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Summary

Selecting the right plan is a key issue when moving to the cloud. When multiple

applications need to be outsourced at the same time, the problem becomes more com-

plicated, and different challenges might need to be solved. In this paper, we address

this problem, characterize different outsourcing scenarios, and propose a brokerage-

based approach that, depending on the specific scenario, is able to compute one (or

more) ranking(s) over a set of candidate plans, based on how they satisfy the specific

application requirements. Our approach is able to combine application requirements

to determine a plan that is suitable for all applications, possibly taking into consider-

ation their importance (differentiating the impact that their requirements should have

in the selection process), and allows different stakeholders to express such impor-

tance through linguistic variables, hence simplifying their definition and capturing

the imprecision of human judgment.
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1 INTRODUCTION

The cloud is more and more becoming the reference paradigm for companies, public organizations, and private individuals for

deploying their applications, which can thus be made available to clients over the Internet, hence reducing the economic costs and

management burden as compared to a traditional in-house deployment. The cloud market features a multitude of different plans,

differing in their characteristics and offered services. When an application needs to be outsourced to the cloud, selecting the right

plan among those made available by providers is a key issue, and one plan is typically considered more suitable than another

if its characteristics better match the specific requirements of the application itself. For instance, a mission-critical application

would most likely need a highly performant cloud plan, while a secure plan would be the best choice for an application managing

sensitive data. It is then important to have models that capture and express application requirements, and techniques that assess

how much a candidate cloud plan can satisfy them [1, 2, 3, 4, 5, 6, 7].

Whenever moving to the cloud involves different applications, depending on the specific scenario, different challenges that

require appropriate solutions can arise. For instance, different applications can have different (and possibly contrasting) needs,

and a first question to be answered relates to how many plans the application owner(s) is (are) are willing to rely on: if each

application can be outsourced to a specific plan, then the selection process can operate on each application singularly taken, to

select the best plan for it. If, on the contrary, a single plan has to be selected for all applications, it is essential to properly combine

their requirements, to select a plan that is considered globally acceptable by all applications. Some preliminary efforts have

been made in this direction in [4], which however assumes that all applications to be outsourced are equally important, with the

consequence that the requirements of all the applications have the same impact on the cloud plan selection process. However, the

applications that need to be outsourced might differ, besides on their requirements, also on their perceived importance. In this
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case, it is essential to take application importance into consideration in the outsourcing process, to ensure that the requirements

of more important applications (e.g., a mission-critical application that needs to be up and running 24/7) have more impact on

the selection process than those of low-priority ones. The problem can be further complicated by the fact that the perceived

importance of an application is clearly subjective, and when different users can have a share in the outsourcing process, they

might have different opinions on how much an application (and hence its requirements) should be considered important. This can

be the case, for instance, when moving to the cloud is a strategic process for a company: in this case, different stakeholders might

rightfully intervene in the outsourcing process. It is then necessary to carefully consider the opinions of all the stakeholders, to

correctly estimate the relative importance of the different applications.

In this paper, we build on and extend the preliminary results in [4] to address the problem of outsourcing multiple applications

to the cloud. We propose a brokerage-based approach that, taking as input application requirements and a set of candidate cloud

plans, evaluates the degree to which each plan satisfies the application requirements and, based on such evaluation, returns to

the user a ranking (or a set thereof) of the candidate plans. Based on the computed ranking(s), the user can then select the most

suitable plan (or even a combination of plans) for moving to the cloud: the higher the position of a plan in the ranking, the better

the plan satisfies the application requirements. With respect to the proposal in [4], the approach we present in this paper aims at

addressing different challenges that can be entailed by different outsourcing scenarios, and nicely operates on well-established

techniques (e.g., multi-criteria decision making, consensus-based techniques, fuzzy numbers) that are properly combined, in a

modular way, depending on the challenges that need to be solved. The contribution of this paper is multi-fold. First, we identify

two main scenarios in which the general problem of outsourcing multiple applications can be instantiated, and provide a model

for representing cloud plans and application requirements. We consider the basic scenario in which each application can be

outsourced to a specific plan, and we extend this scenario towards the selection of single plan for the entire set of applications

to be outsourced. We then analyze situations in which applications can have different importance and such importance should

be reflected when ranking plans. We study the case in which the importance of the different applications is identified by a set of

stakeholders, who rate each application according to their perception. In this respect, we account for the fact that the opinions

of different stakeholders might have different relevance (e.g., to reflect their share in the outsourcing process), making some of

them more compelling than other ones. We let stakeholders specify their opinions with linguistic labels, to properly take into

consideration the imprecision and vagueness naturally implied by human reasoning.

The remainder of this paper is organized as follows. Section 2 discusses the problem addressed and identifies two possible

outsourcing scenarios. Section 3 presents our model for representing cloud plans and application requirements. Section 4 illus-

trates a solution for evaluating cloud plans for each application to be outsourced. Section 5 extends the solution in Section 4

to a global evaluation of the cloud plans for the entire set of applications, by possibly taking their importance into considera-

tion. Section 6 discusses how the importance of an application can be estimated, based on linguistic/fuzzy opinions of a set of

stakeholders. Section 7 discusses related work. Finally, Section 8 concludes the paper.

2 REFERENCE SCENARIO AND PROBLEM STATEMENT

The reference scenario of this paper is characterized by a user (or a set thereof) who manages a set � of applications, and who

wishes to outsource these applications to the cloud. In doing so, it is essential to take the specific requirements of the applications

to be outsourced into consideration in cloud plan selection: a mission/business critical application, for instance, would need

a performant plan with excellent levels of guaranteed availability, while an application treating sensitive information would

require a plan that enforces strong security mechanisms. Since the plans in the cloud market differ from one another in terms

of their characteristics (e.g., guaranteed availability, security mechanisms, performance), given a set � of candidate plans, our

problem requires to evaluate the application requirements with respect to the plans in �, to the aim of assessing how much their

characteristics ‘match’ the requirements of the applications in � (and hence, how much such plans are suitable for outsourcing).

To address the problem illustrated above, in this paper we propose a brokerage-based approach for ranking a set � of cloud

plans, based on how they satisfy the requirements of a set � of applications. The broker, acting as a proxy between the user and

the candidate plans, takes as input the applications’ requirements and the plans’ characteristics and, after matching requirements

to characteristics, returns to the user a ranking (or a set thereof, as will be explained in the following) of the plans in �, where

higher positions correspond to better satisfaction of the requirements.

Depending on the willingness of the user to manage multiple contracts with different providers, we can have two different

instantiations of the general cloud plan selection problem (resulting in two different outsourcing scenarios), differing in the
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FIGURE 1 Reference scenarios

number of rankings that are to be returned to the user. In particular, if the user is willing to select one plan (i.e., the best possible

solution) for each application in �, our problem requires to consider the requirements of each application singularly taken, and

to produce a (possibly different) ranking of the plans in � for each application. On the contrary, if the user is willing to rely on a

single plan (e.g., a plan that is highly acceptable by all applications globally considered), the different application requirements

should be balanced, and our problem requires to produce a single ranking of the plans in �. In this paper, we consider both the

possibilities, and hence we consider the following two scenarios, graphically illustrated in Figure 1.

• One plan for each application (Section 4). This is the simplest scenario, in which the applications in � can be considered

independently from one another. Given an application � ∈ � and the set � of candidate plans, the goal is to compute a

ranking among the plans in � based on how such plans satisfy the requirements of the single application. Clearly, if two

applications ��, �� ∈ � have different requirements, the rankings computed for �� will be different from that computed for

�� . The left-hand side of Figure 1 illustrates this scenario, where two rankings are returned to the user for two applications

that are moved to the cloud.

• One plan for all applications (Sections 5 and 6). While the first scenario is undoubtedly natural and can model many

real-world scenarios (e.g., when the complete satisfaction of the requirements of an application � is mandatory for �

to be outsourced), it inevitably causes a higher management overhead at the user side (e.g., due to the possible need to

manage different contracts, one for each selected provider/plan). In situations where this is not acceptable, the user might

be interested in relying on a single plan for outsourcing all the applications in �. Given the entire set � of applications

and the set � of candidate plans, the goal is to compute a ranking among the plans in � based on how such plans satisfy

the requirements of all applications in �. Indeed, since the requirements’ applications can be different (and possibly

contrasting), this approach requires to balance the satisfaction of the requirements of the different applications. The right-

hand side of Figure 1 illustrates this scenario, where only one ranking is returned to the user outsourcing two applications.

Both these scenarios have advantages and disadvantages. While the first ensures that all applications be outsourced to the

best possible plan, it can require the user to rely on and interact with multiple providers, with a possible management overhead.

The second scenario indeed reduces such overhead, at the price however of accommodating a trade-off on the satisfaction of the

requirements of the different applications, which can be further complicated whenever some applications in � are considered

more important than other ones. If this is the case, the requirements of more important applications should take precedence

over those of less important applications in the computation of the ranking. For instance, the requirements of business/mission
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�1 �2 �3 �4
Availability 0.40 0.50 0.90 0.40

Performance 0.50 0.60 0.97 0.30

Security 0.60 0.70 0.80 0.20

Costs 0.20 0.40 0.50 0.60

⋯ ⋯ ⋯ ⋯ ⋯
Backup 0.40 0.60 0.30 0.30

StorageSpace 0.50 0.30 0.40 0.30

MobileSupport 0.60 0.80 0.30 0.40

FIGURE 2 An example of rating vectors �1,… , �4 for four plans �1,… , �4

critical applications should be reflected more in the plan ranking than those of less important applications. Taking application

importance into consideration is a difficult task in itself since, being typically evaluated by human beings, the definition of

an importance level is intrinsically imprecise (as a matter of fact, human beings tend to reason with natural language, with

estimations such as ‘important’, ‘not very important’, and so on) and, whenever there are multiple stakeholders involved in the

decision process, can be subjective (meaning that different stakeholders might have different perceptions on the importance of

an application).

As overviewed in the discussion above, our problem entails different aspects and challenges that should be carefully taken

into account to ensure a fair selection process. In the following sections, we will present the working of our approach. For the

sake of readability, the remainder of this paper is organized according to the characterization of the scenarios illustrated above.

After illustrating our model for representing plans and requirements in Section 3, in Section 4 we will address the ‘one plan for

each application’ scenario, discussing how it is possible to rank a set of plans for a single application. We will then show, in

Sections 5 and 6, how multiple rankings for a set of applications can be reconciled to a single ranking, possibly taking application

importance into consideration. This organization nicely reflects the modular nature of our solutions, where the approach for a

simpler problem is used as a building block for a more complex one.

3 MODELING CLOUD PLANS AND REQUIREMENTS

In this paper, we are concerned with the problem of outsourcing a set � = {�1,… , ��} of applications and, to this end, of

ranking a set � = {�1,… , �	} of candidate cloud plans, based on how these plans satisfy the specific applications’ requirements

(Section 2). Since plans differ from one another in terms of their characteristics, which make one plan more suitable than another

for an application (e.g., a plan that does not offer strong security mechanism would not likely be a good fit for an application

managing sensitive data), we represent plans and requirements building on such characteristics, as illustrated in this section.

We consider the characteristics of candidate plans to be defined with respect to a set 
 = {�1,… , ��} of criteria that are

considered of interest for the set � of applications to be outsourced. For the sake of generality, we do not restrict the set of criteria

to assume pre-defined values, and we assume that 
 is derived from a common ontology shared with the cloud providers [1].

For instance, 
 can include criteria such as the guaranteed availability, the charged costs, and the security guaranteed by the

provider. Since plans in � differ in the characteristics of the offered services, each criterion �� ∈ 
 is rated according to the

degree to which it is “satisfied” by a plan �� ∈ �. Intuitively, this degree expresses how much the services offered by �� are

close to an ideal scenario that maximizes the satisfaction of �� (e.g., a cloud provider offering its services for free would have

the maximum rating for the Cost criterion). Without loss of generality, we express such rating with a value between 0 and 1,

where higher ratings represent better satisfaction of the criterion. Each plan �� is then associated with a rating vector, formally

defined as follows.

Definition 1 (Rating vector). Given a set � of candidate plans, a plan �� ∈ �, and a set 
 of criteria, the rating vector of �� is a

vector ��[1,… , |
|], where ��[�] represents the rating of �� for criterion ��, and 0 ≤ ��[�] ≤ 1.

For instance, a plan �� providing more than 10 synchronized replicas, sophisticated authentication mechanisms and encryption

algorithms, high CPU rates and network bandwidth, but applying expensive price lists, will have a high rating for security,

availability, and performance, and a low rating for cost. Figure 2 illustrates an example of four rating vectors �1,… , �4 for

plans �1,… , �4 respectively, over different criteria. For instance, �1 is rated lower for criterion Costs (�1[Costs] = 0.20) than

for criterion Security (�1[Security] = 0.60). We do not impose restrictions on the entity defining the ratings for plans. Such
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1
Availability 0.04

Performance 0.02

Security 0.04

Costs 0.90

2
Backup 0.30

StorageSpace 0.50

MobileSupport 0.20

FIGURE 3 An example of weight vectors 1, 2 for two applications �1 and �2 over different criteria

ratings could be defined, for example, by the broker (if assumed trusted, or verifiable for correctness of behaviour [8]), by a

trusted party, or by the user herself. Note that the user can also check, either herself or delegating the task to an external auditor,

the correctness of the ratings with respect to the plans characteristics, which are measurable or declared in SLAs.

The set 
 of criteria is defined considering all the requirements of all the applications in �. Indeed, not all criteria in 
 may

be relevant to all applications in �. We denote with 
� ⊆ 
 the set of criteria relevant to application �� ∈ �. For instance, with

reference to our running example, the set 
1 of criteria relevant to �1 is 
1 = {Availability, Performance, Security, Cost}, and

the set 
2 of criteria relevant to �2 is 
2 = {Backup, StorageSpace, MobileSupport}. Also, considering an application �� with

its set 
� of relevant criteria, not all criteria �� ∈ 
� can be assumed to be equally relevant to ��. For instance, �1 might value

Security more than Availability.

A natural way to express the requirements of an application �� ∈ � consists in associating a weight to each criterion in 
�.

In fact, this permits to model applications with a different (and possibly disjoint) set of relevant criteria, with different relevance

for different criteria. Considering an application ��, the relevance of each criterion �� ∈ 
� is modeled by associating �� with

a weight, where higher weights model higher relevance of the criterion for ��. Formally, the requirements of an application

�� are modeled as a weight vector, as follows (to enable comparison among the weights, we assume the weight vectors to be

normalized).

Definition 2 (Weight vector). Given a set � of applications, an application �� ∈ �, and a set 
� of criteria relevant for ��, the

weight vector of �� is a vector �[1,… , |
�|], where �[�] represents the weight (i.e., the relative relevance) of criterion �� for

��, and
∑|
�|

�=1 �[�]=1, � = 1,… , �.

Figure 3 illustrates two examples of weight vectors for two applications, �1 and �2. The weight vector 1 =
[0.04, 0.02, 0.04, 0.90] of application �1 states that Availability and Security have the same relative importance (0.04 each),

which is slightly higher than the importance of Performance (0.02), but largely smaller than the importance of Costs (0.90).

Like for rating vectors, we do not impose restrictions on the party in charge of defining weight vectors. Indeed, weights repre-

sent the requirements of the applications, and as such reflect the characteristics of the applications themselves. They can then be

defined by the user, or by trusted stakeholders in general (i.e., entities having a share in the outsourcing process) who know the

applications to be outsourced and are skilled enough to describe the requirements of applications in detail (e.g., their developers).

As illustrated in the remainder of this paper, weight vectors and rating vectors will be compared to rank applications. Their

comparability is guaranteed by the fact that they are defined over criteria that are taken from a common ontology shared between

users and cloud providers. More precisely, each criterion included in a weight vector for an application must also be included

in the rating vectors of the cloud plans (which translates to the natural observation that plans must be rated for all criteria over

which a requirement is defined).

4 PLAN RANKING FOR AN APPLICATION

Given a set � of applications, a set � of plans, a weight vector � for each application �� ∈ � (Definition 2) modeling its

requirements, and a rating vector �� for each plan �� ∈ � (Definition 1) modeling its criteria ratings, we aim at producing, for

each application �� ∈ �, a ranking of the plans in � based on how the plans satisfy the requirements of �� (i.e., on how they

compare with vector �). To this purpose, a natural solution is to adopt traditional multi-criteria decision making (MCDM)

techniques, as they effectively identify, in a pool of alternative solutions (plans in � in our scenario), the one that optimizes

a set of objective functions (i.e., application requirements in our terminology). Among several existing MCDM techniques,

a possible approach relies on adopting TOPSIS [9] as it showed to provide good results when applied to cloud scenarios,

traditionally characterized by many alternatives compared to the number of criteria [10]. For simplicity, in the following, we
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�1 �2 �3 �4
Availability 0.40 0.50 0.90 0.40

Performance 0.50 0.60 0.97 0.30

Security 0.60 0.70 0.80 0.20

Costs 0.20 0.40 0.50 0.60

FIGURE 4 Decision matrix ℝ1 for application �1 given the rating vectors in Figure 2 and the weight vectors in Figure 3

refer our discussion to one application only (��), with the note that the process described is executed for each application in �.

In this section, we illustrate how TOPSIS can be effectively used for computing a ranking for a single application ��.

The key insight of TOPSIS relies on evaluating how far the possible solutions are from the so-called ideal and anti-ideal
solutions: intuitively, the ideal (anti-ideal, resp.) solution is a (possibly non-existing) solution that satisfies all the criteria in the

best (worst, resp.) possible way. TOPSIS then uses such distances to rank the solutions, ranking higher those that are closer to

the ideal solution, and farthest from the anti-ideal one. In our framing of the problem, applying TOPSIS for computing a ranking

for application �� requires to evaluate how much each plan in � is far from an ideal plan �+
�

and an anti-ideal plan �−
�

(note that,

indeed, these plans might not belong to �), defined in terms of the satisfaction of the requirements of ��. For each application

in �, TOPSIS operates in three steps: i) it first computes a weighted decision matrix, based on weights and ratings (Defintions 1

and 2); ii) it identifies the ideal and anti-ideal plans; and iii) finally, it ranks the plans based on their distance from the ideal and

anti-ideal ones. In the remainder of this section, we illustrate more in details the working of TOPSIS in our scenario.

• Weighted decision matrix. To determine the weighted decision matrix for each application ��, TOPSIS uses a decision
matrix ℝ�, with a row for each criterion � ∈ 
� and a column for each plan � ∈ � . Basically, the decision matrix for

application �� is composed of the rating vectors � (restricted to the criteria 
� relevant to ��): each cell ℝ�[�][�] in the

decision matrix represents the rating ��[�] assigned to plan �� ∈ � , for criteria �� ∈ 
�. Figure 4 illustrates the decision

matrix for �1, obtained from the rating vectors in Figure 2 restricted to the first four criteria (i.e., those relevant for �1,

Figure 3). The original TOPSIS proposal normalizes the decision matrix, to guarantee that values in different cells can be

compared. Since the rating values assigned to plans are already a-dimensional values between 0 and 1, in our scenario, it

is not necessary to normalize the decision matrix ℝ�.

To properly take into consideration the importance of the different criteria in 
� for the considered application �� (i.e., its

requirements), the decision matrix ℝ� is combined with vector � (i.e., with the weights assigned to each criterion). Each

cell in the weighted decision matrix �� for application �� is then computed as the product ��[�][�] = ℝ�[�][�] ⋅ �[�]
of the rating obtained by plan �� for criterion ��, and the weight of criterion �� for application ��. Figure 5(a) illustrates

the weighted decision matrix for application �1 of our running example. For instance, �1[Availability][�1] is obtained as

ℝ1[Availability][�1]⋅1[Availability]=0.4 ⋅ 0.04=0.016. Note that the weighted decision matrix permits to identify, for

each criterion �� singularly taken, the best and the worst plan, which correspond to the highest and lowest values in the

row representing ��. As an example, the best plan w.r.t. the Security criterion for application �1 is �3, while the worst is �4.

• Ideal and anti-ideal solutions. Based on the weighted decision matrix ��, TOPSIS is able to identify both the ideal

and the anti-ideal solutions �+
�

and �−
�

for application ��. For the ideal solution �+
�

, the weighted rating for criterion ��

(denoted �+
�
[�]) is the maximum weighted rating obtained by a plan in � for �� (i.e., �+

�
[�]=max{��[�][�] ∶ �� ∈ �}). For

instance, the ideal solution for application �1, considering the weighted decision matrix in Figure 5(a), has weighted ratings

�+
1 =[0.036, 0.019, 0.032, 0.540]. Similarly, for the anti-ideal solution �−

�
, the weighted rating for criterion �� (denoted

�−
�
[�]) is the minimum weighted rating obtained by a plan in � for �� (i.e., �+

�
[�]=min{��[�][�] ∶ �� ∈ �}). For instance,

the anti-ideal solution for application �1, considering the weighted decision matrix in Figure 5(a), has weighted ratings

�−
1 =[0.016, 0.006, 0.008, 0.180].

• Ranking. To produce a ranking, TOPSIS computes the Euclidean distance of each plan �� ∈ � from the ideal �+
�

and

anti-ideal �−
�

solution in a |
�|-dimensional space. Then, it computes the relative closeness of each plan �� to the ideal

solutions as
dist−

�

dist+
�
+dist−

�

, where dist+
�

and dist−
�

are the distance of �� from �+
�

and �−
�

, respectively (where such closeness

values are maintained in a score vector ��) as in Figure 5(b). Intuitively, the higher the closeness of a plan, the better

the plan satisfies the requirements. For instance, the relative closeness values of the plans in � to �+1 for application �1
considering the weighted decision matrix in Figure 5(a), is �1=[0.044, 0.500, 0.751, 0.914], as illustrated in Figure 5(b).

Then, TOPSIS produces a ranking of the plans for application �� by ordering them in decreasing order of ��.



Arman ET AL 7

Weighted decision matrix Ideal solutions

�1 �2 �3 �4 �+1 �−1
Availability 0.016 0.020 0.036 0.016 0.036 0.016

Performance 0.010 0.012 0.019 0.006 0.019 0.006

Security 0.024 0.028 0.032 0.008 0.032 0.008

Costs 0.180 0.360 0.450 0.540 0.540 0.180

(a)

Distance from ideal solutions

����+
�

0.361 0.181 0.090 0.034

����−
�

0.016 0.181 0.272 0.360

�1 0.044 0.500 0.751 0.914

(b)

FIGURE 5 Weighted decision matrix �1 and ideal solution �+1 and anti-ideal solution �−1 (a), and distances dist+
�

and dist−
�

of

each plan �� from �+1 and �−1 and relative closeness �1 of each plan to the ideal solutions for application �1 (b)

�1 �2 �3 �4
1◦ �4 �1 �4 �1
2◦ �3 �2 �3 �2
3◦ �2 �3 �2 �4
4◦ �1 �4 �1 �3

FIGURE 6 An example of ranking of a set {�1,… , �4} of plans by a set � = {�1,… , �4} of applications (best plan ranked first)

Through the consideration of ideal solutions, TOPSIS is then able to rank the candidate plans in � considering the requirements

of an application �� to be outsourced. For instance, with reference to our running example, the ratings in Figure 2, and the

weights in Figure 3, the ranking of plans produced by TOPSIS for application �1 is ⟨�4, �3, �2, �1⟩.
The process we have illustrated in this section is executed for each application in � by the broker, which will then return to

the user a set of |�| rankings. The user can then evaluate, for each application ��, where to rely for outsourcing, taking into

consideration how much the requirements of � are satisfied by the plans. Figure 6 illustrates the rankings computed by TOPSIS

for applications �1 and �2 in Figure 3, together with an example of the rankings for two additional applications �3 and �4.

5 RECONCILING MULTIPLE RANKINGS

In the previous section, we have illustrated how it is possible to rank the candidate plans in � by considering each application in

� independently from the other ones. Intuitively, due to the heterogeneity of the requirements of the applications in � on one

hand, and of the cloud plans on the other, the rankings computed for the different applications in � can be quite different (see,

for instance, the rankings in Figure 6). The solution needs then to be adjusted whenever all applications need to be outsourced

with a single plan (second scenario in Section 2), to the aim of reconciling the different rankings produced for the different

applications. Given a set of rankings, a simple solution would choose the plan that better satisfies the majority of the applications

in �. However, such a trivial approach would cause several drawbacks and complications: for instance, a clear ‘winner’ might

not exist (see, for instance, the rankings in Figure 6, where plan �1 is ranked first by two applications out of four, and the same

occurs for plan �4). Also, it might leave some applications completely unsatisfied: as an extreme example, consider a situation

in which all applications but one (say, �) select the same plan �� as the first, and the same �� as the last in the ranking, while �

evaluates �� first and �� last. Such an approach would clearly select �� as the best plan, thus leaving the requirement of � totally

unsatisfied. To prevent similar situations, we propose to adopt a consensus-based approach, aiming at choosing the plan that

best balances the requirements of all the applications in �, allowing thus for determining a solution providing a good trade-off

in requirement satisfaction.

To this end, while noting that there are different approaches that can be applied (e.g., [11], [12]), we consider - as an example

- the Borda count method [13], which operates as follows [4]:

i) each application �� associates a score ��(��) with each plan �� , computed as |�| − �, with � the number of plans that are

ranked higher than �� (then, the first ranked plan will be assigned |�| points, and the last ranked plan will be assigned 1
point);
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�(�)
�1 �2 �3 �4 �(�)

�1 1 4 1 4 10

�2 2 3 2 3 10

�3 3 2 3 1 9

�4 4 1 4 2 11 ✓

FIGURE 7 Borda scores for the plans in Figure 2 given the rankings in Figure 6

�(�)
�1 0.24
�2 0.87
�3 0.62
�4 0.72

��(�)
�1 �2 �3 �4 ��(�)

�1 0.24 3.48 0.62 2.88 7.22 ✓
�2 0.48 2.61 1.24 2.16 6.49

�3 0.72 1.74 1.86 0.72 5.04

�4 0.96 0.87 2.48 1.44 5.75

(a) (b)

FIGURE 8 An example of importance values for the applications in Figure 2 (a) and weighted Borda scores for the plans in

Figure 2 (b) given the rankings in Figure 6

ii) the overall Borda score �(��) of plan �� is computed summing all the scores assigned to it by all the applications (i.e.,

�(��) =
∑|�|

�=1 ��(��)).

Cloud plans with higher Borda scores have more consensus among all applications and, as a result, better balance the satis-

faction of their requirements. For this reason, the broker can return to the user a single ranking, computed by encompassing all

the requirements of the applications, built on the overall Borda scores of the plans. As an example, Figure 7 illustrates the Borda

scores assigned by each application to each plan, and the overall score of each plan: it is easy to see that the final ranking to be

returned to the user orders plans as ⟨�4, {�1, �2}, �3⟩, where �1 and �2 are both in the second position sharing the same Borda

score (and hence can be regarded as equivalent from the global point of view of requirement satisfaction).

The application of the traditional Borda count method to our scenario implicitly considers all applications as ‘equivalent’

(i.e., all applications have the same share in giving points to the plans). However, as discussed in Section 2, in many real-

world scenarios, some applications might be considered ‘more important’ than other ones, with the clear consequence that

the satisfaction of their requirements should be considered more than that of ‘less important’ applications. We address these

scenarios by allowing the applications’ owners to specify an importance level for each application. Without loss of generality,

we assume such importance levels to be defined through a function � ∶ � → [0, 1] assigning to each application � ∈ � a value

�(�) in the interval [0, 1], where �(��) > �(��) iff �� is more important than �� (i.e., higher values model higher importance).

Figure 8(a) illustrates an example of importance levels for the four applications in Figure 2 (we will discuss an approach for

defining such values in Section 6). In this example, �2 is more important than �4, which is more important than �3, which in

turn is more important than �1.

The Borda count approach illustrated at the beginning of this section can be nicely extended to take application importance into

consideration, with the note that any weighted rank aggregation technique would also do. The weighted version of Borda count

technique operates in a similar way as its traditional (unweighted) version, but it considers the importance�(�) of each application

�∈� in the computation of the Borda scores of the considered plans, which are then computed as ��
�
(��) = �(��) ⋅ �(��). The

overall weighted Borda score ��(��) of a plan �� is then the sum of such weighted scores, that is, ��(��) =
∑|�|

�=1 ��
�
(��). For

instance, �1(�3) = 3, since application �1 ranks plan �3 second over a total of 4 plans. The corresponding weighted score ��
1(�3)

is equal to �(�1) ⋅ �1(�3) = 0.24 ⋅ 3 = 0.72. Figure 8(b) illustrates the overall weighted Borda scores for the plans in Figure 2,

given the plan rankings in Figure 6 and the application importance in Figure 8(a). It is interesting to note that, while according

to unweighted Borda count in Figure 7, the best plan is �4 (and this comes with no much surprise, as it is ranked first by two

applications and, in the overall computation, it is the most broadly acceptable), taking application importance into consideration

modifies the result and �1 is selected as the best plan. While considering all applications equally important the overall ranking

was ⟨�4, {�1, �2}, �3⟩, the ranking computed considering different application importance levels is ⟨�1, �2, �4, �3⟩.
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linguistic triangular

label number

low (0, 0, 0.4)
medium (0, 0.5, 1)

high (0.6, 1, 1)
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FIGURE 9 An example of linguistic labels and their triangular numbers (a), and of their graphical representation with triangular

functions (b)

6 DERIVING APPLICATION IMPORTANCE

The approach for reconciling multiple rankings considering applications’ importance (Section 5) assumes that the importance

of the different applications in � be expressed as a single numerical (crisp) value, in our examples taken from the range [0, 1].
However, in real-world scenarios there might be multiple subjects that can have a share in the definition of the importance

levels (which are intrinsically subjective), and/or the assessment can be subject to a certain degree of uncertainty/fuzziness. The

assumption above is therefore too simplistic. In this section, we illustrate how the importance levels adopted in Section 5 can

be derived from subjective and imprecise opinions expressed by a set of individuals. For simplicity, we refer to such individuals

as a set � = {�1,… , ��} of stakeholders, that can include application developers, customers, investors, final stakeholders, and

more in general any subject who can have a share in the process and wishes to contribute to it.

6.1 Expressing subjective importance
The consideration of multiple stakeholders clearly complicates our scenario, since the importance of an application is often

subjective, and each stakeholder in � may associate a different importance with the same application, depending on her point

of view. For instance, the legal representative of the company will probably consider applications running financial analysis

over the company’s income to be more important than applications used to prepare advertisement flyers, which might be instead

considered vital for the marketing office.

Selecting a single crisp value to model the importance of an application implicitly assumes that stakeholders are absolutely

certain of their assessments (as crisp values leave no space for imprecision/flexibility) and agree on a common value. This,

in turn, implicitly requires that all stakeholders have deep (technological) knowledge and understanding of all applications.

Since we consider a possibly heterogeneous set of stakeholders, and human judgments intrinsically entail a certain degree

of imprecision, we allow stakeholders to specify their opinions on the importance of applications with a certain degree of

imprecision through fuzzy numbers [14]. A fuzzy number is a generalization of a (traditional) crisp real value, and includes a

set of admissible values each with a degree of compatibility with the number itself. Among the several existing fuzzy numbers,

in this paper we consider triangular numbers due to their intuitiveness. We note, however, that our approach can be easily

adapted to use other fuzzy numbers. A triangular number is a triplet (�, �, � ) with � the lowest value, � the most promising

value, and � the upper value (� ≤ � ≤ � ). In our scenario, assigning a triangular number (�, �, � ), with �, �, � ∈
{0,… , 1}, as the importance of an application �� models the fact that the stakeholder considers �� important with a value in the

interval [�, � ], with � the most promising value (i.e., it is the stakeholders’ best guess). A triangular number (�, �, � ) can

be graphically represented as a triangular function, delimited by the values �, �, � . To help stakeholders in using them, we

associate triangular numbers with linguistic labels, taken from an ontology including labels such as ���,����	�, and 
��
 and

defined by experienced stakeholders or by trusted subjects. Figure 9(a) illustrates three triangular numbers and their linguistic

labels, graphically illustrated as triangular functions in Figure 9(b).

For each application ��∈�, each stakeholder �ℎ∈� expresses how much she feels that application �� is important by associ-

ating with it a linguistic label. Each application �� is then associated with an importance vector Λ�[1,… , �], where Λ�[ℎ] is the

importance assigned by stakeholder �ℎ to application ��. Figure 10(a) illustrates an example of the importance vectors for the
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�1 �2 �3
�1 low medium low
�2 high high high
�3 high medium low
�4 high high low

(a)

�(�1) = 0.5
�(�2) = 0.3
�(�3) = 0.2

(b)

FIGURE 10 An example of importance vectors for the applications in Figure 2, given by a set � = {�1, �2, �3} of stakeholders

(a), and relevance of the stakeholders in � (b)

�1 �2 �3
�1 (0, 0, 0.4) (0, 0.5, 1) (0, 0, 0.4)
�2 (0.6, 1, 1) (0.6, 1, 1) (0.6, 1, 1)
�3 (0.6, 1, 1) (0, 0.5, 1) (0, 0, 0.4)
�4 (0.6, 1, 1) (0.6, 1, 1) (0, 0, 0.4)

FIGURE 11 Fuzzy importance vectors representing the importance vectors in Figure 10(a) according to the triangular numbers

in Figure 9

applications in Figure 2, given by a set � = {�1, �2, �3} of three stakeholders. For instance, �1 is considered of low importance

by stakeholders �1 and �3, and of medium importance by stakeholder �2.

To obtain the overall importance �(��) of application ��, it is then necessary to properly combine the different opinions

expressed by the stakeholders in Λ�. However, not all stakeholders might be equally important in the outsourcing process. For

instance, we can expect the opinion of application owners/developers, who have a clear technical understanding of the applica-

tions, to be considered more relevant than the opinion of application customers who, while having indeed interest, might not

have a precise knowledge of the applications and cloud market. We account for this possibility by modeling the relevance of the

opinion of each stakeholder �ℎ in � with a stakeholder relevance �(�ℎ), which is a numerical value between 0 and 1. Such a rele-

vance could be defined by a trusted third party overseeing the entire plan selection and outsourcing process, or collaboratively by

the stakeholders themselves, if considered trustworthy. Note that we do not use fuzzy numbers or linguistic labels for relevance,

because they should precisely reflect the interests at stake of each stakeholder, and hence a precise assessment (which avoids

imprecision and vagueness) is needed. Figure 10(b) illustrates the relevance of the three stakeholders in our running example.

Given a set � of applications (each with its importance vector Λ) managed by a set � of stakeholders (each with her relevance

�(�)), our problem requires then to compute an estimation of the real importance �(�1),… , �(��) of the applications in �,

considering the opinions of all stakeholders in � (i.e., the importance vectors of the applications) as well as stakeholder relevance.

6.2 Crisp application importance
Our approach for estimating a crisp importance value for each application operates in two steps: i) aggregate the opinions of the

different stakeholders, weighted by their relevance; and ii) translate such aggregated value into a crisp number in the interval

[0, 1], as follows.

• Aggregated importance. Since aggregation of values usually operates on numerical values, to combine the importance

assigned by stakeholders to applications we first translate linguistic labels into the corresponding triangular numbers.

Figure 11 illustrates the importance vectors in Figure 10 where labels have been substituted with the corresponding trian-

gular numbers according to Figure 9(a). We refer to an importance vector with labels translated into triangular numbers

as a fuzzy importance vector, denoted Λ̃.

Given a set of triangular numbers, there are several techniques for aggregating them to obtain a single value that is repre-

sentative of the input set. Among these approaches, we adopt the Weighted Triangular Average (WTA), which computes

the weighted average among a set of weighted triangular numbers, due to its clear and natural semantics. We note that

other solutions could also be used (e.g., consider the highest value assigned to each application, or the value assigned by

the most important stakeholder). Given an application �� with fuzzy importance vector Λ̃�, we use the WTA to compute

a weighted average among the importance values assigned by the stakeholders to ��, taking their relevance into account.

The aggregated importance �̃(��) of �� is then computed as:
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�̃(�)
�1 (0, 0.15, 0.58)
�2 (0.6, 1, 1)
�3 (0.3, 0.65, 0.88)
�4 (0.48, 0.8, 0.88)

(a)

�(�)
�1 0.24
�2 0.87
�3 0.62
�4 0.72

(b)

FIGURE 12 Aggregated importance �̃ (a) and real importance � (b) of applications �1,… , �4 derived from the fuzzy importance

vectors in Figure 11

�̃(��) =
∑|�|

ℎ=1 Λ̃�[ℎ] ⋅ �(�ℎ)
∑|�|

ℎ=1 �(�ℎ)

that is, weighting the triangular numbers expressing the importance given by each stakeholder (i.e., Λ̃�[ℎ]) by her relevance

(i.e., �(�ℎ)), and averaging the result. The weighted importance �̃(��) is still a triangular number since: multiplying a

triangular number (�, �, � ) by a real number � produces a triangular number (� ⋅ �, � ⋅ �, � ⋅ � ), and summing two

triangular numbers (�1, �1, �1) and (�2, �2, �2) still produces a triangular number (�1 +�2, �1 +�2, �1 +�2). Also,

dividing a triangular number (�, �, � ) by a real number � still produces a triangular number (�

�
,

�

�
,

�

�
). Figure 12(a)

illustrates the aggregated importances �̃(�) for the applications in our running example, given the fuzzy importance vectors

in Figure 11 and the stakeholder relevance in Figure 10(b). For instance, �̃(�1) is computed as:

�̃(�1) =
(�(�1) ⋅ Λ̃1[1]) + (�(�2) ⋅ Λ̃2[2]) + (�(�3) ⋅ Λ̃3[3])

�(�1) + �(�2) + �(�3)
=

= (0.5 ⋅ (0, 0, 0.4)) + (0.3 ⋅ (0, 0.5, 1)) + (0.2 ⋅ (0, 0, 0.4))
0.5 + 0.3 + 0.2

=

= (0, 0.15, 0.58)

• Real importance. Given a single triangular number �̃(��) expressing, in an aggregated way, the opinion of all the stake-

holders on the perceived importance of an application ��∈�, we transform �̃(��) into a crisp number. The consideration

of fuzzy numbers nicely helps us in this task. Indeed, any defuzzification method transforms a fuzzy number into a single

crisp value that is a good crisp representation of the fuzzy number. Figure 12(b) illustrates the real importances �(��) for

the applications in our running example, obtained by defuzzifying the aggregated importances �̃(��) in Figure 12(a) with

the well-known Center-of-Area defuzzification method (which outputs the �-coordinate of the centroid of the triangular

area identified by the fuzzy number to be defuzzified). For instance, the real importance of application �1 is �(�1) = 0.24,

which is the centroid of the triangular area delimited by triangular number �̃(�1) = (0, 0.15, 0.58).

Figure 12(b) illustrates the real importance for the four applications �1,… , �4 of our running example, estimated over the

linguistic importance levels and stakeholders’ relevance in Figure 10. Note that these values are the values that have been used

for computing the weighted ranking illustrated in Section 5.

7 RELATED WORK

The scientific community has recently investigated different issues related to the problem of selecting and/or ranking cloud

providers/services (e.g., [15]). The line of work closest to ours provides support for expressing and considering arbitrary user

requirements in cloud plan selection. The work we presented in this paper builds on the preliminary findings in [4], which

started investigating the problem of accommodating contrasting requirements coming from multiple applications. However, the

proposal in [4] explicitly assumes that all applications to be outsourced are equally important, while here we manage application

importance and present an approach for deriving such importance given a set of linguistic/fuzzy expressions. The use of fuzzy

requirements and/or fuzzy logic has been investigated in cloud plan selection (e.g., [16, 17, 18, 19]). Our work differs from

the approach in [16] since this latter explicitly focuses on storage plan selection. In [17], the authors propose a fuzzy-based
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approach for cloud service composition, while we aim at ranking a set of plans and do not compose resources from different

providers. Our work differs also form the approaches in [18, 19], which also adopt MCDM and fuzzy techniques, but do not

address the problem of reconciling multiple rankings taking into consideration application importance. MCDM techniques have

also been investigated in [10], which however pursues the goal of comparing possible techniques to select the best cloud service

based on performance measurements. While related, all these solutions differ from our work, which aims at providing a single

brokerage-based solution, exploitable in different outsourcing scenarios, that incrementally addresses the different challenges

that the considered scenarios can entail.

Another related line of works deals with the problem of supporting users in specifying requirements and preferences for cloud

plan selection. The approach in [1] proposes a language for expressing user requirements and preferences, a formal model for

reasoning on them, and different strategies for ranking acceptable services. The solution in [20] proposes a fuzzy-based brokerage

system for cloud plan selection able to reason on linguistic user requirements, and to assess a candidate plan through fuzzy

inferences. These works differ from ours as they do not consider the problem of reconciling contrasting requirements coming

from multiple applications. The solution in [3, 21] focuses instead on the definition of an SLA between providers and customers

based on customers’ needs and satisfying possible dependencies enabled by them. The authors of [22] propose a solution for

allocating virtual machines to cloud providers satisfying, at the same time, users’ and providers’ requirements, while we aim at

ranking a set of candidate cloud plans.

Our work can also resemble approaches that deal with the problem of cloud provider/service assessment. The proposal in [23],

while sharing with us the goal of ranking a set of cloud plans, focuses on pre-defined KPIs and does not address the issues

entailed by the different outsourcing scenarios that we consider. Similarly, the approach in [24] operates on a set of pre-defined

metrics. The solution in [25] deals with the problem of estimating the risk of interactions with a set of providers based on their

trustworthiness and SLA transparency. In [26], the authors present a framework consisting of a broker in charge of selecting

resources from different providers. All these proposals address a problem different from ours.

8 CONCLUSIONS

We addressed the problem of selecting the most suitable cloud plan when different applications need to be outsourced. We have

first characterized two outsourcing scenarios and the challenges they entail. We have then proposed a brokerage-based approach

that, based on the specific outsourcing scenario and its challenges, produces a ranking (or a set thereof) computed over a set

of candidate cloud plans, based on how they satisfy the requirements of different applications. The proposed approach is able

to consider the fact that different applications may have different importance to the eyes of the stakeholders overseeing the

outsourcing process, hence differentiating the impact that their preferences should have in the selection process. To capture the

natural imprecision implied by human reasoning, our approach allows stakeholders to specify applications importance using

linguistic labels. Our solution also permits to take into consideration the stakeholders’ relevance, when combining their opinions

on applications importance.
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