An XML-based Approach to Combine Firewalls and
Web Services Security Specifications

Marco Cremonini
cremonini@ @dti.unimi.it

Sabrina De Capitani di Vimercati
decapita@dti.unimi.it

Ernesto Damiani
damiani@dti.unimi.it

Pierangela Samarati
samarati@dti.unimi.it

Dipartimento di Tecnologie dell'Informazione
Universita di Milano
26013 Crema - Italy

ABSTRACT

The Web Services Architecture (WSA) defines a compre-
hensive model for service-oriented interactions among end-
points over a private network or the Internet. Since the
many opportunities for better interacting services and the
provision of richer functionality, crossing the boundary of
organizations many standard proposals addressing different
aspects of such interaction model are appearing. In this pa-
per, we analyze the security requirements of the WSA and
observe that the security model currently developed is not
sufficient. In particular, we claim that many aspects related
to network security and the integration of firewalls into the
WSA have been underestimated. We show with different
examples the usefulness of a semantics-aware firewall oper-
ating both at SOAP level and at lower network-based layers.
We analyze, under this perspective, the impact on security
that recently proposed stateful SOAP-based protocols could
have, and describe how asynchronous protocols could pose
high security risks on both service providers and service re-
questers. This drives us to the conclusion that, if security is
an enabling factor for the success of Web service technolo-
gies, then perimetral security and firewall technology should
be both fully supported into the WSA and improved to sat-
isfy the requirements of the service-oriented interaction.

Categories and Subject Descriptors

K.6.5 [Management of Computing and Information

Systems]: Security and Protection; C.2.6 [Computer Com-
munication Networks]: Internetworking; D.4.6 [Operating

Systems]: Security and Protection

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

ACM Workshop on XML Security, October 31, 2003, Fairfax VA, USA.
Copyright 2003 ACM 1-58113-777-X/03/0010 ...$5.00.

General Terms

Security

Keywords

Web Services, SOAP, firewall, network security, service se-
curity

1. INTRODUCTION

The Web Services Architecture (WSA) [3] identifies the
architecture’s essential functional blocks and their interrela-
tionships, and endorses the fundamental technologies (SOAP
[15] and WSDL [5]) required to claim WSA-conformance. A
Web service, as defined in the WSA| is a software system
identified by a URI, whose public interfaces are defined and
described using XML. Interactions with other systems are
performed according to the Web service definition and using
XML messages conveyed by Internet protocols. The WSA
assumes the existence of a global network of Web services
and specifies how this service network could interoperate in
a reliable, manageable and secure manner, how it scales up,
and how it could be extended and integrated with the World
Wide Web.

The WSA represents a particular instance of the more
general class of Service-Oriented Architectures (SOA). A
SOA is a distributed system in which the interacting entities
are services. A service is a software component providing for
some well-defined functions that could be invoked through
a network-addressable interface by means of standard pro-
tocols and data formats. Given this, one basic difference
between the WSA and the WWW is that in the former mes-
sages are exchanged between Web services for the purpose of
requesting and provisioning services [3], while in the latter
messages are targeted on exchanging information.

As far as Internet protocols are concerned, Web services
growing success hints to a scenario where HT'TP, with its se-
cure variant HTTPS, is the only general-purpose application
protocol used for a variety of services.

Security is a core feature virtually spanning at all lev-
els of the WSA, from HTTP communication to top-most
features like discovery, aggregation, and choreography. Up
to now, proposals are under development by both industry

and academia [7, 8, 9, 10] and standards are emerging (e.g.,
WS-Security [1], XACML [12], and SAML [14]).

However, despite all efforts toward securing Web services,
security concerns are still reported to be one of the strongest
reason for delaying the adoption of this technology among
companies and negative comments frequently comes from
the security community pointing out the adverse effects that
Web services will have upon the protection of companies’ IT
assets.

Our opinion and the rationale of this paper is that to ex-
plain these conflicts it is not sufficient to recall the generic
tension between security and functionality, because in this
case we have on the one side the WSA integrated with ex-
cellent standards for securing services and messages, and on
the other side the network security community strongly ar-
gumenting against it. To tackle the problem of building a
secure WSA then, we should analyze the WSA augmented
with service-oriented security measures on the one side and
the network security on the other side, which currently re-
sults in a clash of two opposite visions. We will then discuss
the role of firewalls in the WSA, and how firewalls could
evolve to meet the characteristics of the WSA as well as at
which degree the WSA is now supporting the requirements
of an effective perimetral security.

Our underlying assumptions are that a weakened perime-
tral security will result in a net loss of security for the whole
WSA and that an integration of the WSA with the network
security is both worthwhile and possible. However, the de-
bate on these issues is still at a preliminary stage: while
enterprises have quickly come to realize the importance of
securing XML, they are only beginning to understand the
many operating issues involved in implementing XML secu-
rity at the single service and at the perimetral level and the
corresponding costs.

The paper is structured as follows: Section 2 discusses
the different visions about security measures currently de-
veloped for the WSA and for network security. Section 3
presents our proposal for an integrated model combining
Web Services and firewalls security. Section 4 analyzes state-
ful SOAP protocols and discusses how such protocols could
be managed. In particular, for the asynchronous mode, the
serious security risks that these protocols might pose are an-
alyzed. Section 5 analyzes some traditional security issues
applied to the WSA showing possible solutions to mitigate
the adverse effects. Finally, Section 6 draws our conclusions
and sketches our plans for future works.

2. SERVICE-ORIENTED SECURITY VS.NET-

WORK SECURITY

One explicitly mentioned design benefit of WSA is that
tunneling remote procedure calls and corresponding responses
through general purpose HTTP connections,’ instead of sup-
porting them with specific application protocols, greatly im-
proves the interoperability of the system. This has driven
the development of a specific security model that we call
Service-Oriented Security model. A Service-Oriented Secu-
rity model fits well into a Service-Oriented Architecture like
WSA, where the global system is seen as a network of end-

!The WSA, as well as SOAP, is not protocol specific, al-
though the bindings with HTTP is highlighted. Here we em-
phasize this binding assuming that it will be the one adopted
in the majority of cases.

points requesting or providing services each one according
to its own definition. Within this model, the security fea-
tures are focused on: (i) protecting messages in transit on
network links between endpoints and (43) regulating the in-
teraction with endpoints according to their definition. The
security technologies provided in the WSA are perfectly co-
herent with this model: (%) message delivery through the
public network is accomplished by signing and encrypting
messages to guarantee their integrity and confidentiality [1],
and by sequencing messages using message IDs to avoid re-
play attacks [2, 4]; (i) the access to endpoints’ services is
based on authorization engines that enforce access control
policies.

In the WSA the presence of intermediaries between each
pair of communicating endpoints is considered for reasons
like routing, reliability, or security. In particular, when the
reason is security, an intermediary can be a trusted third
party for handling policies that cannot be disclosed, an au-
thorization engine that checks security assertions (e.g., cre-
dentials), or a firewall. This latter case is peculiar since
it is the only one for which specifications and models lack
completely in the WSA.

The reason for this anomaly, in our opinion, is that fire-
walling techniques do not fit well into the WSA and clash
with the Service-Oriented Security model. This different
and conflicting vision is well exemplified by the so-called
firewall traversal problem that shows how, given the general
problem of securing remote interactions carried by SOAP
messages, the weakness of firewalls in the Network Security
can be seen as a benefit in the Service-Oriented Security
model. WSA assumes that it is beneficial for the overall in-
teroperability that traditional firewalls were unable to han-
dle tunneled protocols like SOAP because this would permit
endpoints to directly communicate. The Network Security
area, instead, regards Web services firewall traversal capa-
bilities as a severe security risk because it encourages com-
panies to selectively expose to the Internet pieces of their
enterprise applications and networked hosts. Accordingly, it
strongly discourages to deal with Web services security by
access control alone, because a number of security and op-
erating issues are more effectively solved at perimetral level.
From the Network Security perspective, endpoints offering
services should be limited and made unreachable from the
Internet if they do not satisfy a corporate-wide, network-
oriented perimetral policy.

To better understand why firewalls seem to conflict with
the Service-Oriented Security model, the notion of resource
in both models must be considered in more detail.

2.1 Resources in the Service-Oriented Secu-
rity model and Network Security

The Service-Oriented Security model and Network Se-
curity protect resources that must be univocally identified
(e.g., by means of URISs): in one case resources are services,
in the other resources are everything reached or traversed
by network packets. The two sets are not equivalent and
this difference makes the two models conflicting. Let us
introduce an example that will be used to clarify this fun-
damental difference. Figure 1 illustrates a scenario where
the service requester A sends a SOAP message to the service
provider D. The SOAP message includes the To, From, and
Action elements defined by WS-Addressing [4], which rep-
resent, respectively, the URI of the intended receiver of the

SOAP message

<S: Envel ope>
<S: Header >

: A <wsa: Acti on>
| http: // wwv. sanpl econpany. cont or der s#nodi fy
! </wsa: Acti on>
: </ S: Header s>
| <S: Body>
| <Orders: nodi fy>
! <order | D>947282Y83L1437</ or der | D>
! <part G oup>Home Theat er </ part Gr oup>
<quantity>1000</quantity>
</ Orders: nodi fy>
</ S: Body>
</ S: Envel ope>

<wsa: To>ht t p: // www. sanpl econpany. conl Part sOr der s</ wsa: To>
<wsa: Fronpht t p: // sanpl ecust oner . cond cl i ent 1</ wsa: Fron»

SOAP message

Figure 1: Interaction between two endpoints.

message, the URI of the intended sender, and the URI that
identifies the semantics implied by the message.’

In particular, in this example the service re-
quester http://samplecustomer.com/clientl
sends a SOAP message to the service provider
http://www.samplecompany.com/PartsOrders to perform
action http://www.samplecompany.com/orders#modify
that consists in modifying an order. The Body includes the
specific order, the product type, and the quantity.

Service-Oriented Security model. WS-Security technolo-
gies permit to sign and encrypt different parts of the mes-
sages. Then, regulating the service invocation requires au-
thentication by the requester. This, for example, can be ac-
complished by means of SAML authentication methods [14],
which can use passwords, Kerberos tickets, X.509 or PGP
public keys among others. In addition, a service-oriented
security policy could be enforced. A security policy regu-
lates the way a requester can use the functionalities of the
provided service, within the domain of all legal functionali-
ties (i.e., defined by the service description). For instance,
with respect to our example, a policy could say that the
number of items of type Home Theater that a requester can
order must be less than 1000. Service-oriented access control
policies could be made complex as needed, according to the
nature and number of services, as well as defined based on
classifications of requesters and providers [10].

To summarize, the Service-Oriented Security model makes
it possible to:

2The example is intended as a general case, although the
three elements considered are specific of WS-Addressing.
Other specifications (e.g., WS-Routing or WS-Reliability)
prescribe to carry as message headers similar information
regarding the endpoints and the purpose for which a mes-
sage is intended for.

e guarantee the message integrity and confidentiality;

e provide authentication features between the endpoints
of the communication;

e protect (groups of) services provided by the ultimate
endpoint of a SOAP communication. Policy enforce-
ment can then be co-located with the service provider
or done by an intermediate node.

Network Security model. Saying that a service-oriented
access control policy regulates only those service accesses
within the domain of all legal functionalities implies that
there could be illegal functionalities, or ways to induce side-
effects and unforeseen behaviors to provided services with-
out breaking the access control policy or bypassing its en-
forcement. For instance, denial of service, malformed pack-
ets/messages, buffer overflows, SQL injection techniques,
trojaned services are examples of Web application vulner-
abilities that are very likely to apply also to a WSA. There-
fore, there are resources to protect other than those consid-
ered by the Service-Oriented Security model. This drives us
to analyze the application of the Network Security model
to the example in Figure 1. With the Service-Oriented Se-
curity model, we are guaranted that SOAP messages travel
securely from the service requester A to the service provider
D and safely interact with D’s functionality. Instead, with
Network Security, resources reached or traversed by network
packets are: the service provider’s organization own network
B; and the service provider’s hosting environment C.

The organization own network is a private asset worth to
be protected from undesired network traffic that could cause
a reduction in the quality of service or even connection fail-
ures. The private network can be seen as a unique resource
or as composed by several subnets, each one representing a

set _of _aut hori zation

fL

aut hori zation

L subj ect

obj ect

condi tion

si gn

Figure 2: Structure of the authorization rules.

resource to be used according to some security policies. The
Service-Oriented Security model does not take into account
these resources, although it could, since the private network
and its subnets are univocally identified with URIs and pro-
vide services to remote requesters (i.e., connection services
are provided by network devices such as routers, gateways,
or switches).

With service provider’s hosting environment we intend ev-
erything supporting and enabling the provision of a certain
Web service. With this definition we include, for example,
the operating system, the application platforms (e.g., web
server, DBMS, legacy systems) and the actual implementa-
tion and run-time environment of services.

3. THE INTEGRATED MODEL

The Service-Oriented Security model and the Network Se-
curity model can then be integrated thus obtaining a com-
plete secure infrastructure to XML Web services. In partic-
ular, by starting from the work described in [10], we pro-
pose a model whose authorization rules have the form illus-
trated in Figure 2. We use the proposal in [10] because it
is simple. We note however that emerging standards (e.g.,
XACML [12]) could be used for this purpose.

Subject. The subject field defines the parties to which the
authorization applies. Our model supports the specification
of a subject by making a reference to any feature possible
specified in a custom header included in each SOAP call. By
exploiting the tree format of a SOAP message (typical of all
XML-based documents), a subject feature can be referenced
by means of a path expression [6]. While this is the more
general and powerful mechanism that allows to capture all
the information characterizing a subject, it strictly refers to
the syntax of the elements in the SOAP message. There-
fore, our model also provides a higher level support for the
specification of subjects. More precisely, a customizable set
of XML elements can be defined each of which corresponds
to a subject feature. For instance, element from can be de-
fined to refer to the URI, or, more generally, to refer to the
identifier of the sender of a SOAP message.

Object. The object field defines the service(s) to which the
authorization applies. Like for subjects, we can use both
generic path expressions and a customizable set of elements.
Also, services can be defined by specifying a boolean formula
of features that can evaluate membership of the service in
groups or values of any of its parameters.

Condition. The condition field defines additional restric-
tions that have to be satisfied by the subject in order to
access the object. As we will see later on, the condition
field can be used to define network-based restrictions use-
ful for avoiding or limiting attacks such as denial-of-service,
spoofing and so on.

Sign. The sign field states whether the authorization de-
fines a permission (+) or a denial (—).

Figure 3 illustrates some simple examples of authoriza-
tions. The first authorization states that the number of
items of type Home Electronics that a Retailers (we sup-
pose that the SOAP header includes information about sub-
ject groups as defined in [10]) can order must be less than
1000.

The second authorization regulates SOAP messages that
have both PartOrders as the service provider and the desti-
nation IP address included in the subnet 159.149.16 (this
is not to be confused with NAT functionality, where the
destination IP address is changed according to a private IP
addressing space). The subject and condition components of
the authorization are empty meaning that it applies to any
subject without restrictions. A rule like this could be helpful
to prevent the illicit installation of rogue service providers
inside the network, to force Web service providers to be lo-
cated on a specific subnet, or even to deny the routing of
crafted messages made for scanning purposes or other unau-
thorized actions (e.g., when the destination IP address is
that of a host not providing for the specific Web service).
This rule could be enforced in at least two ways: (i) SOAP
messages explicitly carry an header block for the IP address
of the destination, possibly inserted by a SOAP intermedi-
ate node, before being filtered by a semantics-aware com-
ponent operating on SOAP headers only; or (%) when the
rule is enforced, it must be recognized that the condition
upon the destination subnet is referred to an IP header, not
a SOAP one, therefore a packet filtering component must
be activated and its result combined with the result of the
condition upon the To header. In any case, the enforcement
of such a authorization cannot be done locally to the service
provider’s hosting environment, since the rule is actually
defining the access to a composite service formed by both a
Web service provider and a networking service.

Finally, the third authorization states that whether the
request is directed to the service provider PartOrders, then
the Action element must necessarily specify an hitp URL
(the www.samplecompany.com/ domain) and a Web method
in the orders namespace. The benefits of this authorization
is to prevent traffic made up by crafted SOAP messages car-
rying improper Web methods for a certain service provider.
This could be made for scanning purposes, for example, try-
ing to exploit information carried by the SOAP fault re-
sponses. By filtering these illegal messages at the corporate
perimeter, we preserve, at least, the service provider hosting
environment from wasting computational resources for pro-
cessing them and for producing a fault message response.
It is also important to note that out-of-specs messages of-
ten pose severe risks of malfunctioning due to their possible
incorrect handling by the receiver.

For instance, the following Figure 4 is an example of
rule that should check that whether the request is di-
rected to the service provider PartOrders, then the Ac-

<subj ect >

/ S: Envel ope/ [S: Header/ xsd: requesterGoup = "Retailer"]

</ subj ect >

<obj ect >

/' S: Envel ope/ [S: Body/ Orders: nodi fy/ quantity < 1000 AND
S: Header/ Orders: Part Group = "Honme El ectronics"]

</ obj ect >
<condi tion/>
<sign value = "+"/>

<subj ect/ >

<obj ect >

<I Pheader ><dest i nati onl Paddr >159. 149. 16. *</ dest i nat i onl Paddr ></ | Pheader >

<AND/ >

/' S: Envel ope/ [S: Header/ wsa: To = "http://ww. sanpl econpany. com Part Or der s]

</ obj ect >
<condi tion/>

<sign value = "+"/>

<subj ect />

<obj ect >
| S: Envel ope/ S: Header/[wsa: To = "http://ww. sanpl econpany. conf Part Orders AND
wsa: Action = "http://ww. sanpl econpany. con or der s#*]
</ obj ect >
<condi tion/>
<sign value = "+"/> _3-

Figure 3: Examples of authorizations.

tion header must necessarily specify both an http URL, the
www.samplecompany . com/ domain and a Web method in the
Orders namespace.

4. THREATS FROM STATEFUL SOAP
PROTOCOLS

A wide area where security problems may arise and
may need the integration between the service-oriented
and the network approaches is represented by stateful
SOAP protocols. Consider, for example, the acknowledg-
ment protocols introduced for reliability purposes by WS-
ReliableMessaging [2] and WS-Reliability [11]. According
to these two sets of specifications, each SOAP message sent
by a certain service to another (e.g., from a service requester
to a service provider and vice versa) is acknowledged with
an ACK message.

As an example, consider the messages in Figure 5.

In this case, reliable messages carry an header block
Sequence composed by an Identifier of the message
exchange and a MessageNumber for ordering messages
within a certain sequence. The acknowledgment carries
a SequenceAcknowledgment header block composed by the
identifier of the sequence and a reference to the message
number, one or more, acknowledged.

The purpose of these specifications is to provide assur-
ances upon the message delivery like the transmission of
all messages at most once, at least once, or exactly once
(e.g., the DeliveryAssurance header can be used to specify

all these modes). They even allow for ordering messages and
possibly require re-transmission of lost messages.

Protocols governing a message exchange could be subject
of several security risks, like eavesdropping (possibly ad-
dressed by encrypting sensitive information), replay attacks
(possibly addressed by authenticating senders and discard-
ing duplicate messages) or adverse effects due to out-of-specs
messages. These examples represent some instances of the
general problem of designing SOAP protocols resistant to
attacks, which is a wide while still unexplored area.

4.1 SOAP acknowledgment protocols

We consider two possible ACK protocols, respectively
called synchronous and asynchronous acknowledgment [11].
In the synchronous ACK protocol (see Figure 6(a)), the
SOAP protocol for reliable messages is tightly binded with
the HTTP request-response message exchange: each SOAP
message is delivered as an HTTP Request and is acknowl-
edged with the corresponding HTTP Response carrying the
SOAP-ACK in the HTTP body. Differently, in the asyn-
chronous ACK protocol (see Figure 6(b)), the binding be-
tween the SOAP protocol and the HTTP pattern of message
exchange is weaker, since SOAP messages and SOAP ACKs
are delivered on different HTTP connections. The asyn-
chronous mode is clearly the more flexible since, for example,
it permits to implement the single ACK for more messages
according to the AcknowledgmentRange element shown in
Figure 5.

Security issues that both service requesters and service

<subj ect/>

<obj ect >
/'S: Envel ope/S: Header/[wsa: To = "http://ww. sanpl econpany. com Part Orders ANC
wsa: Action = "http://ww. sanpl econpany. cont or der s#*]
</ obj ect >

<condi ti on/ >

Figure 4: Example of condition upon the Action header.

a)
<S: Header >
<wsr m Sequence>
<wsu: ldentifier> http://ww. sanpl econpany. conf abc </wsu:ldentifier>
<wsr m MessageNunber > 10 </wsrm MessageNunber >
</ wsr m Sequence>
</ S: Header s>

b)

<S: Header >
<wsr m SequenceAcknowl edgrent >
<wsu: ldentifier> http://ww.sanpl econpany. coml abc </wsu:ldentifier>
<wsr m Acknowl edgrment Range Upper ="10" Lower="10" />
<wsr m SequenceAcknowl edgnent >
</ S: Header s>

Figure 5: Example of WS-ReliableMessaging headers within (a) a reliable message and (b) an ACK message.

MSG
HTTP Request
MSG >
HTTP Request HTTP Response
ACK
. R HTTP Request (= |
y
HTTP Response HTTP Response
ACK -
a) b)

Figure 6: a) Synchronous and b) asynchronous acknowledgment.

providers should take into account can be summarized in requesters toward external service providers and no external
two classes: requests should be served by internal service providers. This
policy is often required by organizations willing to let their
personnel access external services but worried about possible
rogue servers installed inside the network.

An usual solution for TCP services is to require the setting

e prevention from out-of-specs message exchange: this is
meant to deal with the situation of a malicious exter-
nal party, either a requester or a provider, which does

not follow the prptgcol message exchange pattern, for of the TCP header’s ACK flag for all incoming packets (i.e.,
example,. transmitting a SOAP-ACK not related with optionally the same policy could be achieved by denying the
any previous message; setting of the TCP header’s SYN flag alone for incoming

network packets).

In our scenario with SOAP-ACK protocols, we may want
to enforce the same security policy applied to Web services,
instead of traditional TCP services. Let us consider whether
the solution of ruling the value of the TCP header’s ACK
or SYN flags is effective when applied to the SOAP-ACK

As a case study, we consider a simple security policy that protocols.
is often enforced to prevent an illegal service provision: for a
given service, internal hosts should be able to act as service

o prevention from illegal communication channels: this
is meant to prevent that unauthorized communication
channels were established, for example, by means of
illegal service providers deployed inside a private net-
work.

Synchronous ACK. The policy could be enforced specify-
ing rules at application and network level. Figure 7(a) illus-
trates two rules that control, respectively, the delivery of a
SOAP reliable message and the reception of a SOAP ACK.
Figure 7(b) instead illustrates a rule that drops all attempts
to establish a TCP connection from an external client to an
internal server. These three rules completely describe the
required policy.

In more detail, the element Sequence of the first rule in
Figure 7(a) identifies the SOAP reliable messages, while in
the second rule the element SequenceAcknowledgement per-
mits to capture SOAP-ACKs. The rule of Figure 7(b) (Linux
iptables syntax [13] has been used) drops all incoming TCP
packets (i.e., switch -p tcp) carrying the SYN flag alone
set (i.e., switch —--syn), resulting then in the denial of all
attempts to connect to an internal server.

Asynchronous ACK. Tn this case regulating the message
exchange according to the given policy is much more prob-
lematic. More precisely, it turns out that the filtering based
on TCP flags is inapplicable if the delivery of SOAP mes-
sages and SOAP ACKs is carried out by distinct HTTP
connections. Therefore, asynchronous protocols, which are
the ones that support the development of rich functionality
and complex message exchange patterns, pose a serious risk
to Web service hosting environments because they may let
all incoming connection attempts to be delivered unfiltered.

Let us come back to the solution presented for the syn-
chronous case in Figure 7 and analyze it in the asynchronous
scenario. It could be observed that: i) SOAP rules of Fig-
ure 7(a) are still applicable since they only specify that
SOAP reliable message are let to go out and SOAP ACKs
are let to come in; and #5) network rule, instead, is inapplica-
ble since to let the SOAP ACKs in, upon a distinct HTTP
connection, we need to enable an HT'TP server to handle
them.

Therefore, considering the interaction at TCP level, we
have two endpoints acting both as clients and servers, where
server ports are both standard HTTP ones (i.e., we are un-
der the assumptions that the SOAP-HTTP binding is set
and interoperability is assured by using standard HTTP
connections). This means that at network level we cannot
distinguish between a legal SOAP ACK message and an il-
legal attempt to establish a connection to the HTTP server.
Hence, all incoming attempts to connect to the HTTP server
of the requester could pass along unfiltered and actually suc-
ceed in establishing a TCP connection (i.e., the three-way
handshake is completed). This holds in any case, even if
content-based filtering mechanisms are in place since during
the initial TCP handshake there are no data exchanged and
only when data are transmitted, after the TCP session is es-
tablished, content-based rules, like for example the second of
Figure 7(a) could be enforced and the connection eventually
dropped.

This is a first adverse effect of those protocols because the
hosting environment where Web services are running is left
unprotected from undesired network connections and this
could permit attackers to try to exploit local vulnerabili-
ties, misconfigurations and so on (note that HTTP servers
are a traditional target of network attacks). Hence, a first
observation is that, with asynchronous protocols, Web ser-
vices endpoints, either provider or requester, are likely to
suffer of many security problems of traditional Web appli-

cation providers. Security of Web applications is a major
issue today and comprehensive solutions lack. Architectural
countermeasures, like the use of reverse proxies to screen the
actual Web server, are then probably very useful even in a
WSA.

A second adverse effect comes from the fact that, differ-
ently from a traditional Web architecture where Web clients
are not forced to act as servers too, with these stateful asyn-
chronous SOAP protocols even service requesters must pro-
vide for an active HTTP server accepting connections. If
we consider that SOAP requesters could be deployed on
a wide range of physical endpoints, from corporate hosts
to personal computers or even PDAs, the security counter-
measures for hardening the hosting environment may vary
enormously. In particular, for personal computers or PDAs,
it is unrealistic to think about rigorous hardening measures.
This could potentially expose such endpoints to greater risks
(e.g., of worm propagation) than with ordinary Web appli-
cations.

Possible solutions for handling SOAP-based stateful and
asynchronous protocols could be achieved with the devel-
opment of stateful semantics-aware firewalls, able to track
the state of a SOAP communication and to fully inspect all
message information at the different levels of encapsulation
(e.g., Web Service, SOAP, XML, HTTP, TCP and IP). In
this way, it would be possible to write rules that specify
the type of messages in a very precise way and correlate
attributes from all headers. For instance, we could think
about conditions like:

e <HTTPheader> POST </HTTPheader> or <HTTPheader>
Response </HTTPheader> to verify that the message
complies with the HTTP binding;

e <SOAPstatus> NEW | ESTABLISHED | RELATED
|INVALID </SOAPstatus> (state values are clearly
taken from iptables), which should recognize if a
SOAP message is the first of a new sequence, should
correlate SOAP messages delivered by different HT'TP
connections according to their belonging to an existing
message sequence (e.g., the reliable message and the
ACK), or correlate fault messages.

Another measure for mitigating these security risks could
be taken if the assumption of standard HTTP connections
for interoperability and firewall traversal is re-considered
and made more flexible. That is, if service provision is tar-
geted to a close group of requesters, there is not such a
need for standard HTTP connections that cannot be rec-
ognized as Web services message exchange from network fil-
tering techniques. SOAP-HTTP message exchange could be
binded to a non standard HTTP port, for example, making
them recognizable with respect to conventional Web appli-
cations from the very first packet exchange. Service provider
authentication and the possible use of technologies like Vir-
tual Private Networks, is also extremely important since as
we saw there could be greater security risks at the requester’s
side.

5. THREATS TO WEB SERVICE PROVI-
SION

Service provision can potentially suffer of other threats
caused by the reception of messages that cannot be handled
properly or that can induce side-effects. In particular, two

a)
<subject>
/S:Envelope/S:Header/[wsa:From:
</subject>
<object>
/S:Envelope/S:Header/[wsa:To: =
</object>

"'www . mycompany .com/*"*

"www . externalcompany .com/SampleService']

<condition><messagetype>sequence</messagetype></condition>

<sign value ="+"/>

<subject>
/S:Envelope/S:Header/[wsa:From:
</subject>

<object>
/S:Envelope/[S:Header/wsa:To: =

</object>

"www . externalcompany .com/*""

"'www . mycompany .com/*""]

<condition><messagetype>sequenceacknowledgment</messagetype></condition>

<sign value ="+"/>

b)

iptables -A INPUT -p tcp —--syn -j DROP

Figure 7: a) SOAP and b) network rules for the synchronous ACK protocol.

general security issues, denial-of-service and spoofing, are
considered in relation to some specific features of the WSA.

Denial-of-Service. Assume that a malicious service re-
quester crafts several sequences of SOAP messages all miss-
ing a message carrying a certain value in the MessageNumber
element. Assume also that the messages are required to be
delivered ordered and at least once. This case, if not handled
properly, could result in a denial-of-service on the receiver
side due, for example, to cache consumption if the service
receiver keeps messages to be reordered in a cache before
delivering them to an application handler. Time-out mecha-
nisms could limit this case, although the delivery of multiple
sequences with sufficiently high frequency could still result
in a denial-of-service condition. Service provider hosting en-
vironments should be protected from this eventuality, since
many services could be co-located on the same host, as well
as a certain host could serve both requests from external
and internal requesters.

Semantic-firewalls, aware of SOAP message protocols,
could use thresholds mechanisms to mitigate this problem.
This, together with a proper tuning of time-out mecha-
nisms could be the first line of defense against denial-of-
service attempts. Figure 8 shows an example of condi-
tion upon the frequency of invocation of a certain service
provider and upon the number of simultaneous message
sequences opened. Authorization a) is meant to limit to
once per second the maximum rate at which requests com-
ing from domain http://www.samplecustomer.com/ could
be addressed to the PartOrders service provider. Requests
exceeding the threshold frequency must be dropped at the
corporate perimeter without interfering with the service

provider. However, it could be insufficient if the requester
can use spoofed identities in the From header since the ma-
licious requester could select different fake identities and
overcome thresholds based on requester’s identifier. Gen-
eral thresholds for service provider hosting environments
could then be enforced, limiting the number of opened mes-
sage sequences independently from the requester, as well as
shorter time-outs could serve as possible countermeasures.
Authorization b), in fact, is meant to limit to 5 the number
of sequences of message exchange running simultaneously
between any possible requester (i.e., From: = *) and the
PartOrders service provider.

Spoofing. The possibility to craft SOAP messages by plac-
ing an identity in a From header not corresponding to the
actual requester cannot be prevented unless strong authen-
tication techniques are employed (e.g., by means of digital
signatures). There are, however, many applications that
cannot satisfy this requirement, for example when anony-
mous requesters are allowed, or could do that only in a weak
form, for example when authentication is accomplished by
checking the requester’s domain or affiliation only instead
of the personal identity. In other situations, the use of
cryptographic techniques could be discouraged for perfor-
mance reasons or excessive power consumption, for example
whether the service request comes from a portable device.
Nevertheless, there is a case that is peculiar to SOAP
messages with a From header block: requester identities are
stored both in the From header block as a URI (e.g., as an
email address or as an URL) and in the source IP address of
the IP header as the network address of the source host. A
potential enforcement upon the requester identity is to re-

a)

b)

a)

b)

<subj ect >

/' S: Envel ope/ [S: Header/ wsa: From = "http://ww. sanpl ecust oner. conl "]
</ subj ect >
<obj ect >

/ S: Envel ope/ [S: Header/ wsa: To: = "http://ww. sanpl econpany. com Part Or ders"]
</ obj ect >

<condi ti on>
<Frequency> 1/sec </Frequency>
</ condi tion>

<subj ect >

/ S: Envel ope/ [S: Header / wsa: From = *]
</ subj ect >
<obj ect >

/ S: Envel ope/ [S: Header/ wsa: To: = "http://ww. sanpl econpany. com Part Or ders"]
</ obj ect >

<condi ti on>
<Si mul t aneousSequences> 5 </ Si nul t aneousSequences>

</ condi ti on>

Figure 8: Example of thresholds upon service invocation.

<subj ect >
<| Pheader ><sour cel Paddr/ ></ | Pheader > | NCLUDED | N
/' S: Envel ope/ S: Header / wsa: From

</ subj ect >

<obj ect >

/ S: Envel ope/ S: Header/[wsa: To: = "http://ww. sanpl econpany. com Part Or ders"]
</ obj ect >
<condition/>

<sign val ue="+"/>

<subj ect >

/ S: Envel ope/ S: Header / wsa: From EQUAL TO

<| Pheader ><sour cel Paddr > 159. 149. 10. * </ sour cel Paddr ></ | Pheader >

</ subj ect >

<obj ect >

</ obj ect >
<condi tion/>
<sign val ue="+"/>

Figure 9: Example of conditions to limit spoofing.

quire that the IP address resulting from de-referencing the
logical name of the From header block must be related to
the IP address stored in the IP header. This might result in
an EQUAL TO relationship between the two (e.g., when we
want the two are the same address) or in an INCLUDED
IN relationship of the second within the first (e.g., when
the From value results in a class of IP addresses containing
the source IP address). It is worth to be noted that spoof-
ing techniques that exploit a mismatch between the source
IP address and the logical name in a From field are already
widely used by worms that propagate themselves through
email messages. Examples of these condition are shown in
Figure 9. Authorization a) is meant to require that, for
requests addressed to the PartOrders service provider, the
source IP address is included in the IP address class corre-
sponding to the URI of the From header. Authorization b),
instead, is meant to require that the IP address correspond-
ing to the URI of the From header is equal to the source IP
address that belongs to the subnet 159.149.10.

6. CONCLUSIONS

The WSA is driving many expectations for a better in-
teroperability of systems, either distributed within a corpo-
rate network or connected through the Internet and many
interesting proposals aimed at introducing richer features
have been produced. However, from the security viewpoint
there seem to be an incomplete vision and actually some im-
portant while common issues related with network aspects
seems to have been ignored.

Therefore, in this paper we have first analyzed the ap-
parent clash between the Service-Oriented and the Network
Security perspectives. In particular, we have discussed the
requirements and presented possible design guidelines of
semantics-aware firewalls fully integrated within the WSA.
Throughout some examples we have also justified the utility
of a perimetral management of the access control.

Discussing about some stateful SOAP-based protocols we
have analyzed how they could pose serious security risks if
not managed properly and in particular with mechanisms
able to inspect the many encapsulated headers of a message
and by having in place semantics-aware firewall able to track
SOAP-level connections.

As we pointed out, security issues like the ones discussed
in this paper are still largely unexplored. We plan to proceed
with both our analysis of the many protocols and correla-
tions among authorization attributes from different layers.
The implementation of a prototype of a semantics-aware fire-
wall is currently on-going.

7. ACKNOWLEDGMENTS

The work reported in this paper was partially sup-
ported by the Italian MURST within the KIWI and MAPS
projects.

8. REFERENCES

[1] B. Atkinson and et al. Web Services Security. IBM
Corp. and Verisign Inc., April 2002.
http://www.ibm.com/developerworks/library /ws-
secure/.

[2] R. Bilorusets and et al. Web Services Reliable
Messaging Protocol. BEA Systems Inc., IBM Corp.
and Microsoft Corp., March 2003.

[10]

[11]

[12]

[13]

[14]

[15]

http://msdn.microsoft.com/ws/2003/03 /ws-
reliablemessaging/.

D. Booth and et al. Web Service Architecture. World
Wide Web Consortium (W3C), May 2003.
http://www.w3.org/TR /ws-arch.

A. Bosworth and et al. Web Services Addressing. BEA
Systems Inc., IBM Corp., Microsoft Corp. and TIBCO
Software Inc., March 2003.
http://dev2dev.bea.com/technologies/webservices/ws-
addressing.jsp.

E. Christensen, F. Curbera, G. Meredith, and

S. Weerawarana. Web Services Description Language
(WSDL) 1.1. World Wide Web Consortium (W3C),
March 2001. http://www.w3.org/TR /wsdl.

J. Clark and S. DeRose. XML Path Language (XPath)
Version 1.0. World Wide Web Consortium (W3C),
November 1999. http://www.w3.org/ TR /xpath.

M. Cremonini, E. Damiani, and P. Samarati.
Semantics-aware perimeter protection. In Proc. of the
17th IFIP Wg 11.83 Conference, Colorado, USA,
August 2003. to appear.

E. Damiani, S. D. C. di Vimercati, S. Paraboschi, and
P. Samarati. Controlling access to XML documents.
IEEE Internet Computing, 5(6):18-28,
November/December 2001.

E. Damiani, S. D. C. di Vimercati, S. Paraboschi, and
P. Samarati. A fine-grained access control system for
XML documents. ACM Transactions on Information
and System Security, 5(2):169-202, May 2002.

E. Damiani, S. D. C. di Vimercati, S. Paraboschi, and
P. Samarati. Securing SOAP e-services. International
Journal of Information Security (1JIS), 1(2):100-115,
February 2002.

C. Evans and et al. Web Services Reliability Verl.0.
Fujitsu Ltd., Hitachi Ltd., NEC Corp., Oracle Corp.,
Sonic Software Corp. and Sun Microsystems Inc.,
January 2003.

S. Godik and et al. eXtensible Access Control Markup
Language Version 1.0. OASIS Open, March 2003.
http://www.oasis-
open.org/committees/xacml/repository.

M. Josefsson and et al. The netfilter/iptables project,
2003. http://www.netfilter.org.

E. Maler and et al. Assertions and Protocols for the
OASIS Security Assertion Markup Language V1.1.
OASIS Open, July 2003. http://www.oasis-
open.org/committees/documents.php?wg_abbrev=security.
N. Mitra. SOAP Version 1.2 Part 0: Primer. World
Wide Web Consortium (W3C), May 2002.
http://www.w3.org/TR /soapl2-part0/.

