composed permission
becomes equal to the current maximum identifier (maxid)
incremented by one. Each permission p has also a vari-
able p .maxcfr , which keeps track of the highest identifier of
the permissions compared with p . This variable avoids to
check the same pair of permissions more than once. The
composition process terminates when maxcfr of all permis-
sions is equal to the highest identifier maxid . The function
then checks if any of the permissions in Applicable domi-
nates (¹N) Gq. If this is the case, function Authorized
returns true; otherwise it returns false.

Example 6.1. Consider the schema graph in Figure 3,

AUTHORIZED(Gq)
Let Applicable be the set of permissions p∈P such that:
{n∈Np |λp (n)=black∨white}⊆{n∈Nq|λq(n)=black∨white}
/* check individual permissions */
for each p∈Applicable do
if Gq¹N Gp then return(true)

/* compose permissions */
maxid := |Applicable|
counter := 1
for each p∈Applicable do
p .id := counter
p .maxcfr := counter
counter := counter + 1

idmini := 1
repeat

Let pi be the permission with pi.id=idmini

idminj := Min({p .id|p∈Applicable∧pi.maxcfr<p .id})
Let pj be the permission with pj .id=idminj

dominated := null
if (Gpi

6¹NEGpj
) ∧ (Gpj

6¹NEGpi
) then

if pj→pi then dominated := dominated ∪ {pj}
if pi→pj then dominated := dominated ∪ {pi}

pi.maxcfr := pj .id
if dominated 6=null then

maxid := maxid + 1
pmaxid := Compose(G,pi,pj)
pmaxid.id := maxid
pmaxid.maxcfr := maxid
Applicable := Applicable − dominated ∪ {pmaxid}

idmini := Min({p .id|p∈Applicable∧p .maxcfr<maxid})
until idmini=null
/* check resulting permissions */
for each p∈Applicable do
if Gq¹N Gp then return(true)

return(false)

Figure 9: Access control

the set of permissions in Figure 5, and query q1 in Fig-
ure 6. All the five permissions are applicable to q1. The
table in Figure 10 represents the execution, step by step,
of function Authorized on Gq1 by reporting the evolution
of variable p.maxcfr for both original and composed permis-
sions. Each column in the table corresponds to a permission,
whose identifier is the label of the column itself. Each row in
the table represents an iteration of the repeat-until loop,
reporting both the dependence relationship between the com-
posing permissions and the maxcfr for all permissions. Also,
in each row the maxcfr of the permissions checked for a pos-
sible composition are reported in italic. When a permission
is removed from Applicable (because subsumed by an added
composed permission), its maxcfr is not reported anymore.
Figure 8 illustrates the view graphs of the composed permis-
sions generated by the algorithm.

The following theorems state the correctness and com-
plexity of function Authorized. Proofs are omitted due to
space constraints.

Theorem 6.2 (Termination and correctness).
Given a query q and a set Applicable of applicable permis-
sions, function Authorized terminates and returns true
iff q is authorized by Applicable⊗.

Theorem 6.3 (Complexity). Given a query q and a
set Applicable of n applicable permissions, the computational
complexity of function Authorized is O(n3).

7. RELATED WORK
In light of the crucial role that security has in the construc-

tion of future large-scale distributed applications, a signifi-

id 1 2 3 4 5 6 7 8

p1 p2 p3 p4 p5
initialization 1 2 3 4 5
p2→p1 1 2 3 4 5 p1⊗p2
p1 6↔p3 2 3 4 5 6
p1↔p4 3 3 4 5 6 p1⊗p4
p3 6↔p5 3 5 6 7
p3 6↔(p1⊗p2) 5 5 6 7
p5 6↔(p1⊗p2) 6 5 6 7
p3 6↔(p1⊗p4) 6 6 6 7
p5 6↔(p1⊗p4) 7 6 6 7
(p1⊗p2)→(p1⊗p4) 7 7 6 7 p1⊗p2⊗p4
p3 6↔(p1⊗p2⊗p4) 7 7 7 8
p5 6↔(p1⊗p2⊗p4) 8 7 7 8
Gp1⊗p4¹NEGp1⊗p2⊗p4 8 8 7 8

8 8 8 8

Figure 10: An example of algorithm execution

cant amount of research has recently focused on the prob-
lem of processing distributed queries under access restric-
tions. Most of these works [5, 8, 9, 11, 12, 15] are based
on the concept of access pattern, a profile associated with
each relation/view where each attribute has a value that
may either be i or o (i.e., input or output). When accessing
a relation, the values for all i attributes must be supplied,
to obtain the corresponding values of o attributes. Also,
queries are represented in terms of Datalog, a query lan-
guage based on the logic programming paradigm. The main
goal of all these works is identifying the classes of queries
that a given set of access patterns can support. There are
several differences between the work on access patterns and
the approach proposed in this paper. First, our proposal
focuses on the definition of privileges on the components of
a schema, naturally extending the approach normally used
to describe privileges in a relational database; instead, ac-
cess patterns describe authorizations as special formulas in
a logic programming language for data access, outside the
expertise of database and security administrators. Second,
the work on access patterns typically requires the invoca-
tion of a processor of Datalog queries to identify if a query
can be computed on the available access patterns, in general
with exponential cost, compared to the polynomial complex-
ity exhibited here. Finally, it is easier to adapt the model
presented in this paper to scenarios where multiple subjects
cooperate in query execution; we also observe that the idea
of having input parameters can be immediately modeled in
our proposal defining an ad-hoc join path with a relation
under the subject control, demonstrating the flexibility of
our approach. The models based on access patterns are not
as easy to extend, since it is known that cooperative com-
putation of logical queries presents several difficult issues.

Other related work is represented by classical studies on
chase and data dependencies [1, 2, 4, 13]. The chase process
exploits a specific data structure, called tableau, to represent
a query or a relation. It is usually adopted to study and
identify functional dependencies within a relation schema,
to check if a decomposition is lossy or lossless, to evaluate
if the result of a query qi is contained in the result of an-
other query qj (or vice versa) without explicitly computing
the queries. The algorithm we present in the paper can be
considered a variant of chase computation for acyclic queries
that adapts previous results to a configuration where each
query corresponds to a security constraint (security aspects
are not considered in the work on data dependencies).

A model with some similarity to the approach introduced
in this paper has been presented in [16]. An interesting
similarity lies in the exploitation of referential integrity con-
straints for the automatic identification of security compli-
ance of queries with respect to views, but the modes of appli-
cation in the two approaches are clearly distinct. In general,
compared to our proposal, the approach in [16] operates at
a lower level; it analyzes the integration with a relational
DBMS optimizer and focuses on the consideration of “in-
stantiated” queries, i.e., queries that present predicates that
force attributes to assume specific values, aiming to evaluate
compatibility of the instantiated queries with the authorized
views. Our model instead operates at a more abstract level:
we focus on a data integration scenario and provide an over-
all data-model characterization of the views; query instan-
tiation with parameter is modeled by the addition of tables
to the schema. The advantages of our approach are: (1)
the model is applicable to a wider variety of contexts, and
(2) the security requirements are expressed in a clearer way,
with benefits for the security administrator and the reason-
ing system. In particular, we provide a complete technique
for the identification of query compliance with authoriza-
tions and formally demonstrate the correct behavior of an
efficient composition of authorizations, whereas in [16] no
algorithm is provided for the evaluation of view composi-
tion, relying instead on a potentially expensive application
of a few heuristics by the query optimizer. Overall, the two
approaches complement each other and the exploration of
their integration appears a fruitful line of research.

Acyclicity of the database schema allows us to obtain a
limited computational complexity in authorization compo-
sition. It is well-known in the database community that
cyclic schemas significantly increase the complexity of query
processing and optimization. Recent research (e.g., [10]) has
shown that it is possible to identify restrictions on the degree
of schema cyclicity that permit to keep at polynomial com-
plexity several query processing and schema design prob-
lems. It appears promising to extend those results to the
scenario presented in this paper.

8. CONCLUSIONS
The evolution of networking and Web technology offers

opportunities for interaction among separate information
systems that will be exploited in many important applica-
tions and will produce great benefits to society. A prelim-
inary condition for the realization of these benefits is the
flexible and efficient support of access permissions. Our
proposal represents a step in this direction, with powerful,
yet simple, permissions and their composition for assess-
ing query privileges facilitates the construction of modern
security-compliant integration mechanisms.

9. ACKNOWLEDGMENTS
This work was supported in part by the EU, within the

7FP project, under grant agreement 216483“PrimeLife”and
by the Italian MIUR, within PRIN 2006, under project
2006099978 “Basi di dati crittografate”. The work of Sushil
Jajodia was partially supported by National Science Foun-
dation under grants CT-0716567, CT-0627493, and IIS-
0430402 and by Air Force Office of Scientific Research under
grant FA9550-07-1-0527.

10. REFERENCES
[1] S. Abiteboul, R. Hull, and V. Vianu. Foundations of

Databases. Addison-Wesley, 1995.

[2] A. V. Aho, C. Beeri, and J. D. Ullman. The theory of
joins in relational databases. ACM TODS,
4(3):297–314, 1979.

[3] P. Atzeni, S. Ceri, S. Paraboschi, and R. Torlone.
Database Systems - Concepts, Languages and
Architectures. McGraw-Hill Book Company, 1999.

[4] C. Beeri and M. Y. Vardi. A proof procedure for data
dependencies. J. ACM, 31(4):718–741, 1984.

[5] A. Cal̀ı and D. Martinenghi. Querying data under
access limitations. In Proc. of ICDE 2008, Cancun,
Mexico, April 2008.

[6] S. Dawson, S. De Capitani di Vimercati, P. Lincoln,
and P. Samarati. Maximizing sharing of protected
information. Journal of Computer and System
Sciences, 64(3):496–541, May 2002.

[7] S. De Capitani di Vimercati, S. Foresti, S. Jajodia,
S. Paraboschi, and P. Samarati. Controlled
information sharing in collaborative distributed query
processing. In Proc. of ICDCS 2008, Beijing, China,
June 2008.

[8] A. Deutsch, B. Ludäscher, and A. Nash. Rewriting
queries using views with access patterns under
integrity constraints. In Proc. of ICDT 2005,
Edinburgh, UK, January 2005.

[9] D. Florescu, A. Y. Levy, I. Manolescu, and D. Suciu.
Query optimization in the presence of limited access
patterns. In Proc. of SIGMOD 1999, Philadelphia,
PA, June 1999.

[10] G. Gottlob. Computing cores for data exchange: new
algorithms and practical solutions. In Proc. of the
PODS 2005, Baltimore, MD, June 2005.

[11] G. Gottlob and A. Nash. Data exchange: Computing
cores in polynomial time. In Proc. of PODS 2006,
Chicago, IL, June 2006.

[12] C. Li. Computing complete answers to queries in the
presence of limited access patterns. VLDB Journal,
12(3):211–227 , 2003.

[13] D. Maier, A. Mendelzon, and Y. Sagiv. Testing
implications of data dependencies. In Proc. of the
SIGMOD 1979, Boston, MA, June 1979.

[14] A. Motro. An access authorization model for relational
databases based on algebraic manipulation of view
definitions. In Proc. of the ICDE89, Los Angeles, CA,
February 1989.

[15] A. Nash and A. Deutsch. Privacy in GLAV
information integration. In Proc. of ICDT 2007,
Barcelona, Spain, January 2007.

[16] S. Rizvi, A. Mendelzon, S. Sudarshan, and P. Roy.
Extending query rewriting techniques for fine-grained
access control. In Proc. of the SIGMOD 2004, Paris,
France, 2004.

[17] A. Rosenthal and E. Sciore. View security as the basis
for data warehouse security. In Proc. of DMDW’2000,
Stockholm, Sweden, June 2000.

[18] A. Rosenthal and E. Sciore. Administering
permissions for distributed data: factoring and
automated inference. In Proc. of the IFIP 11.3
Working Conference in Database Security, Niagara,
Ontario, Canada, July 2001.

	copyright: © ACM, (2008). This is the author's version of the work. It is posted here by permission of ACM for your personal use. Not for redistribution. The definitive version was published in Proceedings of the 15th ACM conference on Computer and Communications Security, Alexandria, Virginia, USA, October 27-31, 2008 http://doi.acm.org/10.1145/1455770.1455810

