
A Reputation-Based Approach for Choosing Reliable
Resources in Peer-to-Peer Networks

Ernesto Damiani
DTI - Università di Milano

26013 Crema - Italy

damiani@dti.unimi.it

De Capitani di Vimercati
DEA - Università di Brescia

25123 Brescia - Italy

decapita@ing.unibs.it

Stefano Paraboschi
DEI - Politecnico di Milano

20133 Milano - Italy

parabosc@elet.polimi.it

Pierangela Samarati
DTI - Università di Milano

26013 Crema - Italy

samarati@dti.unimi.it

Fabio Violante
DEI - Politecnico di Milano

20133 Milano - Italy

violante@elet.polimi.it

ABSTRACT
Peer-to-peer (P2P) applications have seen an enormous suc-
cess, and recently introduced P2P services have reached tens
of millions of users. A feature that significantly contributes
to the success of many P2P applications is user anonymity.
However, anonymity opens the door to possible misuses and
abuses, exploiting the P2P network as a way to spread tam-
pered with resources, including Trojan Horses, viruses, and
spam. To address this problem we propose a self-regulating
system where the P2P network is used to implement a ro-
bust reputation mechanism. Reputation sharing is realized
through a distributed polling algorithm by which resource
requestors can assess the reliability of a resource offered
by a participant before initiating the download. This way,
spreading of malicious contents will be reduced and even-
tually blocked. Our approach can be straightforwardly pig-
gybacked on existing P2P protocols and requires modest
modifications to current implementations.

Categories and Subject Descriptors
C.2.0 [Computers-Communication Networks]: General—
Security and protection; H.3.5 [Information Storage and

Retrieval]: Online Information Services—Data sharing ; K.6.5
[Computers and Society]: Security and Protection—In-
vasive software

General Terms
Security, Design

Keywords
Peer-to-peer network, reputation-based systems, polling pro-
tocol

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CCS’02, November 18-22, 2002, Washington, DC, USA.
Copyright 2002 ACM 1-58113-612-9/02/0011 ...$5.00.

1. INTRODUCTION
Peer-to-peer (P2P) is a general label that was originally

used to identify network protocols where all the nodes have
the same role and there are no nodes with a special respon-
sibility to monitor or supervise the network behavior. Re-
cently, the term has been mainly used to identify a fam-
ily of applications that exploit the Internet to offer services
where each participant acts both as a client and as a re-
source provider. Current P2P applications can be classified
into one of the following three categories.

1. File sharing : P2P applications such as Napster, Gnutella,
FreeNet, KaZaA and others that make it possible for
Internet users to share files.

2. Distributed processing : rather than sharing files, P2P
systems for distributed processing share the computa-
tional power of their nodes; a well-known example is
SETI@Home.

3. Instant messaging : client programs such as MSN Mes-
senger, Yahoo! Messenger, and AOL Instant Messen-
ger (AIM) allow users to exchange text, voice mes-
sages, and files.

The focus of our paper will be on P2P applications for
file exchange. Several worries have been raised about the
use of P2P file sharing applications. A typical concern is
performance-related: the huge audio and video files that
users typically share could clog the global Internet as well
as corporate networks. These issues can be kept under con-
trol with relative ease by traffic-shaping techniques that en-
force bandwidth constraints on P2P traffic. A greater and
more difficult problem of P2P file sharing applications is
that they introduce a whole new class of security threats, as
they can be exploited to distribute malicious software, such
as viruses and Trojan horses, even bypassing the protections
of firewalled networks. This risk is not only present when
a user downloads executable content. Indeed, also audio
and video files may harbor security threats, as the multi-
media formats permit the introduction of links and active
content that may be exploited to introduce malicious soft-

ware into a computer.1 Also, there are many applications
of P2P technologies where the network is used to distribute
executable content. For instance, one of the most success-
ful P2P applications, KaZaA desktop [16], is distributed by
the P2P network realized by the application itself. Antivirus
software producers are considering P2P networks as a conve-
nient way to distribute virus signature updates, exploiting
the resiliency and aggregate bandwidth of P2P networks,
and avoiding the overload of central Web servers. On the
other hand, P2P content distribution involves spamming,
which applies to any possible content; spammers may find
P2P networks a convenient way to distribute their unre-
quested promotional material, offering fake resources able
to elicit the interest of users.

These P2P security challenges cannot be fully met by
means of traditional techniques. For instance, prohibitions
on the use of P2P applications, by organization policy or
blocking ports used by file sharing P2P programs, may not
be effective. As a matter of fact, users often show a particu-
lar interest in P2P applications and may use them anyway,
configuring their programs for the use of unblocked ports. A
technical solution that permits users to responsibly choose
the level of risk of their actions appears to us more appro-
priate, as it has greater chance to be supported by users and
allows to exploit the benefits of P2P technologies.

In the typical Web environment, users estimate the level
of risk in a resource using the perceived reputation of its
source. Users may choose to trust only resources offered by
servers with a good reputation, and they will avoid resources
offered by servers that have a bad reputation. When they
have no way to attribute a good or bad reputation to a
server, the choice depends on the level of interest in the
resource and on the risk that they are ready to take. What
is natural for the Web, becomes a difficult problem for an
anonymous P2P environment, where resource providers are
identified by a pseudonym and an IP address.

Previous proposals supporting the concept of reputation
in P2P scenarios (e.g., [2, 8, 10]) associate reputations with
servents. In this paper, we propose an approach that uses
combined reputations of servents and resources, providing
more informative pollings and overcoming the limitations
of servent-based only solutions. Servent reputations are as-
sociated with the servent identifier, which has to be tam-
per resistant. Resource reputations are tightly coupled to
the resources’ content via their digest , thus preventing their
forging on the part of malicious peers. Reputations are co-
operatively managed via a distributed polling algorithm in
order to reflect the community’s view of the potential risk in-
volved with the download and use of a resource. We present
a protocol, called XRep, for maintaining and exchanging rep-
utations that can be straightforwardly piggybacked on ex-
isting P2P protocols, and discuss the advantages it provides
against known attacks to P2P networks. We discuss the
comparative advantages and limitations of resource-based
vs. servent-based reputation solutions and therefore how
their combined use can result advantageous. Finally, we
presents some experimental results, based on the Gnutella
framework, to analyze and validate the viability of our ap-
proach. It is important to note that, while it can be easily

1See, for example, the BugTraq message on April
2002, describing how an MP3 file played by WinAmp
could be configured to execute arbitrary commands,
http://online.securityfocus.com/archive/1/269724.

implemented on top of existing systems like Gnutella (as
in our current implementation), our technique is virtually
independent from the architectural details of the P2P envi-
ronment and can therefore be applied to different solutions
as well.

2. P2P INFORMATION SHARING ARCHI-
TECTURES

P2P file sharing applications’ success is testified by the
millions of users currently contributing to Internet-based
file exchange networks. At the time of writing (Septem-
ber 2002), more than 100 million copies of the KaZaA file
sharing application [16] have been downloaded (currently in-
creasing at the rate of more than 3 million downloads every
week). Several billions of file exchanges occur monthly on
file sharing networks.

Since nodes in a P2P network play the role of both server
and client , the neologism servent has been introduced to
identify this double responsibility. A servent in the net-
work acts as a server when offering its resources, answer-
ing queries, and possibly dispatching them to neighboring
nodes; it acts as a client when the user issues a request and
retrieves resources from other servents.

A P2P file exchange involves two phases: search and down-
load. The search phase is aimed at looking for a servent
offering a given file. In the download phase a direct con-
nection is established with the servent offering the searched
file and a download is started. The download phase is rel-
atively uniform across different P2P applications; usually,
the traditional protocols for file exchange of the TCP/IP
family (FTP, HTTP) are used; a notable variant is the par-
allel download that is realized by many recent applications.
What most characterizes each application is the solution
adopted for the search phase, which can be implemented
in three ways: pure P2P, centralized index, and distributed
architecture with supernodes. In this paper, we are not con-
cerned with this issue and the impact that the architectural
choice may have on the implementation of our protocol. We
refer our work to the pure P2P architecture which is clos-
est to the ideal structure of the peer-to-peer spirit, where all
participants have uniform role. In particular, we will refer to
the Gnutella architecture [21]. In the Gnutella architecture,
each node connects to the network by choosing a number
of hosts to which it is directly linked. This set of connec-
tions creates a logical file exchange network overlaid on the
TCP/IP network.

To look for a file, a servent p sends a broadcast Query

message to every node to which it is directly linked. Servents
identifying the requested file in their repository answer with
a QueryHit message which is returned to the connection
from which the request arrived. Even if the servent identifies
the resource in its repository, it will forward the request
along all the links it maintains, except the one from which
the request arrived. The QueryHit message contains the
ResultSet and the pair 〈IP address, port〉 that must be used
to download the file via HTTP.

In other words, each Gnutella node operates as a router
for queries traveling along the P2P network. To avoid over-
loading the network, each node configures a Time-To-Live
(TTL) for messages, which represents the number of nodes
that each message can pass through. On passing through a
node, the TTL of a forwarded message is decreased by one;

when the TTL reaches zero, the message is dropped. The
trace of message identifiers is also used to route QueryHit

messages back to the node where the corresponding Query

message originated. The limit on the TTL introduces a limit
on the network nodes’ reachability, called horizon. Each ser-
vent will normally have the possibility to interact with only
a portion of the nodes of the Gnutella network. A node’s
horizon depends on the number of connections that the node
opens with its neighbors (typical values are in the range 2
to 6) and on the TTL it sets on messages. These values
are chosen considering the bandwidth available directly to
the node and to the network infrastructure. The choice is
a tradeoff between the benefit deriving from a greater num-
ber of connections, with an extension of the horizon, and
the increase in processing time and bandwidth required to
receive, evaluate, and dispatch the queries in transit.

3. XREP PROTOCOL
We now discuss the basic assumptions of our solution, and

present our XRep protocol.

3.1 Basic assumptions
Our approach extends Gnutella-like environments by pro-

viding facilities for assigning, sharing, and combining rep-
utations on servents and resources. As illustrated in Sec-
tion 2, in a Gnutella-like system, a servent p looking for
a resource broadcasts a Query message and receives back a
set of replies from which it chooses the resource to download
and the servent from which to download. Typically, resource
selection is based on the offer quality (e.g., the number of
hits and declared connection speed) or on preference criteria
based on the requestor’s past experiences. Our approach is
to allow p to enrich its choice selection process by inquir-
ing the network for peers’ opinions (votes) on resources and
their offerers.

To be able to refer to resources and servents (and to al-
low for checking correspondence of a servent with a declared
identifier) we make the following two assumptions. First, we
require the servent id associated with a servent to be a di-
gest of a public key, obtained using a secure hash function [4]
and for which the servent knows the corresponding private
key. Second, each resource is associated with an identifier
(digest) computed applying a secure hash function to the
resource content [15]. These assumptions do not imply loss
of anonymity, as the digest associated with a servent is only
a pseudonym (opaque identifier). Also, servents are not re-
quired to keep their identifiers persistent; persistence of an
identifier simply allows the servent to build a reputation for
it, which will be nullified if the identifier is changed.

The basic idea of our approach is that each servent main-
tains information on its own experience on resources and
other servents, and can share such experience with others
upon request. While many solutions can be taken into ac-
count with respect to how to store, maintain, and share such
information, in this paper we consider a specific approach
(which we adopted in our current implementation) and as-
sume that each peer maintains two experience repositories:

• a resource repository , which is a table with attributes
(resource id,value) associating, with each resource id
the peer has experienced, a binary value describing
whether the resource is good (+) or bad (−) in the
peer’s opinion.

• a servent repository , which is a table with attributes
(servent id,num plus,num minus) associating, with each
servent id the peer has interacted with, the number of
successful and unsuccessful downloads.

The precise semantics of the values in the tables is out-
side the scope of the paper as our approach is independent
from it. As for the resource repository we simply interpret
a ‘+’ as a satisfaction of the peer in the resource, and ‘−’ as
the lack thereof. Non-satisfaction could reflect the fact that
the resource did not completely fulfill the expectations of the
peer or even that it was corrupted or malicious. At the min-
imum, the value associated with a resource should capture
the trust of the servent in the resource integrity (e.g., that
the resource does not contain a virus). An analogous rea-
soning can be followed for the positive and negative counters
associated with each servent in the servent repository.

The values maintained in the repositories are used to ex-
press votes on resources and servents in the framework of
XRep. We assume votes to be binary and encoded as 1 and
0, where 1 expresses a positive opinion on a resource/servent
and 0 expresses a negative one.2 Again, there are different
ways for translating recorded experience into votes and it is
up to the Gnutella servent configurator to decide the specific
choice to adopt. For instance, a servent could vote 1 only
on servents for which num minus is zero or on servents for
which num plus is much higher than num minus.

It is worth noting that votes need not be binary and that
servents need not agree on the scale on which to express
them. For instance, votes could be expressed in an ordinal
scale (e.g., from A to D or from ∗ ∗ ∗ ∗ ∗ to ∗) or in a contin-
uous one (e.g., a servent can consider a resource reliable at
80%). The only constraint for our approach to work prop-
erly is that the scale on which one expresses votes should be
communicated to the poller. Also, while we assume votes
to be monodimensional, multidimensional evaluations (e.g.,
feature vectors [20]) could be considered.

3.2 Polling protocol
The XRep protocol, illustrated in Figure 1, consists of

the following phases: resource searching , resource selection
and vote polling , vote evaluation, best servent check , and
resource downloading .

Phase 1: Resource searching. First, like in a standard
Gnutella interchange, the initiator p broadcasts to all its
neighbors a Query message containing the search keywords.
Again as in the standard Gnutella protocol, when a ser-
vent receives a Query message for which it has a match,
it responds with a QueryHit message. The QueryHit mes-
sage includes the number of files num hits that matched
the keywords, a set ResultSet of triples containing the files’
names and related information, the speed in Kb/second of
the responder, the servent id of the responder, and the pair
〈IP,port〉 to be used to download the files. In addition to
this standard information, our enhanced QueryHit also re-
ports the digests associated with the resources named in
ResultSet . To this end, we exploit the auxiliary trailer field,
an extension first introduced by BearShare v1.3.0 for carry-
ing application-dependent information, and described in the
Gnutella Protocol Specification v0.4 [21].

2The syntactic distinction between the values in the repos-
itories and in the integer encoding for the votes is meant to
express their different semantics.

...

... ...

...

... ...

...

...

... ...

...

......

...

� sele
t best servent o� sele
t a random set of voters forea
h
luster

Gnutella Network
(1) RESOURCE SEARCHING

Gnutella Network� generate a pair (pkpoll; skpoll)�
olle
t s1; : : : ; sn offering r
(2) RESOURCE SELECTION AND VOTE POLLING

Gnutella Network
(4) BEST SERVENT CHECK

Gnutella Network� remove tampered with votes
(3) VOTE EVALUATION

Gnutella Network� sele
t servents from whi
h download r� after download,
he
k resour
e's digest� update experien
e repositories
(5) RESOURCE DOWNLOADING

Query(sear
h string,min speed) Poll((r; fs1; : : : ; sng,pkpoll)

TrueVote(Votej)TrueVoteReply(response)

sear
hresponses QueryQueryHit Query Query
Query Query QueryQueryHit QueryHitQueryHit Poll Poll Poll

Poll Poll Pollsele
t resour
e
TrueVoteTrueVoteTrueVoteReply AreYouReplyAreYou

Download Download
(pki,ski) pair of publi
 and private keys, where i
an be a servent or a poll requestfMgk en
ryption of message M under key k[M℄k signature of message M under key k

AreYou(servent ido,r)AreYouReply([response℄sko ,pko)
Legend

PollReply PollReply PollReplyPollReplyPollReplyPollReply(fIP,port,Votesgpk poll)QueryHit(num hits,port,IP,speed,ResultSet,trailer,servent idi)
�
ompute
lusters of voters' IP TrueVoteReply

Figure 1: Sequence of messages and operations in the XRep protocol

Phase 2: Resource selection and vote polling. Upon
reception of the QueryHits, the initiator p selects, among the
possibly different resources offered, the resource r that best
seems to satisfy its request. Such selection can be guided by
the user’s preferences and/or by the number of offerers.

At this point our solution is to allow p to inquire its peers
about the downloading it is about to execute. Such polling
could be done by asking peers their opinion on either the
resource or the servents that offer it. As either one of
the choices by itself provides some shortcomings (see Sec-
tion 5) we combine the two solutions and assume p sends its
peers a vote request on resource r as well as on the servents
s1, . . . , sn that offer it.

Vote polling is performed via broadcasting on the Gnutella
network. Poll messages are implemented on top of ordinary
Query messages. To protect the integrity and confidentiality

of poll responses, the poll request also includes a public key
pkpoll, with which poll responses will need to be encrypted.
Such a public key can be generated on the fly for each poll
request or be a persistent key that p can use multiple times.
(Note that our use of public key encryption does not require
a central CA or a higher authority, as there is no need to
establish and certify the correspondence between a pair of
keys and an identity. Our only requirement is that p be the
only one to know the corresponding private key.)

Upon receiving a Poll message, each peer checks its expe-
rience repositories and can respond communicating its votes
on the resource as well as on the servents. Votes are com-
municated back to the poller via the Gnutella network as a
PollReply message exploiting the QueryHit message.

The message, encrypted with key pkpoll, includes the peer’s
votes, together with its IP and port. As said above, encryp-

tion will allow p to detect if the message has been tampered
with while in transit; also it preserves the confidentiality
of the votes and their association with those who have ex-
pressed them.

Phase 3: Vote evaluation. As a result of the previous
phase, p collects a set of votes on the targeted resources
and its offerers. To base its decision on the votes received,
p needs to trust the reliability of the votes and recognize
(and possibly collapse) votes that might belong to a clique.
This process is composed of three steps. First, p uses de-
cryption to detect tampered with votes and discards them.
Second, in order to recognize cliques of dummy or controlled
voters (e.g., pseudospoofing attacks, cf. Section 4) p clus-
ters the voters’ IPs, for instance collapsing together those
sharing the same net id. Cluster computation allows p to
properly weight the votes within a cluster (e.g., by consider-
ing a single final vote for each cluster, or taking an average
weighted on the cluster’s size). Third, p randomly selects
a set V ′ of voters within each cluster, and directly contacts
each vj ∈ V ′ (using the IP address and port received for it)
with a TrueVote message3 requesting confirmation on the
votes that p has received from it. Each contacted voter is
required to send a TrueVoteReply message for vote confir-
mation. This forces the attacker to pay the cost of using
real IPs as false witnesses (e.g., shilling attacks, cf. Sec-
tion 4). If not enough of the contacted voters respond pos-
itively (within a given time frame), the random selection
process is repeated.

After this checking process, p can trust its assessment of
the resources reputation (or its offerers), and therefore fi-
nally decides to download it. If p judges the evidence on
the resource quality (or its offerers) not sufficient, it can re-
peat the voting process on another resource. In principle,
the voting process can be executed on a list of top resources
and the resource to download can be selected by comparing
the votes received.

Phase 4: Best servent check. Once having taken the
decision of downloading the resource, p should select the of-
ferer from which to execute the download. While one may
think that any offerer would be fine (as they are all offering
the same hash) a blind decision could expose p to attacks
of servents exploiting someone else’s good reputation for of-
fering bad resources (e.g., ID stealth attacks, cf. Section 4).
Reliability of servents must then also be taken into account
in the choice. A straightforward way to satisfy this crite-
ria is for p to download the resource from the offerer who
has the best reputation (according to the votes received).
The drawback of such a solution is that it could easily cre-
ate a performance bottleneck on reliable servents. To avoid
this, our protocol assumes a phase where the most reliable
servent is contacted to check the fact that it exports the
resource. Once this has been assessed, p can rest sure that
the resource digest is in fact reliable.

Phase 5: Resource downloading. At this point p de-
cides from which servent to download the resource. Then,
it contacts the chosen servent directly and requests the re-
source. After the download, p will check the resource against

3While in Figure 1 votes are transmitted in clear, an al-
ternative solution considering their encryption with a key
communicated by the voter in its PollReply message can
be considered.

its digest to ensure its integrity (discarding the resource if
there is no correspondence). Also, p will update its repos-
itories with its opinion on the downloaded resource and its
offerer.

It is important to note that the decoupling of the resource
from the offerers (provided by Phase 4) permits the execu-
tion of parallel downloads, whereby p can ask different offer-
ers for different fragments of the resource to be downloaded.

4. SECURITY CONSIDERATIONS ON XREP
P2P networks have been designed to distribute the respon-

sibilities traditionally held by centralized servers across the
network, delegating them to the clients. But, as P2P sys-
tems disperse resources into the network, they also disperse
security weaknesses. Besides malicious attacks by peers ac-
tively trying to spread spam or hostile content, information
sharing via P2P networks is also vulnerable to “uninten-
tional” attacks by well-meaning participants, redistributing
a resource which was tampered with without their knowl-
edge. Tampering is not restricted to executable content; it
may affect files that contain multimedia information which
is different than their title indicates, low quality, or sim-
ply unsolicited spamming. One of the main goals of our
XRep protocol is to improve the global security and quality
of content distribution within P2P networks. XRep allows
us to protect P2P networks against most known attacks as
discussed in the following. We distinguish between general
weaknesses of P2P systems and weaknesses specifically re-
ferred to reputation-based approaches.

4.1 Attacks to P2P systems
The two major general vulnerabilities of content distribu-

tion via P2P networks are self replication and man in the
middle attacks.4

Self replication. The simplest version of this attack is
based on the fact that in current P2P systems there is vir-
tually no way of verifying the source or content of a message.
Most P2P systems manage their own namespace, allowing
users to have temporary identities on the system, regardless
of their IP address. Such identities are usually not persis-
tent and, in principle, could change at every interaction. Of
course, every peer has an IP address, and perhaps even a
DNS name associated with it; but IP-based identification is
hardly feasible when the binding between a peer and its IP
address is made via dynamic Network Address Translation
(NAT).5

Under the protection of this relative anonymity, a mali-
cious peer could answer positively to all queries, and then
return doctored content. Even honest peers, unaware of the
malicious content of the doctored resource, could share it,
contributing to its diffusion. For instance, a Gnutella worm
called Mandragore registers itself as an active peer within
the network, responding affirmatively to all intercepted re-
quests. As an answer, it provides a renamed copy of itself
for downloading. In our protocol, after a few hits, the Man-
dragore’s digest will start being associated with bad votes

4Other weaknesses, related to disclosure of confidential in-
formation such as backdoor and firewall-traversal related
ones [17], are intrinsic to the usage of the P2P architecture
in corporate networks and outside the scope of the paper.
5Presumably, this situation will be alleviated with IPv6, but
its widespread adoption will take a long time.

and therefore its subsequent downloading prevented, regard-
less of the peer which is offering it. In other words, being
forced to provide fake resources with their own digest im-
plies that the offered resource will have a bad reputation and
therefore it is unlikely that it will be downloaded (Phase 3
of Figure 1).

Note also that the typical countermeasure of viruses to di-
gest verification is slightly modifying themselves while pre-
serving their functionality. While this behavior would avoid
collecting negative votes on a single digest, it will however
not provide the virus with the ability to collect positive rec-
ommendations and therefore be selected. Self replication
attacks could then only work at cold-start, that is, when
sharing resources in response to previously unheard-of key-
words. Our approach does explicitly address this setting,
collecting votes on both resources and servents rather that
on resources or servents alone [8].

Man in the middle. This kind of attacks takes advantage
of the fact that, due to application-level routing of P2P net-
works, a malicious peer can lie in the path between two
“honest” peers. The basic version of the attack works as
follows. Assume that A is a peer searching for a file, B is a
peer that has the file A is looking for, and D is a malicious
peer.

• A broadcasts a Query message and B responds.

• Malicious peerD intercepts the QueryHit message from
B and modifies the IP and port fields to contain D’s
IP address and port. The modified QueryHit message
is then sent back to A.

• A decides to download the file from D, which provides
a fake resource (possibly even a hostile version of the
original one provided by B).6

Our protocol neutralizes this attack because first of all it
is unlikely that D will be selected, and even if so, the fake or
doctored content provided by D will not match the digest of
the legitimate resource, and will therefore be discarded by
the recipient A (Phase 5 of Figure 1).

4.2 Attacks to reputation-based systems
Recent attacks specifically aimed at reducing the effective-

ness of reputation-based systems [17] include pseudospoof-
ing7, ID stealth, and shilling .

Pseudospoofing. The pseudospoofing attack exploits the
P2P systems use of pseudonyms. Pseudospoofing attackers
create and control multiple phony identities. This technique
can be readily used to compromise P2P systems relying
on pseudonyms rather than on full authentication. Pseu-
dospoofing is relatively resilient to countermeasures based
on servent reputations alone, as a malicious peer can turn
to a new pseudonym after earning a bad reputation, and
simulate multiple witnesses willing to give fake evidence in
its favor. However, abandoning pseudonyms entirely would
require a complex and expensive infrastructure capable of

6Note that the same result can be obtained even when A
is behind a firewall, using the push variant of the Gnutella
protocol.
7The term was first proposed by L. Detweiler on the Cypher-
punks mailing list.

verifying the legal identities of all participants. The digest-
based mechanism of our approach makes pseudospoofing un-
profitable, as doctored resources can be recognized and dis-
carded (Phase 5 of Figure 1). Also, using pseudospoofing to
build cliques of fake witnesses is prevented by the IP check-
ing mechanism hardwired in our protocol. If fake identities
are simulated as pseudonyms, all of them would fall in a
single IP cluster (Phase 3 of Figure 1). If fake IPs are also
provided by the attacker, they are likely to be discovered by
the TrueVote/TrueVoteReply message exchange (Phase 3 of
Figure 1).

ID Stealth. ID stealth is a variant of the pseudospoof-
ing attack that can be used to reduce the effectiveness of
reputation management techniques based on voting proto-
cols, like the one described in this paper. Upon receiving
a Query message from a requestor A, the attacker answers
with two or more QueryHits, all of them carrying the digest
of a doctored or malicious resource. One of the QueryHits
carries the attacker’s ID (say, C) while the others carry IDs
that have been “stolen” by the attacker from reputable ser-
vents. Here, for the sake of simplicity, we assume attacker
C to use only one stolen ID, called B. After receiving the
two QueryHits carrying respectively IDs B and C and the
same malicious content’s digest, A polls the network about
the digest and the two candidate servents, collecting sev-
eral (positive) votes about servent B, while both C and the
resource digest turn out to be unknown. Relying on the
outcome of the voting procedure, A starts downloading the
resource from the only available servent (C) and receives
malicious content perfectly matching the digest. Phase 4
of Figure 1 is aimed at preventing ID stealth, by explicitly
checking whether the most voted servent (in the case of our
example, B) is actually offering a resource with that digest.

Note that another version of ID stealth attack could be
for D to steal the hash of a good resource r (in addition to
B’s reputation) in order to offer (if chosen for download) a
bad resource. This spamming attack is however ineffective
and even unlikely as the hash of the downloaded resources
will not match r’s one and the bad resource will therefore
be immediately discarded (Phase 5 of Figure 1).

Shilling. Shilling is a well-known problem of distributed
auctions protocols, where a malicious auctioneer may try to
cheat his bidders by pushing up the price creating multiple
registration names (called shills) to bid under. Shilling is
different from pseudospoofing, as the multiple identities are
actually created with real IP addresses, and not just simu-
lated, by the attacker. In our setting, shilling could be used
to create multiple witnesses in order to influence the voting
procedure on a doctored resource or on a malicious servent.
If enough apparently well-intentioned peers contribute to the
resource’s or the servent’s reputation, the reputation may be
pushed up enough to deceive a user into downloading a mali-
cious resource. Our mechanism deals with shilling trying to
ensure a high number of voters, making it expensive for the
malicious user to create and maintain a sufficient number of
shills. Also, shills are usually not involved in transactions
other than the ones involving the malicious peer that created
them; therefore, their own reputation is unlikely to be high.
Note that our TrueVote/TrueVoteReply message exchange
(Phase 3 of Figure 1) is aimed at forcing the malicious peer
to actually allocate a different IP address for each shill.

5. COMBINING SERVENT AND RESOURCE-
BASED REPUTATIONS

XRep is fundamentally different from other reputation man-
agement systems for P2P [8] because it combines resources’
and servents’ reputations. Combining servent-based and
resource-based reputations looks promising, as both schemes
exhibit some shortcomings and advantages. A basic advan-
tage of resource-based reputation systems is that votes actu-
ally express a property of the resource and not of its offerer;
therefore they can be seen as more reliable and can carry
more semantics. On the other hand, resource-based solu-
tions can only be applied when resources have a history,
that is the same resource is known to several servents. By
contrast, in scenarios like eBay, where most resources ap-
pear in the system only once, it is important to be able to
assign trust to servents.

By considering both resources and servents reputations
we take the advantages of both approaches with respect to
the following aspects.

• Reputations’ life cycle. Thanks to servent-based repu-
tation, new resources offered by a well established ser-
vent will be regarded as reliable. Beside making good
behavior profitable, this has the advantage of avoid-
ing cold-start problems for new resources (intuitively,
a servent reputation can propagate to a potentially
unlimited number of resources). On the other hand,
resource-based reputations have a potentially wider
scope and a longer life cycle, as a good resource will
always be recognizable as such regardless of who offers
it.

• Impact on peers anonymity. While servent-based rep-
utation does not necessarily compromise anonymity,
as reputations may be linked to pseudonyms, its ef-
fective use requires such pseudonyms to remain per-
sistent. By contrast, resource-based reputations can
be used in systems where peers can take on a fresh
identity at every interaction.

• Cold-start. Servent-based reputations suffer from a
cold-start problem in the sense that newcomers or peers
offering a limited number of resources will struggle
to actively participate in the distribution. Thanks
to our integration of resource-based reputations, new-
comers can immediately participate in distribution of
well known resources.

• Performance bottlenecks. A servent-based reputation
approach may foster bottleneck creation directing all
downloads to the most reputable servents. Our tech-
nique for integrating resource-based reputations fos-
ters load balancing as a resource can be safely down-
loaded from any of the servents offering it, allowing
the choice of the best one for performance.

• Blacklisting. Resource-based reputations do not sup-
port blacklisting as no linking is made between a bad
resource and the servent that provided it. Resource
blacklisting, while ineffective as far as pinpointing ma-
licious users is concerned, could be useful in stopping
dissemination of malicious software. On the other hand,
servent-based reputations can effectively support black-
listing only giving up on anonymity [7]. Pseudonyms

blacklisting is only effective inasmuch they are persis-
tent. In our context, since users may change pseudonym
at no cost, blacklisting of malicious peers is expected
to have a limited effectiveness as bad reputations can
be nullified by taking on a fresh identity. However, a
fresh identity will have no reputation at all, and there-
fore servents carrying it are unlikely to be selected.

• Data storage and bandwidth requirements. Our in-
tegrated approach deals with resources and servents
reputations via the same polling algorithm. However,
resource-based reputation systems require substantially
more information to be maintained as experimental
data [19] show that resources substantially outnumber
servents.

• Threshold effect. Reputation-based systems can be ex-
ploited only if a reasonable threshold of votes can be
achieved for each poll. As far as resource reputations
are concerned, reaching this threshold would be made
difficult by a uniform distribution of requests. In other
words, no single resource could be widespread enough
to allow for a sufficient number of voters, even making
the assumption that all peers that have tried the re-
source would vote on it. However, our experiments (cf.
Section 6) show that this is not a problem for a good
percentage of resources. In a servent-based scenario
reaching the threshold can be made more difficult by
short life cycles of servent identities.

6. DISTRIBUTION OF SERVENTS AND RE-
SOURCES IN GNUTELLA NETWORKS

An aspect that may have an impact on the success of XRep
protocol is the distributions of servents and resources in the
Gnutella network. It is reasonable to expect that servents
and resources will be distributed non-uniformly, with i) few
servents offering many resources, ii) many servents offering
few resources, iii) few resources offered by many servents,
and iv) many resources offered by few servents.

In particular we were expecting a Zipf (or, more generally,
power-law) distribution, since this is the result that has been
produced by many experimental studies in similar contexts.
The results we obtained confirmed our expectations and can
be the basis for the construction of an evaluation model that
should provide numerical estimates on the effectiveness of
the protocol.

An open source Gnutella client was modified and all the
QueryHit and Pong messages traveling along the network
were logged. As discussed in Section 2, the QueryHit mes-
sage is generated by servents when they have in their repos-
itory a resource that satisfies the criteria in the Query mes-
sage. The Pong message describes the number of files shared
and their cumulative size. It is generated as an answer to
Ping messages that are generated by servents when they
connect to the network. Pong messages let users know the
size of the portion of the network within their reach and the
total number and size of resources available.

We logged half a million QueryHit records. The first result
of the analysis of the logged records is presented in Figure 2.
Resources are ordered by the number of their copies avail-
able on the network. Almost half of the 500.000 records
were immediately discarded, as they represented multiple
responses generated by the same servent for the same re-

1

10

100

1000

10000

1 10 100 1000 10000 100000 1e+06

Nu
mb

er
of

se
rve

nts
 sh

ari
ng

 th
e r

es
ou

rce

Order of resource

Figure 2: Resource distribution: number of servents

sharing each resource

source. We considered the name and the size of a resource
to evaluate when a resource was identical; resources with
identical semantic content, but with different size or name
were considered distinct. The 253, 712 remaining messages
contained a description of 116, 219 distinct resources; 89, 485
of them were offered by a single node. The graph in Figure 2
uses logarithmic scales for both the axes. When a power law
distribution is presented in a log-log graph, a straight line
appears; such a line is well recognizable in the graph, con-
firming our expectations.

Then, we used our log to estimate the concentration of
resources on servents. We tried to estimate this distribu-
tion using the number reported in each Pong message, but
the curve we obtained was quite irregular and unlikely to be
a correct representation of the system behavior (anomalies
in the information of Pong messages are also cited in [19]).
Thus, we used again the QueryHit messages to evaluate re-
sources’ concentration. The results of this analysis are re-
ported in Figure 3, showing the number of resources present
on each servent. Servents are ordered according to the num-
ber of resources they offer. As one might expect, this dis-
tribution also fits nicely into the power law distribution;
in particular, the alpha coefficient which characterizes the
power law is 1.14, very close to value 1 that characterizes
Zipf distributions.

Skewed distributions may appear at first to be detrimental
to the applicability of our protocol, as for many resources or
servents it will be difficult to obtain a number of responses
to the poll able to guarantee a reputation. We argue instead
that skewness is an advantage to the protocol.

If we consider the number of copies of a resource as an
indicator of the level of interest for the resource by the user
community–as it appears reasonable, otherwise, why should
many servents offering it?–we may assume that frequent re-
sources are more frequently searched; for each of these re-
sources the number of votes will be high, even if we consider
the portion of the P2P network within the horizon. The
same line of reasoning applies to servents: servents offer-
ing many resources may be few, but they will answer with

1

10

100

1000

10000

1 10 100 1000 10000 100000

Nu
mb

er
of

res
ou

rce
s o

n s
erv

en
t

Order of servent

Figure 3: Servent distribution: number of resources

on servents

greater frequency to queries and will probably be well known
by network participants. If the distributions of servents and
resources are independent, the effectiveness of the combined
resource/servent protocol will be the probabilistic sum of
the effectiveness of the separate techniques.

We used our experimental observations to evaluate the
presence of free-riders. All P2P clients can disable shar-
ing and many users opt to do so. We estimated the rate
of free-riders considering the percentage of Pong messages
that showed no exported resources. The rate of free-riders
we observed, 40.6%, lies between the value of 70% reported
in [3] and the 25% value reported in [19]. Free riders are
important because they are a potential source of votes that
may, given the above result, almost duplicate the number
of participants in the XRep protocol. A base assumption
that we make is that each servent votes for itself and for
the resources it offers. Then, a vote on a servent could
be expressed by any node that has had the opportunity to
download a resource from that servent; a vote on a resource
could be expressed by any node that has had the opportu-
nity to access the resource, even if the node does not share
it because it had to remove the resource or because it is a
free-rider.

The percentage of free-riders we detected is certainly high,
but it is not certainly an indicator of a universal selfish at-
titude; indeed, 60% of the users share resources and offer
them on the network, even if they do not obtain an immedi-
ate benefit from their actions. We feel confident to assume
that users sharing resources would participate in our polling
mechanism. For free-riders it is more difficult to foresee
the level of participation; a full analysis of the motivations
of free-riders would probably require a social and psycho-
logical investigation, more than a technical analysis. In our
opinion there are currently two main motivations to the free-
rider behavior: the first is the desire to avoid the costs, in
terms of bandwidth use or general system load, that shar-
ing involves; the other is the fear to be held accountable
for the sharing of illegally duplicated copyrighted material.
The participation to our protocol has a small impact on

the above factors. First, the bandwidth or system load re-
quired from participants is small compared with the size and
bandwidth required for the storage and transmission of the
large files that are the typical content shared on these net-
works. Second, the level of exposure gained by voting on
servent or resource identifiers is considerably smaller than
that derived by the direct sharing of resources. These con-
siderations lead to our perception that a significant portion
of free-riders would participate in our polling protocol.

7. RELATED WORK
Several researchers have recently addressed the problem

of enforcing security in the peer-to-peer scenario. One main
line of work in the security community has been devoted
to the enhancement of access control approaches with new
authentication and authorization capabilities to address the
fact that access requests may represent interactions between
parties that know little about each other [5, 6, 11, 12, 14, 23].
All these works focused on allowing a peer acting as a server
to restrict others’ ability to access its resources. Peer-to-
peer systems, however, also introduce other problems that
reverse the security assumptions of traditional access control
and require to focus the attention on providing protection
from those who offer resources (servers), rather than from
those who want to access them (clients). This paradigm shift
is due to the inherent vulnerability of peer-to-peer systems
from providers abusing the network to widespread tampered
with resources.

Proposals to prevent or discouraging peers from distribut-
ing invalid or malicious content into the network are based
on two main techniques: micropayment- and reputation-
based trust systems [17].

Micropayment techniques (e.g., Mojo Nation,
www.mojonation.net) are less closely related to our
approach as they require peers to offer something of value
in exchange of their participation in the system. Therefore,
they impose a cost on malicious peers, as to insert invalid
content into the network they would first need to provide a
certain amount of resources.

Reputation models allow the expression and reasoning
about trust in a peer based on its past behavior [18] and
interactions other peers have experienced with it. Re-
cent approaches (e.g., [15]) propose to facilitate trust be-
tween unacquainted parties by offloading risk to a trusted
third party, which acquires revenues by assuming this risk.
Of course, this technique requires dropping the complete
uniformity assumption typical of P2P networks. A sim-
ilar approach involving a reputation authority has been
adopted by a number of projects. For instance, Open-
Privacy (www.openprivacy.org) introduces a set of repu-
tation services that can be used to create, use, and cal-
culate results from accumulated opinions and reputations.
Sierra, Talon, and Reptile are OpenPrivacy projects that
incorporate reputations to enhance searching as well as to
discard unwanted information. Reputations are also ef-
fectively used in electronic marketplaces as a measure of
the reliability of participants [24]. For instance, in eBay
(www.ebay.com) each participant in a transaction can ex-
press a vote (-1, 0, or 1) on its counterparts. Votes so
collected are used by eBay to provide cumulative ratings of
users that are made known to all participants. In systems
like eBay, reputations are associated with physical identi-
ties and are centrally managed at the eBay server. More in

line with the peer-to-peer paradigm, several proposals (e.g.,
Poblano [7]) worked around the notion of web of trust where
trust relationships and reputations are distributed and lo-
cally managed by each participant. The common ances-
tor of such approaches is probably PGP (www.pgpi.org),
that allows users to certify other users’ public keys with-
out need for a Certification Authority. Some systems, such
as GNUnet (www.gnu.org/software/GNUnet/) do not de-
fine globally scoped reputations, rather they rely on lo-
cal opinions held by each node on its peers. Such opin-
ions are based on past history and are neither shared nor
cooperatively updated. On the same line, systems such
as Advogato (www.advogato.org/trust-metric.html), as-
sume full knowledge of the degree of trust that each peer
has on others, and compute the transitive trust based on the
closure of the resulting labeled graph. A more realistic ap-
proach is obtained by assuming that, while no peer can have
full knowledge on the network, each of them can record the
trust it has in others on the basis of its own experience, and
communicate this information to others. In this category,
are the Free Haven system [10] and the P2PRep proposal [8],
where each peer can keep track, for each pseudonym it has
interacted with, of good and bad experiences it had. Before
downloading resources, peers can call others as witnesses of
the reliability of the prospective source. Beside recording
the peers’ behavior in direct interactions, these systems can
keep track also of the peers’ reliability as witnesses, thus
allowing for properly weighting their judgment [8, 9]. Vot-
ers credibility information can be easily taken into account
in our XRep protocol by requiring voters to declare their
identity and sign their votes as in [8]. Other proposals on
the same line distinguish reliability of peers depending on
the specific context of interaction [1, 22]. While Free Haven
and P2PRep assume mainly the usage of positive reputations
other proposals rely on the explicit use of negative reputa-
tions. This is the case for instance of the proposal by Aberer
et al. [2], whose model assumes peers to be usually “honest”
and considers therefore only dishonest interactions as rele-
vant. After each transaction, and only in case of malicious
behaviors, peers may file a complaint. Before engaging in in-
teractions with others, peers can inquire the network about
existing complaints on their counterparts. Full support of
negative reputations, however, can only be achieved at the
price of sacrificing anonymity [13]. Also, support of nega-
tive reputations only is risky as failure to retrieve existing
complaints may result in trusting unreliable peers. While all
these systems assume reputations to be associated with ser-
vents, the approach presented in this paper nicely combines
servents and resource reputations.

8. CONCLUSIONS
Legal troubles involving P2P applications may give the

feeling that P2P is another buzzword with a short life. Prob-
ably the hype will calm down, but P2P promises to be an
important complement to current Web technologies. Over-
all, it may permit the construction of a specialized, yet easy
to use, infrastructure for information sharing. However, it is
a fact that its current success is mostly motivated by anony-
mous access to copyrighted material. This is indeed a thorny
issue, and while we certainly do not support any illegal be-
havior, we acknowledge that a lively debate is currently on-
going. In this paper we dealt with technical aspects related
to the support of anonymous and secure services. Our opin-

ion is that proposals like ours, preserving anonymity to a
degree, will probably evolve and may become a solution for
quick-and-easy sharing of resources. This work represents
a step towards a self-regulating P2P system which can also
help in isolating from the network those nodes judged of
illegal or unethical behavior. We are currently developing
our research to provide XRep extensions to supernodes-based
architectures and to define an enrichment of our votes and
reputation value semantics.

9. ACKNOWLEDGMENTS
The work reported in this paper was partially supported

by the Italian CNR Technologies and Services for Enhanced
Content Delivery project and by the Roadmap for Advanced
Research in Privacy Identity Management (RAPID) project
under contract IST-2001-38310.

10. REFERENCES
[1] A. Abdul-Rahman and S. Hailes. Supporting trust in

virtual communities. In Proc. of the Hawaii
International Conference on System Sciences, Maui,
Hawaii, January 2000.

[2] K. Aberer and Z. Despotovic. Managing trust in a
peer-2-peer information system. In Proc. of the Tenth
International Conference on Information and
Knowledge Management (CIKM 2001), Atlanta,
Georgia, November 2001.

[3] E. Adar and B. Huberman. Free riding on gnutella.
Technical report, Xerox PARC, August 2000.

[4] P.C. van Oorschot A.J. Menezes and S.A. Vanstone.
Handbook of Applied Cryptography. CRC Press, 1996.

[5] M. Blaze, J. Feigenbaum, J. Ioannidis, and A.D.
Keromytis. The role of trust management in
distributed systems security. In Secure Internet
Programming: Issues in Distributed and Mobile Object
Systems. Springer Verlag – LNCS State-of-the-Art
series, 1998.

[6] P. Bonatti and P. Samarati. Regulating service access
and information release on the web. In Proc. of the
Seventh ACM Conference on Computer and
Communications Security, Athens, Greece, 2000.

[7] R. Chen and W. Yeager. Poblano - a distributed trust
model for peer-to-peer networks. JXTA Security
Project White Paper, 2001.

[8] F. Cornelli, E. Damiani, S. De Capitani di Vimercati,
S. Paraboschi, and P. Samarati. Choosing reputable
servents in a P2P network. In Proc. of the Eleventh
International World Wide Web Conference, Honolulu,
Hawaii, May 2002.

[9] C. Dellarocas. Immunizing online reputation reporting
systems against unfair ratings and discriminatory
behavior. In Proc. of the 2nd ACM Conference on
Electronic Commerce, Minneapolis, MN, USA,
October 2000.

[10] R. Dingledine, M.J. Freedman, and D. Molnar. The
Free Haven project: Distributed anonymous storage
service. In Proc. of the Workshop on Design Issues in
Anonymity and Unobservability, Berkeley, California,
USA, July 2000.

[11] V. Doshi, A. Fayad, S. Jajodia, and R. MacLean.
Using attribute certificates with mobile policies in
electronic commerce applications. In Proc. of the 16th
Annual Computer Security Applications Conference
(ACSAC’00), pages 298–307, New Orleans, LA, 2000.

[12] C. Ellison. SPKI certificate documentation.
http://www.pobox.com/∼cme/html/spki.html.

[13] E.J. Friedman and P. Resnick. The social cost of
cheap pseudonyms. Journal of Economics and
Management Strategy, 10(2):173–199, Summer 2001.

[14] B. Gladman, C. Ellison, and N. Bohm. Digital
signatures, certificates and electronic commerce.
http://citeseer.nj.nec.com/277887.html.

[15] B. Horne, B. Pinkas, and T. Sander. Escrow services
and incentives in peer-to-peer networks. In Proc. of
the 3rd ACM Conference on Electronic Commerce,
Tampa, Florida, USA, October 2001.

[16] KaZaA. http://www.kazaa.com.

[17] A. Oram, editor. Peer-to-Peer: Harnessing the Power
of Disruptive Technologies. O’Reilly & Associates,
March 2001.

[18] P. Resnick, R. Zeckhauser, E. Friedman, and
K. Kuwabara. Reputation systems. Communications
of the ACM, 43(12):45–48, December 2000.

[19] S. Saroiu, P.K. Gummadi, and S.D. Gribble. A
measurement study of peer-to-peer file sharing
systems. In Proc. of Multimedia Computing and
Networking (MMCN), San Jose, CA, USA, January
2002.

[20] J.B. Schafer, J.A. Konstan, and J. Riedl. E-commerce
recommendation applications. Data Mining and
Knowledge Discovery, 5(1/2):115–153, January 2001.

[21] The Gnutella Protocol Specification v0.4 (Document
Revision 1.2), June 2001.
http://www9.limewire.com/developer/gnutella
protocol 0.4.pdf.

[22] B. Yu and M.P. Singh. A social mechanism for
reputation management in electronic communities. In
Proc. of the 4th International Workshop on
Cooperative Information Agents (CIA), Boston, MA,
USA, July 2000.

[23] T. Yu, M. Winslett, and K. Seamons. Interoperable
strategies in automated trust negotiation. In Proc. of
8th ACM Computer and Communication Security,
Philadephia, PA, November 2001.

[24] G. Zacharia, A. Moukas, and P. Maes. Collaborative
reputation mechanisms in electronic marketplaces. In
Proc. of the 32nd Hawaii International Conference on
System Sciences, Maui, Hawaii, January 1999.

