
Access Control Models for XML

S. De Capitani di Vimercati1, S. Foresti1, S. Paraboschi2, and P. Samarati1

1 University of Milan – 26013 Crema, Italy
{decapita,foresti,samarati}@dti.unimi.it

2 University of Bergamo – 24044 Dalmine, Italy
parabosc@unibg.it

Summary. XML has become a crucial tool for data storage and exchange. In this
chapter, after a brief introduction on the basic structure of XML, we illustrate the
most important characteristics of access control models. We then discuss two models
for XML documents, pointing out their main characteristics. We finally present
other proposals, describing their main features and their innovation compared to
the previous two models.

1 Introduction

The amount of information that is made available and exchanged on the Web
sites is continuously increasing. A large portion of this information (e.g., data
exchanged during EC transactions) is sensitive and needs to be protected.
However, granting security requirements through HTML-based information
processing turns out to be rather awkward, due to HTML’s inherent limi-
tations. HTML provides no clean separation between the structure and the
layout of a document and some of its content is only used to specify the doc-
ument layout. Moreover, site designers often prepare HTML pages according
to the needs of a particular browser. Therefore, HTML markup has generally
little to do with data semantics.

To the aim of separating data that need to be represented from how they
are displayed, the World Wide Web Consortium (W3C) has standardized a
new markup language: the eXtensible Markup Language (XML) [1]. XML is
a markup meta-language providing semantics-aware markup without losing
the formatting and rendering capabilities of HTML. XML’s tags’ capability
of self-description is shifting the focus of Web communication from conven-
tional hypertext to data interchange. Although HTML was defined using only
a small and basic part of SGML (Standard Generalized Markup Language:
ISO 8879), XML is a sophisticated subset of SGML, designed to describe
data using arbitrary tags. As its name implies, extensibility is a key feature of
XML; users and applications are free to declare and use their own tags and at-
tributes. Therefore, XML ensures that both the logical structure and content

2 S. De Capitani di Vimercati, S. Foresti, S. Paraboschi, and P. Samarati

of semantically rich information is retained. XML focuses on the description
of information structure and content as opposed to its presentation. Presen-
tation issues are addressed by a separate language, XSL [2] (XML Stylesheet
Language), which is also a W3C standard for expressing how XML-based data
should be rendered.

Since XML documents can be used instead of traditional relational
databases for data storage and organization, it is necessary to think of a secu-
rity system for XML documents protection. In this chapter, we will focus on
access control enforcement. Specifically, in the literature, different access con-
trol models have been proposed for protecting data stored in XML documents,
exploiting the flexibility offered by the markup language. Even if traditionally
access control models can be applied to XML documents, by simply treating
them as files, a finer grained access control system is frequently necessary. As
a matter of fact, an XML document may contain both sensitive and publicly
available information, and it is necessary to distinguish between them when
specifying the access control policy.

The remainder of the chapter is organized as follows. Section 2 discusses
the basic XML concepts, by introducing DTD, XML Schema, XPath and
XQuery syntax and semantics. Section 3 introduces the problem of access
control for XML documents, points out the characteristics that an access
control model for XML documents should have. Section 4 illustrates in the
details two of the first access control models proposed for XML documents,
and briefly describes other proposals. Finally, Sect. 5 concludes the chapter.

2 Preliminary Concepts

XML [1] (eXtensible Markup Language) is a markup language developed
by the World Wide Web Consortium (W3C) and used for describing semi-
structured information. We introduce some of the most important concepts
related to XML, which are useful to define an access control system for pro-
tecting XML documents.

2.1 Well-Formed and Valid XML Documents

XML document is composed of a sequence of (possibly nested) elements and
attributes associated with them. Basically, elements are delimited by a pair
of start and end tags (e.g., <request> and </request>) or, if they have
no content, are composed of an empty tag (e.g., <request/>). Attributes
represent properties of elements and are included in the start tag of the el-
ement with which they are associated (e.g., <request number=“10”>). An
XML document is said to be well-formed if its syntax complies with the rules
defined by the W3C consortium [1], which can be summarized as follows:

• the document must start with the prologue <?xml version=“1.0”?>;

Access Control Models for XML 3

• the document must have a root element, containing all other elements in
the document;

• all open tags must have a corresponding closed tag, provided it is not an
empty tag;

• elements must be properly nested;
• tags are case-sensitive;
• attribute values must be quoted.

An XML language is a set of XML documents that are characterized by a
syntax, which describes the markup tags that the language uses and how they
can be combined, together with its semantics. A schema is a formal definition
of the syntax of an XML language, and is usually expressed through a schema
language. The most common schema languages, and on which we focus our
attention, are DTD and XML Schema, both originating from W3C.

Document Type Definition

A DTD document may be either internal or external to an XML document
and it is not itself written in the XML notation.

A DTD schema consists of definition of elements, attributes, and other
constructs. An element declaration is of the form <!ELEMENT element name
content>, where element name is an element name and content is the de-
scription of the content of an element and can assume one of the following
alternatives:

• the element contains parsable character data (#PCDATA);
• the element has no content (Empty);
• the element may have any content (Any);
• the element contains a group of one or more subelements, which in turn

may be composed of other subelements;
• the element contains parsable character data, interleaved with subele-

ments.

When an element contains other elements (i.e., subelements or mixed con-
tent), it is necessary to declare the subelements composing it and their organi-
zation. Specifically, sequences of elements are separated by a comma “,” and
alternative elements are separated by a vertical bar “|”. Declarations of se-
quence and choices of subelements need to describe subelements’ cardinality.
With a notation inspired by extended BNF grammars, “*” indicates zero or
more occurrences, “+” indicates one or more occurrences, “?” indicates zero
or one occurrence, and no label indicates exactly one occurrence.

An attribute declaration is of the form <!ATTLIST element name at-
tribute def >, where element name is the name of an element, and attribute def
is a list of attribute definitions that, for each attribute, specify the at-
tribute name, type, and possibly default value. Attributes can be marked
as #REQUIRED, meaning that they must have an explicit value for each occur-
rence of the elements with which they are associated; #IMPLIED, meaning that

4 S. De Capitani di Vimercati, S. Foresti, S. Paraboschi, and P. Samarati

they are optional; #FIXED, meaning that they have a fixed value, indicated in
the definition itself.

An XML document is said to be valid with respect to a DTD if it is
syntactically correct according to the DTD. Note that, since elements and
attributes defined in a DTD may appear in an XML document zero (optional
elements), one, or multiple times, depending on their cardinality constraints,
the structure specified by the DTD is not rigid; two distinct XML documents
of the same schema may differ in the number and structure of elements.

XML Schema

An XML Schema is an XML document that, with respect to DTD, has a
number of advantages. First, an XML Schema is itself an XML document,
consequently it can be easily extended for future needs. Furthermore, XML
Schemas are richer and more powerful than DTDs, since they provide support
for data types and namespaces, which are two of the most significant issues
with DTD.

An element declaration specifies an element name together with a simple
or complex type. A simple type is a set of Unicode strings (e.g., decimal,
string, float, and so on) and a complex type is a collection of requirements
for attributes, subelements, and character data that apply to the elements
assigned to that type. Such requirements specify, for example, the order in
which subelements must appear, and the cardinality of each subelement (in
terms of maxOccurs and minOccurs, with 1 as default value).

Attribute declarations specify the attributes associated with each element
and indicate attribute name and type. Attribute declarations may also spec-
ify either a default value or a fixed value. Attributes can be marked as:
required, meaning that they must have an explicit value for each occurrence
of the elements with which they are associated; optional, meaning that they
are not necessary.

Example 1. Suppose that we need to define an XML-based language for
describing bank account operations. Figure 1(a) illustrates a DTD stating
that each account operation contains a request element and one or more
operation elements. Each account operation is also characterized by two
mandatory attributes: bankAccN, indicating the number of the bank account
of the requester; and id, identifying the single update. Each request element
is composed of date, means, and notes elements, where only date is required.
Element operation is instead composed of: type, amount, recipient, and
possibly one between notes and value.

Figure 1(b) illustrates an XML document valid with respect to the DTD
in Fig. 1(a).

DTDs and XML documents can be graphically represented as trees.
A DTD is represented as a labeled tree containing a node for each element,

attribute, and value associated with fixed attributes. To distinguish elements

Access Control Models for XML 5

<!DOCTYPE record[
<!ELEMENT account operation

(request, operation+)>
<!ATTLIST account operation

bankAccN CDATA #REQUIRED
id CDATA #REQUIRED>

<!ELEMENT request
(date,means?,notes?)>

<!ATTLIST request number CDATA #REQUIRED>
<!ELEMENT operation

(type, amount, recipient, (notes|value)?)>
<!ELEMENT date (#PCDATA)>
<!ELEMENT means (#PCDATA)>
<!ELEMENT notes (#PCDATA)>
<!ELEMENT type (#PCDATA)>
<!ELEMENT amount (#PCDATA)>
<!ELEMENT recipient (#PCDATA)>
<!ELEMENT value (#PCDATA)>

]>

<?xml version=“1.0” ?>
<!DOCTYPE record SYSTEM “record.dtd”>

<account operation
bankAccN=“0012” id=“00025”>
<request number=“10”>

<date> 04-20-2007 </date>
<means> Internet </means>
<notes> urgent </notes>

</request>
<operation>

<type> bank transfer </type>
<amount> $ 1,500 </amount>
<recipient> 0023 </recipient>
<notes> Invoice 315 of 03-31-2007
</notes>

</operation>
</account operation>

(a) (b)

Fig. 1. An example of DTD (a) and a corresponding valid XML document (b)

and attributes in the graphical representation, elements are represented as
ovals, while attributes as rectangles. There is an arc in the tree connecting
each element with all the elements/attributes belonging to it, and between
each #FIXED attribute and its value. Arcs connecting an element with its
subelements are labeled with the cardinality of the relationship. Arcs labeled
or and with multiple branching are used to represent a choice in an element
declaration (|). An arc with multiple branching is also used to represent a
sequence with a cardinality constraint associated with the whole sequence
(?, +, *). To preserve the order between elements in a sequence, for any two
elements ei and ej , if ej follows ei in the element declaration, node ej appears
below node ei in the tree.

Each XML document is represented by a tree with a node for each element,
attribute, and value in the document. There is an arc between each element
and each of its subelements/attributes/values and between each attribute and
each of its value(s). Each arc in the DTD tree may correspond to zero, one, or
multiple arcs in the XML document, depending on the cardinality of the corre-
sponding containment relationship. Note that arcs in XML documents are not
labeled, as there is no further information that needs representation. Figure 2
illustrates the graphical representation of both DTD and XML document in
Fig. 1.

2.2 Elements and Attributes Identification

The majority of the access control models for XML documents identify the
objects under protection (i.e., elements and attributes) through the XPath
language [3]. XPath is an expression language, where the basic building block
is the path expression.

6 S. De Capitani di Vimercati, S. Foresti, S. Paraboschi, and P. Samarati

account_operation
 bankAccN

id

request
 number

date

means

notes

opertion

type

amount

recipient

notes

value

+

?

?

or
 ?

(a) DTD tree

account_operation
 bankAccN

id

request
 number

date

means

notes

opertion

type

amount

recipient

notes

“0012”

“00025”

“10”

04-20-2007

Internet

urgent

bank transfer

$ 1,500

0023

Invoice 315 of

03-31-2007

(b) XML document tree

Fig. 2. An example of graphical representation of DTD and XML document

A path expression on a document tree is a sequence of element names
or predefined functions separated by character / (slash): l1/l2/ . . . /ln. Path
expressions may terminate with an attribute name as the last term of
the sequence. Attribute names are syntactically distinguished by preceding
them with special character @. A path expression l1/l2/ . . . /ln on a docu-
ment tree represents all the attributes or elements named ln that can be
reached by descending the document tree along the sequence of nodes named
l1/l2/ . . . /ln−1. A path expression can be either absolute, if it starts from the
root of the document (the path expression starts with /); or relative, if it
starts from a predefined element in the document (the path expression starts
with element name). The path expression may also contain operators (e.g.,
operator . represents the current node, operator .. represents the parent
node, operator // represents an arbitrary descending path), functions, and
predicates (we refer the reader to [3] for more details).

XPath allows the association of conditions with nodes in a path; in this
case the path expression identifies the set of nodes that satisfy all the condi-
tions. Conditional expressions in XPath may operate on the “text” of elements
(i.e., character data in elements) or on names and values of attributes. A con-
dition is represented by enclosing it within square brackets, following a label
li in a path expression l1/l2/ . . . /ln. The condition is composed of one or more
predicates, which may be combined via and and or boolean operators. Each
predicate compares the result of the evaluation of the relative path expres-
sion (evaluated at li) with a constant or with another expression. Multiple
conditional expressions appearing in the same path expression are considered
to be anded (i.e., all the conditions must be satisfied). In addition, condi-
tional expressions may include functions last() and position() that permit

Access Control Models for XML 7

the extraction of the children of a node that are in given positions. Func-
tion last() evaluates to true on the last child of the current node. Function
position() evaluates to true on the node in the evaluation context whose
position is equal to the context position.

Path expressions are also the building blocks of other languages, such as
XQuery [4] that allows to make queries on XML documents through FLWOR
expressions. A FLOWR expression is composed of the following clauses:

• FOR declares variables that are iteratively associated with elements in the
XML documents, which are identified via path expressions;

• LET declares variables associated with the result of a path expression;
• WHERE imposes conditions on tuples;
• ORDER BY orders the result obtained by FOR and LET clauses;
• RETURN generates the final result returned to the requester.

Example 2. Consider the DTD and the XML document in Example 1. Some
examples of path expressions are the following.

• /account operation/operation: returns the content of the operation
element, child of account operation;

• /account operation/@bankAccN: returns attribute bankAccN of element
account operation;

• /account operation//notes: returns the content of the notes el-
ements, anywhere in the subtree rooted at account operation; in
this case, it returns both /account operation/request/notes and
/account operation/operation/notes;

• /account operation/operation[./type=“bank transfer”]: returns the
content of the operation element, child of account operation, only if
the type element, child of operation, has value equal to “bank transfer”.

The following XQuery extracts form the XML document in Fig. 1(b) all the
account operation elements with operation type equal to “bank transfer”.
For the selected elements, the amount and the recipient of the operation are
returned, along with all notes appearing in the selected account operation
element.

<BankTransf>
{ FOR $r in document(“update account”)/account operation

WHERE $r/operation/type=“bank transfer”
RETURN $r/operation/amount, $r/operation/recipient, $r//notes

}
</BankTransf>

3 XML Access Control Requirements

Due to the peculiar characteristics of the XML documents, they cannot be
protected by simply adopting traditional access control models, and specific

8 S. De Capitani di Vimercati, S. Foresti, S. Paraboschi, and P. Samarati

Public

iiiiiiiiii

WWWWWWWWWWWWWW

BankEmployee

lllllll
UUUUUUUUU Client

¯̄
¯̄
¯̄
¯̄
¯

..
..

..
..

.

StatisticalAnalyst

qqq
qqq RRRRRRRR CashOperator

sssss
KKKKK

Alice Bob Carol David Eric Fiona Gregory Hilary Ivan

Fig. 3. An example of user-group hierarchy

models need to be defined. By analyzing the existing proposals, it is easy to
see that they are all based on the definition of a set of authorizations that at
least specify the subjects on which they apply, the objects to be protected,
and the action to be executed. The existing XML-based access control models
differentiate on the basis of the subjects, objects, and actions they can support
for access control specification and enforcement.

• Subject Subjects are usually referred to on the basis of their identi-
ties or of the network location from which requests originate. Locations
can be expressed with reference to either the numeric IP address (e.g.,
150.100.30.8) or the symbolic name (e.g., bank.com) from which the
request comes.
It often happens that the same privilege should be granted to sets of sub-
jects, which share common characteristics, such as the department where
they work, or the role played in the company where they work. To the aim
of simplifying the authorizations definition, some access control models
allow the specification of authorizations having as subject:
– a group of users, which is a statically defined set of users; groups can

be nested and overlapping;
– a location pattern, which is an expression identifying a set of physical

locations, obtained by using the wild character * in physical or symbolic
addresses;

– a role, which is a set of privileges that can be exploited by any user
while playing the specific role; users can dynamically decide which role
to play, among the ones they are authorized to play.

Also, subjects are often organized in hierarchies, where an authorization
defined for a general subject propagates to its descendants.
A hierarchy can be pictured as a directed acyclic graph containing a node
for each element in the hierarchy and an arc from element x to element y, if
x directly dominates y. Dominance relationships holding in the hierarchy
correspond to paths in the graph. Figure 3 shows an example of user-group
hierarchy.
Recently proposed models [5] for access control on XML documents intro-
duce the possibility of specifying authorizations on the basis of subject’s

Access Control Models for XML 9

characteristics, called credentials, without even knowing the user’s identity
and/or location.

• Object Granularity. The identification of the object involved in a specific
authorization can exploit the possibility given by XML of identifying el-
ements and attributes within a document through path expressions as
defined by the XPath language.
Consequently, XML allows the specification of authorizations at a fine
grained level. Any portion of a document that can be referred by a path
expression can be the object of an authorization. For instance, a single el-
ement or a single attribute are objects as well as a whole XML document.
It is important to note that not all models support entirely XPath syntax,
since it is very expressive and may be difficult to manage. For instance,
some models impose restrictions on the number of times that the // op-
erator can appear in a path expression [6], other proposals do not allow
predicates to be specified after the // operator [7].

• Action. Most of the proposed XML access control models support only
read operations, since there is not a standard language for XML update.
Furthermore, the management of write privileges is a difficult task, which
needs to take into account both the access control policy and the DTD (or
XML Schema) defined for the document. In fact, the DTD may be partially
hidden to the user accessing the document, as some elements/attributes
may be denied by the access control policy. For instance, when adding an
element to the document, the user may even not be aware of the existence
of a required attribute associated with it, as she is not entitled to access
the attribute itself.
However, some approaches try to also support write privileges that are
usually classified as: insert operations, update operations, and delete op-
erations.
In [8], the author proposes to differentiate also read privileges in two cate-
gories: the privilege of reading the content of an element, from the privilege
of knowing that there is an element in a certain position of the XML doc-
ument (without knowing the name and content of the element itself). The
former authorization class is modeled as read action, while the latter is
modeled as position action. In the same paper, the author proposes also
to add the possibility, for the security administrator, to propagate privi-
leges with-grant option, as in typical database contexts.

We now discuss the basic peculiar features that are supported by the
existing XML-based access control models.

• Support for Fine and Coarse Authorizations. The different protection re-
quirements that different documents may have call for the support of access
restrictions at the level of each specific document. However, requiring the
specification of authorizations for each single document would make the
authorization specification task too heavy. The system may then support,

10 S. De Capitani di Vimercati, S. Foresti, S. Paraboschi, and P. Samarati

beside authorizations on single documents (or portions of documents), au-
thorizations on collections of documents [9]. The concept of DTD can be
naturally exploited to this end, by allowing protection requirements to re-
fer to DTDs or XML documents, where requirements specified at the level
of DTD apply to all those documents instance of the considered DTD.
Authorizations specified at DTD level are called schema level authoriza-
tions, while those specified at XML document level are called instance level
authorizations.
Furthermore, it is important to be able to specify both organization-wide
and domain authorizations, which apply only to a part of the whole or-
ganization. To this purpose, some systems [9] allow access and protection
requirements to be specified both at the level of the enterprize, stating
general regulations, and at the level of specific domains where, according
to a local policy, additional constraints may need to be enforced or some
constraints may need to be relaxed. Organizations specify authorizations
with respect to DTDs; domains can specify authorizations with respect to
specific documents as well as to DTDs.

• Propagation Policy. The structure of an XML document can be exploited
by possibly applying different propagation strategies that allow the deriva-
tion of authorizations from a given set of authorizations explicitly defined
over elements of DTD and/or XML documents. Some proposals therefore
distinguish between two kinds of authorizations: local, and recursive [9].
Local authorizations defined on an element apply to all its attributes only.
A recursive authorization defined on an element applies to its whole con-
tent (both attributes and subelements). Recursive authorizations represent
an easy way for specifying authorizations holding for the whole structured
content of an element (for the whole document if the element is the root
node of the document).
The models proposed in [6, 7] assume that negative authorizations are
always recursive, while positive authorizations may be either local or re-
cursive.
Besides downward propagation, upward propagation methods have been
introduced [10]. Here, the authorizations associated with a node in the
XML tree propagate to all its parents.
Some of the most common propagation policies (which include also some
resolution policies for possible conflicts) are described in the following [11].
– No propagation. Authorizations are not propagated. This is the case of

local authorizations.
– No overriding. Authorizations of a node are propagated to its descen-

dants, but they are all kept.
– Most specific overrides. Authorizations of a node are propagated to

its descendants, if not overridden. An authorization associated with a

Access Control Models for XML 11

node n overrides a contradicting authorization3 associated with any
ancestor of n for all the descendants of n.

– Path overrides. Authorizations of a node are propagated to its descen-
dants, if not overridden. An authorization associated with a node n
overrides a contradicting authorization associated with an ancestor n′

for all the descendants of n only for the paths passing from n. The
overriding has no effect on other paths.

These policies can be adopted also for the authorization subject hierarchy.
• Support of Exceptions. The support of authorizations at different granular-

ity levels allows for easy expressiveness of both fine and coarse grained au-
thorizations. Such an advantage would remain however very limited with-
out the ability of the authorization model to support exceptions, since
the presence of a granule (document or element/attribute) with protec-
tion requirements different from those of its siblings would require the
explicit specification of authorizations at that specific granularity level.
For instance, the situation where a user should be granted access to all
documents associated with a DTD but one specific instance, would imply
the need of stating the authorizations explicitly for all the other documents
as well; thereby ruling out the advantage of supporting authorizations at
the DTD level. A simple way to support exceptions is by using both posi-
tive (permissions) and negative (denials) authorizations, where permissions
and denials can override each other.
The combined use of positive and negative authorizations brings to the
problem of how the two specifications should be treated when conflict-
ing authorizations are associated with the same node element for a given
subject and action. This requires the support for conflict resolution poli-
cies [11].
Most of the models proposed for XML access control adopt, as a conflict
resolution policy, the “denials take precedence” policy, meaning that, in
case of conflict, access is denied.
Note that, when both permissions and denials can be specified, another
problem that naturally arises is the incompleteness problem, meaning that
for some accesses neither a positive nor a negative authorization exists. The
incompleteness problem is typically solved by applying a default open or
closed policy [12].

4 XML Access Control Models

Several access control models have been proposed in the literature for regu-
lating access to XML documents. We start our overview of these models by
presenting the first access control model for XML [9], which has then inspired

3 Two authorizations (s, o, a) and (s′, o′, a′) are contradictory if s = s′, o = o′, and
a = a′, but one of them grants access, while the other denies it.

12 S. De Capitani di Vimercati, S. Foresti, S. Paraboschi, and P. Samarati

many other subsequent proposals. We then illustrate the Kudo et al. [13]
model that introduced the idea of using a static analysis system for XML
access control. Finally, we briefly describe other approaches that have been
studied in the literature to the aim of supporting write privileges and adopting
cryptography as a method for access control enforcement.

4.1 Fine Grained XML Access Control System

Damiani et al [9] propose a fine grained XML access control system, which
extends the proposals in [14, 15, 16], exploiting XML’s own capabilities to
define and implement an authorization model for regulating access to XML
documents.

We now present the authorizations supported by the access control model
and illustrate the authorizations enforcement process.

Authorizations Specification

Access authorization determines the accesses that the system should allow or
deny. In this model, access authorizations are defined as follows.

Definition 1 (Access Authorization). An access authorization a ∈ Auth
is a five-tuple of the form: 〈subject, object, action, sign, type〉, where:

• subject ∈ AS is the subject for which the authorization is intended;
• object is either a URI∈Obj or is of the form URI:PE, where URI∈Obj and

PE is a path expression on the tree of document URI;
• action=read is the action being authorized or forbidden;
• sign ∈ {+,−} is the sign of the authorization, which can be positive (allow

access) or negative (forbid access);
• type ∈ {LDH, RDH, L, R, LD, RD, LS, RS} is the type of the authorization and

regulates whether the authorization propagates to other objects and how it
interplays with other authorizations (exception policy).

We now discuss in more detail each of the five elements composing an
access authorization.

• Subject. This model allows to identify the subject of an authorization by
specifying both her identity and her location. This choice provides more
expressiveness as it is possible to restrict the subject authorized to access
an object on the basis of her identity and of the location from which the
request comes.
Subjects are then characterized by a triple
〈user-id,IP-address,sym-address〉, where user-id is the identity with
which the user connected to the system, and IP-address (sym-address,
respectively) is the numeric (symbolic, respectively) identifier of the
machine from which the user connected. The proposed model supports

Access Control Models for XML 13

also user-groups and location patterns and the corresponding hierarchies.
Location patterns are however restricted by imposing that multiple wild
characters must be continuous, and that they must always appear as
rightmost elements in IP patterns and as leftmost elements in symbolic
patterns. As a consequence, location pattern hierarchies are always trees.
The user-group hierarchy and the location pattern hierarchies need to
be merged in a unique structure: the authorization subject hierarchy
AS, obtained as Cartesian product of the user-group hierarchy, the
IP hierarchy, and the symbolic names hierarchy. Any element in the
hierarchy is then associated with a user-id (or group), an IP address (or
pattern), and a symbolic name (or pattern). When one of these three
values corresponds to the top element in the corresponding hierarchy, the
characteristics it defines are not relevant for access control purposes, as
any value is allowed.

• Object. The set of objects that should be protected is denoted as Obj and
is basically a set of URIs (Uniform Resources Identifiers) referring to XML
documents or DTDs. Reference to the finer element and attribute grains
is supported through path expressions, which are specified in the XPath
language.

• Action. The authors limit the basic model definition to read authorizations
only. However, the support of write actions such as insert, update, and
delete does not complicate the authorization model. In [9] the authors
briefly introduce a method to handle also write operations, using a model
similar to the one proposed for read operations.

• Sign. Authorizations can be either positive (permissions) or negative (de-
nials), to provide a simple and effective way to specify authorizations ap-
plicable to sets of subjects/objects with support for exceptions.

• Type. The type defines how the authorizations must be treated with respect
to propagation at a finer granularity and overriding.
Authorizations specified on an element can be defined as applicable to the
element’s attributes only (local authorizations) or, in a recursive approach,
to its subelements and their attributes (recursive authorizations). To sup-
port exceptions (e.g., the whole content, except a specific element, can be
read), recursive propagation from a node applies until stopped by an ex-
plicit conflicting (i.e., of different sign) authorization on the descendants,
following the “most specific overrides” principle. Authorizations can be
specified on single XML documents (instance level authorizations) or on
DTDs (schema level authorizations). Authorizations specified on a DTD
are applicable (i.e., are propagated) to all XML documents that are in-
stances of the DTD. According to the “most specific overrides” principle,
schema level authorizations being propagated to an instance are overridden
by possible authorizations specified for the instance. To address situations
where this precedence criterion should not be applied, the model allows
users to specify instance level authorizations as soft (i.e., to be applied un-
less otherwise stated at the schema level) and schema level authorizations

14 S. De Capitani di Vimercati, S. Foresti, S. Paraboschi, and P. Samarati

Table 1. Authorization types

Propagation
Level/Strength Local Recursive

Instance L R

Instance (soft statement) LS RS

DTD LD RD

DTD (hard statement) LDH RDH

as hard (i.e., to be applied independently from instance level authoriza-
tions). Besides the distinction between instance level and schema level au-
thorizations, this model allows the definition of two types of schema level
authorizations: organization and domain schema level authorizations. Or-
ganization schema level authorizations are stated by a central authority
and can be used to implement corporate wide access control policies on
document classes. Domain schema level authorizations are specified by de-
partmental authorities and describe department policies complementing
the corporate ones. For simplicity, these two classes of authorizations are
merged by performing a flat union (i.e., they are treated in the same way).
The combination of the options above (i.e., local vs recursive, schema vs
instance level, and soft vs hard authorizations) introduces the eight autho-
rization types summarized in Table 1. Their semantics dictates a priority
order among the authorization types. The priority order from the highest
to the lowest is: LDH (local hard authorization), RDH (recursive hard au-
thorization), L (local authorization), R (recursive authorization), LD (local
authorization specified at the schema level), RD (recursive authorization
specified at the schema level), LS (local soft authorization), and RS (recur-
sive soft authorization).

Access Control Enforcement

Whenever a user makes a request for an object of the system, it is necessary to
evaluate which portion of the object (if any) she is allowed to access. To this
aim, the system builds a view of the document for the requesting subject [9].
The view of a subject on each document depends on the access permissions
and denials specified by the authorizations and on their priorities. Such a view
can be computed through a tree labeling process, followed by a transformation
process.

Given an access request rq and the requested XML document URI, the
tree labeling process considers the tree corresponding to URI and, for each of
its nodes, tries to identify if the requesting subject is allowed or denied access.
Each node n in the considered tree is associated with a vector n.veclabel[t]
that, for each authorization type t ∈{LDH, RDH, L, R, LD, RD, LS, RS}, stores

Access Control Models for XML 15

the users for which there is a positive (n.veclabel[t].Allowed) and negative
(n.veclabel[t].Denied) authorization of type t that applies to n. The algorithm
mainly executes the following steps.

• Step 1: Authorization retrieval. Determine the set A of authorizations de-
fined for the document URI at the instance and schema levels and appli-
cable to the requester in rq (i.e., the subject of the authorization is the
same, or a generalization of the requested subject).

• Step 2: Initial labeling. For each authorization
a=〈subject, object, action, sign, type〉∈ A, determine the set N of
nodes that are identified by a.object. Then, for each node n in N ,
a.subject is added to the list n.veclabel[a.type].Allowed or to the list
n.veclabel[a.type].Denied depending if a.sign is + or −, respectively.
Since several authorizations, possibly of different sign, may exist for each
authorization type, the application of a conflict resolution policy is neces-
sary. The final sign n.veclabel[t].sign applicable to node n for each type t
is then obtained by combining the two lists according to the selected con-
flict resolution policy. The model is applicable and adaptable to different
conflict resolution policies. However, for simplicity it is assumed that con-
flicts are solved by applying the “most specific subject takes precedence”
principle together with the “denials take precedence” principle.

• Step 3: Label propagation. The labels (signs) associated with nodes are then
propagated to their subelements and attributes according to the following
criteria: (1) authorizations on a node take precedence over those on its
ancestors, and (2) authorizations at the instance level, unless declared
as soft, take precedence over authorizations at the schema level, unless
declared as hard. The nodes whose sign remains undeterminate (ε) are
associated with a negative sign since the closed policy is applied.

• Step 4: View computation. Once the subtree associated with the request
has been properly labeled with + − signs, it is necessary to compute the
document’s view to be returned to the requester. Note that, even if the re-
quester is allowed access to all and only the elements and attributes whose
label is positive, the portion of the document visible to the requester in-
cludes also start and end tags of elements with a negative label, but that
have a descendant with a positive label. Otherwise, the structure of the
document would change, becoming non compliant with the DTD any more.
The view of the document can be obtained by pruning from the original
document tree all the subtrees containing only nodes with a negative or un-
defined label. The pruned document may be not valid with respect to the
DTD referenced by the original XML document. This may happen, for in-
stance, when attributes marked as #REQUIRED are deleted because the final
user cannot access them. To avoid this problem, a loosening transformation
is applied to the DTD, which simply defines as optional all the elements
(and attributes) marked as required in the original DTD. DTD loosening

16 S. De Capitani di Vimercati, S. Foresti, S. Paraboschi, and P. Samarati

Table 2. An example of access control policies

Subject Object Sign Action Type

1 Public,*,* /account operation/@bankAccN − read LD
2 BankEmployee,*,* /account operation + read RD
3 StatisticalAnalyst,*,* /account operation + read RD
4 StatisticalAnalyst,*,* //notes − read LD
5 StatisticalAnalyst,*,* /account operation/operation − read RD

[./type=“bank transfer”]
6 Client,*,* /account operation + read R

[./@bankAccN=$userAcc]
7 BankEmployee,150.108.33.*,* /account operation/@bankAccN + read L
8 StatisticalAnalyst,*,*.bank.com /account operation//notes + read L
9 CashOperators,*,* /account operation/ − read R

request[./means=“Internet”]

prevents users from detecting whether information has been hidden by the
security enforcement or was simply missing in the original document [14].

Example 3. Consider the DTD and the XML document in Fig. 1, and
the user-group hierarchy in Fig. 3. Table 2 shows a list of access con-
trol policies. The first schema-level authorization states that nobody can
access attribute @bankAccN of element account operation (1). Users be-
longing to BankEmployee and StatisticalAnalyst groups can access
the account operation element (2 and 3), but StatisticalAnalyst
group is denied access to //notes (4). Since the fourth authorization
is LD, while third authorization is RD, the fourth policy overrides the
third one. Furthermore, StatisticalAnalyst group is denied access to
/account operation/operation[./type=“bank transfer”], meaning that
users belonging to the group cannot access /account operation/operation
if the operation is a bank transfer (5). Consider now the instance-
level authorizations. Users belonging to Client group can access the
account operation element, if condition ./@bankAccN=$userAcc holds (vari-
able $userAcc represents the variable containing the bank account num-
ber for the requesting user) (6). Also, members of the BankEmployee
group and connected from 150.108.33.* can access @bankAccN at-
tribute (7). This authorization overrides the first authorization in
the table. Members of the StatisticalAnalyst group and connected
from *.bank.com can read /account operation//notes for the spe-
cific instance (8). Finally, CashOperators group is denied access to
/account operation/request[./means=“Internet”] (9).

Suppose now that Alice and David submit a request to read the document
in Fig. 1(b). Figure 4 illustrates the views returned to Alice and David at the
end of the access control process.

Access Control Models for XML 17

account_operation

id

request
 number

date

means

“00025”

“10”

04-20-2007

Internet

(a) Alice’s view

account_operation
 bankAccN

id

opertion

type

amount

recipient

notes

“0012”

“00025”

bank transfer

$ 1,500

0023

Invoice 315 of

03-31-2007

(b) David’s view

Fig. 4. Examples of views

4.2 Kudo et al. Static Analysis

Most of the access control systems proposed for XML documents are based on
a run-time policy evaluation, that is, any time an access request is submitted
to the system, the access control policies are evaluated. However, this run-
time policy evaluation may be quite expensive [13]. To avoid this problem,
Kudo et al. proposed an access control system based on static analysis, which
is complemented by a run-time analysis when needed [13].

Authorization Specification

Access authorizations are defined as triples of the form (s,±a, o), stating that
authorization subject s is (or not, depending on the sign) allowed to perform
action a on object o.

An authorization subject may be a user-id, a role, or a group name: the
subject name is preceded by a prefix indicating its type. Note that hierarchical
structures are not supported by this model. The XPath language is used to
define objects in an authorization rule, but functions are not handled by the
considered model. Like in [9], the authors limit the basic model definition to
read authorizations only, and support both positive and negative authoriza-
tions to easily handle exceptions. However, this model does not distinguish
between schema and instance level authorizations.

Authorizations specified on an element can be defined as applicable to the
element’s attributes only (local authorizations) or, in a recursive approach,
to its subelements and their attributes (recursive authorizations). To solve
conflicts that may arise on a node, the proposed model can adopt either the
“denials take precedence” or the “permissions take precedence” principles,
independently from the node on which the conflicting authorizations have been
specified. For security reasons, the model presented in the paper limits the
analysis to “denials take precedence” principle adoption. The default closed
policy is applied when no authorizations are specified.

18 S. De Capitani di Vimercati, S. Foresti, S. Paraboschi, and P. Samarati

The framework proposed for static analysis is based on the use of automata
to compare schemas, authorizations, and queries. The static analysis tries to
evaluate anything that does not depend on the specific XML instance and
that can be evaluated simply on the basis of the schema and of the access
control policy. Formally, an automaton is defined as follows.

Definition 2 (Non deterministic finite state automaton). A non de-
terministic finite state automaton (NFA) M is a five-tuple of the form
(Ω,Q, Qinit, Qfin, δ) where:

• Ω is the alphabet;
• Q is a finite set of states of M ;
• Qinit ⊆ Q is the set of initial states of M ;
• Qfin ⊆ Q is the set of final states of M ;
• δ : Q×Ω → Q is the transition function of M .

The set of strings accepted by M , denoted L(M), is the language of the au-
tomaton.

Given the definition of non deterministic finite state automaton, it is pos-
sible to build a NFA corresponding to an arbitrary XPath expression r that
does not contain conditions. The NFA accepts a path iff it matches with r.
This correspondence is possible since XPath is limited to // operator and
conditions are not considered while building the NFA. However, if an XPath
expression contains conditions, it is possible to partially capture their seman-
tics by building two NFAs for the given XPath expression r: an overestimation
M [r] and an underestimation M [r]. The former automaton is obtained by as-
suming all conditions satisfied, while the latter is obtained by assuming all
conditions not satisfied.

Static Analysis

The static analysis exploits the definition of automaton and is composed of
the following four steps.

• Step 1: Create schema automata. Given a schema (DTD or XML Schema)
that a document should follow, a schema automaton MG is built. This
automaton accepts all and only the paths that are allowed by the schema.

• Step 2: Create access control automata. For each role (group) in the system,
a pair of automata is defined: an underestimate access-control automaton
MΓ and an overestimate access-control automaton MΓ . For each role,
this pair of automata should accept the set of paths to elements and/or
attributes that the role is authorized to access. It is necessary to define
both an underestimate and an overestimate automaton since conditions
may be added to correctly handle the propagation of positive and negative
authorizations along the XML tree. In particular, since the “denials take
precedence” principle is adopted, an element is accessible only if it is the

Access Control Models for XML 19

descendant of an authorized node, and it is not the descendant of any
denied node.

• Step 3: Create query regular expressions. Given a query expressed in
XQuery, the XPath expressions appearing in the query are translated in
equivalent regular expressions Er. XPath expressions appearing as argu-
ment for the clauses FOR, LET, ORDER, and WHERE are translated in equiv-
alent (possibly overestimated) regular expressions. XPath expressions ap-
pearing in the RETURN clause are overestimated and the regular expression
generated captures also any descendant of the nodes defined by the XPath
expression. Note that recursive queries cannot be handled, since the cor-
responding regular expression would not be defined.

• Step 4: Compare schema and access control automata with query regular
expressions. Given an XPath expression r, it may be:
– always granted, if every path accepted by the query regular expression

Er and by the schema automaton MG is accepted by the (underesti-
mated) access control automaton MΓ ;

– always denied, if no path is accepted by all of the query regular expres-
sion Er, the schema automaton MG, and the (overestimated) access
control automaton MΓ ;

– statically indeterminated, otherwise.
Note that, if the schema is not defined, the schema automaton MG accepts
any path.

The proposed static analysis method does not support conditions involv-
ing values specified in the XML documents. However, it is possible to extend
the model to the aim of partially handling value-based access control. Intu-
itively, if an access control policy and a query specify the same predicate, it
is possible to incorporate the predicate in the underlying alphabet adopted to
build NFAs. To this aim, it is necessary a pre-processing phase of the static
analysis method that identifies and substitutes predicates with symbols. Even
if this solution does not eliminate predicates completely, it improves query
efficiency by anticipating some predicate evaluations.

The main advantage of static analysis is that queries can be rewritten on
the basis of the XPath expressions they consider. If the query contains a path
expression classified as always denied by the fourth step of the static analysis
process, it can be removed from the query without evaluation. By contrast,
path expressions classified as always granted, simply need to be returned to
the requester. Those path expressions that are classified as statically indeter-
minate have to be run-time evaluated, on the basis of the specific instance
they refer to.

The authors provide also a way for easily building a schema (DTD or XML
Schema), which can be released without security threats, depending on the
authorizations of the requesting user. This method is based on the automata
structures previously described. The view schema contains only elements vis-

20 S. De Capitani di Vimercati, S. Foresti, S. Paraboschi, and P. Samarati

ible to the final user, while non accessible elements containing accessible ones
are renamed as AccessDenied elements [13].

As a support for the proposal, experimental results are presented demon-
strating the efficiency gain due to static analysis with respect to run-time
analysis proposed by other approaches.

Example 4. Consider the DTD and the XML document in Fig. 1 and suppose
that there are three user-groups: BankEmployee, which are employees of the
considered bank institute, StatisticalAnalyst, which are bank employees
who make statistics about clients and their operations, and Client, which are
people having a bank account at the institute.

Consider a set of authorizations stating that the members of the
BankEmployee group can access the whole content of the account operation
element, members of the StatisticalAnalyst group can access the content of
the account operation element but the notes elements, and each client can
access the account operation elements about their bank account. Formally,
these authorizations can be expressed as follows.

• group: BankEmployee, /account operation, + read, recursive
• group: StatisticalAnalyst, /account operation, + read, recursive
• group: StatisticalAnalyst, //notes, - read, recursive
• group: Client, /account operation[./@bankAccN=$userAcc], + read,

recursive

We first define the schema automaton corresponding to the considered
DTD. It is first necessary to define two sets of symbols, representing elements
and attributes, respectively.

• ΣE={account operation, request, operation, date, means, notes,
type, amount, recipient, value}

• ΣA={@bankAccN, @Id, @number}
Given ΣE and ΣA, it is now possible to define the schema automaton MG as
follows.

• Ω=ΣE ∪ΣA

• Q={Account Operation, Request, Operation, Date, Means, Notes, Type,
Amount, Recipient, Value}∪{qinit}∪{qfin}

• Qinit={qinit}
• Qfin={Date, Means, Notes, Type, Amount, Recipient, Value}∪{qfin}
• δ(qinit,account operation)=Account Operation

δ(Account Operation,request)=Request
δ(Account Operation,operation)=Operation
δ(Request,date)=Date
δ(Request,means)=Means
δ(Request,notes)=Notes
δ(Operation,type)=Type
δ(Operation,amount)=Amount;

Access Control Models for XML 21

δ(Operation,recipient)=Recipient
δ(Operation,notes)=Notes;
δ(Operation,value)=Value
δ(Account Operation,@bankAccN)=qfin

δ(Account Operation,@Id)=qfin

δ(Request,@number)=qfin

The schema automaton defined accepts the same paths allowed by the
considered DTD. Specifically, L(MG) is equal to: /account operation,
/account operation/@Id, /account operation/@bankAccN,
/account operation/request, /account operation/request/@number,
/account operation/request/date, /account operation/request/means,
/account operation/request/notes, /account operation/operation,
/account operation/operation/type,
/account operation/operation/amount,
/account operation/operation/recipient,
/account operation/operation/notes,
/account operation/operation/value.

The second step of the static analysis method consists in building the
access control automata MΓ and MΓ , for each of the three groups of users
considered. For the sake of simplicity, we represent only the language of the
automaton.

• BankEmployee L(MΓ)={account operation}·(ΣE)∗ · (ΣA ∪ {ε})
• StatisticalAnalyst L(MΓ)={account operation}·(ΣE)∗ · (ΣA ∪ {ε})\

{notes}·(ΣE)∗ · (ΣA ∪ {ε})
• Client L(MΓ)=∅·(ΣE)∗ ·(ΣA∪{ε}); L(MΓ)={account operation}·(ΣE)∗ ·

(ΣA ∪ {ε})
Here, · is the concatenation operator, \ is the set difference operator, ε is the
nil character, and (ΣE)∗ represents any string in ΣE .

Consider now the XQuery expression introduced in Example 2. The cor-
responding XPath expressions, classified on the basis of the clause they are
represented in, are:

• FOR, LET, ORDER BY ,WHERE: /account operation;
/account operation/operation/type

• RETURN: account operation/operation/amount;
account operation/operation/recipient;
account operation//notes

Here record//notes implies both record/request/notes and
record/operation/notes.

On the basis of the static analysis, it is possible to classify the requests
submitted by users. As an example, consider the following requests.

• BankEmployee requests /account operation/operation/type: the re-
quest is always granted;

22 S. De Capitani di Vimercati, S. Foresti, S. Paraboschi, and P. Samarati

• StatisticalAnalyst requests /account operation//notes: the request
is always denied;

• Client requests /account operation/operation/amount: the request is
statically indeterminate.

The last request introduced by the example is statically indeterminate
as the path expression /account operation[./@bankAccN=$userAcc] in the
access control policy cannot be statically captured by an automaton. To solve
this problem, it is possible to rewrite the policy, and all the statical analysis
tools, adding two new symbols to the considered alphabet:
account operation1=/account operation[./@bankAccN=$userAcc] and
account operation2=/account operation[not ./@bankAccN=$userAcc].

4.3 Other Approaches

Besides the two access control models described above, a number of other
models have been introduced in the literature for controlling access to XML
documents.

The first work of Kudo et al. [10] introduce provisional authorizations in
XML access control. A provisional authorization is an authorization allowing
the specification of a security action that the user (and/or the system) has to
execute to gain access to the requested resource. A security action may be for
example, the encryption of a resource with a given key, or the recording in
the log of an access control decision. Due to the problem of run-time policy
evaluation, Kudo et al. [6] present a different access control model, based
on the definition of an Access-Condition-Table (ACT). An ACT structure is
statically generated from an access control policy. The ACT contains, for each
target path in the XML document, an access condition and a subtree access
conditions, which are the conditions that have to be fulfilled to gain access
to the node and to its subtree, respectively. By using the ACT, the run-time
evaluation of requests is reduced from the whole policy to an access condition.
The proposed model has however some disadvantages: it does not scale well,
and it imposes limitations on XPath expressions. To overcome these issues
the authors propose an alternative structure to ACT, the Policy Matching
Tree (PMT) [7], which supports real-time updates of both policy and data. In
this case, the pre-processing phase consists in building the tree structure on
the basis of the access control policy. Whenever a user makes a request, an
algorithm visits the path in the tree that matches the request, to compute the
correct answer stored in the leaf. To further improve computational efficiency,
the authors propose a function-based access control model that has a rule
function for each authorization in the policy [17]. A rule function is a piece
of executable code, which is run any time an access request matches with
the rule, and returning the answer for the final user. Function rules can be
organized on the basis of the subject or object they refer to: the first solution
has been empirically proven to be more efficient.

Access Control Models for XML 23

An alternative solution to the static analysis proposed by Kudo et al. is
presented in [18], where the authors propose to store the access control policy
in a space and time efficient data structure, called compressed accessibility
map (CAM). This structure is obtained by exploiting the structural locality
of access authorizations, that is, by grouping object having similar access
profiles.

Another model proposing a pre-processing phase for access control pur-
poses is introduced in [19], where the pre-processing algorithm, called QFilter
rewrites these queries by pruning any part that violate access control rules.

The concept of view as the portion of an XML document that can be
released to the user (introduced first by Damiani et al. [9]) has been exploited
by different models.

The solution proposed by Fan et al. [20] is based on the concept of security
view. A security view of an XML document provides with each user group both
a view of the XML document with all and only the information that the group
can access, and a view of the DTD, compliant with the released portion of the
XML document. It is important to note that, concretely, each document has
one security view, obtained by marking the XML document according with
the access control policy. Authorized users are then supposed to make queries
over their security view. In the paper, the authors propose both an algorithm
for computing security views from an access control policy, and an algorithm
for reformulating queries posed on security views to be evaluated on the whole
XML document, avoiding materialization.

An alternative method for view generation has also been proposed [21].
This model uses an authorization sheet to collect all the authorizations. The
authorization sheet is then translated in an XSLT sheet, which grants the
generation of the correct view to the user when she asks for (a portion of) the
document.

In [22] the authors propose an alternative method to the tree labeling
process for view generation, since it may be inefficient if the size of the tree and
the number of requests increase. The alternative model stores XML documents
in a relational database, which is used to select data on users’ request, and to
check only selected data against the access control policy, instead of labeling
the whole XML tree.

Bertino et al. proposed different works aimed at access control enforce-
ment in XML documents [23, 24, 25, 5]. In particular, they propose a model
supporting the use of credentials (i.e., sets of attributes concerning a specific
user) for subject definition.

Since XML documents represent an alternative to the traditional rela-
tional database model, some models adopt solutions proposed for relational
databases [8, 26]. In [8] the author proposes to adopt SQL syntax and se-
mantics to XML documents. Each user manages all privileges on her files,
and grants or revokes them to other users, possibly along with the grant
option.

24 S. De Capitani di Vimercati, S. Foresti, S. Paraboschi, and P. Samarati

The model proposed in [26] does not use SQL syntax, but exploits the
concept of view as in relational databases to restrict access to data. In this
case, views are defined by using the XQuery language, and may be authoriza-
tion objects. The model supports not only structure-based authorizations, but
also rules depending on the context or content of the considered documents
by adding conditions in XQuery expressions.

Since relationship among elements/attributes may reveal sensitive infor-
mation, in [27] the authors propose the definition of access control rules on the
relationship among XML elements and attributes (i.e., on arcs in the XML
tree). It is then presented a technique to control the view that can be released
of the path leading to any authorized node in an XML document. The authors
introduce also a rule-based formulation of the new class of authorizations.

To the aim of adding semantic meaning to authorizations, RDF (Resource
Description Framework) is used as a new way for expressing access control
policies [28]. The paper focuses also on the problem of controlling data associ-
ations, and adds a new object type to the classical model: the association secu-
rity object. An association security object is an XML subtree whose elements
can be accessed only separately. To solve the problem of data associations,
the model uses temporal data.

All the models introduced above for access control of XML documents
are based on the discretionary access control model [12]. In [29], the authors
propose a role-based access control model (RBAC) for XML documents, which
exploits the main characteristics of XML data.

In [30] the authors propose the first access control model for XML docu-
ments operating client-side. The main difference with respect to the previous
proposals is that this method needs to operate on stream data and it is sup-
posed to operate on a system where the server storing data may not be trusted
for access control enforcement.

Recently, a new class of methods have been also proposed for access con-
trol enforcement for XML documents [5, 31, 32]. These methods consider a
data outsourcing scenario, where XML documents are stored on a possibly
not trusted server, and are not under the data owner’s direct control. In these
cases, XML documents themselves should enforce access control, since this
task cannot either be executed by the owner or by the storing server. Access
control is enforced through selective encryption, that is, by encrypting differ-
ent portions of the XML tree by using different encryption keys. Consequently,
a correct key distribution to users ensures that access control enforcement is
correct.

5 Conclusions

The role of XML in the representation and processing of information in cur-
rent information systems is already significant and is certainly going to see
a considerable increase in the next years. The design and implementation of

Access Control Models for XML 25

an access control model for XML promises to become an important tool for
the construction of modern applications. The research of the last few years
presented in this chapter has produced several proposals for the construction
of an access control solution for XML data. These results are a robust basis
for the work of a standard committee operating within one of the important
consortia involved in the definition of Web standards. Thanks to the avail-
ability of such a standard, it is reasonable to expect that XML access control
models will be used to support the data protection requirements of many ap-
plications, making XML access control a common tool supporting the design
of generic software systems.

Acknowledgements

This work was supported in part by the European Union under contract IST-
2002-507591, and by the Italian Ministry of Research, within programs FIRB,
under project “RBNE05FKZ2”, and PRIN 2006, under project “Basi di dati
crittografate” (2006099978).

References

1. Bray, T., Paoli, J., Sperberg-McQueen, C.M., Maler, E., Yergeau, F.: Extensible
markup language (XML) 1.0 (fourth edition) (August 2006) W3C Recommen-
dation.

2. Berglund, A.: Extensible stylesheet language (XSL) version 1.1 (December 2006)
W3C Recommendation.

3. Clark, J., DeRose, S.: XML path language (XPath) version 1.0 (November 1999)
W3C Recommendation.

4. Boag, S., Chamberlin, D., Fernndez, M.F., Florescu, D., Robie, J., Simon, J.:
XQuery 1.0: An XML query language (January 2007) W3C Recommendation.

5. Bertino, E., Ferrari, E.: Secure and selective dissemination of XML documents.
ACM Transaction Information System Security 5(3) (August 2002) 290–331

6. Qi, N., Kudo, M.: Access-condition-table-driven access control for XML
databases. In: Proc. of the 9th European Symposium on Research in Computer
Security, Sophia Antipolis, France (September 2004)

7. Qi, N., Kudo, M.: XML access control with policy matching tree. In: Proc. of
the 10th European Symposium on Research in Computer Security, Milan, Italy
(September 2005)

8. Gabillon, A.: An authorization model for XML databases. In: Proc. of the 2004
Workshop on Secure Web Service (SWS04), Fairfax, Virginia (November 2004)

9. Damiani, E., De Capitani di Vimercati, S., Paraboschi, S., Samarati, P.: A
fine-grained access control system for XML documents. ACM Transaction In-
formation System Security 5(2) (May 2002) 169–202

10. Kudo, M., Hada, S.: Xml document security based on provisional authoriza-
tion. In: Proc. of the 7th ACM Conference on Computer and Communications
Security (CCS00). (November 2000)

26 S. De Capitani di Vimercati, S. Foresti, S. Paraboschi, and P. Samarati

11. Jajodia, S., Samarati, P., Sapino, M., Subrahmanian, V.: Flexible support for
multiple access control policies. ACM Transactions on Database Systems 26(2)
(June 2001) 214–260

12. Samarati, P., di Vimercati, S.D.C.: Access control: Policies, models, and mech-
anisms. In Focardi, R., Gorrieri, R., eds.: Foundations of Security Analysis and
Design. LNCS 2171. Springer-Verlag (2001)

13. Murata, M., Tozawa, A., Kudo, M., Hada, S.: XML access control using static
analysis. ACM Transaction Information System Security 9(3) (August 2006)
292–324

14. Damiani, E., De Capitani di Vimercati, S., Paraboschi, S., Samarati, P.: De-
sign and implementation of an access control processor for XML documents.
Computer Networks 33(1-6) (June 2000) 59–75

15. Damiani, E., De Capitani di Vimercati, S., Paraboschi, S., Samarati, P.: Securing
XML documents. In: Proc. of the 7th International Conference on Extending
Database Technology (EDBT00), Konstanz, Germany (March 2000)

16. Damiani, E., Samarati, P., De Capitani di Vimercati, S., Paraboschi, S.: Con-
trolling access to XML documents. IEEE Internet Computing 5(6) (Novem-
ber/December 2001) 18–28

17. Qi, N., Kudo, M., Myllymaki, J., Pirahesh, H.: A function-based access control
model for XML databases. In: Proc. of the 2005 ACM CIKM International Con-
ference on Information and Knowledge Management, Bremen, Germany (Octo-
ber - November 2005)

18. Yu, T., Srivastava, D., Lakshmanan, L.V.S., Jagadish, H.V.: Compressed ac-
cessibility map: Efficient access control for XML. In: Proc. of the 28th Inter-
national Conference on Very Large Data Bases (VLDB), Hong Kong, China
(August 2002)

19. Luo, B., Lee, D., Lee, W.C., Liu, P.: QFilter: fine-grained run-time XML access
control via NFA-based query rewriting. In: Proc. of the 2004 ACM CIKM Inter-
national Conference on Information and Knowledge Management, Washington,
DC, USA (November 2004)

20. Fan, W., Chan, C.Y., Garofalakis, M.: Secure XML querying with security views.
In: Proc. of the 2004 ACM SIGMOD International Conference on Management
of Data, Paris, France (June 2004)

21. Gabillon, A., Bruno, E.: Regulating access to XML documents. In: Proc. of the
Fifteenth Annual Working Conference on Database and Application Security
(Das01), Niagara, Ontario, Canada (July 2002)

22. Tan, K.L., Lee, M.L., Wang, Y.: Access control of XML documents in relational
database systems. In: Proc. of the 2001 International Conference on Internet
Computing, Las Vegas, Nevada, USA (June 2001)

23. Bertino, E., Braun, M., Castano, S., Ferrari, E., Mesiti, M.: Author-X: A Java-
based system for XML data protection. In: Proc. of the IFIP TC11/ WG11.3
Fourteenth Annual Working Conference on Database Security, Amsterdam, The
Netherlands (August 2000)

24. Bertino, E., Castano, S., Ferrari, E.: Securing XML documents with Author-X.
IEEE Internet Computing 5(3) (May/June 2001) 21–31

25. Bertino, E., Castano, S., Ferrari, E., Mesiti, M.: Specifying and enforcing access
control policies for XML document sources. World Wide Web 3(3) (June 2000)
139–151

Access Control Models for XML 27

26. Goel, S.K., Clifton, C., Rosenthal, A.: Derived access control specification for
XML. In: Proc. of the 2003 ACM Workshop on XML Security (XMLSEC-03),
New York (October 2003)

27. Finance, B., Medjdoub, S., Pucheral, P.: The case for access control on XML
relationships. In: Proc. of the 2005 ACM CIKM International Conference on
Information and Knowledge Management, Bremen, Germany (October - Novem-
ber 2005)

28. Gowadia, V., Farkas, C.: RDF metadata for XML access control. In: Proc. of
the 2003 ACM Workshop on XML Security (XMLSEC-03), New York (October
2003)

29. Hitchens, M., Varadharajan, V.: RBAC for XML document stores. In: Proc. of
the Third International Conference on Information and Communications Secu-
rity (ICICS01), Xian, China (November 2001)

30. Bouganim, L., Ngoc, F.D., Pucheral, P.: Client-based access control manage-
ment for XML documents. In: Proc of the 30th VLDB Conference, Tornoto,
Canada (September 2004)

31. Miklau, G., Suciu, D.: Controlling access to published data using cryptography.
In: Proc. of the 29th VLDB Conference, Berlin, Germany (September 2003)

32. Wang, H., Lakshmanan, L.V.S.: Efficient secure query evaluation over encrypted
XML databases. In: Proc. of the 32nd VLDB Conference, Seoul, Korea (Septem-
ber 2006)

