© 2012 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future
media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or
redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

DOI 10.1109/SysCon.2012.6189503

A Comprehensive Conceptual System-Level
Approach to Fault Tolerance in Cloud Computing

Ravi Jhawar*, Vincenzo Piuri*, Marco Santambrogiof
*Universita degli Studi di Milano, Department of Information Technology, Crema, Italy
TPolitecnico di Milano, Department of Electronics and Information, Milan, Italy
{ravi.jhawar, vincenzo.piuri} @unimi.it, marco.santambrogio @ polimi.it

Abstract—Fault tolerance, reliability and resilience in Cloud
Computing are of paramount importance to ensure continuous
operation and correct results, even in the presence of a given
maximum amount of faulty components. Most existing research
and implementations focus on architecture-specific solutions to
introduce fault tolerance. This implies that users must tailor
their applications by taking into account environment-specific
fault tolerant features. Such a need results in non transparent
and inflexible Cloud environments, requiring too much effort
to developers and users. This paper introduces an innovative
perspective on creating and managing fault tolerance that shades
the implementation details of the reliability techniques from the
users by means of a dedicated service layer. This allows users
to specify and apply the desired level of fault tolerance without
requiring any knowledge about its implementation.

I. INTRODUCTION

Cloud computing is gaining an increasing popularity over
classic information processing systems for storing and process-
ing huge volumes of data. This computing paradigm is built on
modern data centers comprising thousands of interconnected
servers with capability of hosting a large number of appli-
cations [21]. Most often, these data centers are virtualized,
and computing resources are provisioned to the user as an on-
demand services over the Internet in the form of configurable
Virtual Machines (VMs) [1]. This dimension promises several
benefits such as high scalability, mobility, lower entry and
usage costs, and a semblance of infinite resources availability
to the individual user.

On the other hand, the reliability of Cloud computing
still remains a major concern among users. Due to eco-
nomic pressures, these computing infrastructures often use
commodity components exposing the hardware to scale and
conditions for which it was not originally designed [21]. As
a result, significantly large number of failures manifest in the
system and seemingly impose high implications on the hosted
applications, impacting their availability and performance. For
example, Amazon’s Elastic Compute Cloud (EC2) experienced
failure in Elastic Block Storage (EBS) drives and network
configuration, bringing down thousands of hosted applications
and websites for 24-72 hours [4].

In this context, applications require fault tolerance abilities
so that they can overcome the impact of system failures and
perform their functions correctly when failures happen. At
present, most Cloud delivery models require the application
developers to build intrinsically reliable software taking into

account environment-specific features [7]. However, this ap-
proach has certain limitations. Firstly, it demands knowledge
expertise and experience from users in terms of selection,
configuration, and integration of applications with available
fault tolerance frameworks. Secondly, the granularity at which
applications can handle failures, and resource costs incurred
by the applications throughout the fail free period remains
constant. Lastly, abstraction layers of the Cloud architecture
result in non transparent and inflexible environments requiring
too much effort to developers as little information about the
underlying infrastructure is available.

Therefore, it is necessary to gain an impetus in the manage-
ment of fault tolerance properties for the applications hosted
in the Cloud computing environment. To achieve this, we
introduce a new perspective, where applications can easily
gain complementary fault tolerance properties from an external
entity in the form of an on-demand service. The remainder of
the paper is organized as follows. First, we summarize the
related work in Section II. Then, after outlining the benefits
of the new perspective over existing fault tolerance methodolo-
gies, we provide a comprehensive description of an approach
which effectuates our envisioned perspective in Section III.
We also design a framework to analyze the feasibility of the
proposed approach. The architectural details of the framework
is provided in Section IV, supported by a simple example in
Section V. Finally, we present our conclusions in Section VI.

II. RELATED WORK

A number of fault tolerance frameworks that allow applica-
tions to intrinsically gain resilience against failures have been
proposed. In [17] the authors use active replication techniques
for web services, and in [22] the authors propose a technique to
gain byzantine fault tolerance using virtualization technology.
Techniques to build efficient and fault tolerant applications for
Amazon’s EC2 are provided in [7]. Another approach using
fault tolerance middleware which follows a leader/follower
replication approach to tolerate crash faults has been proposed
in [23]. However, all these techniques have the limitations
mentioned in Section I, and either tolerate only a specific kind
of fault or provide a single method to resilience.

In [8], [18], the authors present a high-availability technique
in which applications that are encapsulated in VMs can
transparently survive hardware failures using checkpointing
and live-migration of VMs. We build on this technique and


Ruggero
Casella di testo
© 2012 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.
DOI 10.1109/SysCon.2012.6189503


construct a system-level fault tolerance service for Cloud
computing which enforces fault tolerance operations at the
VM-level.

The framework we propose depends on the feasibility of
the modular perspectives for implementing fault tolerance
algorithms and the efficient composition of modules which
are two aspects addressed by some proposals (e.g. [14], [19]).
In [19] the authors use a modular approach in developing a
proactive fault tolerance framework to tailor a requirement-
specific strategy, and demonstrate the framework to be a good
platform for the study of various proactive fault tolerance
policies. In [14] the authors propose an approach to build
fault tolerance protocols by composing micro-protocols and
combining them to a system using hierarchical techniques.
This approach presents benefits in terms of easy customization
when compared to a monolithic system and easy experimen-
tation with different algorithms.

ITII. OUR APPROACH
A. Rational Advantages of the new Perspective

Our proposal aims at overcoming the limitations of existing
methodologies by offering fault tolerance properties to the
applications as an on-demand service. The rational advantages
of our approach are as follows.

« It provides flexibility to the applications to dynamically
adjust its fault tolerance properties and the level of
reliability and availability overtime. The resource costs
can be made limited, and performance levels can be
modified from one point to another based on business
requirements. Achieving these features with traditional
mechanisms would be extremely difficult.

« It simplifies the job of application developers since the
users are only expected to specify desired properties for
each application and have it delivered transparently. This
relaxes the requirement of having knowledge expertise
and experience both in reliable application development
and managing fault tolerance/failures during runtime.

e The system-level complexity is also abstracted by the
service layer. This allows users to receive a specifically
composed fault tolerance support for its applications
without requiring an in-depth knowledge about the sys-
tem level procedures.

B. Outline of our approach

We propose to insert a dedicated service layer between the
computing infrastructure and the applications which can offer
fault tolerance support to each application individually while
abstracting the complexity of the underlying infrastructure. To
facilitate a full-fledged support, the service layer must contain
a range of reliability mechanisms and must be able to create
a fault tolerance solution with desired properties on-the-fly
that can be delivered to the application. To achieve this, we
build on the idea that a fault tolerance solution can be seen
as a combination of a set of distinct activities coordinated in
a specific event-based logic. For example, each fault tolerance
mechanism, such as replication of an application, detection and

Cloud Manager

s Y
! N !
Resource Client/Admin
Manager FTMKernel Interface

Orchestration

Fault Detection/
Prediction
Manager

Replication
Manager

Fault Masking
Manager

Recovery
Manager

Messaging Monitor

Fault Tolerance Manager

Fig. 1. FTM architecture

masking of failures, and recovery of the erroneous system, can
be viewed as a distinct activity that are coordinated in a se-
quential logic to form a general fault tolerance solution. In this
perspective, we can realize each individual activity as a stand-
alone, configurable module, that provides a coherent solution
to a recurrent system failure in a given context. In addition,
every module is associated with a set of metadata that describe
the module’s functional, operational, and structural properties.
These metadata can be analyzed during runtime and compared
with the users requirements to select appropriate activities. The
chosen modules are then composed in a predefined logic to
form an aggregate fault tolerance solution which is imposed
on the users application. We propose to use loosely bound
independent activities instead of a readily composed solution
for two main reasons. First, changes to the users preferences
can be made effective by re-composing or re-configuring the
involved modules. Second, an individual module can be reused
over several service instances saving resource costs.

Our approach can be easily realized by implementing each
module as an independent Web service because of their
suitability to our application scenario. Web services expose
a well-defined interface, in the form of a WSDL document
[12], which can be used to implement the concept of metadata.
The challenge of interoperability, portability, and integrabil-
ity can be countered following the principles of Service-
Oriented Architectures [12], and composite solutions can be
dynamically created using BPEL-based orchestration engine
[2], [6]. We study the feasibility of the proposed approach by
designing a framework, the Fault Tolerance Manager (FTM).
The architectural overview of FTM is presented in the next
section.

IV. FTM ARCHITECTURE: OVERVIEW

FTM is built to work on top of the hypervisor, spanning
all the nodes and transversing the abstraction layers of the
Cloud to transparently tolerate failures among the processing
nodes. Fig. 1 illustrates the architecture of FTM which can
primarily be viewed as an assemblage of several Web service
components, each with a specific functionality. A brief
description of the functionality of all the components along
with the rationale behind their inclusion in the framework is



FTMKernel

Client Replication Manager Fault Detection Manager

Messaging Monitor Fault Masking Manager Recovery Manager

|
Getuser |

requirement |

Create

|
|
|
|
replica group |

|
|
1
1
1
1
|
|
|

|
|
|
|
|
, Create
|
|
T
I

1
1
1
1
1
i
" messaging facility i
i 1
| 1
i Set failure !
} detection protocol :
} Loop | Liveness Request [Failure Dete_cted] :
! i Mask the failure !
} Liveness Response :
: j :
I 1
} | [Failure Detected]
! {Invoke recovery mechanism
| I
| 1
| 1 "
Recover failed componen|
| Ko mmmm e e 1o oo 4 Recoverfaled componer
i 1 1

Fig. 2.

provided further in this section.

Replication Manager. FTM provides fault tolerance by
replicating users applications such that a redundant copy of
the application is available after failure happens. In the Cloud
computing environment, redundancy can also be applied on
the entire VM instance in which the application is hosted. The
set of VM instances controlled by a single implementation of
the replication service is referred as a Replica Group. This
component receives the reference of client’s VM instance
and expected replication properties such as the style of
replication (active, passive, cold passive, hot passive) and the
number of replicas in a replica group from the FTMKernel
component. It then invokes the replica VM instances and
ensures the rules defined for the group. Replication Manager
also includes techniques to maintain consistency in a Replica
Group by updating the state of backup replicas with that
of the primary replica. Therefore, this component can be
viewed as a collection of modules responsible for invoking
the service replicas and managing their execution based on
the user’s requirements.

Fault Detection/Prediction Manager. To detect replica
failures, well known algorithms such as Gossip-based
protocol [20] and heartbeat message exchange protocol
[23] are implemented following the approach presented in
Section III and applied for this component. Every fault
detection service must ideally detect the faults immediately
after their occurrence and send a notification about the faulty
replica to the FTMKernel to invoke services from the Fault
Masking Manager and Recovery Manager. When a failure is
detected, the Resource Manager is also notified to update the
resource state of the Cloud.

Fault Masking Manager. FTM meets high availability
demands by recovering or replacing the failed components
in the background while the application’s execution remains

A simple example of a general fault tolerance solution with composed work-flow orchestrated by FTMKernel.

uninterrupted in another instance “replica”. A collection of
such algorithms that “mask™ the occurrence of failures and
prevent the faults from resulting into errors is included in this
component. An example of a widely proposed and accepted
masking technique in Cloud and virtualization environments
is the Live Migration of VM instances [8], where the entire
OS (VM instance) is moved to another location preserving
the established session.

Recovery Manager. This component includes all the
mechanisms that resumes error-prone nodes to a normal
operational mode. The impact of failure detection and
masking techniques on the system is complementary to that
of recovery mechanisms. By continuously checking for the
occurrence of faults and invoking the recovery service when
exceptions happen, our framework maximizes the system’s
lifetime and minimizes the downtime during failures.

Messaging Monitor. FTM integrates WS-RM standard
[3] with other Web service specifications like replication
approach protocol so that the communication between any two
components (and the replicas) is reliable even in the presence
of component, system or network failure. This component
extends through all the components of our framework (as
shown in Fig. 1) and offers the necessary communication
infrastructure in two different forms: message exchange
among replicas of a replica group, and inter-component
communication within the framework. FTMKernel chooses
an appropriate messaging module while composing a fault
tolerance algorithm such that an independent messaging
facility is available for each instance.

Client/Admin Interface. This component is used to
obtain users’ requirements and act as an interface between
the end user and FTM. We propose the use of an automated
configuration tool which only requires the users to select
the application or the VM instance to which they wish



Primary VM Instance

! Monitoring System |
! i
i Timer Primary i
| Web Service Web Service | |

|
Lo = %&\

i - | T~ ~
- - l =~ ~
~ | -

————— Cro~sii il | P~ o M AA~Si—ean !
i Monitored | Monitored | Monitored |
i System i i System i i System i

Backup VM Backup VM Backup VM
Instance Instance Instance

Replica Group (Passive Replication)

Fig. 3. Detecting VM instance crash failures using Heartbeat based protocol
following the pull model

to obtain reliability support and correspondingly provide
details of factors such as the desired availability, response
time, criticality of the application, cost, and so on. In this
manner, even users with a non-technical background can
easily configure the system properties. After obtaining the
users preferences, the Client interface forwards them to the
FTMKernel.

FTMKernel. This is the central computing component
of FTM which manages all the reliability mechanisms present
in the framework. It contemplates the user’s requirements
and accordingly selects the Web (reliability) services from
other components. The chosen modules are then orchestrated
to form an aggregate solution that is delivered to the user’s
application. Fig. 2 shows an example workflow of activities
between various chosen modules that forms a simple fault
tolerance solution. In this example, FTMKernel first forms
a replica group on receiving user’s input. It then invokes
the failure detection and messaging facilities for the service
instance. If a failure is detected, the fault masking and
recovery services are invoked.

Resource Manager. To achieve an efficient and proactive
resource allocation, and avoid over provisioning during
failures, the working state of the physical and virtual
resources in the Cloud must be continuously monitored. The
Resource Manager realizes this functionality in FTM, by
maintaining a database including detailed logging information
about the machines in the Cloud and providing an abstract,
simple representation of the working state of resources in the
form of a graph. This information can also be mined over
time to derive the failure profile of the system and to design
proactive fault tolerance models specially designated to the
environment of the Infrastructure Provider.

V. EXAMPLE: HEARTBEAT-BASED PROTOCOL

This section provides a simple example to detect crash
failures among VM instances within a Replica Group using our
framework. To achieve this, FTMKernel invokes a multicast
heartbeat based message exchange algorithm, following the

pull model, as depicted in Fig. 3. In this algorithm, the Pri-
mary, which is responsible for contacting the Backup Nodes,
activates the Timer every time it sends a liveness request to a
node. The backup node immediately sends an acknowledgment
to the primary upon receiving a request. The timeout period
starts when the Timer is activated. When the timeout period
ends, the Timer notifies the Primary. If N consecutive timeouts
are overlapped for a particular VM instance, the node is
suspected to have failed. In FTM, the heartbeat protocol can be
realized by running a web service each for Primary and Timer,
forming the Monitoring system, and the BackupNode service
realizing the Monitored system. The timeout period can be set
based on the users requirements. Since each service runs in
the VM instance independent from the host application, no
changes to its source code are required. This technique can
be similarly extended to detect failures among nodes within
various clusters in a Cloud.

VI. CONCLUSION

We introduced an innovative, system-level, modular per-
spective on creating and managing fault tolerance in Cloud
computing environment. This high-level approach overcomes
the inflexibility of application developers by shading the im-
plementation details of the reliability techniques and offering
the desired level of fault tolerance support as an on-demand
service. The design of the framework which captures our
new perspective, promises the feasibility of the envisioned
approach to efficiently gain fault tolerance at system-level.

Our future work will be driven towards the implementation
of the framework to realize the proposed approach and make
an in-depth comparison of our perspective with existing mono-
lithic systems. This study will also analyze the cost benefits
of using our framework among all the stakeholders. Another
aspect of our future work is to extend our approach in order
to increase the reliability of the framework itself.

REFERENCES

[1] Amazon elastic compute cloud. http://aws.amazon.com/ec2/.

[2] OASIS Web Services Business Process Execution Language Version 2.0
(WS-BPEL). http://docs.oasis-open.org/wsbpel/2.0/wsbpel-v2.0.pdf.

[3] OASIS Web Services Reliable Messaging (WSRM). http://www.oasis-
open.org/committees/tc-home.php?wg-abbrev=wsrm.

[4] Summary of the Amazon EC2 and Amazon RDS Service Disruption in
the US East Region. http://aws.amazon.com/message/65648.

[5] “Security = Guidance for  Critical Areas of Focus in
Cloud  Computing,” December 2009. [Online].  Available:
https://cloudsecurityalliance.org/csaguide.pdf

[6] A. Albreshne, P. Fuhrer, and J. Pasquier, “Web Services Orchestration
and Composition: Case Study of Web services composition,” September

20009.

[71 J.  Barr, A. Narin, and J. Varia, “Building Fault-
Tolerant  Applications on AWS,” October 2011. [Online].
Available:  http://media.amazonwebservices.com/AWS-Building-Fault-

Tolerant-Applications.pdf

[8] B. Cully, G. Lefebvre, D. Meyer, M. Feeley, N. Hutchinson, and
A. Warfield, “Remus: high availability via asynchronous virtual machine
replication,” in Proceedings of the 5th USENIX Symposium on Net-
worked Systems Design and Implementation, ser. NSDI'08. Berkeley,
CA, USA: USENIX Association, 2008, pp. 161-174.



[9]

[10]

[11]

(12]

[13]

[14]

[15]

[16]

S. De Capitani di Vimercati, S. Foresti, S. Jajodia, S. Paraboschi,
G. Pelosi, and P. Samarati, “Encryption-Based Policy Enforcement for
Cloud Storage,” in Proceedings of the 2010 IEEE 30th International
Conference on Distributed Computing Systems Workshops, ser. ICDCSW
’10.  Washington, DC, USA: IEEE Computer Society, 2010, pp. 42-51.
S. De Capitani di Vimercati, S. Foresti, S. Jajodia, S. Paraboschi, and
P. Samarati, “Encryption policies for regulating access to outsourced
data,” ACM Trans. Database Syst., vol. 35, pp. 12:1-12:46, May 2010.
F. Distante and V. Piuri, “Hill-climbing heuristics for optimal hardware
dimensioning and software allocation in fault-tolerant distributed sys-
tems,” Reliability, IEEE Transactions on, vol. 38, no. 1, pp. 28 -39, apr
1989.

T. Erl, Service-Oriented Architecture: Concepts, Technology, and De-
sign. Upper Saddle River, NJ, USA: Prentice Hall PTR, 2005.

A. Heddaya and A. Helal, “Reliability, Availability, Dependability and
Performability: A User-centered View,” Boston, MA, USA, Tech. Rep.,
1997.

M. Hiltunen and R. D. Schlichting, “An Approach to Constructing Mod-
ular Fault-Tolerant Protocols,” in In Proceedings of the 12th Symposium
on Reliable Distributed Systems. 1EEE, 1993, pp. 105-114.

V. Piuri, “Design of fault-tolerant distributed control systems,” Instru-
mentation and Measurement, IEEE Transactions on, vol. 43, no. 2, pp.
257 264, apr 1994.

P. Samarati and S. De Capitani di Vimercati, “Data protection in
outsourcing scenarios: issues and directions,” in Proceedings of the
Sth ACM Symposium on Information, Computer and Communications
Security, ser. ASIACCS "10. New York, NY, USA: ACM, 2010, pp.
1-14.

[17]

(18]

[19]

[20]

[21]

[22]

(23]

G. T. Santos, L. C. Lung, and C. Montez, “FTWeb: A Fault Tolerant
Infrastructure for Web Services,” in Proceedings of the Ninth IEEE
International EDOC Enterprise Computing Conference, ser. EDOC ’05.
Washington, DC, USA: IEEE Computer Society, 2005, pp. 95-105.

Y. Tamura, K. Sato, S. Kihara, and S. Moriai, “Kemari: Virtual Machine
Synchronization for Fault Tolerance,” in Proceedings of USENIX Annual
Technical Conference, 2008.

G. Vallee, K. Charoenpornwattana, C. Engelmann, A. Tikotekar,
C. Leangsuksun, T. Naughton, and S. L. Scott, “A Framework for Proac-
tive Fault Tolerance,” in Proceedings of the 2008 Third International
Conference on Availability, Reliability and Security. Washington, DC,
USA: IEEE Computer Society, 2008, pp. 659-664.

R. van Renesse, Y. Minsky, and M. Hayden, “A gossip-style failure
detection service,” in Proceedings of the IFIP International Conference
on Distributed Systems Platforms and Open Distributed Processing, ser.
Middleware *98. London, UK: Springer-Verlag, 1998, pp. 55-70.

K. V. Vishwanath and N. Nagappan, “Characterizing cloud computing
hardware reliability,” in Proceedings of the Ist ACM symposium on
Cloud computing, ser. SoCC "10. New York, NY, USA: ACM, 2010,
pp- 193-204.

T. Wood, R. Singh, A. Venkataramani, P. Shenoy, and E. Cecchet, “ZZ
and the art of practical BFT execution,” in Proceedings of the sixth
conference on Computer systems, ser. EuroSys "11. New York, NY,
USA: ACM, 2011, pp. 123-138.

W. Zhao, P. M. Melliar-Smith, and L. E. Moser, “Fault Tolerance
Middleware for Cloud Computing,” in Proceedings of the 2010 IEEE
3rd International Conference on Cloud Computing, ser. CLOUD ’10.
Washington, DC, USA: IEEE Computer Society, 2010, pp. 67-74.



