© Springer Berlin / Heidelberg 2016

Access Control Management for
Secure Cloud Storage

Enrico Bacis®, Sabrina De Capitani di Vimercati2, Sara Foresti?,
Stefano Paraboschi', Marco Rosa!, and Pierangela Samarati?

! Universita degli Studi di Bergamo, Italy
firstname.lastname@unibg. it
2 Universita degli Studi di Milano, Italy
firstname.lastname@unimi . it

Abstract. With the widespread success and adoption of cloud-based
solutions, we are witnessing an ever increasing reliance on external
providers for storing and managing data. This evolution is greatly fa-
cilitated by the availability of solutions - typically based on encryption
- ensuring the confidentiality of externally outsourced data against the
storing provider itself. Selective application of encryption (i.e., with dif-
ferent keys depending on the authorizations holding on data) provides a
convenient approach to access control policy enforcement. Effective real-
ization of such policy-based encryption entails addressing several prob-
lems related to key management, access control enforcement, and autho-
rization revocation, while ensuring efficiency of access and deployment
with current technology. We present the design and implementation of
an approach to realize policy-based encryption for enforcing access con-
trol in OpenStack Swift. We also report experimental results evaluating
and comparing different implementation choices of our approach.

1 Introduction

Cloud technology is increasingly becoming a central component for storing or
processing data. Such growing adoption and success of cloud-based solutions
is due to the considerable obvious benefits they provide in terms of reliability,
scalability, elasticity, efficiency, and economic cost. This adoption would further
accelerate in the presence of robust solutions guaranteeing effective control by
data owners over the data they outsource to cloud service providers.

A promising solution for providing data protection and maintaining control
in the hand of data owners is encryption, with data encrypted before being out-
sourced to the external cloud service provider. The first obvious benefit of using
encryption when outsourcing data is that data are kept unknown to the provider
hosting them. Also, encryption provides the ability to realize an approach where
the evaluation of the policy and user authentication are separate from the man-
agement of the physical access to the data. This also ensures the protection of
data confidentiality against adversaries who may have access to the physical rep-
resentation or who may be able to subvert an access control service managed

© Springer Berlin / Heidelberg 2016 

2 E. Bacis et al.

by the cloud service provider. Another important benefit provided by data en-
cryption is that it enables effective enforcement of access control. In fact, data
can be encrypted with different keys, depending on the authorizations holding
on them, and keys shared with users according to authorization (policy-based
encryption [7]). This policy-based encryption translates the access control policy
into an equivalent encryption policy which provides self-protection and effective
access control enforcement on the outsourced data.

One of the complicating aspects in the management of policy-based encryp-
tion relates to the enforcement of possible changes to the access control policy,
and in particular revocation of authorizations. When resource maintenance is de-
coupled from access control thanks to the use of encryption, revocation cannot
be simply managed by dropping access to the encryption key (as done in other
scenarios). The revoked user can, in fact, have maintained local copies of the
keys, and if the layer of protection is not refreshed, the user could still be able to
pass the encryption wrap and access objects for which she does not have autho-
rization anymore. On the other hand, changing the key and re-encrypting objects
affected by revocation would entail download and re-upload operations by own-
ers, which could become cumbersome and affect the performance of the system.
The solution that was proposed to this problem in [7] assumes the introduction
of over-encryption, based on the application by the server of an additional layer
of encryption (operating on the object already encrypted by the data owner)
with a key not accessible by the revoked user, thus adapting the encryption on
objects to the new state of the access control policy.

Policy-based encryption for providing self-enforcement of the access control
policy and over-encryption for supporting policy changes result particularly ap-
pealing and promising. However, their integration and deployment in available
cloud storage systems requires addressing several problems, including: the sup-
port for co-existence of several data owners in a single system, the realization
of key management solutions to enable users to access keys used for objects
for which they have authorizations, and the implementation of policy-based en-
cryption and over-encryption functionality with services supported by the cloud
service providers. In this paper, we investigate all these issues and illustrate
the realization of policy-based encryption and over-encryption in the context of
OpenStack Swift. OpenStack [16] represents today the reference platform for
the cloud [19], and is receiving significant attention by the industrial commu-
nity, and Swift is the OpenStack’s object storage system. Swift exhibits features
that are shared by most object storage solutions for the cloud, like Amazon S3.
In this paper, we illustrate how policy-based encryption can be realized build-
ing on the OpenStack Swift module. We also investigate how policy changes
can be enforced implementing over-encryption in Swift. For over-encryption, in
particular, we investigate different implementation alternatives, which can be
suitable for different scenarios, depending on the frequency of access requests
and policy changes. The contribution of the paper is therefore twofold. First, it
provides an effective design and implementation of policy-based encryption and
over-encryption, which can be adopted by others and see immediate deployment

Access Control Management for Secure Cloud Storage 3

in current cloud storage solutions. Second, our extensive experimental evaluation
of different design choices can provide precious observations for such adoption,
enabling the tuning of the implementation depending on the characteristics of
the considered scenario.

Outline. The remainder of this paper is organized as follows. Section 2 describes
some basic concepts as well as the scenario and the problem considered. Section 3
illustrates how policy-based encryption can be realized in Swift. Section 4 shows
how policy changes can be enforced and describes different options for the imple-
mentation of over-encryption. Section 5 presents experimental results. Section 6
discusses related work. Finally, Section 7 presents our conclusions.

2 Basic Concepts

We consider a scenario where users wish to outsource data to an external cloud
service provider (CSP) and selectively share their data with others. Different
data (owned by the same user) may be accessible by different sets of users.
Every data owner has an access control policy specifying authorizations on her
data.

We assume that the CSP is based on the OpenStack framework, which in-
cludes the Swift module, an object storage service allowing users to store and
access data in the form of objects (i.e., each resource, such as a file, uploaded on
Swift is an object). Swift organizes objects in containers, which are user-defined
storage areas containing sets of objects. Containers are organized in tenants,
which are sets of containers. Each tenant is usually assigned to an organiza-
tion. Swift enforces discretionary access control restrictions over the objects it
stores by associating a read access control list and a write access control list
with each container and tenant in the system. These access control lists iden-
tify the users who can read and write the container/tenant. To enforce access
control restrictions, Swift relies on Keystone for users authentication. Keystone
is an OpenStack component acting as identity server, which provides a central
directory of users mapped to the OpenStack services they can access.

We assume the cloud service provider to be honest-but-curious, that is,
trusted to correctly manage the data (i.e., trustworthy) but not trusted for ac-
cessing the content of objects. Consistently with our focus on data confidentiality,
in this paper we are concerned with the representation and enforcement of an
access control policy regulating read access to objects. We note however that our
approach can be extended to the consideration of write authorizations [5]. In the
following, acl(o) denotes the read access control list of object o and A, is the
set of read access control lists defined by user u for her objects. Figure 1(a) illus-
trates an example of authorization policy defined by user Alice. In this example,
we assume that there are three users, Alice (A), Bob (B), and Dave (D), and
four objects (01, 02, 03, and 04) owned by Alice. In the matrix in Figure 1(a),
entry [u,0] has value 1 if u is authorized to read o (i.e., u€acl(o;)) and 0 if u is
not authorized to read o (i.e., ug€acl(0;)).

4 E. Bacis et al.

01 02 03 O4 01 02 03 O4
A[T]I[1]1 ma ~ {k1,k2,ks,ka} keyl k1| ka | ks k4]
Bl1|1|1]|1 mpB ~ {k1,k2,k3,k4}

D|oj1]0]|1 mp ~ {k)g,k)4}
Authorization policy.Aa Policy-based encryption £a

(a) (b)

Fig. 1: An example of authorization policy defined by user Alice (a) and corresponding
policy-based encryption (b)

Our work is based on the policy-based encryption and over-encryption ap-
proach proposed in [7, 8], and aims at their representation and enforcement with
Swift, which also require some re-definition and adjustment of these concepts.
Essentially, each user is associated with a symmetric key, and each object is en-
crypted using a symmetric key that depends on the access control policy. Keys
are organized in such a way that a user u can derive (via public tokens), all
and only the keys of the objects o; she is authorized to access (i.e., u€acl(o;)).
Policy updates, which would require re-encryption of an object, are enforced
by super-imposing a second layer of encryption on the encrypted object itself.
Every object can then have a first layer of encryption (BEL, Base Encryption
Layer) imposed by the data owner for protecting the confidentiality of the data
from unauthorized users as well as from the CSP, and a second layer of en-
cryption (SEL, Surface Encryption Layer) applied by the CSP for protecting
the object from users who are not be authorized to access the object but who
might know the underlying BEL key. A user will be able to access an object
only if she knows both the SEL key and the BEL key with which the object
is encrypted. In the following, we use notation &, to denote the policy-based
encryption equivalent to the authorization policy A, defined by user u. Fig-
ure 1(b) illustrates the policy-based encryption equivalent to the authorization
policy in Figure 1(a). In this figure, keys ma, mp, mp are the symmetric keys
of the users and keys ki, ks, k3, k4 are the symmetric keys used to encrypt the
objects. Notation m, ~~ k, represents the fact that key k, is derivable from key
m,. In the remaining sections, we first describe how a policy-based encryption
can be realized in Swift (Section 3), and then illustrate how to enforce policy
updates (Section 4).

3 Access Control Enforcement in Swift

Our approach translates the authorization policy defined by a user into a policy-
based encryption that relies on the use of different keys and ad-hoc structures
supporting the client-based Swift encryption. In this section, we describe such
keys and ad-hoc structures (which are stored as traditional Swift objects), and
then illustrate how policy-based encryption can be implemented.

Access Control Management for Secure Cloud Storage 5
3.1 Keys and User-Based Repositories

Our approach is based on the definition and management of different keys. There
are (symmetric) keys associated with objects for objects’ encryption (enforcing
the self-protection mentioned in the introduction). Also, each user is associated
with a (symmetric) key as well as with two pairs of asymmetric keys to support
identity management and signature, respectively. Finally, authorizations are re-
alized by encrypting object keys with user keys. This allows users to retrieve the
key of objects they are authorized to access, providing the same functionality
that public-tokens provided in [7, §].

We describe the different keys and their characteristics and functionality in
the following.

Data Encryption Key (DEK) k;. Every object o; is protected by symmetric
encryption using a DEK k;. Each DEK k; has a given size, is associated with an
encryption algorithm, and has an identifier, denoted id(k;), that identifies the
key among all the keys used in the system.

Master Encryption Key (MEK) m,. Every user u has a personal symmetric
master encryption key m,,. The knowledge of this key permits to access, directly
or indirectly, all the objects that user w is authorized to see. Given the user
identity loss that would derive from a compromise of the MEK, it is assumed
that the user keeps the MEK only on the client-side, never exposing it to the
server or to other users.

User encryption key pair (puy,su). Each user u is associated with an asym-
metric key pair (py,s,) for encryption (our implementation adopts RSA). As
we show later on, the availability of asymmetric cryptography supports the re-
alization of a cooperative cloud storage service, where each user may make her
objects available to other users. Note that in most application domains, the cor-
respondence between a user identity and a public key is supported by certificates
issued by a trusted Certification Authority. Swift can instead benefit from the
availability of Keystone, which already centralizes the management of user iden-
tities, and the public key is assumed to be available in the user profile managed
by Keystone.

User signing key pair (spy,ssu). Each user u is associated with an asym-
metric key pair (sp,,,ss,) for signing messages (our implementation adopts EC-
DSA). The reason for having a signing key pair is that it is common in security
systems to separate the encrypting and signing identities. This improves security
and flexibility, giving the option to use a dedicated cryptographic technique for
each function. Signatures are used to guarantee the integrity of objects and of
the information that users adopt for deriving the DEKs. Like for asymmetric
encryption, the public key for signatures is also stored in the Keystone profile of
users.

6 E. Bacis et al.

Key Encryption Key (KEK). A KEK is at the basis of the mechanism that
translates the access control policy defined by a user into an equivalent policy-
based encryption. Intuitively, a KEK is the encryption of a DEK that a user
can extract using a secret (key) that only she knows. For each container that a
user is authorized to access, there is therefore a KEK that the user can decrypt
to obtain the DEK used for encrypting the objects in the container. As we will
see in the following sub-section, there are two variants of KEKs, depending on
the cryptographic technique used to protect them: symmetric KEKs, encrypted
with the MEKs of users, and asymmetric KEKs, encrypted with the public
keys of users. The KEKs that allow a user u to derive the keys of the objects
she is authorized to access are stored in a user-based repository, denoted R,,.
Each KEK is characterized by the following information: a KEK identifier, the
identifier of the protection key, the identifier of the encrypted key, a timestamp,
the identifier of the creator (only for asymmetric KEKs), an authentication code,
and the encrypted key. The authentication code is used to verify the integrity
of a KEK and is generated with the symmetric key of the user who creates the
KEK (in case of symmetric KEK) or with the private signing key of the creator
(in case of asymmetric encryption). Functions are available that allow the user
to extract from her repository the KEK associated with a given protected key
identifier.

The identifier of the DEK used to protect an object is maintained in the
descriptor of the object itself. Such a piece of information is needed, whenever a
user accesses an object, to retrieve the right KEK that allows the user to derive
the corresponding DEK. Analogously, the descriptor of a container includes the
identifier of the key to be used to encrypt the objects that will be inserted in the
container. At initialization time, the key identifier in the descriptor of the objects
stored in a container coincides with the key identifier in the container descriptor.
As we will discuss in Section 4, due to policy changes, the key associated with a
container may change and objects in the container may still be protected with
a previous container key.

3.2 Policy-Based Encryption

All users in the system can define an access control policy for the objects they
own. We now describe how the authorization policy A, defined by user v is trans-
lated into an equivalent policy-based encryption &, using the keys illustrated in
the previous section.

User u creates as many containers C,...,C,, as needed and, for each of
them, creates a DEK k;, i« = 1,...,m, using a robust source of entropy. Con-
sistently with Swift working, we assume that all objects in a container have the
same acl. User u then encrypts all objects in a container C; with the DEK k;
of the container and stores them in C;, which will have therefore the same acl
for all the objects in it. Each DEK k; is encrypted with the MEK m,, of the
user who created the container and the resulting KEK is stored in the user’s
repository R, . For each user u; in the acl corresponding to container Cj, user u

Access Control Management for Secure Cloud Storage 7

Swift Keystone

Container: C, Container: C, KEKSs Alice KEKs Bob KEKs Dave 1| Atice | | Bob | | Dave
Acl: [A, B] Acl: [A, B, D] :

forh) B . . . i e o pn
- 1 2 ki ks ka i

A O A = a 3 H SPa SPy SPp
[Ps] (o) i

Fig. 2: Policy-based encryption £4 equivalent to the authorization policy A4 in Fig-
ure 1(a)

encrypts DEK k; with u;’s public key p,; and signs it using ss,, thus producing
an asymmetric KEK usable by u;. This KEK is stored in u;’s repository R;-.

Ezample 1. Consider the authorization policy of Alice in Figure 1(a). Figure 2
shows how this policy is translated into an equivalent policy-based encryption.
Alice creates two containers C and Cy and stores objects 07 and o3 both en-
crypted with key k7 in C7, objects 02 and o4 both encrypted with ko in C5. She
then creates her KEKSs as well as the KEKs that Bob and Dave can use to access
the objects for which they are authorized. In particular, Alice encrypts DEKSs k;
and ko with her MEK m 4 and stores the resulting KEKSs in her repository R 4.
Then, she encrypts DEK k; with Bob’s public key pp and DEK k5 with public
keys pp and pp of Bob and Dave, respectively. The resulting KEKs are stored
in repositories Rp and R p, respectively. The figure also illustrates the profiles
of Alice, Bob, and Dave managed by Keystone. These profiles contain the public
keys of the users.

When a user u; wishes to access an object o;, the object descriptor is first
accessed to retrieve the identifier of the DEK used to encrypt o;. This identifier
is then used to retrieve the corresponding KEK from repository R,; and then
derive the DEK k;. Derivation will require user u; either to use her own MEK
my; (for symmetric KEK), or to apply the private encryption key s, (for asym-
metric KEK). To improve the efficiency of the subsequent accesses to the key
and simplify the procedure, once a DEK provided by another user is extracted
from an asymmetric KEK, the KEK is replaced in the repository by a symmetric
KEK built using the user own MEK. For instance, suppose that Bob requires
access to object o1. Bob first retrieves from the descriptor of object o1 the iden-
tifier id(k1) of DEK k;. Then, it retrieves from Rp the corresponding KEK,
decrypts it using his private key sp and uses the retrieved DEK for decrypting
01. Furthermore, Bob replaces the original asymmetric KEK with a symmetric
KEK obtained by encrypting k; with his master key mp.

When a new object o; is inserted into a container C;, user u retrieves the
descriptor of the container and looks for the identifier id(k;) of the corresponding
DEK k;. The user will then look in her repository R, for the KEK associated
with id(k;) and will extract the corresponding DEK. The DEK will be used to

8 E. Bacis et al.

encrypt object o; that will be given to Swift and DEK 4d(k;) will be inserted
into the object descriptor. For instance, suppose that Alice inserts a new object
05 in C5. Since the DEK associated with C5 is ko, Alice encrypts o5 with ko,
inserts id(kz2) in the descriptor of o5, and stores the encrypted version of o5 in
Cs.

4 Policy Updates

Since the authorization policy regulating access to objects in Swift is enforced
through a policy-based encryption, every time the authorization policy changes,
also the encryption policy needs to be re-arranged accordingly. Updates to the
authorization policy include the insertion and deletion of users, objects, and
authorizations. The insertion of a user requires the generation of her master key,
user encryption key pair, and signing key pair, and the insertion of her public
keys in Keystone. The removal of a user requires only the removal from Keystone
of her public (encryption and signing) keys. The removal of an object instead
requires its deletion from the container including it. We then focus on granting
and revoking authorizations, and on the insertion of new objects. For simplicity,
but without loss of generality, we consider policy updates that involve a single
user u; and a single container C' (the extension to a set of users and of containers
is immediate).

In the remainder of this section, we first illustrate how policy updates can be
realized, and then discuss different alternatives for the practical implementation
in Swift of the over-encryption requested for their enforcement.

4.1 Enforcement of Policy Updates

We now illustrate how granting and revoking authorizations as well as the inser-
tion of a new object with its authorization policy can be enforced. Recall that
authorization policies operate at the granularity of container. Then, grant and
revoke operations modify the set of users authorized to access a container C, and
hence all the objects that it stores. Also, the insertion of an object in a container
implies that it inherits the container acl.

Grant authorization. If user u grants u,; access to container C' (and hence
to the content of all its objects), she simply needs to create an (asymmetric)
KEK enabling u; to derive the DEK k of the container and to store it in the
repository R, of user u;. For instance, with reference to the authorization policy
in Figure 1(a), to grant Dave access to container C1, Alice needs to create a KEK
enabling Dave to derive kj.

Revoke authorization. If user u revokes from w; access to container C' (and
hence to all its objects), it is not sufficient to delete the KEK that allows u; to
derive the DEK k of the container, as the revoked user u; may have accessed
the KEK before being revoked and may have locally stored its value. A straight-
forward approach to revoke user u; access to container C' consists in replacing

Access Control Management for Secure Cloud Storage 9

R over-encryption . . -
Container: C, module Container: C, Container: C,

Acl: [A, D] Acl: [A, D] Acl: [A, D]
Keys: id(k,), id(ks), id(k*) Keys: id(k,), id(ks), id(k*) Keys: id(k,), id(k), id(k*)
Current key: id(k3) Current key: id(ks) Current key: id(k3)

q o

(@ (b) ©

Fig. 3: An example of implementation of a revoke operation using immediate (a), on-
the-fly (b), and opportunistic (c) over-encryption

the DEK of the container with a new key kje.. However, this would require
the owner u of the container to download from the server all the objects in C,
decrypt them with the original DEK k, encrypt them with the new DEK kj,cqp,
and then re-upload the encrypted objects, together with the KEKSs necessary to
authorized users to derive k. This would cause a significant performance and
economic cost to user w. To limit such an overhead, we adopt over-encryption
(Section 2). Hence, when a user u revokes from another user u; the authorization
to access the objects in a container C, u updates C’s acl and asks the storing
server to over-encrypt the objects in C with a SEL key k® that only non-revoked
users can derive. Each container is then associated with a DEK k at the BEL
enforcing the initial authorization policy, and possibly also with a DEK k° at
the SEL enforcing revocations. Also, there is a KEK for each user initially au-
thorized for C enabling her to compute &, and a KEK for each non-revoked user
enabling her to compute £°. For instance, consider the authorization policy in
Figure 1(a), and assume that Alice wants to revoke from Bob the access to Cs.
As illustrated in Figure 3(a), objects o2 and o4 are over-encrypted with a SEL
key k®. Also, the KEK enabling Bob to compute ko is dropped from Rp, while
the KEKs enabling Alice and Dave to compute k* are created and inserted into
R4 and Rp, respectively.

Insert object. When a new object o; is inserted into a container C, the object
inherits the acl of the container. To enforce such an authorization policy, the
object owner u can simply decide to encrypt o; in the same way as the objects
already in the container. However, if the authorization policy regulating access
to the container has already been modified, this would require to encrypt o; with
both the DEK at the BEL k£ and the DEK at the SEL k° associated with the
container. Since the policy of object o; has never been updated, the adoption
of the SEL might be an overdo. We therefore propose to adopt a new DEK
knew at the BEL to protect objects that are inserted into a container on which
revoke operations had been applied. As a consequence of the revoke operation
(and the new acl associated with the container), a new DEK BEL key (and the
corresponding KEKs) corresponding to the new acl is generated for the container,
and used for objects that will be inserted into the container after the revoke

10 E. Bacis et al.

Container: C,

Acl: [A, D]

Keys: id(ky), id(k3), id(k*)
Current key: id(ks)

o
~=DiED "

Fig. 4: An example of insertion of an object into an over-encrypted container

operation. While for existing objects over-encryption is needed to guarantee
protection from the revoked user, new objects can be encrypted with the new
key known only to the users actually authorized for them. To enable non-revoked
users to derive the new (current) key of the container, an (asymmetric) KEK
enabling them to derive the new key is added to their repositories. Consider, as
an example, container Cy illustrated in Figure 3(a), which is encrypted with ko
at the BEL and with £° at the SEL because of the revoke of Bob. Assume now
that Alice needs to insert a new object o5 into Cy. Object o5 will be encrypted
at the BEL with key ks, generated when Bob has been revoked access to Cy
(together with the KEKs enabling Alice and Dave to compute k3 from their own
private key). Figure 4 illustrates the content of container Cy after the insertion
of O5.

4.2 Implementation of Over-Encryption

The implementation of over-encryption for the enforcement of revoke operations
in Swift can operate in different ways, depending on the time at which SEL
encryption is applied, which can be: materialized at policy update time (imme-
diate), performed at access time (on-the-fly), or performed at the first access
and then materialized for subsequent accesses (opportunistic). In the following,
we elaborate on each of these strategies.

Immediate Over-Encryption. The storing server applies over-encryption
when a user revokes the authorization over container C to a user u;. Immediate
over-encryption requires the user to define, at policy update time: the SEL DEK
k® necessary to protect the objects in the revoked container C, and the KEKs
necessary to authorized users (and to the server) to derive k°. Also, the objects in
container C will be over-encrypted. The server will then immediately read from
the storage the objects in C, re-encrypt their content (possibly removing SEL
encryption), and write the over-encrypted objects back to the storage. Hence,
immediately after the policy update, the objects in C' are stored encrypted with
two encryption layers. Every time a user needs to access an object in C, the
server will simply return the stored version of the requested object. Figure 3(a)

Access Control Management for Secure Cloud Storage 11

illustrates container Cy in Figure 2 after Bob has been revoked access to Cs,
when adopting immediate over-encryption.

Immediate over-encryption causes a considerable cost at policy update time,
which is however significantly lower than the cost that would be paid if over-
encryption is not used. The advantage of immediate over-encryption lays in its
simplicity in the management of get requests by clients, because objects will be
returned by the server as they are stored. This approach can be an interesting
option in scenarios where policy updates are extremely rare and the overall size
of objects is modest.

On-the-fly Over-Encryption. The storing server applies over-encryption on-
the-fly, that is, every time a user accesses an object. Then, even if the owner of
the container asks the server to over-encrypt the objects in C, the server only
keeps track of this request, but it does not re-encrypt stored objects. When a
user needs to access an object in C, the server possibly over-encrypts the object
before returning it to the user. Figure 3(b) illustrates the adoption of on-the-
fly over-encryption when Alice accesses object oq, after Bob has been revoked
access to container Cy in Figure 2. As it is visible from the figure, the server
over-encrypts oo with k®, which can be computed by Alice and Dave but not by
Bob, before sending the object to the requesting user.

When adopting on-the-fly over-encryption, keys can be managed according to
the following two strategies.

— Static key generation: the owner of the container defines, at revoke time, the
SEL DEK k® necessary to protect the objects in the revoked container C, and
the KEKSs necessary to non-revoked users (and to the server) to derive k°.

— Dynamic key generation: the server generates a fresh SEL DEK k* for every
get request involving an object in the revoked container C. Also, it creates
and makes available to the requesting user a KEK enabling her to derive k°.
At revoke time, the owner of the container only needs to communicate to the
server the container C' subject to the revoke operation and the revoked user.

In terms of performance, if the same user makes repeated requests for objects in
the same container (i.e., protected with the same DEK), dynamic key genera-
tion may require a greater amount of work. On the other hand, if the number of
requests for the objects in a container is significantly lower than the number of
KEKSs produced by the static approach for the same container, the dynamic ap-
proach is more efficient. The profile of key management for the two alternatives
presents significant differences, but key management operations exhibit negligi-
ble computational and I/O costs compared to the management of the objects
themselves. This is the reason why in the experiments (Section 5), focusing on
the overall object management cost, we do not distinguish between static and
dynamic key generation.

The advantage of on-the-fly over-encryption is that over-encryption is applied
only when needed. However, if an object is asked multiple times during a period
when the policy is stable, the server will incur a higher cost than immediate
over-encryption, due to the multiple applications of encryption on the same ob-

12 E. Bacis et al.

ject. On-the-fly over-encryption can then be an interesting option in scenarios
where the ratio between accesses and revoke operations is low.

Opportunistic Over-Encryption. This approach aims at combining the ad-
vantages of both immediate over-encryption and on-the-fly over-encryption. It
presents a similarity with the Copy-On-Write approach commonly used by oper-
ating systems to improve the efficiency of copying operations. Analogously to the
immediate approach, opportunistic over-encryption requires the owner, when a
user is revoked access to a container, to define both the SEL DEK k* necessary
to protect the objects in the revoked container C, and the KEKs necessary to
authorized users (and to the server) to derive k®. Similarly to the on-the-fly ap-
proach, the server over-encrypts an object o; in the revoked container C only
when it is first accessed. However, instead of discarding it, the result of over-
encryption is written back to storage for future accesses.

The management of opportunistic over-encryption is more complicated than the
approaches illustrated above. In fact, after multiple policy updates and object in-
sertions, a container may include objects associated with different BEL and SEL
keys. Therefore, the object descriptor must specify also its state (i.e., not over-
encrypted, over-encrypted with the most up-to-date SEL key, over-encrypted
with an old SEL key). When a user needs to access an object o;, the server first
checks its descriptor. If o; is protected only at BEL and it has been subject to a
revoke operation, the server derives the most recent SEL key and over-encrypts
0; on-the-fly, storing then the result. If o; is protected also at the SEL with the
most up-to-date key (or it is encrypted only at the BEL and no revoke operation
affected the container), it is returned to the requesting user. Finally, if o; is pro-
tected at the SEL with an outdated key (e.g., because another revoke operation
has been performed after o; has been last accessed), the server decrypts o; with
the old SEL key, re-encrypts it with the new one, and stores the result. Note that
KEKs enabling to derive old SEL keys can be dropped from repositories only
when no object is protected with those keys. Figure 3(c) illustrates container
Cs in Figure 2 after Bob has been revoked access to Cy and Alice has accessed
object 0g. As it is visible from the figure, object o is protected at both the BEL
and SEL, while o4 is encrypted only at the BEL as it has not been accessed yet.
The critical advantage of opportunistic over-encryption is that it shows good
adaptability to a variety of scenarios. In some peculiar combinations of policy
update frequency, size of data collection, and access profile by clients, the other
solutions may be preferable. However, based on our experimental results, we
expect that this solution will be preferred in the majority of scenarios.

5 Experimental Results
We discuss the experimental results performed for evaluating the practical ap-

plicability of our proposal. We performed different series of experiments aimed
at evaluating the following aspects:

Access Control Management for Secure Cloud Storage 13

— the benefits of the use of over-encryption compared to a system where pol-
icy changes are enforced by the client downloading, re-encrypting, and re-
uploading the objects involved (Section 5.1);

— the performance of the immediate, on-the-fly, and opportunistic options (Sec-
tion 5.2);

— the performance of a batch and a streaming option for the execution of en-
cryption by the server (Section 5.3);

— the performance at the client-side for the removal of the two encryption layers
for over-encrypted objects (Section 5.4).

The experiments were executed on two PCs with Linux Ubuntu 16.04, 16
GB RAM, 4-core i7 CPU, 256 GB SSD disk. The client and the server were
connected with a 100 Mb/s network channel.

5.1 Comparison between Client Re-Encryption and Over-Encryption

We compare different options of over-encryption with a scenario where a policy
update on a container is enforced by the data owner through the download, re-
encryption and upload of the whole container. For this set of experiments, we
consider a container with 1000 files of size 1 MB. Client side re-encryption does
not require server work (except for the download and upload request, which are
the same in every scenario) and is necessary only for revocations.

Figure 5 compares the overall time required for the management of a policy
update followed by a number of get requests. The line on top corresponds to
the configuration without over-encryption. In the lower part, we have the lines
that describe the time required when using over-encryption, considering the on-
the-fly approach and the opportunistic approach with uniform distribution of
access requests (corresponding to o = 1). We also report the time exhibited by
the management of a sequence of direct get requests, where no encryption is
applied to the objects. The graph shows that the lower lines are all one near to
the other, proving that over-encryption has a small overhead.

5.2 Analysis of Over-Encryption Approaches

We compare the performance of immediate, on-the-fly, and opportunistic ap-
proaches. For this set of experiments, we consider a container with 100 files of
size 1 MB. We focus on the time required for the processing on the server module,
without considering the time required for the transfer of data across the network.
This permits to focus on the component that is most influenced by these options
(the network is typically a bottleneck and it hides the difference between the ap-
proaches, as shown in Figure 5). Figure 6 reports the cumulated execution time
associated with a sequence of requests, for the three over-encryption approaches.

The immediate option requires, at policy update time, to read all the objects
in the container, possibly decrypt them, and encrypt and write them back. This

14 E. Bacis et al.

30 T T T T T T T T 25

“ #’// 20
o

20 -

no over-encryption —<—
on-the-fly —e— |

< B §
Lo
IR

.
PR
N\

i‘ 15 % g
. (a=1 - ” =
E T | & L
1.0 e E ATy
10 | A e
200 = on-the-fly
/«/é %% immediate
5 05 B « = opp. (a=1)
[R 8 & 4 opp. (a=2)
),,a‘f—;i&.,’,/—’- . == oph (ac3)
% , v v opp. (a=4)
0 — 00
0 1 5 10 15 20 25 30 35 40 0 50 100 150 200 250
number of requests number of requests
Fig. 5: Overhead of all the solutions Fig. 6: Cumulative server work with differ-

ent over-encryption approaches

creates an immediate overhead at policy update, before the first request. Subse-
quent requests do not require a specific processing by this module, which man-
ages the get requests with a direct mapping to the retrieval of the over-encrypted
representation of the object. Figure 6 represents the immediate approach with
a horizontal line.

The on-the-fly option requires to apply SEL encryption on every returned
object. The cost is then identical for all the requests. Figure 6 shows that the
on-the-fly option is associated with a constant growth.

For the opportunistic approach, the cost depends on the number of files in
the container that are accessed more than once. When an object is accessed for
the first time after the policy update, the server will have to encrypt it at the
SEL level and then save its new representation. This adds to the encryption cost
the cost for the storage of the new version. Subsequent requests for the same
object will be managed as a simple get of the over-encrypted representation
of the object. The frequency of repeated accesses has then an impact on the
efficiency of this approach. In our experiments, we therefore consider request
profiles associated with power law distributions [11] with varying values for the
« parameter, from 1 to 4. A value of a equal to 1 corresponds to a uniform
distribution, where all the requests have an equal probability of asking any of
the objects in the container; increasing values of « lead to an increasingly skewed
distribution of requests. The analysis shows that for the first requests the cost
associated with the opportunistic approach is greater than that of the on-the-
fly approach. As requests continue to be executed, the opportunistic approach
becomes increasingly more efficient compared to the on-the-fly approach. The
advantage increases as the profile becomes more unbalanced. The worst case is
represented by the uniform distribution, which still becomes more efficient after
180 requests.

From this experimental analysis we conclude that the choice of the over-
encryption approach has to consider a few aspects. In terms of pure perfor-
mance, the opportunistic approach always dominates the immediate approach.

Access Control Management for Secure Cloud Storage 15

The choice between the on-the-fly and the opportunistic approach has to eval-
uate the frequency of policy updates, the number of access requests generated
between each policy update, and the profile of access requests. For scenarios
where policy updates are relatively frequent compared to the frequency of ac-
cess requests, and the profile is uniform, the on-the-fly approach can be the most
efficient solution. In these scenarios, a choice should be made between the static
and dynamic key generation. This choice will have to take into account design
and configuration aspects, with the static generation requiring a greater upfront
processing, but then more efficient computation, and the dynamic generation
minimizing setup costs, but requiring a DEK and a KEK creation for every ac-
cess request. In domains with a profile opposite to that leading to the on-the-fly
approach, the opportunistic approach can prove to be the best option.

In addition to performance, there are design and security requirements that
may have an impact on the choice. In terms of design, the opportunistic ap-
proach requires a more complex procedure, whereas the immediate and on-the-
fly approaches both map to a simpler implementation. With respect to security,
the immediate approach (for all the objects) and the opportunistic approach
(for objects that have already been accessed since the last update) offer greater
protection, because a revoked user who may have access to the Swift storage in-
frastructure would not be able to access the plaintext of the objects, whereas in
the on-the-fly approach such an attack would succeed for a revoked user. System
administrators will then have to make a choice based on the consideration of a
number of parameters. Our expectation is that in most scenarios administrators
will select the opportunistic approach.

5.3 Streaming and Batch Encryption

We performed a set of experiments aimed at comparing the execution time of a
number of get requests when two different kinds of encryptions are used by the
server: Streaming and Batch. They both use the AES-CTR encryption mode.
Streaming encryption makes use of the WSGI structure of the Swift servers, and
it consists in encrypting every chunk of the file as it is obtained from the proxy
server. On the contrary, Batch encryption consists in encrypting the whole file
after it is returned from the proxy server and before it is sent to the client.
In these experiments, files of the same size are inserted into a container, which
has the total size of 1 GB. We studied the benchmark of Streaming and Batch
encryption applied to the on-the-fly approach against the direct get call that
does not apply any encryption.

As it is visible from Figure 7, compared to the direct get call, Streaming en-
cryption adds an overhead between 1% and 3%, whereas Batch encryption adds
an overhead between 7% and 15%. It is then clear that Streaming encryption is
more efficient, both because of shorter response times and because it has a lower
memory usage, since it does not have to load the entire object in RAM before
encrypting it. Note that the encryption of the chunks could also be parallelized,
further reducing the overhead compared to the direct get call.

16 E. Bacis et al.

120
100
15
80
=
= g
© 60 0 1.0
E g
= =]
40
0.5
I Direct get
20 B Streaming k-1 AES+AES
1 Batch 1 TWOAES
0.0.
0 1000 x 1MB 100 x 10MB 10 x 100MB 1 x 1GB 1 2 3 4 5 6 7 8 9 10
files TWOAES window size [blocks]

Fig. 7: Comparison of the overhead caused Fig. 8: BEL+SEL encryption performance
by Streaming and Batch on-the-fly ap- on a 1MB file using two subsequent AES
proaches with respect to the direct get call invocations and TWOAES

without AES-NI with AES-NI

ECB CBC CTR ECB CBC CTR

128 bits | 253 MB/s 215 MB/s 154 MB/s | 1857 MB/s 408 MB/s 284 MB/s

256 bits | 192 MB/s 170 MB/s 133 MB/s | 1301 MB/s 336 MB/s 248 MB/s

Fig. 9: AES encryption rate for the modes ECB, CBC, and CTR using the pycrypto
library without and with AES-NI

5.4 Application of Two Encryption Layers

When over-encryption is used, the client has to decrypt the downloaded objects
twice, using the same encryption algorithm with two distinct keys. The simplest
approach for the implementation of these two decryptions consists in first re-
moving the SEL layer on the full object and then removing the BEL layer. Such
an approach is not the most efficient option, because the portion of the object
that has been SEL-decrypted (and still BEL-encrypted) will have to either be
temporarily stored in RAM or on mass memory. This is similar to the analysis
for Streaming and Batch encryption for the server, where Streaming encryption
proves to be more efficient.

We started from these considerations and investigated the joint application
of SEL and BEL decryptions. We were also interested in evaluating the perfor-
mance profile of decryption on the client and in evaluating the impact of the
hardware support offered for the execution of cryptographic functions. In par-
ticular, we verified the impact of the AES-NT (Intel AES New Instruction set)
instructions available on Intel processors. A first set of experiments, reported in
Figure 9, showed that the encryption performance of AES-NI compared to an
AES software implementation (we used the one available in OpenSSL) is around
7 times faster.

Access Control Management for Secure Cloud Storage 17

" TWOAES ——
@ 1000 ¢ AESTAES —— 1 @
a a
= =
3 800 | 3
® ®
§ 600t 5
3 3
& &
S 400 | 2
@ @
K K
s ™ E TWOAES]
° 0 ‘ ‘ ‘ ‘ ° ol ‘ . AES+AES ——
® 2 2 o2 2 o2 o2 @2 0 o@ @ ® 2 2 2 2 o2 o2 @ 2@ @
X X X X X 3 = = = = O X X X X X 3 = = = = O
- Y e 3 g - e 3 og - - Y e g g~ e 3o -
o Y o Y
file size file size
Fig. 10: Re-encryption using AES Fig. 11: Re-encryption using AES-NI

We then focused on the application of two decryptions. Our expectation was
that the consecutive application of a SEL decryption and BEL decryption on
the same block would have produced a benefit, as it would have avoided to
pay the penalty of a transfer outside the CPU cache of the data. As shown in
Figure 8, where AES-NI instructions were used, we instead observed that the
performance of the interleaved decryption depends on the number of consecutive
blocks processed with each key. The worst performance is observed when after
each block there is a switch of encryption key. Further investigation allowed us
to verify that the source of this behavior was an optimization by the C compiler
that avoided to execute a write to the registers storing the key value when no
changes had occurred to the key since the previous execution. When the switch
from the application of the SEL decryption to the BEL decryption occurs after
a number of blocks, the cost of the key setup is amortized over a number of
blocks, but the blocks remain in the CPU cache after the first decryption and
the second decryption becomes more efficient.

We then compared the execution times for the (a) serial application of SEL
and BEL decryption (a full SEL decryption, followed by a full BEL decryption)
and (b) interleaved SEL and BEL decryption, with the application of the two
decryptions 8 blocks at a time. Figures 10 and 11 report the results of these
experiments when not using AES-NI and when using AES-NI, respectively. The
greater performance of hardware-accelerated AES emphasizes the impact that
the CPU/RAM interface has on performance. Figure 10 indeed shows that the
difference between the two approaches when hardware acceleration is not used
is limited. Figure 11 shows that the 20% benefit observed is persistent across
objects with a variety of sizes.

This approach is then the one that has to be applied whenever two layers of
decryption have to be removed. It is also important to note that the throughput
that can be obtained in the application of two decryptions (a few GB/s) is orders
of magnitude greater than the bandwidth available for the network connections
between a client and the Swift provider. This confirms the applicability of over-
encryption in this scenario.

18 E. Bacis et al.

6 Related Work

The design of encryption techniques for data stored in the cloud is a large re-
search area, with a considerable variety of topics and proposals. A significant
amount of work has been dedicated to the design of techniques that support the
efficient search and retrieval of encrypted data (e.g., [18]). Techniques have been
designed that let the data be available only to users with specific properties (e.g.,
ABE [4, 12]). Another important line of research focuses on protecting access
privacy (e.g., [9, 10, 17]). In this paper, we focus the analysis on over-encryption,
on the approaches for existing cloud storage frameworks, and on proposals for
the sharing of large client-encrypted objects (instead of structured data).

Over-encryption has been proposed to effectively and efficiently enforce pol-
icy updates over encrypted outsourced data [7, 8]. This solution considers the
presence of a single data owner, and it has been extended to consider multiple
users owning (and willing to share) data [6]. This approach differs from the solu-
tion we proposed as it relies on Diffie-Hellman, while our approach is based on the
definition of symmetric and asymmetric KEKs. Also, these proposals consider
a generic resource management scenario, with no specific connection to existing
cloud frameworks. Over-encryption has also been considered in [3] in conjunction
with a novel approach called Mix&Slice. In this context, over-encryption does
not involve a whole resource but only a fragment of it.

Several proposals have contributed to the design of solutions for the pro-
tection of outsourced data with reference to current cloud frameworks. In [2],
OpenStack security issues are extensively analyzed. The confidentiality of objects
stored in Swift is considered as a significant aspect, but no specific technical so-
lution is presented. A subsequent work by the same authors [1] describes an
approach for the encryption of objects in Swift. In [14] another approach for
server-side encryption is presented, with the goal of protecting “data at rest”
(i.e., an approach for making the object representation on storage devices pro-
tected against physical accesses). In these approaches, keys are never seen by
clients and they do not consider the support for container acls. Then, they do
not have to look at the management of the encryption policy and its evolution.

A number of proposals have considered the application of encryption on the
client-side. In [20], a service is presented that maps a file system to an encrypted
representation on Amazon S3. The proposal does not support the sharing of files
among distinct users and acls are not considered. In [13], an architecture for
sharing encrypted objects outsourced to a cloud provider is presented. Revoca-
tion is considered as important and difficult and the proposed solution enforces
it by limiting access to encryption keys for revoked users. In [21], an exten-
sive architecture for the management of a cloud-based data sharing system is
proposed. Resources are protected with keys that are consistent with the pol-
icy and significant attention is paid to revocation. The approach used is based
on proxy re-encryption and lazy re-encryption. Proxy re-encryption relies on
expensive cryptographic techniques that allow a server to convert a representa-
tion of a resource encrypted with a key to one associated with a different key,
without letting the server executing the transformation be able to access the

Access Control Management for Secure Cloud Storage 19

plaintext of the resource. Proxy re-encryption supports expressive encryption
schemes, which allow attribute-based selection. Over-encryption uses standard
symmetric encryption, which does not support those features but exhibits bet-
ter performance. Lazy re-encryption shares some features with our opportunistic
over-encryption approach, as it saves on re-encryptions by applying them only
after an access request is made to the object, but the motivation is different.
The advantage of lazy re-encryption is due to the ability to avoid re-encryptions
for resources that are not accessed between a number of policy updates. The
same benefit is also valid in our opportunistic approach, but in those scenarios
our on-the-fly approach can be preferable.

The OpenStack Swift community is making a significant effort toward the
introduction of object encryption in Swift [15]. The support is offered for the
server side, aiming at protecting data at rest. We are monitoring this develop-
ment and are confident that our solution can be easily adapted to leverage their
implementation, extending it with our over-encryption techniques.

7 Conclusions

The design of techniques able to enforce confidentiality of outsourced data has
the potential to greatly accelerate the rate of adoption of cloud storage, leading
it to become the standard approach for the management of any kind of data.
Local storage and traditional file systems would then only play the role of a
cache that speeds up access to data, but persistence would be guaranteed by
cloud providers. The realization of this vision requires to integrate the security
techniques developed by the research community with existing cloud solutions.

The work presented in this paper goes in this direction and shows that this
integration has to consider several aspects. Our proposal offers then a contribu-
tion for the most used open-source cloud storage solution, but the approaches
that have been considered for Swift have a clear immediate application also to
other domains.

Acknowledgements. This work was supported in part by the EC within the
H2020 under grant agreement 644579 (ESCUDO-CLOUD) and within the FP7
under grant agreement 312797 (ABC4EU).

References

1. Albaroodi, H., Manickam, S., Anbar, M.: A proposed framework for outsourcing
and secure encrypted data on OpenStack object storage (Swift). Journal of Com-
puter Science 11(3), 590-597 (2015)

2. Albaroodi, H., Manickam, S., Singh, P.: Critical review of OpenStack security:
Issues and weaknesses. Journal of Computer Science 10(1), 23-33 (2014)

3. Bacis, E., De Capitani di Vimercati, S., Foresti, S., Paraboschi, S., Rosa, M.,
Samarati, P.: Mix&Slice: Efficient access revocation in the cloud. In: Proc. of CCS.
Vienna, Austria (October 2016)

20

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

E. Bacis et al.

Chow, S.S.M.: A framework of multi-authority attribute-based encryption with
outsourcing and revocation. In: Proc. of SACMAT. Shanghai, China (June 2016)
De Capitani di Vimercati, S., Foresti, S., Jajodia, S., Livraga, G., Paraboschi, S.,
Samarati, P.: Enforcing dynamic write privileges in data outsourcing. Computers
and Security 39, 47-63 (November 2013)

De Capitani di Vimercati, S., Foresti, S., Jajodia, S., Paraboschi, S., Pelosi, G.,
Samarati, P.: Encryption-based policy enforcement for cloud storage. In: Proc. of
SPCC. Genova, Italy (June 2010)

De Capitani di Vimercati, S., Foresti, S., Jajodia, S., Paraboschi, S., Samarati, P.:
Over-encryption: Management of access control evolution on outsourced data. In:
Proc. of VLDB. Vienna, Austria (September 2007)

De Capitani di Vimercati, S., Foresti, S., Jajodia, S., Paraboschi, S., Samarati, P.:
Encryption policies for regulating access to outsourced data. ACM TODS 35(2),
12:1-12:46 (April 2010)

De Capitani di Vimercati, S., Foresti, S., Paraboschi, S., Pelosi, G., Samarati, P.:
Efficient and private access to outsourced data. In: Proc. of ICDCS. Minneapolis,
USA (June 2011)

De Capitani di Vimercati, S., Foresti, S., Paraboschi, S., Pelosi, G., Samarati, P.:
Shuffle index: Efficient and private access to outsourced data. ACM TOS 11(4),
19:1-19:55 (October 2015)

Easley, D., Kleinberg, J.: Networks, crowds, and markets: Reasoning about a highly
connected world. Cambridge University Press (2010)

Goyal, V., Pandey, O., Sahai, A., Waters, B.: Attribute-based encryption for fine-
grained access control of encrypted data. In: Proc. of ACM CCS. Alexandria, USA
(October—November 2006)

Kaaniche, N.,; Laurent, M., El Barbori, M.: Cloudasec: A novel public-key based
framework to handle data sharing security in clouds. In: Proc. of SECRYPT. Vi-
enna, Austria (August 2014)

Kang, S., Veeravalli, B., Aung, K.M.M.: ESPRESSO: An encryption as a service
for cloud storage systems. In: Proc. of AIMS. Brno, Czech Republic (June-July
2014)

Richling, J., Cole, A.: At-rest encryption, http://specs.openstack.org/
openstack/swift-specs/specs/in_progress/at_rest_encryption.html
Sefraoui, O., Aissaoui, M., Eleuldj, M.: OpenStack: Toward an open-source solution
for cloud computing. IJCA 55(3), 38-42 (2012)

Stefanov, E., van M. Dijk, Shi, E., Fletcher, C., Ren, L., Yu, X., Devadas, S.: Path
ORAM: An extremely simple Oblivious RAM protocol. In: Proc of ACM CCS.
Berlin, Germany (November 2013)

Wang, C., Cao, N., Ren, K., Lou, W.: Enabling secure and efficient ranked keyword
search over outsourced cloud data. IEEE TPDS 23(8), 1467-1479 (August 2012)
Wen, X., Gu, G., Li, Q., Gao, Y., Zhang, X.: Comparison of open-source cloud
management platforms: OpenStack and OpenNebula. In: Proc. of FSKD. Sichuan,
China (May 2012)

Yao, J., Chen, S., Nepal, S., Levy, D., Zic, J.: Truststore: Making Amazon S3
trustworthy with services composition. In: Proc. of CCGrid. Melbourne, Australia
(May 2010)

Yu, S., Wang, C., Ren, K., Lou, W.: Achieving secure, scalable, and fine-grained
data access control in cloud computing. In: Proc. of INFOCOM. San Diego, USA
(March 2010)

