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Abstract—The increasing popularity of Cloud computing as an
attractive alternative to classic information processing systems
has increased the importance of its correct and continuous
operation even in the presence of faulty components. In this
paper, we introduce an innovative, system-level, modular per-
spective on creating and managing fault tolerance in Clouds.
We propose a comprehensive high-level approach to shading
the implementation details of the fault tolerance techniques to
application developers and users by means of a dedicated service
layer. In particular, the service layer allows the user to specify and
apply the desired level of fault tolerance, and does not require
knowledge about the fault tolerance techniques that are available
in the envisioned Cloud and their implementations.

Index Terms—Cloud computing, fault tolerance as a service,
fault tolerance properties, system level fault tolerance.

I. Introduction

THE INCREASING demand for flexibility in obtaining
and releasing computing resources in a cost-effective

manner has resulted in a wide adoption of the Cloud com-
puting paradigm. The availability of an extensible pool of
resources for the user provides an effective alternative to
deploy applications with high scalability and processing re-
quirements [23]. In general, a Cloud computing infrastructure
is built by interconnecting large-scale virtualized data centers,
and computing resources are delivered to the user over the
Internet in the form of an on-demand service by using virtual
machines (e.g., [1], [2]). While the benefits are immense, this
computing paradigm has significantly changed the dimension
of risks on user’s applications, specifically because the failures
(e.g., server overload, network congestion, hardware faults)
that manifest in the data centers are outside the scope of
the user’s organization [3], [4]. Nevertheless, these failures
impose high implications on the applications deployed in
virtual machines and, as a result, there is an increasing need
to address users’ reliability and availability concerns.

The traditional way of achieving reliable and highly
available software is to make use of fault tolerance methods
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at procurement and development time [26]. This implies
that users must understand fault tolerance techniques
and tailor their applications by considering environment-
specific parameters during the design phase. However, for
the applications to be deployed in the Cloud computing
environment, it is difficult to design a holistic fault tolerance
solution that efficiently combines the failure behavior and
system architecture of the application. This difficulty arises
due to: 1) high system complexity, and 2) abstraction layers
of Cloud computing that release limited information about
the underlying infrastructure to its users.

In contrast with the traditional approach, we advocate a new
dimension where applications deployed in a Cloud computing
infrastructure can obtain required fault tolerance properties
from a third party. To support the new dimension, we extend
our work in [5] and propose an approach to realize general
fault tolerance mechanisms as independent modules such that
each module can transparently function on users’ applications.
We then enrich each module with a set of metadata that charac-
terize its fault tolerance properties, and use the metadata to se-
lect mechanisms that satisfy user’s requirements. Furthermore,
we present a scheme that: 1) delivers a comprehensive fault
tolerance solution to user’s applications by combining selected
fault tolerance mechanisms, and 2) ascertains the properties
of a fault tolerance solution by means of runtime monitoring.
Based on the proposed approach, we design a framework that
easily integrates with the existing Cloud infrastructure and
facilitates a third party in offering fault tolerance as a service.

This paper is organized as follows. Section II describes
the motivating scenario and basic concepts on fault tolerance.
Section III presents our approach on resource management,
and Section IV outlines our two-stage service delivery scheme
that can transparently offer fault tolerance support to users’
applications. Section V presents the architectural details of
our framework. Section VI summarizes the related work, and
Section VII presents our conclusions.

II. Motivating Scenario and Basic Concepts

In this section, we describe the motivating scenario and
basic concepts on fault tolerance.

A. Motivating Scenario

We consider a highly complex and distributed infrastructure
that involves the following main stakeholders.
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1) Infrastructure provider (IP): the entity that builds a
Cloud computing infrastructure and realizes a service-
oriented computing resources delivery scheme.

2) Client (C): the entity that uses the infrastructure
provider’s service to deploy its applications. A client
meets its reliability and availability goals by making
use of the service offered by the fault tolerance service
provider.

3) Fault tolerance service provider (SP): the entity that
provides fault tolerance support to applications based
on the client’s requirements. We assume that the service
provider is trusted by both the infrastructure provider
and the client.

As an example, we consider a client offering a web-based
banking service that allows its customers to perform fund
transfers and manage their accounts over the Internet. The
client implements the banking service as a multitier application
where: 1) the data tier uses the storage service offered by the
IP to store and retrieve its customer data, and 2) the application
tier uses the IP’s compute service to process its operations and
respond to customer queries. This system architecture allows
the banking service to meet its varying business demands with
respect to scalability and elasticity of computing resources.
However, a failure in the IP’s system can have high implica-
tions on the reliability and availability of the banking service.
Furthermore, a failure in the storage server may have a signif-
icantly higher impact than a failure in one amongst several
compute nodes. This implies that each tier of the banking
application requires different fault tolerance properties, and
the requirements may change over time based on the business
demands. However, using traditional methods, fault tolerance
properties of the banking service remain constant throughout
its life cycle. Therefore, in the client’s perspective, it is easier
to engage with the SP, specify its reliability and availability
requirements based on business needs, and transparently obtain
desired fault tolerance properties for its applications.

B. Basic Concepts

A client engages with the service provider to obtain fault
tolerance support for its applications. The goal of the service
provider is to create a fault tolerance solution based on the
client’s requirements such that a fine balance between the
following factors is achieved.

1) Fault model: measures the granularity at which the fault
tolerance solution must handle errors and failures in the
system. This factor is characterized by the mechanisms
applied to achieve fault tolerance, robustness of failure
detection protocols, and strength of fail-over granularity.

2) Resource consumption: measures the amount and cost
of resources that are required to realize a fault model.
This factor is normally inherent with the granularity of
the failure detection and recovery mechanisms in terms
of CPU, memory, bandwidth, I/O, and so on.

3) Performance: deals with the impact of the fault tolerance
procedure on the end-to-end quality of service (QoS)
both during failure and failure-free periods. This im-
pact is often characterized using fault detection latency,

replica launch latency and failure recovery latency, and
other application-dependent metrics such as bandwidth,
latency, and loss rate.

The most widely adopted strategy to tolerate failures in a sys-
tem is based on the notion of redundancy. In redundancy-based
schemes, critical system components are duplicated using ad-
ditional hardware, software, and network resources such that a
copy of critical components is available after a failure happens.
For example, the data tier of the banking service can be
replicated on several storage servers such that at least one copy
of the data is always available to process customer queries. In
general, a fault tolerance algorithm that handles failures at
a finer granularity, and offers high-performance guarantees,
consumes higher amount of resources. For instance, active
replication methods in which all redundant components are
simultaneously invoked consume more resources than pas-
sive replication methods in which only one processing node
handles the requests while other replicas are simple backups.
However, passive replication techniques can only handle crash
faults, while active replication techniques using 3f+1 replicas
can be used to tolerate up to f arbitrary faults (e.g., [6], [7]).

We observe that a service provider must satisfy the fol-
lowing requirements to effectively realize its functionality and
meet its business goals.

1) The service provider must always maintain a consistent
view of the resources in the Cloud to efficiently deliver
the fault tolerance support to its clients. To this aim, we
introduce a resource manager that is maintained by the
service provider (see Section III).

2) The service provider must develop: 1) an approach
to realize standard fault tolerance algorithms that can
extrinsically function on a client’s application; 2) a
method for evaluating the fault tolerance properties
offered by a given mechanism and for matching it
with client’s requirements; and 3) a delivery scheme
that can transparently enforce the desired fault tolerance
properties on client applications (see Section IV).

3) The service provider must design a framework that can
easily integrate with the existing Cloud infrastructure
and meet service provider’s goals (see Section V).

III. Resource Manager

The service provider must maintain a consistent view of
all computing resources in the Cloud to efficiently allocate
resources during each client request and to avoid over provi-
sioning during failures. In this context, a resource manager
that continuously monitors the working state of physical
and virtual resources maintains a database of inventory and
log information, and a graph representing the topology and
working state of resources must be introduced by the service
provider in the infrastructure provider’s system.

The database of the resource manager must maintain the
inventory information of each machine such as its unique serial
number, composition of the machine (e.g., processor speed,
number of hard disks, and memory modules), date when the
machine was commissioned (or decommissioned), location of
the machine in the cluster, and so on. The runtime state of
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Fig. 1. Example of a graph generated by the resource manager to maintain
details about all the nodes, VM instances, and network links in a Cloud.
Here, W, P, and F, respectively, represent the working, partially faulty, and
completely faulty state of a resource.

machines such as memory used/free, disk capacity used/free,
and processor cores utilization must also be logged. On the
other hand, a resource graph must represent the topology of
resources in a system. Fig. 1 represents the resource graph
G(N, E) of a Cloud infrastructure where two clusters of three
processing nodes each are connected by network switches. In
the resource graph, each vertex represents a processing node
n∈N, and a network link between two nodes is represented as
an edge e∈E. A vertex also maintains information about the
set of virtual machine (VM) instances hosted on that node.
From the service provider’s point of view, a resource graph can
represent the state of nodes and edges at different granularities.
In a simple case, each node and edge can be categorized
in one of the three categories: working (W ), partially faulty
(P), and completely faulty (F). The resource manager marks
the nodes (and edges) with W when they exhibit a normal
condition, i.e., operational with its full potential. A node
(or edge) is marked F if it has crashed or has incurred a
major failure and cannot be recovered back to W. Partially
faulty nodes, represented as P in the resource graph, are
the ones where only a component of the node is not in use
or is exhibiting a degraded performance (e.g., only the disk
storage of the node is nonfunctional). Similarly, the working
state of network links and VM instances must be maintained
by the resource manager. We note that the database and
the resource graph are essential for the service provider to
ensure the correct behavior of fault tolerance mechanisms. For
example, a replication mechanism may have constraints on
relative placement of individual replicas and requirements on
resource characteristics of each replica that can be satisfied
using the resource manager [29]. We further note that the
resource manager significantly contributes toward balancing
the resource costs, performance, and fault model factors for
the service provider.

Fig. 2. Instance of an ft−unit that realizes the heartbeat-based failure detec-
tion mechanism.

IV. Fault Tolerance Delivery Scheme

The task of offering fault tolerance as a service requires the
service provider to realize generic fault tolerance mechanisms
such that the client’s applications deployed in virtual machine
instances can transparently obtain fault tolerance properties.
To this aim, we define ft−unit as the fundamental module that
applies a coherent fault tolerance mechanism to a recurrent
system failure at the granularity of a VM instance. The notion
of ft−unit is based on the observation that the impact of hard-
ware failures on client’s applications can be handled by ap-
plying fault tolerance mechanisms directly at the virtualization
layer than the application itself (e.g., [8], [9]). For instance,
fault tolerance of the banking service can be increased by
replicating the entire VM instance in which its application tier
is deployed on multiple physical nodes, and server crashes can
be detected using well-known failure detection algorithms such
as the heartbeat protocol. An example of a heartbeat protocol is
depicted in Fig. 2, where the primary and backup components
are run in VM instances independent of the banking service’s
application tier. In this example, the primary component peri-
odically sends a liveness request to all backup components and
maintains a timer for each request. When a backup receives
a liveness request, it immediately responds to the primary.
If the backup fails (due to a server crash) to respond to the
primary for N consecutive requests, each within a predefined
timeout threshold, it is suspected to failure. In this context,
we note that replication of the client’s application (ft−unit1),
and detection of node failures (ft−unit2) are performed without
requiring any changes to the application’s source code. In this
paper, we assume that the service provider realizes a range
of fault tolerance mechanisms as ft−units, and based on this
assumption we present a two-stage delivery scheme: design
stage, and runtime stage, to transparently deliver high levels
of fault tolerance to client’s applications using ft−units.

A. Design Stage

The design stage starts when a client requests the service
provider to offer fault tolerance support to its applications.
In this stage, the service provider must first analyze the
client’s requirements, match them with available ft−units, and
form a complete fault tolerance solution using appropriate
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ft−units. We note that each ft−unit offers a unique set of
fault tolerance properties that can be characterized using its
functional, operational, and structural attributes [30]. In this
context, fault tolerance property p of a ft−unit can be specified
as p=(u,A), where u represents the ft−unit, and A denotes
a set of attributes that refers to the granularity at which u

can handle failures, the benefits and limitations of using u,
inherent resource consumption costs, and QoS parameters.
For each attribute a∈A a partial (or total) order relationship
can be defined on its domain Da, and v(a) represents the value
of a. For instance, fault tolerance property of a ft−unit u1

can be denoted as p=(u1, {mechanism=active−replication,
no−of−replicas=4, fault−model=node−crashes}). Therefore,
we propose to bind the attributes set A to the ft−unit as its
metadata to facilitate a service provider in estimating fault
tolerance properties that can be obtained with its use. If a
client’s requirements are specified in terms of expected fault
tolerance properties pc, the set S of ft−units that matches
pc can be generated by including all ft−units for which
vi(a)≥vc(a) for each attribute ai∈A specified in pi of ui, i.e.,
all ft−units that holds the properties desired by the client. We
note that there is also an implicit hierarchy of fault tolerance
properties where pi�pj implies that pj satisfies pi. After
generating the shortlisted set S, the task of the service provider
is to compare each ft−unit within S and choose the one that
best balances the fault model, resource costs, and performance
with respect to pc. As an example, let us consider that the
service provider realizes three ft−units with properties p1=(u1,

{mechanism=heartbeat−test, timeout−period=50 ms, N=5,
fault−model=node−crashes, max−no−replicas=3}), p2=(u2,

{mechanism=majority−voting, fault−model=programming−
errors}), and p3=(u3, {mechanism=heartbeat−test, timeout−
period=25 ms, N=3, fault−model=node−crashes, max−no−
replicas=5}) respectively. If the client requests a fault
tolerance support for its banking service with a more robust
crash failure detection mechanism, the service provider first
shortlists S=(u1, u3), then compares S and finally makes use
of u3 ft−unit since u3 is more robust than u1.

Although a ft−unit can serve as the fundamental fault
tolerance module for the service provider, a comprehensive
fault tolerance solution ft−sol that must be delivered to a
client’s application may be formed only by combining a set of
ft−units in a specific execution logic. For example, a heartbeat
test (ft−unit1) can be applied only after the client’s application
is replicated on multiple nodes (ft−unit2), and a recovery
mechanism (ft−unit3) can be applied only after a failure is
detected, that is, a comprehensive fault tolerance solution that
is finally delivered to the client is as follows:

ft−sol[
invoke:ft−unit(VM-instances replication)
invoke:ft−unit(failure detection)
do{
execute(failure detection ft−unit)
}while(no failures)
if(failure detected)
invoke:ft−unit(recovery mechanism)
].

By using fault tolerance modules (ft−unit) to form a com-
prehensive solution, the dimension and intensity of the fault
tolerance support can be dynamically changed. In other words,
the fault tolerance properties applied on client’s application
can be adapted based on business needs to overcome the in-
flexibility of traditional fault tolerance methods. For instance,
a robust failure detection mechanism (such as u3 in the above
example) can be replaced with a less robust one (u1) in
ft−sol. Furthermore, ft−units can flexibly and extensively be
reused for each client request saving significant amount of
resources for the service provider, and by realizing ft−units to
be configurable at runtime, resource consumption costs for
clients can be largely controlled. For example, by providing the
parameters such as the number of replicas (no−of−replicas)
for a ft−unit at runtime, the value v(no−of−replicas)=4 can
be modified to v(no−of−replicas)<4 or v(no−of−replicas)>4
based on business demands. However, we note that a wide
range of ft−units must be realized by the service provider to
offer a higher quality of fault tolerance support that precisely
meets client’s requirements.

B. Runtime Stage

The runtime stage starts immediately after the service
provider forms a ft−sol and delivers it on the client’s applica-
tion. This stage is critical for efficient service delivery since
the context and attribute values of a fault tolerance solution
may change at runtime due to the dynamic nature of the Cloud
computing environment [25]. In other words, the mutable be-
havior of fault tolerance attributes requires the service provider
to ascertain that the client’s requirements are satisfied even
during runtime. To achieve this, we first define a set R of rules
over attributes a and their values v(a) such that the validity
of every rule r∈R establishes that property p is supported
by the fault tolerance solution and violation of a rule ri∈R
implies that p is invalid. For instance, for a comprehensive
fault tolerance solution s1 that holds the property p1=(s1,

{mechanism=active−replication, level=3, failure−detection=
heartbeat−test, max−recovery−time=25 ms}), a set of rules
R that can sufficiently test the validity of p1 must be
defined, such as r1:no−of−server−instances≥3, r2:heartbeat−
test−frequency=5 ms, r3:recovery−time≤25 ms. In this con-
text, the task of the service provider is to continuously monitor
the attribute values of each fault tolerance solution delivered
to the client’s application at runtime, and verify the corre-
sponding set of rules R to ensure that client’s requirements are
satisfied. We note that the service provider can obtain attribute
values by periodically querying each ft−sol s delivered to
a client’s application. Here, a fault tolerance property can
be represented as pt=(s, At) where t denotes the point of
time at which the attribute value is queried, vt(a) is the
value of attribute at t, and s is the comprehensive fault
tolerance solution. We define a validation function f (s,R)
that takes s and the corresponding R as input and outputs
true if vt(a)≥vi(a) for each attribute a∈A, i.e., f (s,R) verifies
whether the fault tolerance solution remains valid and satisfies
the client’s requirements at runtime. In case, f (s,R) returns
false, the service provider must trigger the matching and
comparison process of the design phase to select a new set
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Fig. 3. Instance of a resource graph generated by the resource manager.

of ft−units and form a new ft−sol that best matches client’s
requirements. Therefore, by constantly monitoring each ft−sol
and by updating the attribute values, the service provider can
deliver a fault tolerance support that is valid throughout the
life cycle of the client’s application (initially during request
time and at runtime). Furthermore, a change in the client’s
requirements at any stage also triggers the design phase to
form a new fault tolerance solution.

V. Fault Tolerance Manager: Architecture

Framework

In this section, we present a conceptual framework, the
Fault Tolerance Manager (FTM), that provides the basis for
a service provider to realize the delivery scheme presented
in the previous section and hence to offer fault tolerance as a
service. We aim to insert our framework as a dedicated service
layer between the client’s applications and the hardware that
works directly on the top of the virtual machine manager at
the level of VM instances. The Fault Tolerance Manager must
address the issue of heterogeneity in computing resources,
fulfill the target of transparently providing fault tolerance
support to user’s applications against node failures, and sat-
isfy scalability and interoperability goals. To overcome these
challenges, we propose to build the Fault Tolerance Manager
using the principles of service-oriented architecture, where
each ft−unit is realized as an individual web service, and a
ft−sol is formed using the business process execution language
(BPEL) constructs [10], [11]. We include a resource manager
within FTM that initially coordinates with the cloud manager
to produce the resource graph and the database, as discussed
in Section III. The resource manager is realized in the form
of a web service that provides a status operation that takes a
resource (e.g., processing node, storage, memory) as input and
outputs the state of that resource. Note that status operation
can be run independently on each node and, using the update
operation, state of the resource can be updated in the database
and resource graph. As an example, let us consider that at the
start of the service invocation, the service provider generates
a profile of computing resources in the cloud infrastructure
by identifying five processing nodes {n1, . . . , n5}∈N whose
resource graph is presented in Fig. 3. A description of all
the components in the framework is provided further in this
section.

A. Client Interface

The service invocation process begins when a client requests
the service provider to offer fault tolerance support to its appli-
cations with a desired set of properties. In this context, it is es-
sential to include a client interface component within FTM that
provides a specification language that allows clients to specify
and define their requirements (e.g., [12], [13], [31]). However,
since the present-day cloud computing systems require its
users to manage their VMs while dealing with sophisticated
system-level concerns, an automated configuration tool that
requires clients to simply select the application for which they
wish to obtain fault tolerance support, and correspondingly
provide values of desired availability, reliability, response time,
criticality of the application and cost can be beneficial. We
note that an automated configuration tool can limit human
errors and save time by lessening the need for manual tedious
configuration. Moreover, if the input can be provided in a
high-level format (such as percentages, range, and numbers),
even users with a nontechnical background can configure
the desired properties with ease. We consider the aspect
of transforming high-level metric values into a set of fault
tolerance properties, and translating the properties in terms of
standard fault tolerance mechanisms as part of our future work.

B. FTMKernel

The central computing component of our framework is
the FTMKernel that is responsible for composing a fault
tolerance solution based on client’s requirements using the
web service modules (ft−units) implemented by the service
provider, delivering the composed service on client’s applica-
tions, and monitoring each service instance to ensure its QoS.
FTMKernel is composed of a service directory, a composition
engine, and an evaluation unit.

1) Service directory: It is a registry of all ft−units realized
by the service provider in the form of web services.
A ft−unit applies a fault tolerance mechanism as a
self-contained loosely coupled module, with a well-
defined language-agnostic interface that: 1) describes
its operations and input or output data structures (e.g.,
WSDL and WSCL), and 2) allows other ft−units to
coordinate and assemble with it. In addition to the
ft−units, this component also registers the metadata that
represents the fault tolerance property p=(u, A) of each
ft−unit. When FTM receives input from the client inter-
face, this component first performs a matching between
the client’s preferences pc, and properties pi of each
ft−unit in the service directory, to generate the set S of
ft−units that satisfy pc. The set S is then ordered based
on client’s preferences and provided to the composition
engine. The service directory triggers the matching and
comparison processes at runtime if the evaluation unit
updates the metadata of a ft−unit. However, we note that
the service provider must perform an a priori validation
of all its ft−units and estimate their properties p in the
infrastructure provider’s system as a prerequisite.

2) Composition engine: It receives an ordered set of
ft−units from the service directory as an input, and
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Fig. 4. Architectural overview of FTM showing various components.

generates a comprehensive fault tolerance solution ft−sol
using the web services (ft−units) that best match client’s
preferences as an output. In terms of service-oriented
architecture, the composition engine can be viewed as
a web service orchestration engine that exploits BPEL
constructs to build a composed fault tolerance solution
that is delivered to client’s applications using robust
message exchanges protocols (e.g., [14]), as presented
in Section IV.

3) Evaluation unit: It continuously monitors all composed
fault tolerance solutions at runtime using the validation
function f (s,R) and the set of rules R defined cor-
responding to each ft−sol. We note that the interface
exposed by web services (e.g., WSDL and WSCL)
allows the evaluation unit to validate all the rules r∈R
during runtime monitoring. If f (s,R) returns false, the
evaluation unit updates the present attribute values in the
metadata; otherwise, the service continues uninterrupted.

FTMKernel can measure the overall reliability of the service
provided to the client’s applications by comparing a set of
metrics [such as mean time between failure (MTBF)] between
the real-time operational data obtained from the resource
database, and expected values of the metrics obtained from
the input using the client interface. For example, a client’s
request for 99% availability of its applications implies that
FTM must ensure that the MTBF of the node where the
application is deployed is at least availexp = 0.99 ∗ t for a
given time period t. Since each node failure is logged in the
database, the operational availreal value can be calculated, and
the strength of the service provided by FTM by measuring
availexp−availreal.

In addition to the resource manager, client interface, and
FTMKernel, we note that our framework must include a set
of components that provide a complementary support to fault
tolerance mechanisms. These components significantly affect
the quality of service offered by the service provider, and
are essential to satisfy client’s requirements and constraints.
We include the following components in our framework, and
present the overall architecture of the Fault Tolerance Manager
in Fig. 4.

1) Replication Manager: provides support to ft−units that
realize replication mechanisms by managing the details

Fig. 5. Overview of various components in replication manager, and their
interaction with other components of the framework. The straight lines with
numbers describe the replication process, and the operations at each step
are correspondingly explained in Section V-C. The dotted lines represent the
interaction with the VM instances that are external to the framework.

regarding individual replicas of a client’s application,
their location, and synchronization process between
them (see Section V-C).

2) Fault Detection or Prediction Manager: provides support
to techniques that either detect or predict failures among
the nodes (see Section V-D).

3) Fault Masking Manager: comprise modules that support
techniques that are used to mask the presence of faults
in the system (see Section V-E).

4) Recovery Manager: includes services that support
ft−units that recovers a faulty node back to operational
(see Section V-F).

5) Messaging Monitor: provides the infrastructure neces-
sary for communication among all the components of
FTM (see Section V-G).

In the following sections, we provide a detailed description of
these components.

C. Replication Manager

This component supports the replication mechanisms by
invoking replicas and managing their execution based on the
client’s requirements. We denote the set of VM instances that
are controlled by a single implementation of a replication
mechanism (ft−unit) as a replica group. Each replica within
a group can be uniquely identified, and a set of rules R that
must be satisfied by a replica group are specified. The task
of the replication manager is to make the client perceive a
replica group as a single service, and to ensure that the fault
free replicas exhibit correct behavior during execution time.

Fig. 5 provides an overview of various components within
the replication manager and their interactions with each other.
To support a replication mechanism, the replica invoker first
contemplates the desired replication parameters such as the
style of replication (active, passive, cold passive, hot passive),
number of replicas, and constraints on relative placement of
individual replicas, and forms the replica group. In other
words, the replica invoker takes the reference of a client’s
application as input from FTMKernel, analyzes the expected
fault tolerance properties, and interacts with the resource
manager to obtain the location of each replica. The replica
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group manager then creates the replica group by invoking VM
instances at those locations and managing their execution. The
sequencer provides the input to application executing in the
replica group by means of consensus protocol (e.g., [7], [15])
in order to ensure determinism among replicas. The output
analyzer carries out majority voting on the responses obtained,
and returns the chosen result to the client. The synchronizer
includes techniques to update the state of backup replicas
with that of the primary in a replica group. It also supports
membership change and primary election algorithms when
the primary node undergoes failure. We note that robustness
of these procedures largely contribute to the consistency and
reliability of the service.
Example: Let us consider that FTMKernel chooses a passive
replication mechanism corresponding to the banking service’s
request where the following constraints must be satisfied:
1) the replica group must contain one primary and two
backup nodes at all times; 2) the node on which the primary
executes must not be shared with any other VM instances; and
3) all the replicas must be located on different nodes. For the
Cloud infrastructure depicted in Fig. 3, the replication manager
forms a replica group of the banking service’s application by
choosing the node n1 for the primary, and nodes n3 and n4,
respectively, for backup replicas. We note that n3 and n4 can
host VM instances of other replica groups, while only one
VM instance can run on n1. The synchronizer of replication
manager frequently checkpoints the primary and updates the
state of backup replicas.

D. Fault Detection Or Prediction Manager

This component enriches the FTM by providing failure
detection support at two different levels. The first level is
infrastructure-centric, and provides failure detection globally
across all the nodes in the Cloud, whereas the second level is
application-centric and provides support only to detect failures
among individual replicas within a replica group. To realize
failure detection at either levels, we note that this component
must support several well-known failure detection algorithms
(e.g., the gossip based protocol, and heartbeat protocol) that
are configured at runtime based on replication mechanisms
and client’s requirements.

When the replication manager successfully creates a replica
group, the composition engine invokes ft−units to detect or
predict failures within the replica group. An example of a
failure detection ft−unit (heartbeat protocol) is presented in
Section IV. The main goal of the failure detection or prediction
manager is to support FTM in detecting faults immediately
after their occurrence, and sending a notification about the
faulty replica to the fault masking manager and the recovery
manager. For infrastructure-centric failure detection, failure
notifications are sent to the resource manager to update the
resource state of the cloud that is utilized to predict failures in
a proactive fault tolerance approach. We note that most failure
detection protocols that are exploited in a passively replicated
system perform well in detecting major failures. However, to
detect errors at smaller granularity resulting from a partially
faulty node, active replication methods need to be deployed.
For example, programming errors in client’s application can

be detected by applying a majority voting using the output
analyzer of the replication manager on the output generated
by each active replica.
Example: For the replica group of the banking service’s
application described in the example of Section V-C, suppose
that the service directory selects a ft−unit that realizes a
proactive fault tolerance mechanism. This implies that the
failure detection or prediction manager must continuously
gather the state information of nodes n1, n3, and n4, and verify
if all system parameter values are over a certain threshold (e.g.,
physical memory usage of a node allocated to a VM instance
must be less than 70% of its total capacity).

E. Fault Masking Manager

The goal of this component is to support ft−units that realize
fault masking mechanisms so that occurrence of faults in the
system can be hidden from clients. When a failure is detected
in the system, this component immediately applies masking
procedures to prevent faults from resulting into errors. We
note that the functionality of this component is critical to meet
client’s high availability requirements.
Example: From the example in Section V-D, let us consider
that the failure detection or prediction manager predicts a
failure in node n3 and immediately invokes the fault masking
ft−unit. Here, the ft−unit performs a live migration of the VM
instance (e.g., [8], [9]) such that the entire OS at node n3

is moved to another location (node n5) while maintaining the
established session so that customers of the banking service do
not experience any impact of the failure at node n3. Therefore,
client’s high-availability requirements can be fulfilled using the
fault masking mechanisms.

F. Recovery Manager

The goal of this component is to achieve system-level
resilience by minimizing the downtime of the system during
failures. To this aim, this component supports ft−units that
realize recovery mechanisms so that an error-prone node can
be resumed back to a normal operational mode. In other words,
this component provides support that is complementary to
that of the failure detection or prediction manager and fault
masking manager, especially in the condition when an error is
detected in the system. We note that FTM maximizes the life-
time of the Cloud infrastructure by continuously checking for
occurrence of faults using the failure detection or prediction
manager and, when exceptions happen, by recovering from
failures using the recovery manager.
Example: As described in the example of Section V-E, using
the fault masking manager the high-availability goals of the
client can be met even when a failure happens at node n3.
However, the service offered by the infrastructure provider
may be affected since the system consists of only four working
nodes. In this context, it is critical for the infrastructure
provider to apply robust recovery mechanisms in order to
increase its system’s lifetime. The support offered by the
recovery manager resumes node n3 (that is marked with F

or P in the resource graph) to working state (W in a resource
graph).
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Fig. 6. Example of workflow represented as a sequence diagram showing the interaction among all the components of FTM for a single client request.

G. Messaging Monitor

The messaging monitor extends through all the components
of our framework (as shown in Fig. 4) and offers the communi-
cation infrastructure in two different forms: message exchange
within a replica group, and intercomponent communication
within the framework. Since ft−units, and other components
in FTM, are realized as web services, the communication
between any two components (and the replicas) must be
reliable even in the presence of component, system or net-
work failure. To this aim, the messaging monitor integrates
WS-RM standard [14], [16] with other application protocols
and establishes an appropriate messaging infrastructure that
supports the composition engine in designing a robust ft−sol.
We note that this component is critical in providing maximum
interoperability, and serves as a key QoS factor.
Example: Based on the examples presented in Sections V-C
to V-F, here, we summarize the implicit workflow that hap-
pens across all the components of FTM as a response to a
single-client request. As shown in Fig. 6, the service invo-
cation process starts when FTMKernel gathers the client’s
requirements from the client interface using the <receive>

BPEL activity. Based on client’s requirements, FTMKernel
first selects appropriate web service modules (ft−units) from
the service directory, and the composition engine defines
(ft−sol) an execution logic among selected web service mod-
ules. FTMKernel delivers the ft−sol by first triggering the
replication manager to create a replica group for the client’s
application. In terms of BPEL language constructs, activity
<invoke> is specified. Once the replica group is created,
FTMKernel triggers the messaging monitor and the failure
detection/prediction manager to create a messaging infrastruc-
ture and to invoke fault prediction protocol respectively, using
the <flow> activity so that both ft−units run continuously in
parallel. The ft−unit associated with the fault masking manager
is triggered immediately (<if> activity) after a failure is
predicted, and finally the recovery manager is invoked (using
<invoke> activity) to recover the failed node. Note that
throughout the workflow, the evaluation unit monitors the
service instance to ascertain that FTM satisfies the client’s
requirements and maintains the QoS.

VI. Related Work

A large number of fault tolerance techniques that are closely
integrated with distributed software applications during devel-
opment time have been proposed (e.g., [7], [15], [17]). In [6],
the authors presented a fault tolerance middleware that uses
the leader or follower replication approach to tolerate crash
faults in the Cloud computing environment.

An interesting line of research relevant to this paper pro-
poses an approach to build fault tolerance protocols by com-
posing microprotocols and combining them into a system
using hierarchical techniques [18]. This approach of imple-
menting fault tolerance protocols demonstrates benefits in
terms of easy customization when compared to a monolithic
system. In [19], the authors used a modular approach to
develop a proactive fault tolerance framework that can tailor
a requirement-specific strategy, and demonstrated it to be a
good platform for the study of various proactive fault tolerance
policies. In this paper, we enhance individual fault tolerance
modules with metadata to analyze its characteristics, and
present an approach to generically compose each module so as
to form a comprehensive solution with specific fault tolerance
properties.

The aspect of leveraging virtualization to improve availabil-
ity and reliability of the system has been used in the past. In
[8] and [9], the authors presented a mechanism to continuously
synchronize the memory state of a node to backup nodes
using checkpointing. When the primary node failure happens,
the backup node resumes execution immediately, providing
semblance of no interruption to the end user. In this paper, we
make use of the virtualization layer to transparently introduce
fault tolerance on deployed applications.

Our framework is designed using the principles of service-
oriented architecture and makes use of several web ser-
vice standards, such as the WS-RM and WS-BPEL [11],
[14]. In this direction, several open-source projects, such as
the Sandesha2 that provides a messaging infrastructures for
Apache Axis2, are available in the market [16], [20]. The
authors [21] extended Sandesha2 to implement the well-known
Castro and Liskov’s Byzantine fault tolerance algorithm [7],
and showed that the extension introduced only a moder-
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ate runtime overhead. Therefore, the functionality of FTM
can be efficiently implemented by extending the available
tools.

VII. Conclusion and Future work

We presented an approach toward transparently delivering
fault tolerance on the applications deployed in virtual machine
instances. In particular, we presented an approach for realizing
generic fault tolerance mechanisms as independent modules,
validating fault tolerance properties of each mechanism, and
matching user’s requirements with available fault tolerance
modules to obtain a comprehensive solution with desired prop-
erties. The proposed approach when combined with our deliv-
ery scheme enables a service provider to offer long-standing
fault tolerance support to client’s applications. Furthermore,
we designed a framework that allows the service provider
to integrate its system with the existing Cloud infrastructure
and provides the basis to generically realize our approach
in delivering fault tolerance as a service. The components
of our framework can be extended to improve the overall
resilience of the Cloud infrastructure. Our future work will
mainly be driven toward the implementation of the framework
to measure the strength of fault tolerance service and to
make an in-depth analysis of the cost benefits among all the
stakeholders.
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