© 2019 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating
new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.

Dynamic Allocation for Resource Protection
in Decentralized Cloud Storage

Enrico Bacis*, Sabrina De Capitani di Vimercatif, Sara Forestif,
Stefano Paraboschi*, Marco Rosa*?, Pierangela Samaratif
* Universita degli Studi di Bergamo, Italy — Email: name.surname @unibg.it
T Universita degli Studi di Milano, Italy — Email: name.surname @unimi.it
t Security Research, SAP Labs France

Abstract—Decentralized Cloud Storage (DCS) networks rep-
resent an interesting solution for data storage and management.
DCS networks rely on the voluntary effort of a considerable
number of (possibly untrusted) nodes, which may dynamically
join and leave the network at any time. To profitably rely on
DCS for data storage, data owners therefore need solutions that
guarantee confidentiality and availability of their data. In this
paper, we present an approach enabling data owners to keep
data confidentiality and availability under control, limiting the
owners intervention with corrective actions when availability or
confidentiality is at risk. Our approach is based on the combined
adoption of AONT (All-Or-Nothing-Transform) and fountain
codes. It provides confidentiality of outsourced data also against
malicious coalitions of nodes, and guarantees data availability
even in case of node failures. Our experimental evaluation clearly
shows the benefits of using fountain codes with respect to other
approaches adopted by current DCS networks.

I. INTRODUCTION

Information technology has seen considerable advancements
at a very fast pace in recent years. A common aspect in the
technological evolution at support of information management
has been the emergence of services enabling data owners to
rely on external parties for the storage of their data. For a few
years now, the cloud has become the reference paradigm for
the storage and management of data, providing data owners
with scalable resources at profitable prices. As a matter of
fact, relying on Cloud Service Providers (CSPs), data owners
can acquire resources for storing their data as needed and
with considerable economic benefits with respect to in-house
solutions providing the same quality of service. While the
cloud paradigm typically is based on a single service provider,
the emergence of blockchains and micro-payment networks
has introduced a new interest towards Decentralized Cloud
Storage (DCS) networks. DCS networks rely on storage capa-
bilities of network peers and provide an interesting emerging
alternative to traditional cloud storage. The main characteristic
of a DCS is that storage space is provided by users, which
can be anyone from big providers to individuals, that can join
the network and offer storage space, typically in exchange of
some reward (micro-payment). Examples of DCS systems are
Storj [17], SAFE Network Vault [11], [7], IPFS [5], [10], and
Sia [18], which enable users to rent out their unused storage

This work was supported in part by the EC within the H2020 Program under grant
agreement 825333 (MOSAICrOWN).

and bandwidth in exchange of some crypto-currency. The great
advantage is that the price for storage on a DCS is a fraction
of the price of a normal provider.

The use of a dynamic network of unknown (and potentially
non-trusted) peers clearly introduces the problem of guarantee-
ing proper protection to resources, ensuring their availability
and security (for both confidentiality and integrity). In fact, a
DCS is a potentially unstable network, and hence continuous
participation of every single node cannot be assumed. Given
this, and in line with the distributed nature of DCS services,
resources are sliced into many shards, with different shards
allocated to different nodes of the network, with replication to
guarantee availability. Reconstruction of a resource requires
collecting the different shards composing it. Also, nodes
participating in the DCS - which can dynamically join and
leave and are anonymous - cannot be considered trusted, hence
resource confidentiality needs to be protected against each of
them (as well as against possible coalitions) and owners should
be able to assess integrity of the shards (and hence resources).

Typically, DCS networks provide security by encrypting the
resource at the owner side before slicing it, and provide avail-
ability by employing shard replication. Instead of simple repli-
cation in the allocation, several DCS networks leverage the
dynamic application of erasure codes (e.g., Reed-Solomon).
With Reed-Solomon, if a node participating in the service
becomes unavailable, its shard is dynamically re-allocated to
another node. The advantage of Reed-Solomon with respect
to simple replication is that it provides reliability guarantees
at a fraction of the storage overhead that would come with
replication. However, it has two main drawbacks. First, it is
a fixed-rate encoding technique and therefore computing the
shard to be re-allocated requires reconstructing the complete
resource. Second, if the old node originally storing a (then re-
allocated) shard comes back online, more replicas than actually
needed would be available for the same shard and the eco-
nomic cost brought by the involvement of more nodes does not
bring a clear advantage for availability. Also, the use of simple
encryption for providing confidentiality has some limitations
since, although it is true that the unavailability of all shards
composing a resource prevents its complete reconstruction,
still a subset of the shards may enable reconstruction of a
portion of the resource to users knowing the encryption key.
For instance, a owner losing control on the encryption key

Sara Foresti
© 2019 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating
new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.
�

may ask nodes in the DCS to delete the resource, as it would
otherwise remain exposed. However, nodes that do not respect
the request of deleting their shards may then have access to a
portion of the resource.

The contribution of this paper is twofold. First, we com-
bine All-or-Nothing-Transform (AONT), in contrast to simple
encryption for protecting resources, and fountain codes, in
contrast to traditional erasure codes like Reed-Solomon for
computing shards to be distributed to nodes in a DCS (Sec-
tion III). The combined adoption of AONT and fountain codes
provides better security and availability guarantees, and lower
performance overhead than current solutions. Second, we
provide a model for dynamically managing the computation
and allocation of shards, avoiding an immediate reaction to
a node leaving, if availability guaranteed by the remaining
nodes is considered still acceptable. Our approach avoids
potentially excessive generation of shards which may turn
out to be unnecessary when - as it is often the case - nodes
unavailability is only temporary (Section IV). Avoidance of
excessive generation provides advantages not only for perfor-
mance (as it avoids generating new shards and involvement
of new nodes) but also for security (excessively increasing
the number of shards in the system may cause a higher
vulnerability to malicious coalitions). The advantage of our
solution is confirmed by experimental results obtained by
integrating our approach with a real DCS (Section V).

II. BASIC CONCEPTS

The two basic building blocks enabling the development
of our solution are the adoption, at the client side, of All-or-
Nothing-Transform (AONT) and of fountain codes.

AONT. AONT [15] is an encryption mode that transforms
a plaintext resource into a ciphertext where every bit of the
output has strong interdependence on all the bits of the input
(e.g., [2], [8], [9]). In other words, AONT ensures that even
knowing the encryption key, a resource or a portion of it
cannot be reconstructed even when even only a single block is
missing. AONT then provides better security guarantees than
encryption.

Fountain codes. Fountain codes are a class of erasure codes
preventing that the loss of one of the transmitted or stored
blocks of a resource causes a data loss. Given a resource 7, par-
titioned into f different fragments, an erasure code generates a
set of s> f encoded shards that depend on the resource content
and support the reconstruction of r through the combination of
a subset of the encoded shards. Fountain codes, unlike other
erasure codes (e.g., Reed-Solomon [13]), offer probabilistic
reconstruction guarantees, meaning that with a probability
p < 1, f of the s shards are sufficient for reconstructing r.
The reconstruction probability p exponentially increases by
retrieving additional shards. Although probabilistic, fountain
codes have two main characteristics that, as we will discuss
in the next section, allow us to profitably use them in the DCS
context. First, they are rateless, that is, using these codes it is
possible to create a new (i.e., different from each other) shard

resource

AONT-
encrypted
resource

fragments

shards

Fig. 1: Reference scenario

on the fly and therefore the number s of encoded shards is
not fixed a priori. Independently from the number s of shards,
any subset of (at least) f shards can be used to reconstruct r.
Second, each shard depends on a subset of (and not on all) the
f original fragments of the resource and then only a subset of
the original fragments are needed for generating a new shard.

III. ENCODING AND ALLOCATION STRATEGY

We consider a data owner interested in storing her resources
in a DCS network. For simplicity, we refer the discussion to
a single resource r, since the same approach can be applied
to all the resources moved to the DCS.

Given a resources r we assume the data owner to first
encrypt r using AONT, to protect confidentiality, and then
encode the resulting ciphertext using fountain codes, to pro-
vide availability. As illustrated in Figure 1, the ciphertext is
organized in f original fragments and encoded into a set
S ={s4,...,85} of s shards allocated to s randomly chosen
nodes N = {nj,...,ns} (i.e., each shard is allocated to a
different node). Whenever a user is interested in retrieving
the resource content, she contacts an arbitrary subset of f
nodes and downloads their shards, which are then combined
to reconstruct the resource.

The reason for using AONT, in contrast to encryption, is its
ability to prevent even partial reconstruction of the plaintext
resource. This property is crucial in the considered scenario,
since fountain codes enable the reconstruction of a fragment
(i.e., a chunk of the ciphertext) starting from a small subset of
shards (i.e., less than f shards). The adoption of AONT then
prevents any (small) coalition of malicious nodes to partially
reconstruct the plaintext resource content, even if they can
reconstruct a fragment from the shards they store.

The choice of using fountain codes, in contrast to simple
replication or traditional erasure codes (e.g., Reed-Solomon),
is due to their high flexibility in dealing with the intrinsically
dynamic behavior of DCS . Since fountain codes are rateless,
if a node n; leaves the DCS, the data owner does not need
(as it would happen using Reed-Solomon) to reconstruct its
shard s; and re-allocate it to a different node to guarantee the
same resource availability. Indeed, it is sufficient to generate
a new shard sgy; (different from s;,...,ss) and allocate it
to a new node ng;. After the generation and allocation of
Ss+1, any user can still reconstruct the resource content by
downloading any subset of f shards from the resulting set
(S\{si})U{sst1} of s shards. The generation of a new shard,

3 Reed-Solomon

wv
B

[« %

8
‘4—2

o

o

L
£

51

=

0 — o g =+ o) =) I~ L (=2] =]

@ @ @ @ o P @ @ & o
shard ID
(a) Reed-Solomon

3| HE Fountain code
8

[« %

8
‘4—2

9]

o

L
Eea}

1S
:1JII.I_I_II__II_I_III__IL
=

O e s et s e R ZREE2 S R A

BHBHDRDDDD T TR DGR BB R B D

(b) Fountain codes

Fig. 2: An example of shard generation/replication using Reed-
Solomon (a) and fountain codes (b) in a dynamic scenario

in contrast to the replication of the unavailable one, provides
higher resource availability. Indeed, every shard is unique
and equally contributes to the reconstruction of the resource.
Hence, when the previously unavailable node n; comes back
online, the increased economic cost due to the involvement
of a larger number (s + 1) of nodes comes with an actual
advantage in terms of higher availability. In fact, there will be
s + 1 (instead of s) different shards stored at s + 1 different
nodes that can all be used for resource reconstruction. Note
that the generation of a new shard causes a limited overhead
since it implies the download of a subset of the shards in S,
without the need to reconstruct r (as required by other erasure
codes).

As discussed, the rateless characteristic of fountain codes
allows the adaptive adjustment of the number of shards
available for reconstructing a resource, thus impacting the
availability and security guarantees. We use this characteristic
(see Section IV) in such a way that, when the availability
guarantees go below a given threshold, the owner can generate
a new shard. Analogously, when the risk of confidentiality
exposure is above a given threshold due to the presence of
a high number of shards, the data owner can re-encrypt the
resource and generate a new set of s shards.

Figure 2 illustrates an example that compares the set of
shards in a DCS when using Reed-Solomon and fountain
codes. Here, we assume that the data owner partitions the
resource in f=7 fragments and encodes it in s=10 shards and
that nodes where the shards are stored leave and then possibly

re-join the network. Since Reed-Solomon reacts to a node
failure replicating the shard of the failed node, the set S of
shards representing r never changes but the number of copies
grows (e.g., s7 has three copies). Fountain codes do not cause
any replication, but a new shard is generated at each failure.
Note that the two techniques imply the same economic cost for
the owner, since each failure causes the allocation of a (new
or duplicated) shard to a node. In the considered example, the
owner pays for 15 shards in both scenarios.

IV. AVAILABILITY AND SECURITY GUARANTEES

Node failure has an impact on both resource availability
and confidentiality. Indeed, when one of the nodes n; fails,
the encoded shard s; it stores cannot be used to reconstruct
the resource content. Hence, the user needs to retrieve f out
of s — 1, in contrast to s, shards. When n; re-joins the DCS,
it still stores s; and this could provide a positive effect on
resource availability, since the shard at the node could be used
to reconstruct the resource. However, node n; re-joining the
DCS could have a negative impact on security, since n; could
exploit its knowledge of s; and collude with other f — 1
nodes to reconstruct r (or prevent its deletion). Similarly,
the generation and allocation of a new shard sgi; improves
resource availability, but also naturally reduces security since
there is a higher number of nodes that could possibly collude.

In this section, we analyze the advantages provided by
fountain codes on availability guarantees, by studying the
probability P, that a resource becomes unavailable as a
consequence of nodes leaving and re-joining the network.
We also evaluate the risks that the adoption of our solution
causes in terms of security, by studying the probability P,
that a coalition of malicious nodes has enough shards to
compromise resource security. These probabilities depend on
the probability p, that a node fails, and on the probability
P that a node is malicious and interested in colluding with
other nodes to breach the confidentiality of the resource. For
simplicity, we assume p,, and p. to be the same for all the
nodes.

A. Availability guarantees

When using s shards to encode a resource r split into f
original fragments, r becomes unavailable when more than
s — f nodes fail (i.e., when less than f shards can be
accessed). The probability of such an event to happen is
P (*)pu*(1 — py)*~". Probability P, increases
when one of the nodes fails (or leaves the DCS) since the
shard it stores is no more available, while it decreases any
time a new shard is generated or a failed node re-joins the
network.

Even if, in principle, the owner should react every time
a node n; fails by generating a new shard, this practice is
expensive and may not even be necessary (e.g., if n; re-joins
the network in a few hours). The increase in P, caused by
the failure of a node may not be critical in a scenario where
nodes dynamically leave and re-join the system frequently.
Indeed, the reduction in P, may be temporary and may not

Reed-Solomon I
I Fountain code I

0.00 = 1 I

0 1 2 3 4 5 6 7 8 9
number of simultaneously failing nodes

Fig. 3: Probability that a resource becomes unavailable us-
ing Reed-Solomon and fountain codes, assuming p,=0.015,
pmin=10=12 pmar=10=5_ f=7 fragments, and s in [10,15]

considerably affect the ability of the user to reconstruct r.
To properly take into consideration these aspects, we propose
a solution where the data owner takes corrective actions
(i.e., create a new shard) only when resource availability is
considered at risk.

Our solution is based on the definition of two thresholds
for P,, P™m" and P/%*, identifying the range of values
considered acceptable by the owner for guaranteeing the
availability of 7. Intuitively, these thresholds influence the
maximum and minimum number of available shards in the
system and represent:

e P;*%%: the maximum probability of failure that the owner
can tolerate, which corresponds to the minimum number
of shards (> f) the owner considers desirable to keep
resource unavailability under control;

e P™: the minimum probability of failure fixed by the
data owner based on her economic availability, which
corresponds to the maximum number of shards the owner
can afford.

The data owner does not react every time a node leaves or
re-joins the DCS, but only if this event causes P, to become
higher than P/%* or smaller than P/ If P, exceeds P,
the data owner generates a new shard and allocates it to a new
node. If P, goes below Pg’“'”, the data owner can terminate
the contract with one of the nodes in the system (e.g., with
the one that has been off-line the most) and stop paying for
its services.

Consider, as an example, a resource partitioned in f=7
original fragments and encoded in s=10 shards allocated at
nodes with probability p,,=0.015 of failure. Figure 3 compares
the probability P, of unavailability of a resource » when using
Reed-Solomon and fountain codes, assuming P;’””:lO*12
and P%*=10"°, and varying the number of nodes that the
data owner identifies as unavailable between 0 and 9. The
error bars in the figure represent the standard deviation. Note
that P, is initially the same for Reed-Solomon and fountain
codes, and evolves in the same manner when nodes leave the
DCS. The evolution of P, when a node re-joins the DCS is
instead considerably different: with Reed-Solomon it causes
duplication of a shard, with fountain codes it implies the

P,
max
Py
min
Py
time
P,
5
max v
P e ST A T """""""""
1
B o
time

Fig. 4: An example of evolution of P, (top chart) and P,
(bottom chart) as a consequence of nodes leaving and re-
joining the DCS and of actions taken by the data owner

availability of an additional (different) shard. As visible from
the figure, the probability that » becomes unavailable is higher
using Reed-Solomon than using fountain codes. In fact, the
nodes storing shards available in a single copy (e.g., s5 in
Figure 2(a)) play a critical role in resource reconstruction.
Indeed, when failing, they cannot be immediately substituted.
With fountain codes, all nodes are equally critical since they
all store different shards that can be interchangeably used to
reconstruct resource r.

The top chart in Figure 4 illustrates an example of evolution
of P,, assuming the adoption of fountain codes, considering
the corrective actions taken by the owner. The value of P,
grows every time a node leaves and decreases every time a
node re-joins the network. As long as P, is between P™" and
P* (the two red dashed lines in the figure), the data owner
does not react to node leave and re-join events. In the example,
we set P and P in such a way to tolerate the leave
and re-join of one node at a time. When P, reaches P]**" as
a consequence of the failure of a node (red triangles 1, 2, and
4 in the figure, indicating unavailability of two nodes), the
owner generates and allocates a new shard. The generation
of a new shard reduces P, to a value below P'** (green
circle 1, 2, and 4 in the figure). When P, reaches P;”m as
a consequence of node re-join (red triangle 3 in the figure,
indicating re-join of all the three nodes that failed), the owner
closes the contract with one of the nodes and P, returns above
the threshold (green circle 3 in the figure).

In the next section, we will illustrate that P, decreases not
only when the data owner creates a new shard, but also when
the resource is re-encrypted.

B. Security guarantees against malicious coalitions

Since f shards are sufficient to reconstruct r, any coalition
of at least f malicious nodes can reconstruct the encrypted
content of the resource (and its plaintext representation if the
key is exposed) and/or prevent its deletion by retaining their
local copy of the shard. The probability that f (or more) nodes
collude is P.=)""_ s (5)pc'(1—pe)*~". The probability P, that
f nodes collude increases whenever the data owner generates
a new shard and allocates it to a new node. On the contrary, P,
never decreases. Indeed, we cannot assume that nodes leaving
the system will not re-join in the future and that they do not
have a copy of the shard initially allocated to them, even in
case the data owner closed the contract. A malicious node
can keep a copy of the data on purpose, to prevent resource
deletion and possibly sell the shard to non-authorized users.

The owner can reduce P, only by re-encrypting r with a
new key. This process is however quite expensive as it requires
to locally reconstruct r (downloading f shards), decrypt it,
re-encrypt its plaintext content with a new encryption key,
encode the resulting ciphertext, and distribute the new set of s
shards to s nodes. To limit such overhead, our solution is based
on the definition of a threshold P"** for P,, representing
the maximum probability that the owner can tolerate that r
is exposed. When, as a consequence of the generation of a
shard, P. exceeds P.*%*, the owner re-encrypts r. Clearly,
shards generated before resource re-encryption cannot be used
together with shards generated after re-encryption for re-
source reconstruction, hence nullifying possible misbehaviors
by nodes whose contract has been closed before re-encryption.

The bottom chart in Figure 4 illustrates the evolution of
P, due to corrective actions taken by the owner for keeping
P, below P*%* (i.e., the generation of new shards). As long
as P. remains below threshold P["“*, no corrective action is
taken (green circles 1 and 2 in the figure). In the example
we set P"%" to tolerate the generation of two shards. When
the generation of a new shard causes P, to reach P"** (red
triangle 5 and green circle 4 in the figure), the owner re-
encrypts r. Resource re-encryption resets both P, and P, to
their initial value (green circle 5 in the figure). The lower is
Pjre*, the more frequently shards will be generated and the
more frequently the data owner will need to re-encrypt r.

V. IMPLEMENTATION AND EXPERIMENTS

To assess the benefit of using fountain codes in contrast
to Reed-Solomon used by real world DCS networks, we
implemented our proposal on top of Storj [17]. Among the
existing DCS, we selected Storj because it is one of the leaders
in the DCS scenario, and its open-source implementation
easily permits the integration of our solution. Storj relies on
Reed-Solomon to guarantee resource availability, and applies
encoding and decoding at the owner and user side, respec-
tively. We then modified the Storj client to adopt fountain
codes instead of Reed-Solomon. Specifically, we used RaptorQ
code (specified in IETF RFC 6330 [12]), which is the latest
evolution of Rapid Tornado (Raptor) codes [16]. RaptorQ is
among the most effective fountain codes available to date,

10? Reed-Solomon (avg)

Fountain code (avg)

download time [s]

0 10 20 30 40 50 60 70
ranked nodes

Fig. 5: Download time of a 10MB shard from each node that
has been contacted in the test (in increasing order of time)

since the probability of not being able to reconstruct a resource
when accessing f + ¢ shards is negligible, 0.01°*! (i.e., 1%
accessing f shards, 0.01% accessing f + 1 shards).

To analyze the performance of our solution, we set parame-
ters f=7 and s=10 and considered shards of size 100kB, IMB,
and 10MB (i.e., resources of size 700kB, 7MB, and 70MB,
respectively). In our experiments, we considered p,=0.015,
pmin=10-12 pmar=10=5 p.=0.025, and P™**=10-%. These
parameter values support the generation of 22 shards before
requiring resource re-encryption. The client used for our
experimental evaluation is an Intel i7 4770K with 16 GB
RAM, running Ubuntu 18.04, connected to a network with
enough bandwidth to download all the required (f=7) shards
in parallel. In our tests, we contacted 70 nodes. The histogram
bars in Figure 5 illustrate the time necessary to download
a shard of 10MB from each of these nodes. The nodes are
reported on the z-axis in increasing download time. In the
experiments, we focused on download time as the use of
AONT causes a negligible overhead, since the bottleneck is
represented by the network (e.g., the solution in [2] has 2.5
GB/s throughput, which is orders of magnitude higher than
fast network connections).

If the user interested in downloading the resource knows
exactly the response time of each node in the DCS, she can
choose the optimal pool of nodes, and minimize the time
for retrieving the shards necessary to reconstruct r. When
using RaptorQ, the best strategy consists in contacting the f
fastest nodes, since any subset of f shards enables resource
reconstruction. Hence, the download time is given by the
access time of the f-th node in the ranking of the s nodes
storing a shard of the resource. When using Reed-Solomon
the best strategy consists in contacting the f fastest nodes that
store f different shards, which might not be the first f nodes
in the ranking in case of duplicated shards. The download time
then is given by the access time of the slowest contacted node.

Since usually clients do not know the response times of the
nodes in the DCS, the best strategy consists in contacting all
the s nodes in parallel, and stop ongoing downloads when
the downloaded shards enable resource reconstruction (i.e.,
after the first f shards have been downloaded for RaptorQ,

Shard size Reed-Solomon RaptorQ
100 kB 0.680s (o = 0.220) 0.487s (o = 0.167)
1 MB 1.071s (o = 0.306) 0.758s (o = 0.234)
10 MB 5.082s (o = 3.232) 2.552s (o = 0.962)

TABLE I: Average time required to download enough shards
from the network to reconstruct a resource

after f different shards have been downloaded with Reed-
Solomon). Table I reports the average over 100 runs of the
time (and standard deviation o) for downloading the shards
necessary to reconstruct a resource obtained when using Reed-
Solomon and RaptorQ. As expected, RaptorQ provides better
response times, with a reduction between 28.32% (with shards
of 100kB) and 49.78% (with shards of 10MB), than Reed-
Solomon. This difference is due to the fact that the download
time is a function of both the download throughput and the
latency of nodes. For smaller shards, latency is more relevant
than for larger shards, where node bandwidth represents the
factor contributing most to download times.

Figure 5 reports the average time necessary to reconstruct
the resource in case of shards of 10MB when using RaptorQ
(blue line) and Reed-Solomon (yellow line). As illustrated in
the figure, RaptorQ requires to acquire shards from ~45-th
percentile of the nodes (30 out of 70 nodes), while for Reed-
Solomon requires to acquire shards from ~65-th percentile (45
out of 70 nodes), causing a delay in resource reconstruction.
We conclude that the adoption of fountain codes provides
a general advantage, thanks to the possibility for the final
user to rely on faster nodes for resource reconstruction, while
providing security guarantees.

VI. RELATED WORK

The problem of providing availability guarantees to data
stored in DCS networks has been considered by real-world
systems. Storj [17], Sia [18], SAFE Network [7] adopt
techniques based on Reed-Solomon, and Enigma [1] relies
on fountain codes. Although these DCS networks also pay
attention to security, they do not aim at protecting data
against coalitions of malicious nodes. Moreover, the network
immediately reacts to any configuration change. Our proposal
is orthogonal to these solutions, and can be easily integrated
in real world DCS networks (as illustrated in Section V) to
balance availability and security guarantees while limiting the
data owner’s intervention.

The problem of balancing availability and security in DCS
networks has been recently addressed in [3]. This proposal
is based on the combined adoption of AONT and data
replication, and introduces two allocation strategies of shards
to nodes. The analysis of the proposed allocation strategies
illustrates how they can be tuned to balance availability and
security. Unlike our approach, this proposal considers a static
scenario and adopts replication.

The combined adoption of AONT and error-correcting code
techniques has been recently explored to the aim of protecting
outsourced data against possibly curious storage providers and
offering high performance (e.g., [4], [14]). AONT-RS [14]

combines Rivest’s AONT [15] with Reed-Solomon, while
AONT-LT [4] uses Luby Transform code (which is a class of
fountain codes [6], [16]) instead of Reed-Solomon. Although
these proposals present similarity with our approach, they are
specifically focused on static scenarios, where the set of nodes
is fixed and nodes are not expected to frequently leave/join the
network. These solutions are then suited to cloud-of-clouds but
not to DCS scenarios.

VII. CONCLUSIONS

We presented an approach aimed at balancing availability
and security of resources stored in a DCS, where nodes
naturally leave and re-join the system. The proposed solution
combines AONT encryption and fountain codes. Our approach
is based on the definition of thresholds for both availability
and security guarantees, and on the idea that the data owner
intervenes only when the thresholds are violated. Our experi-
mental evaluation demonstrates that our proposal considerably
reduces the time required to reconstruct resources in a DCS,
while limiting the exposure to coalitions of malicious nodes.

REFERENCES

[1] Anglano, C., Gaeta, R., Grangetto, M.: Exploiting rateless codes in cloud
storage systems. IEEE TPDS 26(5), 1313-1322 (2015)

[2] Bacis, E., De Capitani di Vimercati, S., Foresti, S., Paraboschi, S., Rosa,
M., Samarati, P.: Mix&Slice: Efficient access revocation in the cloud.
In: Proc. of CCS. Vienna, Austria (October 2016)

[3] Bacis, E., De Capitani di Vimercati, S., Foresti, S., Paraboschi, S., Rosa,
M., Samarati, P.: Securing resources in decentralized cloud storage. IEEE
TIFS (2019, pre-print)

[4] Baldi, M., Maturo, N., Montali, E., Chiaraluce, F.: AONT-LT: A data
protection scheme for cloud and cooperative storage systems. In: Proc.
of HPCS. Bologna, Italy (July 2014)

[5] Benet, J.: IPFS - content addressed, versioned, P2P file system. Tech.
rep., Protocol Labs (2014)

[6] Cataldi, P., Shatarski, M.P., Grangetto, M., Magli, E.: Implementation
and performance evaluation of LT and Raptor codes for multimedia
applications. In: Proc. of IEEE MSP. Pasadena, CA, USA (December
2006)

[7] Irvine, D.: Maidsafe distributed file system. Tech. rep., MaidSafe (2010)

[8] Kapusta, K., Memmi, G.: Circular AON: A very fast scheme to protect
encrypted data against key exposure. In: Proc. of CCS. Toronto, Canada
(October 2018)

[9] Karame, G.O., Soriente, C., Lichota, K., Capkun, S.: Securing cloud

data under key exposure. IEEE TCC pp. 1-13 (2017, pre-print)

Labs, P.: Filecoin: A decentralized storage network. Tech. rep., Protocol

Labs (2017), http://filecoin.io/filecoin.pdf

Lambert, N., Bollen, B.: The SAFE network - a new, decentralised

internet. Tech. rep., MaidSafe (2014)

Luby, M., Shokrollahi, A., Watson, M., Stockhammer, T., Minder, L.:

RaptorQ forward error correction scheme for object delivery — RFC

6330. IETF Request For Comments (2011)

Reed, 1., Solomon, G.: Polynomial codes over certain finite fields.

Journal of the Society for Industrial and Applied Mathematics 8(2),

300-304 (June 1960)

Resch, J.K., Plank, J.S.: AONT-RS: Blending security and performance

in dispersed storage systems. In: Proc of FAST. San Jose, CA, USA

(February 2011)

Rivest, R.L.: All-or-nothing encryption and the package transform. In:

Proc. of FSE. Haifa, Israel (January 1997)

Shokrollahi, A.: Raptor codes. IEEE/ACM TON 6(3-4), 213-322 (May

2011)

Storj Labs Inc.: Storj: A decentralized cloud storage network framework.

Tech. rep., Storj Labs Inc. (2018)

Vorick, D., Champine, L.: Sia: Simple decentralized storage. Tech. rep.,

Nebulous Inc. (2014)

[10]
(1]

[12]

[13]

[14]

[15]
[16]
[17]

[18]

