© Springer Berlin Heidelberg (2007)
http://www.springerlink.com/content/qgl152r71g523np74/fulltext.pdf

8

Trust Management

Claudio A. Ardagna, Ernesto Damiani, Sabrina De Capitani di Vimercati,
Sara Foresti, and Pierangela Samarati

Universita degli Studi di Milano
Italia

Summary. The amount of data available electronically to a multitude of users
has been increasing dramatically over the last few years. The size and dynamics
of the user community set requirements that cannot be easily solved by traditional
access control solutions. A promising approach for supporting access control in open
environments is trust management.

This chapter provides an overview of the most significant approaches for manag-
ing and negotiating trust between parties. We start by introducing the basic concepts
on which trust management systems are built, describing their relationships with
access control. We then illustrate credential-based access control languages together
with a description of different trust negotiation strategies. We conclude the chapter
with a brief overview of reputation-based systems.

8.1 Introduction

Accessing information over the Internet has become an essential requirement
in the modern economy, where unknown parties can interact for the purpose
of acquiring or offering services. The open and dynamic nature of such a sce-
nario requires the development of new ways of enforcing access control, as
identity-based mechanisms are not able to manage these issues any more. In
fact, interacting parties may be unknown to each other, unless they have al-
ready had transactions before. Consequently, a mechanism that allows one to
decide which requesters are qualified to gain access to the resource and, on
the other hand, which server is trusted to provide the requested resource, on
the basis of certified statements provided by the interacting parties is needed.
Trust management has been developed for this specific purpose and has re-
ceived considerable interest from the research community [25]. Early research
identified three main components of trust management: (i) security policies,
which are local trust assertions that the local system trusts unconditionally;
(ii) security credentials, which are signed trust assertions made by other par-
ties; the signature must be verified before the credential may be used; (iii) trust
relationships, which are special cases of security policies. Early approaches to


Sara
Line


104 C.A. Ardagna et al.

trust management, such as PolicyMaker [5] and KeyNote [4], basically use cre-
dentials to describe specific delegation of trusts among keys and to bind public
keys to authorizations. Although early trust management systems do provide
an interesting framework for reasoning about trust between unknown par-
ties, assigning authorizations to keys may be limiting and make authorization
specifications difficult to manage. Moreover, the public key of a subject may
eventually be considered as her pseudonym, reducing the main advantages of
trust management.

A promising direction to overcome this disadvantage is digital certificates.
A digital certificate is basically the online counterpart of paper credentials
(e.g., driver licenses). Access control models exploiting digital certificates
make access decisions on whether or not a party may execute an access on
the basis properties that the requesting party may have. These properties can
be proven by presenting one or more certificates [6, 13, 15, 18, 34]. The de-
velopment and effective use of credential-based access control models require
tackling several problems related to credential management and disclosure
strategies, delegation and revocation of credentials, and the establishment of
credential chains [10, 16, 23, 24, 28, 29, 31]. In other words, trust between
two interacting parties is established based on the parties’ properties, which
are proven through the disclosure of digital certificates. First of all, parties
must be able to state and enforce access rules based on credentials and com-
municate these rules to their counterpart to correctly establish a negotiation.
The resolution of this problem requires the development of new access control
(authorization) languages and systems.

The main advantages of trust management solutions can therefore be sum-
marized as follows.

e Trust management allows unknown parties to access resources/services by
showing appropriate credentials that prove their qualifications to get the
resources/services.

e Trust management supports delegation and provides decentralization of
control as it allows trust chains among parties to propagate access rights.

e Trust management is more expressive than classical access control mecha-
nisms as it allows the addition of new restrictions and conditions without
the need to rewrite the applications enforcing access control.

e The use of trust management systems for controlling security-critical ser-
vices frees the application programmers from designing and implementing
security mechanisms for specifying policies, interpreting credentials, and
SO on.

e FEach party can define access control policies to regulate accesses to its
resources/services.

e Trust management systems increase the expressiveness and scalability of
access control systems.

e Trust establishment involves just two parties: the requester and the service
provider.



8 Trust Management 105

The concept of reputation is closely linked to that of trustworthiness. Rep-
utation is often considered as a collective measure of trustworthiness based on
ratings from parties in a community and can be used to establish trust rela-
tionships between parties [9]. The basic idea behind reputation management
is to let remote parties rate each other, for example, after the completion of
a transaction, and use the aggregated ratings about a given party to derive a
reputation score. Reputation can then be used by other parties when deciding
whether or not to transact with that party in the future. Linking reputa-
tions to parties and/or to their attributes impacts on the trust framework
inasmuch as it poses additional requirements on credentials production and
management. A rapidly growing literature is becoming available around trust
and reputation systems, but the relation between these notions needs further
clarification.

The purpose of this chapter is to give an overview of existing and proposed
approaches to trust management. The remainder of this chapter is organized
as follows. Section 8.2 gives an overview of early approaches for trust man-
agement, namely PolicyMaker, KeyNote, and rule-controlled environment for
evaluation of rules and everything else (REFEREE). Section 8.3 presents the
main characteristics of credential-based access control systems and illustrates
a credential-based access control language together with some trust nego-
tiation strategies. Section 8.4 presents a brief overview of reputation-based
systems. Finally, Sect. 8.5 gives our conclusions.

8.2 Early Approaches to Trust Management

With the growing popularity of the Internet, trust-based systems are becom-
ing increasingly prevalent. In such a context, trust is an inherently dynamic
measure. For instance, party A previously trusting party B but its public
key authority may decide to stop trust if party B vouches for bad public key
bindings. The level of trust may therefore increase or decrease depending on
new knowledge and experiences learned from exercising the trust. In general,
trust management systems may differ in the approach adopted to establish
and evaluate trust relationships between parties. Early approaches to trust
management used credential verification to establish a trust relationship with
other parties. These systems start from the proposal of binding authorizations
with keys rather than with users’ identities.

We now give an overview of the early trust management approaches to
authorization and access control, focusing on the PolicyMaker, KeyNote, and
REFEREE systems.

8.2.1 PolicyMaker and KeyNote

PolicyMaker [5] and KeyNote [4] provide a comprehensive approach to trust
management, defining a language used to specify trusted actions and rela-
tions. In the past, identity-based certificates were used to create an artificial



106 C.A. Ardagna et al.

layer of indirection, linking a user’s public key to her identity (e.g., X509 cer-
tificates [7]), and the user’s identity to the set of actions she is authorized
to execute. PolicyMaker and KeyNote are, instead, systems that integrate
the specification of policies with the binding of public keys to the actions
they are trusted to perform. The ability to express security credentials and
policies without requiring the application to manage a mapping between the
user identity and authority is of paramount importance in systems where it
is necessary to protect users’ anonymity (e.g., electronic voting systems).

Both PolicyMaker and KeyNote are based on credentials and policies,
which are correctly referred to as assertions. More precisely, signed asser-
tions are credentials, while policies are unsigned assertions. Credentials are
mainly used for trust delegation under some specific conditions. Consequently
a trusted entity can issue a credential to a nontrusted entity that becomes
trusted and, in turn, can issue a similar credential to another entity and so
on, thus forming a delegation chain without any length restrictions. An entity
can therefore obtain access to a certain resource through a delegation from an
authorized entity. Delegation is an important feature of a trust management
system since it guarantees system scalability. Authority delegations can be
graphically represented as a graph, where each node corresponds to a key and
an edge from node n to node ny indicates that there is a credential delegating
authority from n; to ns.

While credential statements are signed with the issuer’s private key, poli-
cies, on the contrary, are not signed and the issuer entity is a standard entity,
represented by keyword Policy, meaning that the specific assertion is locally
trusted. An access request is accepted if there exists a path from some trusted
node (with label Policy) to the node corresponding to the requester’s key
in the delegation graph. Another common characteristic of PolicyMaker and
KeyNote is monotonicity, meaning that if an assertion is deleted, the set of
privileges does not increase.

KeyNote is a trust management system where policies and credentials are
expressed in a language directly managed by the KeyNote compliance checker.
The main difference between PolicyMaker and KeyNote is that the latter di-
rectly performs signature verification inside the trust management engine,
while PolicyMaker leaves this task up to the calling application. Moreover, as
mentioned above, KeyNote defines a specific language for credentials, designed
for request and policy evaluation, while PolicyMaker supports credentials writ-
ten in any programming language. Also, PolicyMaker returns to the calling
application a True of False answer, while KeyNote allows the definition of
an application-dependent set of answers. Obviously, the syntax of assertions
and requests is different between the two methods.

It is important to note that PolicyMaker and KeyNote do not directly
enforce access control policies, but simply provide an advice to the calling
application. The advice is based on the list of credentials and policies defined
at application side. The calling application then decides whether to follow the
received advice or not.



8 Trust Management 107
8.2.2 REFEREE

Rule-controlled environment for evaluation of rules, and everything else (REF-
EREE) [8] is a trust management system for Web applications. Like Policy-
Maker, it supports full programmability of assertions (i.e., policies and cre-
dentials). The REFEREE system provides both a general policy-evaluation
mechanism for Web clients and servers and a language used to define trust
policies, putting all trust decisions under explicit policy control. More pre-
cisely, the REFEREE model imposes that every operation, including its pol-
icy evaluation and credential fetching mechanism, happens under the control
of some policy. REFEREE is then a system for writing policies about poli-
cies, as well as policies about cryptographic keys, certification authorities,
or trust delegation. A significant difference between REFEREE and Policy-
Maker and KeyNote is that REFEREE supports non-monotonic assertions:
policies and credentials may be used to express denial of specific actions. The
three main primitive data types in REFEREE are tri-values, statement lists,
and programs. The tri-values are true (accept), false (deny), and unknown
(insufficient information). A statement list is a set of assertions expressed in
two-element expressions. Both policies and credentials are programs that take
a statement list and return a tri-value. An access request (query) to the REF-
EREE trust engine takes a policy name and additional arguments as input,
including credentials or statement lists. REFEREE then downloads the rel-
evant policies and executes them. The output is a tri-value and an optional
statement list.

8.3 Credential-Based Trust Management Systems

While the approaches described in the previous section represent a significant
step towards the support of access control in open environments, the assign-
ment of authorizations to keys may result limiting, as the public key of a
party can be seen as a pseudonym for the party. Therefore, an access control
method granting or denying access to resources on the basis of requester’s
attributes would be advisable. In many situations, before an interaction can
start, a certain level of trust is established through the exchange of informa-
tion (credentials) between the interacting parties. However, the access control
process should be able to operate without the requester’s knowledge of the
set of credentials she should have to access the resource. Consequently, the
information about the needed credentials has to be communicated to the coun-
terpart during the access control process itself. The access control decision is
therefore obtained through a complex process and completing a service may
require communicating information not related to the access itself, but related
to additional restrictions on its execution, introducing possible forms of trust
negotiation. Trust negotiation is an approach to automated trust establish-
ment. Automated trust negotiation has gained much consideration in recent



108 C.A. Ardagna et al.

service request

policy part

service request, credential

@ policy part @

AT service request, credential AT
Client Server

service

Fig. 8.1. Gradual trust establishment

years and various negotiation strategies have been proposed (see Sect. 8.3.2).
In general, the interactions between a server and a client that need to establish
a trust relationship can be summarized as follows.

The client requests an access to a service.
Upon receiving the request, the server checks if the client has provided the
necessary credentials. In the case of a positive answer, the access to the
service is granted; otherwise the server sends to the client the policies that
she must fulfil to gain access.

e The client selects, if possible, the requested credentials and sends them to
the server together with the service request.

e If the submitted credentials are appropriate, the user gains access to the
service.

There are two major drawbacks to this protocol: a server has to disclose its,
potentially sensitive policies to an unknown client, a client has to release all
her relevant credentials in a single step without any possibility of negotiation.

A first improvement to reduce the release of irrelevant information during
a trust establishment process consists in a gradual trust establishment. With
a gradual trust establishment, upon receiving an access request, the server
selects the policy that governs the access to the service and discloses only
the information that it is willing to show to an unknown party. The client,
according to her practices, decides if she is willing to disclose the requested
credentials. Note that this incremental exchange of requests and credentials
can be iteratively repeated as many times as necessary (see Fig. 8.1).

For the sake of simplicity, Fig. 8.1 shows a one-way protection schema, where
the server controls access to some resources and communicates to the client
the access control policies that the client should satisfy to gain the access.
However, current approaches focus on a full negotiation process, where policies
and credentials flow in both directions. In such a scenario, the server defines



8 Trust Management 109

policies that protect its sensitive resources and the client defines policies that
restrict the disclosure of her credentials: both client and server can then require
credentials the counterpart to release their sensitive information.

8.3.1 An Approach for Regulating Service Access and Information
Disclosure

To address the aforementioned issues, new credential-based access control lan-
guages, models, and mechanisms have been developed. One of the first solu-
tion providing a uniform framework for credential-based access control spec-
ification and enforcement was presented by Bonatti and Samarati [6]. The
framework includes an access control model, a language for expressing access
and release policies, and a policy-filtering mechanism to identify the relevant
policies for a negotiation. Access regulations are specified by mean of logical
rules, where some predicates are explicitly identified. The system is composed
of two entities: the client that requests access, and the server that exposes a
set of services. Abstractions can be defined on services, grouping them in sets,
called classes. Server and client interact by mean of a megotiation process,
defined as the set of messages exchanges between them. Clients and servers
have a portfolio, that is a collection of credentials (certified statements) and
declarations (unsigned statements). A declaration is a statement issued by the
party, while a credential is a statement issued and signed (i.e., certified) by
authorities trusted for making the statements [11]. Credentials are essentially
digital certificates, and must be unforgeable and verifiable through the issu-
ing certificate authority’s public key. In this proposal, credentials are therefore
modeled as credential expressions of the form credential_name(attribute_list),
where credential_name is the attribute credential name and attribute_list is a
possibly empty list of elements of the form attribute_name=value_term, where
value_term is either a ground value or a variable. The main advantage of this
proposal is that it provides an infrastructure to exchange the minimal set of
certificates, that is, a client communicates the minimal set of certificates to
a server, and the server releases the minimal set of conditions required for
granting access. For this purpose, the server defines a set of service accessi-
bility rules, representing the necessary and sufficient conditions for granting
access to a resource. More precisely, this proposal distinguishes two kinds of
service accessibility rules: prerequisites and requisites. Prerequisites are condi-
tions that must be satisfied for a service request to be taken into consideration
(they do not guarantee that it will be granted); requisites are conditions that
allow the service request to be successfully granted. The basic motivation for
this separation is to avoid unnecessary disclosure of information from both
parties, and can therefore be seen as twofold: (i) server’s privacy, and (ii)
client’s privacy. Therefore, the server will not disclose a requisite rule until
after the client satisfies a corresponding prerequisite rule. Also, both clients
and servers can specify a set of portfolio disclosure rules, used to define the
conditions that govern the release of credentials and declarations.



110 C.A. Ardagna et al.

The rules both in the service accessibility and portfolio disclosure sets are
defined through a logic language that includes a set of predicates (listed in the
following) whose meaning is expressed on the basis of the current state. The
state indicates the parties’ characteristics and the status of the current nego-
tiation process, that is, the certificates already exchanged, the requests made
by the two parties, and so on. Predicates evaluate both information stored
at the site (persistent state) and acquired during the negotiation (negotiation
state). Information related to a specific negotiation is deleted when the ne-
gotiation terminates. In contrast, persistent state includes information that
spans different negotiations, such as user profiles maintained at Web sites.
The basic predicates of the language can be summarized as follows.

e credential(c, K) evaluates to true if the current state contains certifi-
cate c verifiable using key K.

e declaration(d) evaluates to true if the current state contains declaration
d, where d is of the form attribute_name=value_term.

e cert-authority(CA, Kcy) evaluates to true if the party using it in her
policy trusts certificates issued by certificate authority CA, whose public
key is Kca.

e A set of non-predefined predicates necessary for evaluating the current
state values. These predicates can evaluate both persistent and negotiation
states, and they are defined by each of the parties interacting.

e A set of non-predefined abbreviation predicates that are used to abbreviate
requirements in the negotiation phase.

e A set of standard mathematical built-in predicates, such as =, #, and <.

The rules, both for service accessibility and portfolio disclosure, are com-
posed of two elements: the body, containing a boolean expression composing,
through boolean operators and, or, not, the aforementioned predicates; and
the head, specifying the services accessible, or the certificates releasable, ac-
cording to the rule. Figure 8.2 illustrates the following client/server interac-
tion.

the client sends a request for a service to the server;
the server asks from the client a set of prerequisites, that is, a set of
necessary conditions for granting access;
the client sends back the required prerequisites;
if the prerequisites are sufficient, than the server identifies the credentials
and declarations needed to grant access to the resource;

e the client evaluates the requests against its portfolio release rules and
makes, eventually, some counter-requests;

e the server sends back to the client the required certificates and declara-
tions;
the client fulfils the server’s requests;
the service is then granted to the client.



8 Trust Management 111

service request
Portfolio Portfolio
credentials/ request for prerequisites P credentials/
declarations declarations
prerequisites P [
State State
permanent/ requirements R request permanent/
negot.-dep. negot.-dep.
AFEFFERFERR requirements R’ counter-req. ATFFERFERR
Policy Policy
information R services/
release info. release
R
service granted

Client Server

Fig. 8.2. Client server negotiation

Since there may exist different policy combinations that may bring the
access request to satisfaction, the communication of credentials and/or dec-
larations could be an expensive task. To overcome this issue, the abbreviation
predicates are used to abbreviate requests. Besides the necessity of abbrevia-
tions, it is also necessary for the server, before releasing rules to the client, to
evaluate state predicates that involve private information. For instance, the
client is not expected to be asked many times the same information during
the same session and if the server has to evaluate if the client is considered
not trusted, it cannot communicate this request to the client itself.

Communication of requisites to be satisfied by the requester is then based
on a filtering and renaming process applied on the server’s policy, which ex-
ploits partial evaluation techniques in logic programs [6, 17]. Access is then
granted whenever a user satisfies the requirements specified by the filtering
rules calculated by means of the original policy and the already released in-
formation.

8.3.2 Negotiation Strategies

Besides solutions for uniform frameworks supporting credential-based access
control policies [6], different automated trust negotiation proposals have been
developed. Trust negotiation occurs whenever credentials themselves carry
some sensitive information. In such a situation, a procedure needs to be ap-
plied to establish trust through negotiation. Trust is then established grad-
ually by disclosing credentials and requests for credentials. It is however im-
portant to note that different parties may have different requirements for how
such a negotiation process should be performed and each party can therefore
rely on its trust negotiation strategy. We now provide a brief description of
some negotiation strategies suitable for different scenarios.



112 C.A. Ardagna et al.

In [31] the prudent negotiation strategy (PRUNES) has been presented.
This strategy ensures that the client communicates her credentials to the
server only if access will be granted and the set of certificates communicated
to the server is the minimal necessary for granting it. Each party defines a set
of credential policies that regulates how and under which conditions the party
releases its credentials. The negotiation is then a series of requests for creden-
tials and counter-requests on the basis of the parties’ credential policies. The
established credential policies can be graphically represented through a tree,
called a negotiation search tree, composed of two kinds of nodes: credential
nodes, representing the need for a specific credential, and disjunctive nodes,
representing the logic operators connecting the conditions for credential re-
lease. The root of a tree node is a service (i.e., the resource the client wants
to access). The negotiation can therefore be seen as a backtracking operation
on the tree. The backtracking can be executed according to different strate-
gies. For instance, a brute-force backtracking is complete and correct, but it
is too expensive to be used in a real scenario. The authors therefore proposed
the PRUNES method, which prunes the search tree without compromising
completeness or correctness of the negotiation process. The basic idea is that
if a credential C' has just been evaluated and the state of the system is not
changed too much, then it is useless to evaluate again the same credential, as
the result will be exactly the same as the result previously computed.

In [22] different negotiation strategies are introduced together with the
concepts of safeness and completeness. A strategy is safe if all possible nego-
tiations conducted by the parties are safe and hence there exists a sequence
of resource disclosures that culminates in the sensitive resource disclosure. A
strategy is complete if, whenever there exists a safe sequence of disclosure, the
original requested resource is released. Negotiation strategies can be divided
between eager and parsimonious credential release strategies. Parties apply-
ing the first strategy turn over all their credentials if the disclosure is safe.
The eager approach releases credentials as soon as possible, minimizing the
time requested for negotiation but increasing the amount of released data. A
natve eager approach requires the parties to send each other all the credentials
for which an authorized path has been found, without the need to distinguish
between credentials needed to take the decision and credentials not relevant
for the negotiation. The major advantage of this strategy is that there is no
need for policy disclosure. On the other side, a great amount of unmotivated
disclosure of data is performed. According to a parsimonious strategy, the
parties delay as much as possible data disclosure until the negotiation reaches
a certain state. In addition, parties applying a parsimonious strategy only
release credentials upon explicit request by the server (avoiding unnecessary
releases).

In [33] a large set of negotiation strategies, called a disclosure tree strategy
(DTS) family, has been defined. The authors show that, if two parties use
different strategies from the DST family, they are able to negotiate trust. The



8 Trust Management 113

DTS family is a closed set, that is, if a negotiation strategy can interoperate
with any DST strategy, it must also be a member of the DST family.

In [32] a unified schema for resource protection (UniPro) was proposed.
This mechanism is used to protect the information specified within policies.
UniPro gives (opaque) names to policies and allows any named policy P; to
have its own policy P», meaning that the content of P, can only be disclosed
to parties who have shown that they satisfy Ps.

Another solution for implementing access control based on credentials is
the adaptive trust negotiation and access control (ATNAC) approach [21].
This method grants or denies access to a resource on the basis of a suspicion
level associated with subjects. The suspicion level is not fixed but may vary
on the basis of the probability that the user has malicious intent. In [26] the
authors propose to apply the automated trust negotiation technology for en-
abling secure transactions between portable devices that have no pre-existing
relationship.

8.4 Reputation-Based Trust Management Systems

Related to trust is the concept of reputation. Reputation is another popular
mechanism that people employ to deal with unknown parties. Reputation-
based solutions do not require any prior experience with the party for repu-
tation to be used to infer trustworthiness. It is then suitable for establishing
initial trust. Parties in such systems establish trust relationships with other
parties and assign trust values to these relationships. Generally, a trust value
assigned to a trust relationship is a function of the combination of the party’s
global reputation and the evaluating party’s perception of that party. There
is however a clear distinction between trust and reputation: a trust value T
can be computed based on its reputation R, that is, T = ¢(R,t), where ¢
is the time elapsed since the reputation was last modified [2]. Traditionally,
research approaches [3, 14] distinguish between two main types of reputation-
based trust management systems, namely centralized reputation systems and
distributed reputation systems. In centralized reputation systems, trust infor-
mation is collected from members of the community in the form of ratings
on resources. The central authority collects all the ratings and derives a score
for each resource. In a distributed reputation system there is not a central
location for submitting ratings and obtaining resources’ reputation scores; in-
stead, there are distributed stores where ratings can be submitted. Recently,
reputation-based trust management systems have been applied in many dif-
ferent contexts such as peer-to-peer (P2P) networks, where the development
of P2P systems largely depends on the availability of novel provisions for en-
suring that peers obtain reliable information on the quality of the resources
they are retrieving [19]. Reputation models allow the expression and reasoning
about trust in a peer based on its past behavior [20] and interactions other
peers have experienced with it. The proposed approaches use different tech-



114 C.A. Ardagna et al.

niques for combining and propagating the ratings [1, 9, 12, 27, 30]. Here we
describe a few related examples. In [1] a trust model is proposed, where, after
each transaction, and only in the case of malicious behaviour, peers may file
a complaint. Before engaging in an interaction with others, peers can query
the network about existing complaints on their counterparts. One limitation
of this model is that it is based on a binary trust scale (i.e., an entity is either
trustworthy or not). Hence, once there is a complaint filed against a peer p, p
is considered untrustworthy even though it has been trustworthy for all pre-
vious transactions. In [27] a Bayesian network-based trust model is proposed,
where peers are evaluated with respect to different capabilities (e.g., capabil-
ity to provide music files or movies). Basically, peers develop a naive Bayesian
network for each peer with which they have interacted and modify their cor-
responding Bayesian networks after each interaction. When a peer has no
experience with another one, it can ask other peers to make recommendations
for it. Such recommendations are partitioned into two groups, recommenda-
tions from trustworthy peers and recommendation from unknown peers, and
are combined by taking a weighted sum. In [30] an adaptive reputation-based
trust model for P2P electronic communities is presented. It is based on five
trust parameters: feedbacks, number of transactions, credibility of feedbacks,
a transaction context factor, and a community context factor. The trust value
associated with a peer is then defined as a weighted sum of two parts. The
first part is the average amount of credible satisfaction a peer receives for each
transaction. The second part increase or decrease the trust value according
to community-specific characteristics or situations (e.g., the number of files a
peer shares can be seen as a type of community context factor that has to be
taken into consideration when evaluating the trustworthiness of a peer).
P2PRep is an example of a reputation-based protocol, formalizing the
way each peer stores and shares with the community the reputation of other
peers [9]. P2PRep runs in a fully anonymous P2P environment, where peers
are identified using self-assigned opaque identifiers (e.g., a digest of a public
key for which only the peer itself knows the corresponding private key). For
simplicity, reputation and trust are represented as fuzzy values in the interval
[0, 1]. This approach can however be readily extended to more-complex array-
based representations taking into account multiple features [2]. The P2PRep
protocol consists of five phases. In phase 1, a requester r locates available
resources sending a Query broadcast message. Other peers answer with a
QueryHit message notifying r that they may provide the requested resource.
Upon receiving a set of QueryHit messages, r selects an offerer o and, in
phase 2, r polls the community for any available reputation information on
o0, sending a Poll message. Poll messages are broadcasted in the same way
as Query messages. All peers maintain an experience repository of their pre-
vious experiences with other peers. When a peer receives a Poll message, it
checks its local repository. If it has some information to offer and wants to
express an opinion on the selected offerer o, it generates a vote based on its
experiences, and returns a Pol1Reply message to the initiator r. As a result



8 Trust Management 115

of phase 2, r receives a set V of votes, some of which express a good opinion
while others express a bad one. In Phase 3, r evaluates the votes to collapse
any set of votes that may belong to a clique and explicitly selects a random
set of votes for verifying their trustworthiness [9]. In phase 4 the set of repu-
tations collected in phase 3 is synthesized into an aggregated community-wide
reputation value. Based on this reputation value, the requester r can take a
decision on whether to access the resource offered by o or not (phase 5). After
accessing the resource, r can update its local trust on o (depending on whether
the downloaded resource was satisfactory or not). While a naive implementa-
tion of P2PRep can be expensive in terms of storage capacity and bandwidth,
this cost can be minimized by applying simple heuristics. The amount of stor-
age capacity is proportional to the number of peers with which the initiator
has interacted. With respect to the bandwidth, it is easy to see that P2PRep
increases the traffic of the P2P network by requiring both direct exchanges
and broadcast requests. It is, however, reasonable to assume that the major
impact of the protocol on network performance is due to broadcast messages
and their answers. To overcome this issue, several heuristics can be applied.
For instance, intelligent routing techniques can be applied for enabling cus-
tom forwarding of poll packets to the right peers. Vote caching is another
technique that can be applied to improve the effectiveness of P2PRep. Finally,
P2PRep scalability depends on the technique used for vote aggregation.

8.5 Conclusions

We have presented an overview of existing and proposed approaches to trust
management, clarifying the link between trust and reputation. We have ana-
lyzed the current trends and developments in this area, and described some
recent approaches for trust management based on a more sophisticated no-
tion of credential-based language and negotiation to establish trust between
unknown parties.

8.6 Acknowledgements

This work was supported in part by the European Union within the PRIME
project in the FP6/IST programme under contract IST-2002-507591 and by
the Italian MIUR programme within the KIWI and MAPS projects.

References

1. K. Aberer, Z. Despotovic (2001). Managing trust in a peer-2-peer information
system. In Proc. of the Tenth International Conference on Information and
Knowledge Management (CIKM 2001), Atlanta, Georgia.



116

2.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

C.A. Ardagna et al.

R. Aringhieri, E. Damiani, S. De Capitani di Vimercati, S. Paraboschi, P. Sama-
rati (2006). Fuzzy techniques for trust and reputation management in anony-
mous peer-to-peer systems. Journal of the American Society for Information
Science and Technology (JASIST), 57(4):528-537.

M. Blaze, J. Feigenbaum, J. Ioannidis, A.D. Keromytis (1999). The role of trust
management in distributed systems security. Secure Internet Programming, pp.
79-97.

M. Blaze, J. Feigenbaum, J. Ioannidis, A.D. Keromytis (1999). The KeyNote
Trust Management System (Version 2), Internet RFC 2704 edition.

M. Blaze, J. Feigenbaum, J. Lacy (1996). Decentralized trust management. In
Proc. of the 17th Symposium on Security and Privacy, Oakland, California,
USA.

P. Bonatti, P. Samarati (2002). A unified framework for regulating access and
information release on the web. Journal of Computer Security, 10(3):241-272.
CCITT (Consultative Committee on International Telegraphy and Telephony)
(1988). Recommendation X.509: The Directory—Authentication Framework.
Y. Chu, J. Feigenbaum, B. LaMacchia, P. Resnick, M. Strauss (1997). REF-
EREE: Trust management for web applications. The World Wide Web Journal,
2(3):127-139.

E. Damiani, S. De Capitani di Vimercati, S. Paraboschi, P. Samarati (2003).
Managing and sharing servents’ reputations in p2p systems. IEEE Transactions
on Data and Knowledge Engineering, 15(4):840-854.

C.M. Ellison, B. Frantz, B. Lampson, R.L. Rivest, B.M. Thomas, T. Ylonen
(1999). SPKI certificate theory. RFC 2693.

B. Gladman, C. Ellison, N. Bohm (1999). Digital signatures, certificates and
electronic commerce. http://ya.com/bg/digsig.pdf.

M. Gupta, O. Judge, M. Ammar (2003). A reputation system for peer-to-peer
networks. In Proc. of the ACM 13th International Workshop on Network and
Operating Systems Support for Digital Audio and Video, Monterey, California,
USA.

K. Irwin, T. Yu (2005). Preventing attribute information leakage in automated
trust negotiation. In Proc. of the 12th ACM Conference on Computer and Com-
munications Security, Alexandria, VA, USA.

A. Jgsang (1996). The right type of trust for distributed systems. In Proc. of
the 1996 Workshop on New Security Paradigms, Lake Arrowhead, CA.

N. Li, J.C. Mitchell, W.H. Winsborough (2005). Beyond proof-of-compliance:
Security analysis in trust management. Journal of the ACM, 52(3):474-514.

N. Li, W.H. Winsborough, J.C. Mitchell (2003). Distributed credential chain
discovery in trust management. Journal of Computer Security, 11(1):35-86.

M. Minoux (1988). LTUR: A Simplified Linear-Time Unit Resolution Algorithm
for Horn Formulae and Computer Implementation. Inf. Process. Lett., 29(1):1—
12.

J. Ni, N. Li, W.H. Winsborough (2005). Automated trust negotiation using
cryptographic credentials. In Proc. of the 12th ACM Conference on Computer
and Communications Security, Alexandria, VA, USA.

A. Oram edt. (2001). Peer-to-Peer: Harnessing the Power of Disruptive Tech-
nologies. O’Reilly & Associates.

P. Resnick, R. Zeckhauser, E. Friedman, K. Kuwabara (2000). Reputation sys-
tems. Communications of the ACM, 43(12):45-48.



21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

8 Trust Management 117

T. Ryutov, L. Zhou, C. Neuman, T. Leithead, K.E. Seamons (2005). Adaptive
trust negotiation and access control. In Proc. of the 10th ACM Symposium on
Access Control Models and Technologies, Stockholm, Sweden.

K. Seamons, M. Winslett, T. Yu (2001). Limiting the disclosure of access con-
trol policies during automated trust negotiation. In Proc. of the Network and
Distributed System Security Symposium (NDSS 2001), San Diego, CA, USA.
K.E. Seamons, W. Winsborough, M. Winslett (1997). Internet credential ac-
ceptance policies. In Proc. of the Workshop on Logic Programming for Internet
Applications, Leuven, Belgium.

K.E. Seamons, M. Winslett, T. Yu, B. Smith, E. Child, J. Jacobson, H. Mills,
L. Yu (2002). Requirements for policy languages for trust negotiation. In Proc.
of the 3rd International Workshop on Policies for Distributed Systems and Net-
works (POLICY 2002), Monterey, CA.

Security and trust management (2005).
http://www.ercim.org/publication/Ercim_News/enw63/.

T.W. van der Horst, T. Sundelin, K.E. Seamons, C.D. Knutson (2004). Mo-
bile trust negotiation: Authentication and authorization in dynamic mobile net-
works. In Proc. of the Eighth IFIP Conference on Communications and Multi-
media Security, Lake Windermere, England.

Y. Wang, J. Vassileva (2003). Trust and reputation model in peer-to-peer net-
works. In Proc. of the Third International Conference on Peer-to-Peer Comput-
ing, Linkoping, Sweden.

L. Wang, D. Wijesekera, S. Jajodia (2004). A logic-based framework for at-
tribute based access control. In Proc. of the 2004 ACM Workshop on Formal
Methods in Security Engineering, Washington DC, USA.

M. Winslett, N. Ching, V. Jones, I. Slepchin (1997). Assuring security and
privacy for digital library transactions on the web: Client and server security
policies. In Proc. of the ADL 97 — Forum on Research and Tech. Advances in
Digital Libraries, Washington, DC.

L. Xiong, L. Liu (2003). A reputation-based trust model for peer-to-peer ecom-
merce communities. In Proc. of the IEEE International Conference on E-
Commerce, Newport Beach, California.

T. Yu, X. Ma, M. Winslett (2000). An efficient complete strategy for automated
trust negotiation over the internet. In Proc. of the 7th ACM Computer and
Communication Security, Athens, Greece.

T. Yu, M. Winslett (2003). A unified scheme for resource protection in au-
tomated trust negotiation. In Proc. of the IEEE Symposium on Security and
Privacy, Berkeley, California.

T. Yu, M. Winslett, K.E. Seamons (2001). Interoperable strategies in automated
trust negotiation. In Proc. of the 8¢h ACM Conference on Computer and Com-
munications Security, Philadelphia, Pennsylvania.

T. Yu, M. Winslett, K.E. Seamons (2003). Supporting structured credentials
and sensitive policies trough interoperable strategies for automated trust. ACM
Transactions on Information and System Security (TISSEC), 6(1):1-42.






Index

digital certificate, 104 negotiation, 107

Bonatti and Samarati approach, 109 Adaptive Trust Negotiation and

credential-based AC, 107 Access Control, 112

portfolio, 109 complete, 112

disclosure tree strategy, 112

early approaches eager, 112

assertion, 106 gradual trust establishment, 108
early approaches parsimonious, 112

credential, 106 PRUNES, 111

KeyNote, 105 safe, 112

monotonicity, 106 Unified Schema for Resource

policies, 106 Protection, 112

PolicyMaker, 105

REFEREE, 107 reputation, 113

tri-values, 107
trust delegation, 106 trust management, 103



120 Index



	copyright: © Springer Berlin Heidelberg (2007)
http://www.springerlink.com/content/q1152r71g523np74/fulltext.pdf


