
A Modular Approach to Composing
Access Control Policies∗

Piero Bonatti
Dip. Scienze dell’Informazione

Polo di Crema
Università di Milano

Via Bramante 65
26013 Crema - Italy

bonatti@iago.crema.unimi.it

Sabrina De Capitani di
Vimercati

Dip. Elettronica
Università di Brescia

Via Branze 38
25123 Brescia - Italy

decapita@ing.unibs.it

Pierangela Samarati
Dip. Scienze dell’Informazione

Polo di Crema
Università di Milano

Via Bramante 65
26013 Crema - Italy

samarati@dsi.unimi.it

ABSTRACT
Despite considerable advancements in the area of access con-
trol and authorization languages, current approaches to en-
forcing access control are all based on monolithic and com-
plete specifications. This results limiting when restrictions
to be enforced come from different input requirements, pos-
sibly under the control of different authorities, and where
the specifics of some requirements may not even be known
a priori. Turning individual specifications into a coherent
policy to be fed into the access control system requires a
nontrivial combination and translation process.

We address the problem of combining authorization spec-
ifications that may be independently stated, possibly in dif-
ferent languages and according to different policies. We pro-
pose an algebra of security policies together with its formal
semantics and illustrate how to formulate complex policies
in the algebra and reason about them. We also illustrate
a translation of policy expressions into equivalent logic pro-
grams, which provide the basis for the implementation of
the language.

Categories and Subject Descriptors
H.2.7 [Database Management]: Database Administra-
tion—Security, integrity, and protection; K.6.5 [Management
of Computing and Information Systems]: Security and
Protection

General Terms
Security, Design

Keywords
Access control, policy composition, algebra, logic programs

∗
The work reported in this paper was partially supported by the

European Community within the Fifth (EC) Framework Programme
under contract IST-1999-11791 – FASTER project.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CCS ’00, Athens, Greece.
Copyright 2000 ACM 1-58113-203-4/00/0011 ..$5.00

1. INTRODUCTION
Recent years have witnessed considerable work on access

control models and languages. Many approaches have been
proposed to increase expressiveness and flexibility of autho-
rization languages by supporting multiple policies within a
single framework [3, 5, 7, 8, 10, 18]. All these proposals,
while based on powerful languages able to express different
policies, assume a single monolithic specification of the en-
tire policy. Such an assumption does not fit many real world
situations, where access control might need to combine re-
strictions independently stated that should be enforced as
one. As an example, consider a data warehouse collecting
data from different sources, where each data source may
impose access restrictions on its data; access restrictions
can be stated in different languages and with reference to
different paradigms. As another example, consider a large
organization composed of different departments and divi-
sions, each of which can independently specify security poli-
cies; the global policy of the organization results from the
combination of all these components. A further example
is provided by recent laws concerning privacy issues. In a
modern information system, the security policy of the or-
ganization should combine internally specified constraints
with externally imposed privacy regulations [2]. Finally, as
security policies become more sophisticated, even within a
single system ruled by one administrator it may be desirable
to formulate the policy incrementally by assembling small,
manageable, and independently conceived modules.

Existing frameworks represent these situations by trans-
lating and merging the different component policies into a
single “program” in the adopted language. While existing
languages are flexible enough to obtain the desired com-
bined behavior, this method has several drawbacks. First,
the translation process is far from being trivial; it must be
done very carefully to avoid undesirable side effects due to
interference between the component policies. Interference
may result in the combined specifications not reflecting cor-
rectly the intended restrictions. Second, after translation it
is not possible anymore to operate on the individual compo-
nents and maintain them autonomously. Third, existing ap-
proaches cannot take into account incomplete policies, where
some components are not (completely) known a priori (e.g.,
when somebody else is to provide that component).

This situation calls for a policy composition framework by
which different component policies can be integrated while
retaining their independence. In this paper, we propose an
algebra for combining security policies together with its for-
mal semantics. Complex policies are formulated as expres-
sions of the algebra. Our framework results flexible and
keeps compound specifications simple by organizing them
into different levels of abstraction. The formal framework
can be used to reason about properties of (possibly incom-
plete) specifications. We finally illustrate a translation of
algebra expressions into equivalent logic programs, which
provide the basis for the implementation of the language.

To our knowledge ours is the first proposal addressing
composition of authorization specifications. Previous work
on composition (e.g., [1, 6]) focussed on the secure behavior
of program modules. Closest work lies in proposals targeted
to the development of a uniform framework to express pos-
sibly heterogeneous policies [3, 7, 8, 10, 18]. However, as
already discussed none of these proposals addressed compo-
sition. Our work is complementary to these proposals, which
can be used to specify the individual component policies in
our framework.

2. CHARACTERISTICS OF A COMPOSI-
TION FRAMEWORK

A first step in the definition of a framework for compos-
ing policies is the identification of the characteristics that it
should have. In particular, we have identified the following:

1. Heterogeneous policy support The composition framework
should be able to combine policies expressed in arbi-
trary languages and enforced by different mechanisms.
For instance, a data warehouse may collect data from
different data sources where the security restrictions au-
tonomously stated by the sources and associated with the
data may be stated with different specification languages,
or refer to different paradigms (e.g., open vs closed pol-
icy).

2. Support of unknown policies It should be possible to ac-
count for policies which may be partially unknown, or be
specified and enforced in external systems. These poli-
cies are like “black-boxes” for which no (complete) spec-
ification is provided, but that can be queried at access
control time. Think, for example, of a situation where
given accesses are subject to a policy P enforcing “cen-
tral administration approval”. While P can respond yes
or no to each specific request, neither the description of
P , nor the complete set of accesses that it allows might be
available. Run-time evaluation is therefore the only pos-
sible option for P . In the context of a more complex and
complete policy including P as a component, the specifi-
cation could be partially compiled, leaving only P (and
its possible consequences) to be evaluated at run time.

3. Controlled interference Policies cannot always be com-
bined by simply merging their specifications (even if they
are formulated in the same language), as this could have
undesired side effects causing the accesses granted or de-
nied to not correctly reflect the specifications. As a sim-
ple example, consider the combination of two systems
Pclosed , which applies a closed policy, based on rules of
the form “grant access if (s, o,+a)”, and Popen which ap-
plies an open policy, based on rules of the form “grant ac-

cess if ¬(s, o,−a)”. Merging the two specifications would
cause the latter decision rule to derive all authorizations
not blocked by Popen , regardless of the contents of Pclosed .
Similar problems may arise from uncontrolled interaction
of the derivation rules of the two specifications. Besides,
if the adopted language is a logic language with negation,
the merged program might not be stratified (which may
lead to ambiguous or undefined semantics).

4. Expressiveness The language should be able to conve-
niently express a wide range of combinations (spanning
from minimum privileges to maximum privileges, encom-
passing priority levels, overriding, confinement, refine-
ment, etc.) in a uniform language. The different kinds
of combinations must be expressed without changing the
input specifications and without ad-hoc extensions to au-
thorizations (like those introduced to support priorities).
For instance, consider a department policy P1 regulating
access to documents and the central administration pol-
icy P2. Assume that access to administrative documents
can be granted only if authorized by both P1 and P2.
This requisite can be expressed in existing approaches
only by explicitly extending all the rules possibly referred
to administrative documents to include the additional
conditions specified by P2. Among the drawbacks of this
approach is the rule explosion that it would cause and
the complex structure and loss of control over the two
specifications which, in particular, cannot be maintained
and managed autonomously anymore.

5. Support of different abstraction levels The composition
language should highlight the different components and
their interplay at different levels of abstraction. This
feature is important to: i) facilitate specification anal-
ysis and design; ii) facilitate cooperative administration
and agreement on global policies; iii) support incremen-
tal specification by refinement.

6. Formal semantics The composition language should be
declarative, implementation independent, and based on a
solid formal framework. An underlying formal framework
is needed to: i) ensure non-ambiguous behavior and ii)
reason about policy specifications and prove properties
on them [9].

3. AN ALGEBRA OF POLICIES
To make our approach generally applicable we do not

make any assumption on the subjects, objects, or actions
w.r.t. which accesses have to be controlled and, therefore,
authorization specifications stated. We assume sets S, O,
and A denoting the subjects, objects, and actions, respec-
tively, are given. Depending on the application context and
the policy to be enforced, subjects could be users or groups
thereof, as well as roles or applications; objects could be
files, relations, XML documents, classes, and so on.

3.1 Preliminary concepts
We start by defining authorization terms as follows.

Definition 3.1 (Authorization term). Authorization
terms are triples of the form (s,o,a), where s is a constant
in S or a variable over S, o is a constant in O or a variable
over O, and a is a constant in A or a variable over A.

At a semantic level, a policy is defined as a set of triples
as follows.

Definition 3.2 (Policy). A policy is a set of ground
authorization terms.

The triples in a policy P state the accesses permitted by
P . Intuitively, a policy represents the outcome of an au-
thorization specification, where, for composition purposes,
it is irrelevant how specifications have been stated and their
outcome computed.

The algebra (among other operations) allows policies to
be restricted (by posing constraints on their authorizations)
and closed w.r.t. inference rules. The model should be com-
patible with a variety of languages for constraining autho-
rizations and formulating rules (e.g., [7, 8, 10, 18]). For this
purpose, we make our algebra parametric w.r.t. the follow-
ing languages and their semantics:

1. An authorization constraint language Lacon and a se-
mantic relation satisfy ⊆ (S×O×A)×Lacon ; the latter
specifies for each ground authorization term (s, o, a)
and constraint c ∈ Lacon whether (s, o, a) satisfies c.

2. A rule language Lrule and a semantic function closure :
℘(Lrule) × ℘(S × O × A) → ℘(S × O × A);1 the latter
specifies for each set of rules R and ground authoriza-
tions P which authorizations are derived from P by
R.

For simplicity, we consider a single authorization con-
straint language Lacon and a single rule language Lrule . Our
model can be straightforwardly extended to handle many
such languages simultaneously, so that compound policies
can be assembled using different tools.

To fix ideas and make concrete examples, in this paper
we shall adopt the following simple languages for constraints
and rules:

1. Lacon contains simple binary constraints of the form
(s op s0), (o op o0), or (a op a0), where i) s, o, a are
variables ranging over S,O, and A, respectively; ii) op

can be ≤,≥, <,>,=, where disequalities model hier-
archical relationships among subjects, objects, and ac-
tions (e.g., file/directory; user/group; role/superrole) [8],
and iii) s0, o0, a0 are members of S,O, and A, respec-
tively. Moreover, Lacon contains unary constraints of
the form p(s), p(o), p(a), where s, o, a are as before
and p belongs to a fixed but arbitrary set of predicates
that evaluate properties associated with subjects, ob-
jects, and actions. Such predicates, together with the
above binary ones, will be called base predicates.

2. As a rule language we adopt simple Horn clauses,
built from authorization terms and base predicates,
of the form (s, o, a) ← L1 ∧ . . . ∧ Ln, where each Li

is either an authorization term or a logical atom of
the form (x op y) or p(x), with op and p base pred-
icates and x and y terms of the appropriate type.
Accordingly, closure(R,P) is defined as the least Her-
brand model of the logic program Π = R ∪ P ∪ B,
where B is the definition of the base predicates.
We recall that the least Herbrand model of Π can
be expressed as TΠ ↑ ω, where TΠ is the imme-
diate consequence operator associated with Π, and
TΠ ↑ ω is the limit of the monotonic infinite sequence
∅, TΠ(∅), TΠ(TΠ(∅)), . . . , T

i
Π(∅), . . ., with i a natural

number (see [11] for more details).
1For all sets X, ℘(X) denotes the powerset of X.

These languages have been chosen with the goal of keep-
ing presentation as simple as possible, focusing attention
on policy composition, rather than authorization properties
and inference rules.

3.2 Policy expressions
We are now ready to define our algebra. First, its syntax

is introduced, then the meaning of each operator will be
illustrated. We assume an infinite set of policy identifiers
is given. Policy expression syntax is given by the following
BNF grammar:

E ::= id | E + E | E&E | E − E | EˆC | o(E,E,E) |
E ∗R | T (E) | (E)

T ::= τ id.T | τ id.E

Here id is the token type of policy identifiers, E is the
nonterminal describing policy expressions, T is a construct
called template, that represents incomplete policy expres-
sions, C and R are the constructs describing Lacon and Lrule ,
respectively (they are not specified here because the algebra
is parametric w.r.t. Lacon and Lrule).

The above syntax is disambiguated by assigning suitable
precedence and associativity to each operator:

op precedence associativity
τ 0 non-associative
. 1 non-associative

+,&,− 2 left-associative
∗, ˆ 3 left-associative

We now discuss the semantics of expressions of the al-
gebra. Formally, semantics is a function that maps each
expression onto a set of ground authorizations, that is, a
policy. The simplest possible expressions, namely identi-
fiers, are bound to sets of triples by environments.

Definition 3.3 (Environment). An environment e is
a partial mapping from policy identifiers to sets of ground
authorizations. By e[X/S] we denote a modification of en-
vironment e such that

e[X/S](Y) =

{

S if Y = X
e(Y) otherwise

The binding can either be stated explicitly or generated
by some engine. The policy can be seen in such a case as
a “black box”. In symbols, the semantics of an identifier X

w.r.t. an environment e will be denoted by [[X]]e
def
= e(X) .

Note that X might be undefined in the environment; in
that case [[X]]e is undefined. Similarly, the semantics of
compound expressions that use undefined identifiers is un-
defined.

Compound policies can be obtained by combining pol-
icy identifiers through the algebra operators. Let the meta-
variables P and Pi range over policy expressions:

Addition (+) merges two policies by returning their

union. Formally, [[P1 + P2]]e
def
= [[P1]]e ∪ [[P2]]e. For

instance, in an organization composed of different di-
visions, access to the main gate can be authorized by
any of the administrator of the divisions (each of them
knows which users need access to reach their division).
The totality of the accesses through the main gate to
be authorized should then be the union of the state-
ments of each division. Intuitively, additions can be

applied in any situation where accesses can be autho-
rized if allowed by any of the component policies.

Conjunction (&) merges two policies by returning their

intersection. Formally, [[P1&P2]]e
def
= [[P1]]e ∩ [[P2]]e.

While addition allows an access if any of the com-
ponent policies allows it, conjunction requires all the
component policies to agree on the fact that the ac-
cess should be granted. Intuitively, while addition en-
forces maximum privilege, conjunction enforces mini-
mum privilege. For instance, consider an organization
in which divisions share certain documents (e.g., clini-
cal folders of patients). An access to a document may
be allowed only if all the authorities that have a say on
the document agree on it. That is, if the correspond-
ing authorization triple belongs to the intersection of
their policies.

Subtraction (-) restricts a policy by eliminating all the
accesses in a second policy. The formal definition is

[[P1 − P2]]e
def
= [[P1]]e \ [[P2]]e. Intuitively, subtraction

specifies exceptions to statements made by a policy
and encompasses the functionality of negative autho-
rizations in existing approaches. The advantages of
subtraction over explicit denials include a simplifica-
tion of the conflict resolution policies and a clearer se-
mantics. In particular, the difference operation allows
to clearly and unambiguously express the two different
uses of negative authorizations, namely exceptions to
positive statements and explicit prohibitions, which are
often confused or require explicit ad-hoc extensions to
authorizations [13]. Subtraction can also be used to
express different overriding/conflict resolution criteria
as needed in each specific context, without affecting
the form of the authorizations (c.f. Section 7).

Closure (∗) closes a policy under a set of inference (deriva-

tion) rules. The general definition is [[P ∗R]]e
def
=

closure(R, [[P]]e). Derivation rules can, for example,
enforce propagation of authorizations along hierarchies
in the data system, or enforce more general forms of
implication, related to the presence or absence of other
authorizations, or depending on properties of the au-
thorizations [7]. Intuitively, derivation rules can be
thought of as logic rules whose head is the authoriza-
tion to be derived and whose body is the condition
under which the authorization can be derived. The
closure of a policy P under a set of rules R produces
a policy containing all the authorizations that can be
derived by evaluating R against P according to a given
semantics. Recall that, in the examples of this paper,
we assume rules to be Horn clauses. The general defi-
nition is thus specialized to [[P ∗R]]e = TR∪[[P]]

e
∪B ↑ ω.

Scoping restriction (ˆ) restricts the application of a pol-
icy to a given set of subjects, objects, and actions. For-

mally, [[Pˆc]]e
def
= {(s, o, a) | (s, o, a) ∈ [[P]]e, (s, o, a)

satisfy c}, where c ∈ Lacon . Scoping is particularly use-
ful to “limit” the statements that can be established
by a policy and to enforce authority confinement. In-
tuitively, all authorizations in the policy which do not
satisfy the scoping restriction are ignored, and there-
fore result ineffective. For instance, an organization

can attach to a policy Padm, to be specified by the ad-
ministration, a scoping restriction that limits the au-
thorizations that Padm can state to administrative doc-
uments, expressed as “o ≤ adm documents” or, equiva-
lently, “adm document(o)”. Similarly, the organization
can attach to policy Plib, to be specified by the librar-
ian, a scoping restriction “a = read” that limits state-
ments to read-only actions. Scoping restrictions can
be also used to select a portion of a policy, which may
be subject to a different treatment than the rest of P ,
for example, being overridden as discussed below.

Overriding (o) replaces part of a policy with a corre-
sponding fragment of a second policy. The portion
to be replaced is specified by means of a third policy.

Formally, [[o(P1, P2, P3)]]e
def
= [[(P1 − P3) + (P2&P3)]]e.

For instance, consider the case where users of a library
who have passed the due date for returning a book
cannot borrow the same book anymore unless the re-
sponsible librarian vouchers for (authorizes) the loan.
The policy can be expressed as o(Plib, Pvouch, Pblock),
where Plib are the accesses authorized at the library,
Pblock is the “black-list” of accesses, and Pvouch are
the accesses authorized by the responsible librarian.
Beside being specified explicitly, the fragment of P1

to be overridden can be specified by means of scop-
ing restrictions selecting triples in P1 that satisfy a
given condition. For instance, consider a depart-
ment where access to laboratories is regulated by pol-
icy Plab. Suppose that to be admitted, non-US cit-
izens need also the chair consent, stated by policy
Pchair. In other words, the portion of Plab referred
to non-US citizens should be overridden by its inter-
section with Pchair. This policy is then specified as
o(Plab, Pchair, Plabˆnon−UScitizen(s)). Note the im-
portance of substituting to the fragment the intersec-
tion of the two policies, meaning both of them must
agree on the access. Cases in which the fragment
should simply be substituted with the second policy
can be achieved via difference (or scoping restriction)
and addition. In the following, we will abbreviate ex-
pression o(P1, P2, P1ˆc) as o(P1, P2, ˆc).

Template (τ) defines a partially specified policy that can
be completed by supplying the parameters. [[τX.P]]e
is a function over policies (ground authorization sets),

such that for all policies S, [[τX.P]]e(S)
def
= [[P]]e[X/S] .

Templates can be instantiated by applying them to
a policy expression. For all policy expressions P1,

[[(τX.P)(P1)]]e
def
= [[τX.P]]e([[P1]]e) = [[P]]e[X/[[P1]]e]

.

We say that all the occurrences of X in an expres-
sion τX.P are bound. The free identifiers of a policy
expression P are all the identifiers with non-bound oc-
currences in P . Clearly, [[P]]e is defined iff all the free
identifiers in P are defined in e.
Templates are useful for representing partially speci-
fied policies, where some component X is to be spec-
ified at a later stage. For instance, X might be the
result of further policy refinement, or it might be spec-
ified by a different authority. When a specification P1

for X is available, the corresponding global policy can
be simply expressed as (τX.P)(P1). Templates with
multiple parameters can be expressed and applied us-

Operator Semantics Graphical

[[]]
e

representation

P1 + P2 [[P1]]e ∪ [[P2]]e P2

+

P1

P1

P2

+

P1&P2 [[P1]]e ∩ [[P2]]e P2P1

&

P1

P2

&

P1 − P2 [[P1]]e \ [[P2]]e P2P1

-

P1

P2

-

P ∗ R TR∪[[P]]e∪B ↑ ω

R

P
P

R

Pˆc {t ∈ [[P]]
e
| t satisfy c}

P

c

P c

o(P1,P2,P3) [[(P1−P3) + (P2&P3)]]e
P1 P2 P3

o

P2

P1
P3

Figure 1: Operators of the algebra and their graph-
ical representation

ing the following abbreviations:
τX1, . . . , Xn.P = τX1.τX2. . . . τXn.P
(τX1, . . . , Xn.P)(P1, . . . , Pn) =
(. . . ((τX1, . . . , Xn.P)(P1))(P2) . . .)(Pn) .

Figure 1 summarizes the operators of our algebra and
their semantics and illustrates two possible graphical rep-
resentations of algebraic operations. Basically, each policy
is represented as a box containing the policy expression or
the policy identifier. In the first representation, operators
are represented as circles labeled with the operator. In the
second representation, operators are represented as labels
associated with arcs. Moreover, closure of a policy P under
rules R is represented as a flag labeled R attached to P ’s
box; the application of a scoping restriction c to a policy P
is represented as a small box attached to P ’s box; and the
overriding o(P1, P2, P3) is represented as an arc from P1 to
P2, where the arc has attached P3 (for simplicity, when P3 is
P1ˆc only an oval labeled c is attached to the arc). The two
representations can be used interchangeably as they better
suit for the clarity of the resulting picture.

4. EXAMPLE SCENARIOS
We illustrate some examples of expressions stating protec-

tion requirements by composing policy statements through
different operators.

Example 1: Hospital
Consider a hospital composed of three departments, namely
Radiology, Surgery, and Medicine. Each of the depart-
ments is responsible for granting access to data under
their (possibly overlapping) authority domains, where do-
mains are specified by a scoping restriction. The state-
ments made by the departments are then unioned, mean-

PmedsurgP

Ptrials
treatmentso <=

+

&

o <=reg

Pforms
RH

Patient Consent Policy

P+
onc

o <=onc Pcard
o <=card

Ponc
- o <=trials

+

Padm

Preg Pappr

Hospital Policy

consentsP

+

Prad

Oncology Policy

lab_tests]o <= [

o <=surg o <=medo <=rad

Medical Policy

-

(a)

Ptutors

Pprovost

&

Pdept

University Laboratories Policy

s[blacklisted()]

(b)

Figure 2: A policy regulating access to the hospital
data (a) and to the university laboratories (b)

ing the hospital considers an access as authorized if any
of the department policies states so. For privacy regu-
lations, however, the hospital will not allow any access
(even if authorized by the departments) to lab tests data
unless there is patient consent for that, stated by policy
Pconsents. In terms of the algebra, the hospital policy
can be represented as o(Pradˆ[o ≤ rad] +Psurgˆ[o ≤ surg]+
Pmedˆ[o ≤ med], Pconsents, ˆ[o ≤ lab tests]). Accordingly,
lab tests data will be released only if both the hospital
authorizes the release and the interested patient consents to
it. As an example of component policies, let us zoom into
Pconsents and Pmed.

Pconsents reports accesses to laboratory tests for which
there is patient consents. Authorizations in Pconsents are
collected by the hospital administration by means of forms
that patients fill in when admitted. Patients’ consents can
refer to single individuals (e.g., John Doe can individually
point out that his daughter jane.doe can access his tests) as
well as to subject classes (e.g., research labs and hospitals),
and can refer to single documents or to classes of them. Au-
thorizations specified for subject/object classes are propa-
gated to individual users and documents by classical hierarchy-
based derivation rules (see Section 7). Denoting such rules
with RH , we can express Pconsents as Pforms ∗ RH .

Policy Pmed of the medical department is composed of
the policies of its two divisions, Cardiology and Oncology,
and of a policy Padm specified by the central administration
of the department. The Oncology division can revoke au-
thorizations in Padm regarding data related to clinic trials,
by listing them in P−

onc. In addition, each of the divisions
can specify further authorizations (policies P+

onc and Pcard),
whose scope is restricted to objects in their respective do-
mains. The medical department’s policy Pmed can be ex-
pressed as Padm − P−

oncˆ[o ≤ trials] + P+
oncˆ[o ≤ onc]

+ Pcardˆ[o ≤ card]. Let us take a closer look at the com-
ponent policy P+

onc. P+
onc consists of two separate policies:

Preg, regulating access to the hospital cancer register; and
Ptrials, regulating access to experimental cancer treatments.
In addition, access to experimental cancer treatments can be
allowed only if the Cancer Clinical Trials Office (CCTO)
has approved testing the treatments on patients. By repre-
senting approvals as policy Pappr, we can write policy P+

onc

as Pregˆ[o ≤ reg] + (Ptrialsˆ[o ≤ treatments]&Pappr).
Figure 2(a) illustrates the global policy regulating access

to the hospital data and the content of the component poli-
cies discussed.

Example 2: University Laboratories
Consider a policy regulating access to university laborato-
ries. To use machines, students must be authorized by both
the lab tutors and the department administration. The tu-
tors and the administration can specify authorizations at dif-
ferent levels of details. In particular, policy Ptutors, specified
by the tutors, can state permissions on a single user-single
machine basis, with statements like (jim.smith,machine1,
login). The department can state permissions with refer-
ence to groups of students and machines, with statements
like (cs101,cs-lab,login) which, closed under classical prop-
agation rules implies a permission for all students enrolled
in class cs101 to use machines in the cs-lab. Authorized
accesses are defined as a conjunction of the two policies (in-
tuitively, students should have permission to use the labo-
ratory by the department and machine assignment by the
tutor). In addition, access to any laboratory resource is for-
bidden to students blacklisted for infraction to rules (e.g.,
honor code); only an explicit permission by the provost can
override such a restriction. The overall policy can thus be ex-
pressed as o(Ptutors&Pdept, Pprovost, ˆ[blacklisted(s)]) whose
graphical representation is illustrated in Figure 2(b).

5. PROPERTIES
The formal semantics on which the algebra is based allows

us to reason about policy specifications and their properties,
meaning correctness requirements that the resulting access
control process should satisfy. For instance, consider the
hospital policy above, some examples of correctness state-
ments that need to be guaranteed may be:

1. patient awareness and hospital authorization: nobody
can access lab tests data if there are not both the
patient consent and the hospital authorization for it.

2. law enforcement: nobody can access new cancer treat-
ments without the approval of the CCTO.

3. explicit denials obedience: if the oncology department
has stated that an access should not be allowed, the
access will not be.

These correctness criteria must be satisfied regardless of
the contents of the component policies. For instance, prop-
erty 1 above must be satisfied regardless of which patients
gave consents, what accesses the medical department wishes
to permit, or how the hospital policy is formulated. Cor-
rectness criteria like the ones above can be easily proved
exploiting the set theoretic semantics of the algebra. In-
tuitively, the correctness statements establish that given a
template, whatever the structure or content of the specific
policies in it, certain conditions are satisfied. The proofs use
the formal semantics of expressions to determine whether or
not the conditions will be satisfied. In particular, Proposi-
tions 5.1 through 5.3 below ensure us, by a simple analysis
on the template, that the policy in Figure 2(a) satisfies prop-
erties 1, 2, and 3 above.

Proposition 5.1. Let T = τ (X Y).o(X,Y, ˆc) be an in-
complete policy expression. For all policy expressions P1 and
P2, environments e, and authorizations (s, o, a) satisfying c,
(s, o, a) ∈ [[T (P1, P2)]]e if and only if (s, o, a) ∈ [[P1]]e and
(s, o, a) ∈ [[P2]]e.

Proof. By definition, [[T (P1, P2)]]e = ([[P1]]e \ [[P1ˆc]]e)∪
([[P2]]e ∩ [[P1ˆc]]e). Since (s, o, a) satisfies c (by hypoth-
esis), we have (s, o, a) 6∈ [[P1]]e \ [[P1ˆc]]e, either because
(s, o, a) 6∈ [[P1]]e, or because (s, o, a) ∈ [[P1ˆc]]e. It follows
that (s, o, a) ∈ T (P1, P2) iff (s, o, a) ∈ [[P2]]e ∩ [[P1ˆc]]e; in
turn, since (s, o, a) satisfies c, this is equivalent to say that
(s, o, a) ∈ [[P2]]e and (s, o, a) ∈ [[P1]]e.

Proposition 5.2. Let T = τ (X Y Z).(Xˆc1+(Y ˆc2&Z))
be an incomplete policy expression such that c1 ∧ c2 is not
satisfiable. For all policy expressions P1, P2, P3, environ-
ments e, and authorizations (s, o, a) satisfying c2, (s, o, a) ∈
[[T (P1, P2, P3)]]e only if (s, o, a) ∈ [[P3]]e.

Proof. By def., [[T (P1, P2, P3)]]e = [[P1ˆc1]]e ∪ ([[P2ˆc2]]e
∩[[P3]]e). Suppose that (s, o, a) satisfies c2 and (s, o, a) ∈
[[T (P1, P2, P3)]]e. Then, (s, o, a) 6∈ [[P1ˆc1]]e, otherwise (s, o, a)
would satisfy also c1 contradicting the hypothesis. It follows
that (s, o, a) ∈ [[P2ˆc2]]e ∩ [[P3]]e ⊆ [[P3]]e.

Proposition 5.3. Let T = τ (X Y Z W).(Xˆc1 + (Y −
Zˆc2)+Wˆc3) be an incomplete policy expression such that
c1 ∧ c2 and c2 ∧ c3 are not satisfiable. For all policy ex-
pressions P1, P2, P3, P4, environments e, and authorizations
(s, o, a) satisfying c2, if (s, o, a) ∈ [[P3]]e, then (s, o, a) 6∈
[[T (P1, P2, P3, P4)]]e.

Proof. By definition, [[T (P1, P2, P3, P4)]]e = [[P1ˆc1]]e ∪
([[P2]]e \ [[P3ˆc2]]e) ∪ [[P4ˆc3]]e. Suppose (s, o, a) satisfies c2.
Then, by hypothesis (s, o, a) 6∈ [[P1ˆc1]]e ∪ [[P4ˆc3]]e. More-
over, if (s, o, a) ∈ [[P3]]e, then by definition (s, o, a) 6∈ ([[P2]]e\
[[P3ˆc2]]e). It follows that (s, o, a) 6∈ [[T (P1, P2, P3, P4)]]e.

Note that had the scoping restriction attached to Pregister

not been there, it would have not been possible to prove
Proposition 5.3 and, indeed, property 3 would have not been
satisfied anymore as stated by the following proposition.

Proposition 5.4. Let T = τ (X Y Z).(X+(Y ˆc&Z)) be
an incomplete policy expression. There exist policy expres-
sions P1, P2, P3, an environment e, and an authorization
(s, o, a) such that (s, o, a) ∈ [[T (P1, P2, P3)]]e and (s, o, a) 6∈
[[P3]]e.

Proof. Take three distinct policy identifiers as P1, P2,
and P3, and define e(P1) = {(s, o, a)}, and e(P2) = e(P3) =
∅. By definition, [[T (P1, P2, P3)]]e = [[P1]]e ∪ [[P2ˆc&P3]]e ⊇
[[P1]]e = {(s, o, a)}. Then, clearly, (s, o, a) ∈ [[T (P1, P2, P3)]]e
and (s, o, a) 6∈ P3.

In our framework policies can also be analyzed to point
out inherent inconsistencies. For instance, a bad formulation
of a policy can always cause the result to be empty , whatever
the structure or contents of its components. This is, for ex-
ample, the case of a policy of the form τ (X Y).o(X&Y,X−
Y, Y), as stated by the following proposition.

Proposition 5.5. Let T = τ (X Y).o(X&Y,X−Y, Y) be
an incomplete policy expression. For all policy expressions
P1, P2, and environments e, [[T (P1, P2)]]e is an empty set.

Proof. By definition [[T (P1, P2)]]e = (([[P1]]e ∩ [[P2]]e) \
[[P2]]e) ∪ (([[P1]]e \ [[P2]]e) ∩ [[P2]]e). First note that ([[P1]]e ∩
[[P2]]e) \ [[P2]]e is empty, as no authorization can be in
[[P1]]e ∩ [[P2]]e without being also in [[P2]]e. Second, note
that ([[P1]]e \ [[P2]]e) ∩ [[P2]]e is empty, as no authorization
can be in [[P1]]e \ [[P2]]e and [[P2]]e at the same time. The
proposition immediately follows.

Note that while the proofs are straightforward (and this
is the beauty of the framework), the arguments are not. As
authorization languages get more expressive and complete,
it is not easy to ensure correctness. Think, for example, of
recent logic-based authorization languages, where insertion
of a rule or fact can cause an authorization to be derived
without the security administrator be aware of it. Being
able to state and prove correctness requirements in a very
simple way is therefore a great advantage. The simplicity
of the correctness statements and proofs is also due to the
component-based view supported by the algebra, which can
be exploited to reason at different levels of abstraction, con-
sidering only the relevant details.

6. EVALUATING POLICY EXPRESSIONS
The resolution of the expression defining a policy P de-

termines a set of ground authorization terms corresponding
to the accesses allowed by P . Different strategies can be
used to evaluate expressions for enforcing access control. A
possible strategy consists in completely resolving the expres-
sion (i.e., compiling the policy) and materializing the result
as the set of allowed triples. The materialization, against
which access control can be efficiently evaluated, will only
need to be updated upon changes to the policy.2 An alter-
native strategy consists in enforcing a run-time evaluation
of each request (access triple) against the policy expres-
sion to determine whether the triple belongs to the result
(i.e., whether the access should be allowed). Although this
does not bear any cost for the complete resolution, it clearly
makes the (much more frequent) process of controlling ac-
cess requests more expensive. Between these two extremes,
possibly combining the advantages of them, there are par-
tial evaluation approaches, which can enforce different de-
grees of computation/materialization. Partial evaluation is
particularly appealing as it can combine the advantages of
the two solutions: relatively static and known policies can

2Incremental approaches can be applied to minimize the re-
computation of the policy [17].

be precomputed and materialized, while more dynamic or
unknown policies (like CCTO and provost permissions in Sec-
tion 4) can be evaluated at run-time.

Before describing access control in more details we illus-
trate a translation of algebraic expressions into equivalent
logic programs, then used for access control enforcement.
The main reason for using a logic-based approach is that
logic programs provide executable specifications compatible
with different evaluation strategies (e.g., Datalog bottom-up
engines [11], Prolog top-down evaluation [11], XSB delayed
evaluation and tabling [14], Hermes [17]). In particular, par-
tial evaluation techniques permit compilation of the static
parts of the policies, thereby improving efficiency. Formal
results on logic programs guarantee that the partial evalua-
tion steps preserve the program semantics on the authoriza-
tion predicates being compiled.

6.1 Translating algebra expressions into logic
programs

We present a translation pe2lp from policy expressions
into logic programs. pe2lp creates a distinct predicate sym-
bol for each policy identifier and for each internal node in
the syntax tree of the given algebraic expression. For this
purpose, a means is needed to denote each operator occur-
rence (corresponding to different internal nodes); this is ac-
complished by labeling each such occurrence with a distinct
integer, as in P +3 Q&5S −2 R. Formally, such extended
expressions will be called labeled policy expressions.

Definition 6.1 (Canonical Labeling). The canon-
ical labeling of a policy expression E is the labeled policy
expression obtained by numbering the operators in E from
left to right with contiguous integers, starting from 0.

Definition 6.2 (Main Label). The main label of a
labeled policy expression E is the label of the outermost op-
erator of E, that is, the label of the root of the syntax tree
of E. If E is simply a policy identifier, then the main label
of E is E itself.

For instance, the canonical labeling of P + o(Qˆc, S,R) is
P +0 o1(Qˆ2c, S,R) . The main label of this formula is 0.
Roughly speaking, the main label of E corresponds to the
last operator evaluated, and hence to the “output” of E.

Translation pe2lp takes a labeled expression and an envi-
ronment as input, and returns a logic program “equivalent
to” the given expression, in a sense that will be formally
specified later on. For each policy identifier P , a predicate
authP is defined. For each labeled operator opi, a predicate
authi is created. All these predicates have three arguments,
a subject, an object, and an action. The translation, for an
expression E and an environment e, is recursively defined by
the table in Figure 3, where P ranges over policy identifiers,
and F , G, R range over policy expressions. By mainpF we
shall denote the predicate authℓ, where ℓ is the main label
of F .

Definition 6.3 (Canonical translation). The
canonical translation of a policy expression E w.r.t. an
environment e is pe2lp(Eℓ, e), where Eℓ is the canonical
labeling of E.

Example 6.1. Let E = P + o(Q,S,R), and let e0 be
the environment mapping P to {(s′, o′, a′), (s′′, o′′, a′′)}. Let

E pe2lp(E,e)

P {authP (s, o, a) | (s, o, a) ∈ e(P)} if e(P) is defined,
∅ otherwise.

F +i G {authi(x, y, z)← mainpF (x, y, z),
authi(x, y, z)← mainp

G
(x, y, z)}

∪pe2lp(F, e) ∪ pe2lp(G, e) .
F&iG {authi(x, y, z)← mainp

F
(x, y, z) ∧mainp

G
(x, y, z)}

∪ pe2lp(F, e) ∪ pe2lp(G, e) .
F −i G {authi(x, y, z)← mainpF (x, y, z) ∧ ¬mainpG(x, y, z)}

∪ pe2lp(F, e) ∪ pe2lp(G, e) .
Fˆic {authi(x, y, z)← mainpF (x, y, z) ∧ c}

∪ pe2lp(F, e)
oi(F,G,R) {authi(x, y, z)← mainpF (x, y, z) ∧ ¬mainpR(x, y, z),

authi(x, y, z)← mainp
G
(x, y, z) ∧mainp

R
(x, y, z)}

∪ pe2lp(F, e) ∪ pe2lp(G, e) ∪ pe2lp(R, e) .
F ∗i R {authi(s, o, a)← authi(s1, o1, a1) ∧ .. ∧ authi(sn, on, an)|

((s, o, a)← (s1, o1, a1) ∧ . . . ∧ (sn, on, an)) ∈ R}
∪ {authi(x, y, z)← mainpF (x, y, z)} ∪ pe2lp(F, e) .

(τiX.F)(G){authX(x, y, z)← mainp
G
(x, y, z)}

∪ pe2lp(F, e) ∪ pe2lp(G, e) .

Figure 3: Translation pe2lp : from policy expres-
sions to logic programs

Q,S,R be all undefined in e0. The canonical translation of
E w.r.t. e0 is:

authP (s
′, o′, a′)

authP (s
′′, o′′, a′′)

auth0(x, y, z)← authP (x, y, z)
auth0(x, y, z)← auth1(x, y, z)
auth1(x, y, z)← authQ(x, y, z) ∧ ¬authR(x, y, z)
auth1(x, y, z)← authS(x, y, z) ∧ authR(x, y, z)

The above translation works correctly if the formal pa-
rameters X of the templates occurring in E are all distinct.
Formally, we say that E is clash-free if for all distinct sub-
expressions τX.P, τY.Q of E, it holds that X 6= Y . Note
that the template semantics does not depend on names of
their formal parameter, so we can always rename them uni-
formly to avoid name clashes in the translation process, and
the following proposition holds.

Proposition 6.1. For each expression E there exists an
equivalent clash-free expression E′.3

The following theorem tells us that pe2lp is semantics
preserving.

Theorem 6.1. For all clash-free expressions E and envi-
ronments e, it holds that (s, o, a) ∈ [[E]]e iff mainpE(s, o, a)
belongs to the least Herbrand model of the canonical trans-
lation of E w.r.t. e.

6.2 Access control enforcement
Before illustrating the use of logic programs to enforce

access control, we need to specify how to treat “for-
eign” policies, that is, policies that may be expressed in
a different language or stored at other sites. For each
foreign policy, a wrapper should be provided [17], that
allows our logic programs to query the policy. This
can be done with existing logic-based mediator tech-
niques. For instance, using a HERMES-like syntax [17],
we may implement the link to an external policy P as
authP(s, o, a)← in((s, o, a),P : grant()). Similarly, if the ex-
ternal policy specifies negative authorizations, we may write

3Two expressions E,F are equivalent iff for all environments
e, [[E]]e = [[F]]e .

auth
P−

(s, o, a) ← in((s, o, a), P : deny()). In the following,
for each policy expression E and environment e, we denote
by ΠE,e the logic program consisting of the canonical trans-
lation pe2lp(Eℓ, e) extended with the above wrapper rules
for each foreign policy P .

We are now ready to discuss access control and related
techniques for partial and complete materialization of policy
expressions. In the discussion, we shall assume a given set of
policy identifiers, Poldyn , containing the identifiers of policies
that should not be materialized and the base predicates that
cannot be evaluated at materialization time.

Partial materialization is accomplished by applying stan-
dard partial evaluation [16] techniques to the logic program
ΠE,e. We recall that partial evaluation transforms program
rules by iteratively applying unfolding steps of the form:

(A← B1, . . . , Bn)⇒ (A← B1, . . . , Bi−1, C1, . . . , Cm,
Bi+1, . . . , Bn)θ

where H ← C1, . . . , Cm is a program clause whose vari-
ables are renamed with fresh variables, and θ is the most
general unifier [11] of Bi and H . The following predicates
are not unfolded:

• Predicates in(. . . , P : . . .) such that P ∈ Poldyn .

• Predicates of the form authP such that P ∈ Poldyn ,
unless authP is implemented by a wrapper.

• Base predicates in Poldyn .

Eventually, rule bodies will contain only predicates of this
kind, and partial evaluation terminates. By well-known logic
programming results, the following proposition holds ([16]):

Proposition 6.2. Let PartEv(ΠE,e) be the result of the
partial evaluation of ΠE,e, and mainpE the main predicate
of E’s canonical translation. Then, for all ground authoriza-
tions (s, o, a), PartEv(ΠE,e) |= mainpE(s, o, a) iff ΠE,e |=
mainpE(s, o, a).

Intuitively, this proposition says that partial evaluation pre-
serves the meaning of the original logic program. As a
corollary of this proposition and Theorem 6.1, the partially
evaluated (or partially materialized 4) program PartEv(ΠE,e)
captures exactly the meaning of the policy expression E in
environment e.

Corollary 1. For all ground authorizations (s, o, a),
PartEv(ΠE,e) |= mainpE(s, o, a) iff (s, o, a) ∈ [[E]]e.

Example 6.2. Consider the University Labora-
tory Policy in Figure 2(b). Assume that, at mate-
rialization time, the Ptutors and Pdept policies are
known and consist of {(s1, o1, a1), . . . , (sn, on, an)} and
{(s1, o1, a1), . . . , (sk, ok, ak)} (k > n), respectively; while
Pprovost policy and predicate blacklisted are unknown,
meaning Poldyn = {Pprovost, blacklisted}. The canonical
translation of the policy, w.r.t. the environment e binding
the Ptutor and Pdept to the above triples and leaving policy
Pprovost and predicate blacklisted undefined, is:

auth0(x, y, z)← auth1(x, y, z) ∧ ¬blacklisted(x)
auth0(x, y, z)← authprovost(x, y, z) ∧ blacklisted(x)
auth1(x, y, z)← authtutors(x, y, z) ∧ authdept(x, y, z)
authtutor(si, oi, ai) (i = 1, . . . , n)
authdept(si, oi, ai) (i = 1, . . . , k)

4Complete materialization is a special case of partial evalua-
tion, where Poldyn is empty and every predicate is unfolded.

We extend this program with the wrapper rule

authprovost(x, y, z)← in((x, y, z), Pprovost: grant()).

Then, we partially evaluate this program, obtaining:

auth0(si, oi, ai)← ¬blacklisted(si)
auth0(si, oi, ai)← in((si, oi, ai), Pprovost: grant()) ∧

blacklisted(si)

where i = 1, . . . , n.
Note that several intermediate predicate calls have been re-
moved from the partially evaluated (or materialized) pro-
gram.

7. ELEMENTARY POLICY SPECIFICA-
TION

Our algebra can combine policies stated in different lan-
guages and through different paradigms. The algebra is
therefore not substitutive of authorization languages, but
complements them by allowing different specifications to be
merged together, and combined according to different op-
tions. The independence from and support for the coexis-
tence of different authorization languages and control mech-
anisms is a considerable advantage of our approach.

We note however, that when no other authorization lan-
guage is being applied already, the constructs of our algebra
can be also used to specify elementary policies.

In particular, the traditional closed policy can be ex-
pressed as a policy “P” listing the authorization triples cor-
responding to the accesses to be allowed; while the open
policy can be expressed as a policy “PAll − P”, where PAll

is bound to the set of all possible authorizations and P con-
tains the accesses to be denied. Authorizations for user
groups and data types that propagate to their members can
be simply expressed in our framework through rules that
enforce authorization propagation along the hierarchy. The
authorization specifications, stated with respect to individ-
ual elements (e.g., users or documents) or classes thereof
(e.g., user groups or directories), would then be closed by
the set of derivation rules R = {(s, o, a) ← (s′, o, a), s ≤ s′,
(s, o, a) ← (s, o′, a), o ≤ o′, (s, o, a) ← (s, o, a′), a ≤ a′},
where ≤ reflects the order defined on the different dimen-
sions [7]. Derivation of authorizations according to criteria
other than hierarchical relationships can be enforced in an
analogous way.

Recent authorization models support both positive and
negative authorizations. Positive authorizations state per-
missions whereas negative authorizations state denials [12].
The way positive and negative authorizations interplay is
established by overriding/conflict resolution rules that may
depend on the hierarchical relationships of the authoriza-
tion elements and/or on priorities (or types) associated with
the authorizations. Although we do not explicitly support
negative authorizations, our framework can indeed express
denials through the subtraction operator (negative autho-
rizations appear as a policy to be removed). For instance, a
hybrid specification with a denial take precedence policy can
be enforced by simple expression “P+ −P−” where P+ are
the positive authorization terms and P− are the authoriza-
tion terms to be negated. Conflict resolution policies based
on the hierarchies of the data system can be supported in
an analogous way. As an example, the most specific takes
precedence policy w.r.t. a hierarchy is obtained by comput-

ing, for each node the sum of its positive statements minus
the sum of the negative statements for its descendants, and
summing up all the triples returned for each node. Here, by
statements we mean the authorization triples closed under
the propagation rules for the considered hierarchy. Formally,
let i be the different nodes in the hierarchy w.r.t. which the
policy is stated5, P+

i and P−
i the authorization triples cor-

responding to permissions and denials referred to i, and RH

the hierarchy-based propagation rules. Then, the most spe-
cific takes precedence policy w.r.t. hierarchy H is defined as
∑

i∈H(P+
i ∗RH −

∑

j≤i P
−
j ∗RH).6 Alternatively, the most

specific take precedence principle can be achieved by closing
the given authorizations under suitable propagation rules
enforcing the criteria [8]. As another example, consider the
Orion authorization model [13], where authorizations prop-
agate down the hierarchies and are classified as strong or
weak . Strong authorizations (guaranteed to be free of con-
flict among themselves) override weak authorizations. Con-
flicts between weak authorizations are solved according to
the most specific take precedence policy. The overall policy
can be stated as “Pweak + P+

strong ∗ RH − P−
strong ∗ RH”,

where P+
strong and “P−

strong ∗RH” are the positive and nega-
tive authorizations, respectively, RH are the hierarchy-based
propagation rules, and Pweak is the set of triples resulting
from applying the most specific takes precedence policy to
weak authorizations as stated above.

Approaches enforcing further overriding criteria, for ex-
ample, inclusion of organizational-level vs site-level autho-
rizations [4], or explicit priorities, such as the order in which
authorizations are listed [15], can be expressed in a similar
way. Intuitively, in the expressions enforcing authorizations
w.r.t. a given criteria, triples denoting permissions appear as
policies to be added, while triples denoting denials appear
as policies to be subtracted. The order in which policies
appear in the expression determines which policy override
which.

Our framework is therefore able to support and combine
different approaches existing in the literature. In this re-
spect, algebraic expressions turn out to be very flexible: a
new dimension/criterion to be taken care of is simply re-
flected in the introduction of one (or two, if negative autho-
rizations are supported) operands in the expression. This
has also advantages in terms of clarity and readability of
the specifications.

8. CONCLUDING REMARKS
We presented an algebra for composing access control poli-

cies. We here summarize how our approach addresses the
different requirements discussed in Section 2.

1. Heterogeneous policies can be supported either by ex-
ploiting the algebra constructs to represent the differ-
ent policies (see Section 7) or by referring to hetero-
geneous policies through policy identifiers then inter-
preted by means of wrappers (see Section 6.2).

5The hierarchy can be the hierarchy of subjects, objects, or
actions hierarchy or a combination of them [8].
6In case of incomparable conflicts, this expression resolves
in favor of positive authorizations. A denial take precedence
principle could be enforced by subtracting from the result
the sum of the nonoverridden negative statements, obtained
with the dual expression

∑

i∈H(P−
i ∗RH −

∑

j<i P
+
j ∗RH).

2. Unknown policies are supported by means of policy
identifiers that can remain unbound in the environ-
ment. The translation of expressions into logic pro-
grams and the application of partial evaluation tech-
niques on them allow us to delay the evaluation of
unknown policies until run time, without need of re-
doing the whole computation, and guarantee the cor-
rectness of the resulting controls (see Section 6.2). Fur-
thermore, templates allow the expression of incomplete
policies in the formal semantics and the proofs of cor-
rectness properties on incomplete specifications (see
Section 5).

3. Interference of program rules and authorizations com-
ing from different policies is controlled by restricting
rule application to specific policies by means of the
closure construct.

4. Expressiveness is achieved by the different operators
that easily allow the formulation of protection restric-
tions as illustrated in the examples and discussions
contained herein.

5. Different abstraction levels are naturally supported by
the component-based approach. Each component may
internally be structured in sub-components and secu-
rity administrators can zoom in the different policies or
look at a higher level view as desired (see Figure 2(a)).
Templates provide a formal means to operate on the
different levels as one may simply look at the template
(higher abstraction level) or at its actual parameters
corresponding to the contents (zoom in) of the formal
parameters.

6. Formal semantics has been provided in Section 3. We
have also illustrated how the algebra semantics can be
exploited to reason about properties of the specifica-
tions and not only to implement them. Our algebra
is implementation independent and can be used to de-
sign, analyze, and combine requirements in different
systems.

This paper is only the first step towards the definition of
a formal and flexible access control composition framework
and leaves space for further work. Future work to be carried
out includes investigation of administrative policies for regu-
lating the specification of the different component policies by
different authorities; the analysis of incremental approaches
to enforce changes to component policies; application of the
evaluation of automated deduction techniques to prove prop-
erties of the specifications; and the performance assessment
of different partial evaluation techniques.

9. REFERENCES
[1] M. Abadi and L. Lamport. Composing specifications.

ACM Transactions on Programming Languages,
14(4):1–60, October 1992.

[2] D. Banisar and S. Davies. Privacy & Human Rights -
An International Survey of Privacy Laws and
Developments. EPIC, 1999.

[3] E. Bertino, S. Jajodia, and P. Samarati. A flexible
authorization mechanism for relational data
management systems. ACM Transactions on
Information Systems, 17(2):101–140, April 1999.

[4] E. Damiani, S. De Capitani di Vimercati,
S. Paraboschi, and P. Samarati. Design and
implementation of an access control processor for
XML documents. In Proc. of the WWW9 Conference,
Amsterdam, May 2000.

[5] H.H. Hosmer. The multipolicy paradigm. In Proc. of
the 15th National Computer Security Conference,
pages 409–422, Baltimore, MD, October 1992.

[6] T. Jaeger. Access control in configurable systems. In
Jan Vitek and Christian Jensen, editors, Secure
Internet Programming, volume 1603, pages 289–310.
Springer-Verlag, 1999.

[7] S. Jajodia, P. Samarati, and V.S. Subrahmanian. A
logical language for expressing authorizations. In Proc.
of the 1997 IEEE Symposium on Security and
Privacy, pages 94–107, Oakland, CA, May 1997.

[8] S. Jajodia, P. Samarati, V.S. Subrahmanian, and
E. Bertino. A unified framework for enforcing multiple
access control policies. In Proc. of the 1997 ACM
SIGMOD, pages 474–485, Tucson, AZ, May 1997.

[9] C. Landwehr. Formal models for computer security.
Computing Surveys, 13(3):247–278, September 1981.

[10] N. Li, J. Feigenbaum, and B. Grosof. A logic-based
knowledge representation for authorization with
delegation. In Proc. of the 12th IEEE Computer
Security Foundations Workshop, pages 162–174,
Mordano, Italy, June 1999.

[11] J.W. Lloyd. Foundations of logic programming.
Springer-Verlag, 1984.

[12] T.F. Lunt. Access control policies for database
systems. In C.E. Landwehr, editor, Database Security
II: Status and Prospects, pages 41–52. North-Holland,
1989.

[13] F. Rabitti, E. Bertino, W. Kim, and D. Woelk. A
model of authorization for next-generation database
systems. ACM TODS, 16(1):89–131, March 1991.

[14] K. Sagonas, T. Swift, D.S. Warren, J. Freire, and
P. Rao. The XSB programmer’s manual, version 2.2.
http://xsb.sourceforge.net, April 2000.

[15] H. Shen and P. Dewan. Access control for
collaborative environments. In Proc. Int. Conf. on
Computer Supported Cooperative Work, pages 51–58,
Toronto, Canada, November 1992.

[16] L. Sterling and E. Shapiro. The art of Prolog. MIT
Press, Cambridge, MA, 1997.

[17] V.S. Subrahmanian, S. Adali, A. Brink, R. Emery,
J.J. Lu, A. Rajput, T.J. Rogers, R. Ross, and
C. Ward. Hermes: Heterogeneous reasoning and
mediator system.
http://www.cs.umd.edu/projects/publications/
abstracts/hermes.html.

[18] T.Y.C. Woo and S.S. Lam. Authorizations in
distributed systems: A new approach. Journal of
Computer Security, 2(2,3):107–136, 1993.

