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Abstract 

The increasing demand for flexibility and scalability in dynamically obtaining and releasing 
computing resources in a cost-effective and device-independent manner, and easiness in 
hosting applications without the burden of installation and maintenance has resulted in a wide 
adoption of the Cloud computing paradigm. While the benefits are immense, this computing 
paradigm is still vulnerable to a large number of system failures and, as a consequence, there 
is an increasing concern among users regarding the reliability and availability of Cloud 
computing services. Fault tolerance and resilience serve as an effective means to address 
user’s reliability and availability concerns. In this chapter, we focus on characterizing the 
recurrent failures in a typical Cloud computing environment, analyzing the effects of failures 
on user’s applications, and surveying fault tolerance solutions corresponding to each class of 
failures. We also discuss the perspective of offering fault tolerance as a service to user’s 
applications as one of the effective means to address user’s reliability and availability 
concerns.  
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1. Introduction 

Cloud computing is gaining an increasing popularity over traditional information processing 
systems. Service providers have been building massive data centers that are distributed over 
several geographical regions to efficiently meet the demand for their Cloud-based services 
(e.g., [AWS], [Azure], [GCP]). In general, these data centers are built using hundreds of 
thousands of commodity servers, and virtualization technology is used to provision computing 
resources (e.g., by delivering Virtual Machines – VMs – with a given amount of CPU, memory 
and storage capacity) over the Internet by following the pay-per-use business model (e.g., 
[AWS.EC2]). Leveraging the economies of scale, a single physical host is often used as a set of 
several virtual hosts by the service provider, and benefits such as the semblance of an 
inexhaustible set of available computing resources is provided to the users. As a consequence, 
an increasing number of users are moving to Cloud-based services for realizing their 
applications and business processes. 

The use of commodity components however exposes the hardware to conditions that it was 
not originally designed for [FRM.2012, VN.2010]. Moreover, due to the highly complex nature 
of the underlying infrastructure, even carefully engineered data centers are subject to a large 
number of failures [HB.2009]. These failures evidently reduce the overall reliability and 
availability of the Cloud computing service. As a result, fault tolerance becomes of paramount 
importance to the users as well as the service providers to ensure correct and continuous 
system operation even in the presence of an unknown and unpredictable number of failures. 

The dimension of risks on the user’s applications deployed in the virtual machine instances in a 
Cloud has also changed since the failures in data centers are normally outside the scope of the 
user’s organization. Moreover, traditional ways of achieving fault tolerance require users to 
have an in-depth knowledge of the underlying mechanisms, whereas, due to the abstraction 
layers and business model of Cloud computing, system’s architectural details are not widely 
available to the users. This implies that traditional methods of introducing fault tolerance may 
not be very effective in the Cloud computing context and there is an increasing need to 
address user’s reliability and availability concerns.  

Goal of this chapter is to develop an understanding on the nature, numbers, and kind of faults 
that appear in typical Cloud computing infrastructures, how these faults impact user’s 
applications, and how faults can be handled in an efficient and cost-effective manner. To this 
aim, we first describe the fault model of typical Cloud computing environments in Section 2 on 



the basis of system architecture, failure characteristics of widely used server and network 
components, and analytical models. An overall understanding on the fault model may help 
researchers and developers to build more reliable Cloud computing services. We introduce 
some basic and general concepts on fault tolerance and summarize the parameters that must 
be taken into account when building a fault tolerant system in Section 3. A scheme in which 
different levels of fault tolerance can be achieved by user’s applications by exploiting the 
properties of the Cloud computing architecture is then presented in Section 4.  

In Section 5 we discuss a solution that can function on user’s applications in a general and 
transparent manner to tolerate one of the two most frequent classes of faults that appear in 
the Cloud computing environment. In section 6 we present a scheme that can tolerate the 
other class of frequent faults while reducing the overall resource costs by half when compared 
to existing solutions in the literature. These two techniques, along with the concept of 
different fault tolerance levels, are used as the basis to develop a methodology and framework 
that offers fault tolerance as an additional service to the user’s applications (see Section 7). We 
believe that the notion of offering fault tolerance as a service may serve as an efficient 
alternative to traditional approaches in addressing user’s reliability and availability concerns.  

 

2. Cloud computing fault model 

In general, a failure represents the condition in which the system deviates from fulfilling its 
intended functionality or the expected behavior. A failure happens due to an error; that is, due 
to reaching an invalid system state. The hypothesized cause for an error is a fault which 
represents a fundamental impairment in the system. The notion of faults, errors and failures 
can be represented using the following chain [S.2004, HH.1997]:  

  Fault   Error   Failure   Fault   Error   Failure   

Fault tolerance is the ability of the system to perform its function even in the presence of 
failures. This implies that it is utmost important to clearly understand and define what 
constitutes the correct system behavior so that specifications on its failure characteristics can 
be provided and consequently a fault tolerant system be developed. In this section, we discuss 
the fault model of typical Cloud computing environments to develop an understanding on the 
numbers as well as the causes behind recurrent system failures. In order to analyze the 
distribution and impact of faults, we first describe the generic Cloud computing architecture.  



 
Fig. 1  Layered Architecture of Cloud computing 

 

 

2.1. Cloud computing architecture 

Cloud computing architecture comprises four distinct layers as illustrated in Figure 1 
[AFG.2009]. Physical resources (e.g., blade servers and network switches) are considered as 
the lowest-layer in the stack, on top which, virtualization and system management tools are 
embedded to form the Infrastructure-as-a-Service (IaaS) layer. Note that the infrastructure 
supporting large-scale Cloud deployments is typically the data centers and virtualization 
technology is used to maximize the use of physical resources, application isolation and quality 
of service. Services offered by IaaS are normally accessed through a set of user-level 
middleware services which provide an environment to simplify application development and 
deployment (e.g., web 2.0 interfaces, libraries and programming languages). The layer above 
the IaaS which binds all user-level middleware tools is referred as Platform-as-a-Service (PaaS). 
User-level applications (e.g., social networks and scientific models) that are built and hosted on 
top of the PaaS layer comprise the Software-as-a-Service (SaaS) layer.   

Failure in a given layer normally has an impact on the services offered by the layers above it. 
For example, failure in a user-level middleware (PaaS) may produce errors in the software 
services built on top of it (SaaS applications). Similarly, failures in the physical hardware or the 
IaaS layer will have an impact on most PaaS and SaaS services. This implies that the impact of 
failures in the IaaS layer or the physical hardware is significantly high; hence, it is important to 
characterize typical hardware faults and develop corresponding fault tolerance techniques. 

We describe the failure behavior of various server components based on the statistical 
information obtained from large-scale studies on data center failures using data mining 
techniques [VN.2010, GJN.2011] and analyze the impact of component failures on user’s 
applications by means of analytical models such as fault trees and Markov chains [JP.2012]. 



Similarly to server components, we also present the failure behavior of network component 
failures. 

 

2.2. Failure behavior of servers 

Each server in the data center typically contains multiple processors, storage disks, memory 
modules and network interfaces. The study about server failure and hardware repair behavior 
is to be performed using a large collection of servers (approximately 100,000 servers) and 
corresponding data on part replacement such as details about server configuration, when a 
hard disk was issued a ticked for replacement and when it was actually replaced. Such data 
repository which included server collection spanning multiple data centers distributed across 
different countries is gathered and inferred in [VN.2010]. Key observations derived from this 
study are as follows: 

 92% of the machines do not see any repair events but the average number of repairs 
for the remaining 8% is 2 per machine (20 repair/replacement events contained in 9 
machines were identified over a 14 months period). The annual failure rate (AFR) is 
therefore around 8%. 

 For an 8% AFR, repair costs that amount to 2.5 million dollars are approximately spent 
for 100,000 servers. 

 About 78% of total faults/replacements were detected on hard disks, 5% on RAID 
controllers and 3% due to memory failures. 13% of replacements were due to a 
collection of components (not particularly dominated by a single component failure). 
Hard disks are clearly the most failure-prone hardware components and the most 
significant reason behind server failures. 

 About 5% of servers experience a disk failure in less than 1 year from the date when it 
is commissioned (young servers), 12% when the machines are 1 year old, and 25% of 
the servers sees hard disk failures when it is 2 years old. 

 Interestingly, based on the Chi-squared automatic interaction detector methodology, 
none of the following factors: age of the server, its configuration, location within the 
rack and workload run on the machine were found to be a significant indicator for 
failures. 

 Comparison between the number of repairs per machine (RPM) against the number of 
disks per server in a group of servers (clusters) indicates that (i) there is a relationship 
in the failure characteristics of servers that have already experienced a failure, and (ii) 
the number of RPM has a correspondence to the total number of disks on that 
machine. 

 



 
 

Fig. 2a  Fault tree characterizing server failures 
[JP.2012] 

Fig. 2b  Fault tree characterizing power failures [JP.2012] 

  

Based on these statistics, it can be inferred that robust fault tolerance mechanisms must be 
applied to improve the reliability of hard disks (assuming independent component failures) to 
substantially reduce the number of failures. Furthermore, to meet the high availability and 
reliability requirements, applications must reduce utilization of hard disks that have already 
experienced a failure (since the probability of seeing another failure on that hard disk is 
higher).  

Failure behavior of servers can also be analyzed based on the models defined using fault trees 
and Markov chains [JP.2012, STT.2008]. The rationale behind the modeling is twofold: (i) to 
capture the user’s perspective on component failures, that is, understand the behavior of 
user’s applications that are deployed in the VM instances under server component failures and 
(ii) to define the correlation between individual component failures and the boundaries on the 
impact of each failure. An application may have an impact when there is a failure/error either 
in the processor, memory modules, storage disks, power supply or network interfaces of the 
server, or the hypervisor, or the VM instance itself. Figure 2a illustrates this behavior as a fault 
tree where the top-event represents a failure in the user's application. Reliability and 
availability of each server component must be derived using Markov models that are 
populated using long-term failure behavior information such as the one described in 
[VN.2010]. 

 



 

 
Fig. 3a Partial network architecture of a data 
center [GJN.2011] 

Fig. 3b  Fault tree characterizing network failures [JP.2012] 

 

2.3. Failure behavior of the network 

It is important to understand the overall network topology and various network components 
involved in constructing a data center so as to characterize the network failure behavior. 
Figure 3a illustrates an example of partial data center network architecture [Cisco.2004, 
GJN.2011]. Servers are connected using a set of network switches and routers. In particular, all 
rack-mounted servers are first connected via a 1Gbps link to a top-of-rack switch (ToR), which 
is in turn connected to two (primary and backup) aggregation switches (AggS). An AggS 
connects tens of switches (ToR) to redundant access routers (AccR). This implies that each 
AccR handles traffic from thousands of servers and route it to core routers that connect 
different data centers to the Internet [JP.2012, GJN.2011]. All links in the data centers 
commonly use Ethernet as the link layer protocol and redundancy is applied to all network 
components at each layer in the network topology (except for ToRs).  In addition, redundant 
pairs of load balancers (LBs) are connected to each AggS and mapping between static IP 
address presented to the users and dynamic IP addresses of internal servers that process 
user’s requests is performed. Similarly to the study on failure behavior of servers, a large scale 
study on the network failures in data centers is performed in [GJN.2011]. A link failure happens 
when the connection between two devices on a specific interface is down and a device failure 
happens when the device is not routing/forwarding packets correctly (e.g., due to power 
outage or hardware crash). Key observations derived from this study are as follows: 

 Among all the network devices, load balancers are least reliable (with failure 
probability of 1 in 5) and ToRs are most reliable (with a failure rate of less than 5%). 
The root causes for failures in LBs are mainly the software bugs and configuration 



errors (as opposed to the hardware errors for other devices). Moreover, LBs tend to 
experience short but frequent failures. This observation indicates that low-cost 
commodity switches (e.g., ToRs and AggS) provide sufficient reliability. 

 The links forwarding traffic from LBs have highest failure rates; links higher in the 
topology (e.g., connecting AccRs) and links connecting redundant devices have second 
highest failure rates. 

 The estimated median number of packets lost during a failure is 59K and median 
number of bytes is 25MB (average size of lost packets is 423Bytes). Based on prior 
measurement studies (that observe packet sizes to be bimodal with modes around 
200Bytes and 1,400Bytes), it is estimated that most lost packets belong to the lower 
part (e.g., ping messages or ACKs). 

 Network redundancy reduces the median impact of failures (in terms of number of lost 
bytes) by only 40%. This observation is against the common belief that network 
redundancy completely masks failures from applications. 

Therefore, the overall data center network reliability is about 99.99% for 80% of the links and 
60% of the devices. Similar to servers, Figure 3b represents the fault tree for user’s application 
failure with respect to network failures in the data center. A failure happens when there is an 
error in all redundant switches ToRs, AggS, AccR or core routers, or the network links 
connecting physical hosts. Since the model is designed in the user’s perspective, a failure in 
this context implies that the application is not connected to the rest of the network or gives 
errors during data transmission. Using this modeling technique, the boundaries on the impact 
of each network failure can be represented (using server, cluster and data center level blocks) 
and further be used to increase the fault tolerance of user's application (e.g., by placing 
replicas of an application in different failure zones).  

 

3. Basic concepts on fault tolerance 
 
In general, the faults we analyzed in Section 2 can be classified in different ways depending on 
the nature of the system. Since, in this chapter, we are interested in typical Cloud computing 
environment faults that appear as failures to the end users, we classify the faults into two 
types similarly to other distributed systems:  

 Crash faults that cause the system components to completely stop functioning or 
remain inactive during failures (e.g., power outage, hard disk crash) 

 Byzantine faults that leads the system components to behave arbitrarily or maliciously 
during failure, causing the system to behave unpredictably incorrect.  

 
As reminded previously, fault tolerance is the ability of the system to perform its function even 
in the presence of failures. It serves as one of the means to improve the overall system’s 



dependability. In particular, it contributes significantly in increasing system’s reliability and 
availability.  
 
The most widely adopted methods to achieve fault tolerance against crash faults and 
byzantine faults are as follows: 

 Checking and monitoring: The system is constantly monitored at runtime to validate, 
verify and ensure that correct system specifications are being met. This technique, 
while very simple, plays a key role in failure detection and subsequent reconfiguration.  

 Checkpoint and restart: The system state is captured and saved based on pre-defined 
parameters (e.g., after every 1024 instructions or every 60 seconds). When the system 
undergoes a failure, it is restored to the previously known correct state using the latest 
checkpoint information (instead of restarting the system from start). 

 Replication: Critical system components are duplicated using additional hardware, 
software and network resources in such a way that a copy of the critical components is 
available even after a failure happens. Replication mechanisms are mainly used in two 
formats: active and passive. In active replication, all the replicas are simultaneously 
invoked and each replica processes the same request at the same time. This implies 
that all the replicas have the same system state at any given point of time (unless 
designed to function in an asynchronous manner) and it can continue to deliver its 
service even in case of a single replica failure. In passive replication, only one 
processing unit (the primary replica) processes the requests while the backup replicas 
only save the system state during normal execution periods. Backup replicas take over 
the execution process only when the primary replica fails.  

 
Variants of traditional replication mechanisms (active and passive) are often applied on 
modern distributed systems. For example, semi-active replication technique is derived from 
traditional approaches wherein primary and backup replicas execute all the instructions but 
only the output generated by the primary replica is made available to the user. Output 
generated by the backup replicas is logged and suppressed within the system so that it can 
readily resume the execution process when the primary replica failure happens. Figure 4a 
depicts the Markov model of a system that uses active/semi-active replication scheme with 
two replicas [JP.2012]. This model serves as an effective means to derive the reliability and 
availability of the system because failure behavior of both replicas can be taken into account. 
Moreover, as described in Section 2, the results of the Markov model analysis can be used to 
support the fault trees in characterizing the impact of failures in the system. Each state in the 
model is represented by a pair (x, y) where x=1 denotes that the primary replica is working and 
x=0 implies that it failed. Similarly, y represents the working condition of the backup replica. 
The system starts and remains in state (1,1) during normal execution, i.e., when both the 
replicas are available and working correctly. A failure either in the primary or the backup  
 



  
Fig. 4a  Markov model of a system with two replicas in  
Active/Semi-active replication scheme [JP.2012] 

Fig. 4b Markov model of a system with two 
replicas in Passive replication scheme [JP.2012] 

 
replica moves the system to state (0,1) or (1,0) where the other replica takes over the 
execution process. A single state is sufficient to represent this condition in the model since 
both replicas are consistent with each other. The system typically initiates its recovery 
mechanism in state (0,1) or (1,0), and moves to state (1,1) if the recovery of failed replica is 
successful; otherwise it transits to state (0,0) and becomes completely unavailable. Similarly, 
Figure 4b illustrates the Markov model of the system for which a passive replication scheme is 
applied.   denotes the failure rate,   denotes the recovery rate and   is a constant. 
 
Fault tolerance mechanisms are varyingly successful in tolerating faults [ABL.2008]. For 
example, a passively replicated system can tolerate only crash faults whereas actively 
replicated system using 3 +1 replicas are capable of tolerating byzantine faults. In general, 
mechanisms that handle failures at a finer granularity, offering higher performance 
guarantees, also consume higher amount of resources [JPS.2012a].  Therefore, the design of 
fault tolerance mechanisms must take into account a number of factors such as 
implementation complexity, resource costs, resilience, and performance metrics, and achieve 
a fine balance of the following parameters: 

 Fault tolerance model: Measures the strength of the fault tolerance mechanism in 
terms of the granularity at which it can handle errors and failures in the system. This 
factor is characterized by the robustness of failure detection protocols, state 
synchronization methods, and strength of the fail-over granularity. 

 Resource consumption: Measures the amount and cost of resources that are required 
to realize a fault tolerance mechanism. This factor is normally inherent with the 
granularity of the failure detection and recovery mechanisms in terms of CPU, 
memory, bandwidth, I/O, and so on. 

 Performance: This factor deals with the impact of the fault tolerance procedure on the 
end-to-end quality of service (QoS) both during failure and failure-free periods. This 
impact is often characterized using fault detection latency, replica launch latency and 
failure recovery latency, and other application-dependent metrics such as bandwidth, 
latency, and loss rate. 



  
We build on the basic concepts discussed in this section to analyze the fault tolerance 
properties of various schemes designed for Cloud computing environment.  

 

4. Different levels of fault tolerance in Cloud computing 

As discussed in Section 2, server components in a Cloud computing environment are subject to 
failures, affecting user’s applications, and each failure has an impact within a given boundary 
in the system. For example, a crash in the pair of aggregate switches may result in the loss of 
communication among all the servers in a cluster; in this context, the boundary of failure is the 
cluster since applications in other clusters can continue functioning normally. Therefore, while 
applying a fault tolerance mechanism such as a replication scheme, at least one replica of the 
application must be placed in a different cluster to ensure that aggregate switch failure does 
not result in a complete failure of the application. Furthermore, this implies that deployment 
scenarios (i.e., location of each replica) are critical to correctly realize the fault tolerance 
mechanisms. In this section, we discuss possible deployment scenarios in a Cloud computing 
infrastructure, and the advantages and limitations of each scenario. 

Based on the architecture of the Cloud computing infrastructure, different levels of failure 
independence can be derived for Cloud computing services [GY.2010, UCH.2011]. Moreover, 
assuming that the failures in individual resource components are independent of each other, 
fault tolerance and resource costs of an application can be balanced based on the location of 
its replicas. Possible deployment scenarios and their properties are as follows. 

 Multiple machines within the same cluster. Two replicas of an application can be 
placed on the hosts that are connected by a ToR switch i.e., within a LAN. Replicas 
deployed in this configuration can benefit in terms of low latency and high bandwidth 
but obtain very limited failure independence. A single switch or power distribution 
failure may result in an outage of the entire application and both replicas cannot 
communicate to complete the fault tolerance protocol. Cluster level blocks in the fault 
trees of each resource component (e.g., network failures as shown in Figure 3b) must 
be combined using a logical AND operator to analyze the overall impact of failures in 
the system. Note that reliability and availability values for each fault tolerance 
mechanism with respect to server faults must be calculated using a Markov model.  

 Multiple clusters within a data center. Two replicas of an application can be placed on 
the hosts belonging to different clusters in the same data center i.e., on the hosts that 
are connected via a ToR switch and AggS. Failure independence of the application in 
this deployment context remains moderate since the replicas are not bound to an 
outage with a single power distribution or switch failure. The overall availability of an 



application can be calculated using cluster level blocks from fault trees combined with 
a logical OR operator in conjunction with power and network using AND operator.  

 Multiple data centers. Two replicas of an application can be placed on the hosts 
belonging to different data centers i.e., connected via a switch, AggS and AccR. This 
deployment has a drawback with respect to high latency and low bandwidth, but 
offers a very high level of failure independence. A single power failure has least effect 
on the availability of the application. The data center level blocks from the fault trees 
may be connected with a logical OR operator in conjunction with the network in the 
AND logic. 

 
As an example, using the data published in [STT.2008, KMT.2009], overall availability of each 
representative replication scheme with respect to different deployment levels is obtained as 
shown in Table 1. Availability of the system is highest when the replicas are placed in two 
different data centers. The value reduces when replicas are placed in two different clusters 
within the same data center and it is lowest when replicas are placed inside the same LAN. The 
overall availability obtained by semi-active replication is higher than semi-passive replication, 
and lowest for simple passive replication scheme.  
 

Table 1 Availability values (normalized to 1) for replication techniques at different deployment scenarios [JP.2012] 

 Same Cluster Same Data center,  
diff. clusters 

Diff. Data centers 

Semi-Active 0.9871 0.9913 0.9985 

Semi-Passive 0.9826 0.9840 0.9912 

Passive 0.9542 0.9723 0.9766 

 
As described in Section 3, effective implementation of fault tolerance mechanisms requires 
consideration of the strength of fault tolerance model, resource costs and performance. While 
traditional fault tolerance methods require tailoring of each application having an in-depth 
knowledge of the underlying infrastructure, in Cloud computing scenario, it would also be 
beneficial to develop methodologies that can generically function on user’s applications so 
that a large number of applications can be protected using the same protocol. In addition to 
generality, agility in managing replicas and checkpoints to improve the performance, and 
reduction in the resource consumption costs while not limiting the strength of fault tolerance 
mechanisms is required. 
 
Although several fault tolerance approaches are being proposed for Cloud computing services, 
most solutions that achieve at least one of the required properties described above, are based 
on the virtualization technology. By using virtualization-based approaches, it is also possible to 
deal with both classes of faults that are discussed in Section 3. In particular, in Section 5 we 
present a virtualization-based solution that provides fault tolerance against crash failures using 



a checkpointing mechanism. We discuss this solution because it offers two additional, 
significantly useful, properties: (i) fault tolerance is induced independent to the applications 
and hardware on which it runs. In other words, an increased level of generality is achieved 
since any application can be protected using the same protocol as long as it is deployed in a 
VM, and (ii) mechanisms such as replication, failure detection and recovery are applied 
transparently -- not modifying the OS or application’s source code. Then, in Section 6 we 
present a virtualization-based solution that uses typical properties of a Cloud computing 
environment to tolerate byzantine faults using a combination of replication and checkpointing 
techniques. We discuss this solution because it reduces the resource consumption costs 
incurred by typical byzantine fault tolerance schemes during fail-free periods nearly by half.  

 

5. Fault tolerance against crash failures in Cloud computing 

A scheme that leverages the virtualization technology to tolerate crash faults in the Cloud in a 
transparent manner is discussed in this section. The system or user application that must be 
protected from failures is first encapsulated in a VM (say active VM or the primary), and 
operations are performed at the VM level (in contrast to traditional approach of operating at 
the application level) to obtain paired servers that run in active-passive configuration. Since 
the protocol is applied at the VM level, this scheme can be used independent of the 
application and underlying hardware, offering an increased level of generality. In particular, we 
discuss the design of Remus as an example system that offers the above mentioned properties 
[CLM.2008]. Remus aims to provide high availability to the applications, and to achieve this, it 
works in four phases: 

1. Checkpoint the changed memory state at the primary and continue to next epoch of 
network and disk request streams. 

2. Replicate system state on the backup. 
3. Send checkpoint acknowledgement from the backup when complete memory 

checkpoint and corresponding disk requests have been received. 
4. Release outbound network packets queued during the previous epoch upon receiving 

the acknowledgement. 

Remus achieves high-availability by frequently checkpointing and transmitting the state of the 
active VM on to a backup physical host. The VM image on the backup is resident in the 
memory and may begin execution immediately after a failure in the active VM is detected. The 
backup only acts like a receptor since the VM in the backup host is not actually executed 
during fail-free periods. This allows the backup to concurrently receive checkpoints from VMs 
running on multiple physical hosts (in an N-to-1 style configuration) providing a higher degree 
of freedom in balancing resource costs due to redundancy. 



In addition to generality and transparency, seamless failure recovery can be achieved i.e., no 
externally visible state is lost in case of a single host failure and recovery happens rapidly 
enough that it appears only like a temporary packet loss. Since the backup is only periodically 
consistent with the primary replica using the checkpoint-transmission procedure, all network 
output is buffered until a consistent image of the host is received by the backup, and the 
buffer is released only when the backup is completely synchronized with the primary. Unlike 
network traffic, the disk state is not externally visible but it has to be transmitted to the 
backup as part of a complete cycle. To address this, Remus asynchronously sends the disk state 
to the backup where it is initially buffered in the RAM. When the corresponding memory state 
is received, complete checkpoint is acknowledged, output is made visible to the user, and 
buffered disk state is applied to the backup disk.  

Remus is built on Xen hypervisor’s live migration machinery [CFH.2005]. Live migration is a 
technique using which a complete VM can be relocated onto another physical host in the 
network (typically a LAN) with a minor interruption to the VM. Xen provides an ability to track 
guest’s writes to memory using a technique called shadow page tables. During live migration, 
memory of the VM is copied to the new location while the VM still continues to run normally 
at the old location. The writes to the memory are then tracked and the dirtied pages are 
transferred to the new location periodically. After a sufficient number of iterations, or when no 
progress in copying the memory is being made (i.e., when the VM is writing to the memory as 
fast as the migration process), the guest VM is suspended, remaining dirtied memory along 
with the CPU state is copied and the VM image in the new location is activated. The total 
migration time depends on the amount of dirtied memory during guest execution, and total 
downtime depends on the amount of memory remaining to be copied when the guest is 
suspended. The protocol design of the system, particularly each checkpoint, can be viewed as 
the final stop-and-copy phase of live-migration. The guest memory in live migration is 
iteratively copied incurring several minutes of execution time. The singular stop-and-copy (the 
final step) operation incurs a very limited overhead – typically in the order of a few 
milliseconds.  

While Remus provides an efficient replication mechanism, it employs a simple failure detection 
technique that is directly integrated within the checkpoint stream. A timeout of the backup in 
responding to commit requests made by the primary will result in the primary suspecting a 
failure (crash and disabled protection) in the backup. Similarly, a timeout of the new 
checkpoints being transmitted from the primary will result in the backup assuming a failure in 
the primary. At this point, the backup begins execution from the latest checkpoint.  

The protocol is evaluated (i) to understand whether or not the overall approach is practically 
deployable and (ii) to analyze the kind of workloads that are most amenable to this approach.  



Correctness evaluation is performed by deliberatively injecting network failures at each phase 
of the protocol. The application (or the protected system) runs a kernel compilation process to 
generate CPU, memory and disk load, and a graphics intensive client (glxgears) attached to X11 
server is simultaneously executed to generate the network traffic. Checkpoint frequency is 
configured to 25 milliseconds and each test is performed two times. It is reported that the 
backup successfully took over the execution for each failure with a network delay of about 1 
second when the backup detected the failure and activated the replicated system. The kernel 
compilation task continued to completion and glxgears client resumed after a brief pause. The 
disk image showed no inconsistencies when the VM was gracefully shut down. 

Performance evaluation is performed using the SPECweb benchmark that is composed of a 
web server, an application server and one or more web client simulators. Each tier (server) was 
deployed in a different VM. The observed scores decrease up to 5 times the native score (305) 
when the checkpointing system is active. This behavior is mainly due to network buffering; the 
observed scores are much higher when network buffering is disabled. Furthermore, it is 
reported that at configuration rates of 10, 20, 30 and 40 checkpoints per second, the average 
checkpoint rate achieved are 9.98, 16.38, 20.25 and 23.34 respectively. This behavior can be 
explained with SPECweb’s very fast memory dirtying resulting in slower checkpoints than 
desired. The realistic workload hence illustrates that the amount of network traffic generated 
by the checkpointing protocol is considerably large, and as consequence, this system is not 
well suited for applications that are very sensitive to network latencies.  

Therefore, virtualization technology can largely be exploited to develop general-purpose fault 
tolerance schemes that can be applied to handle crash faults in a transparent manner.  

 

6. Fault tolerance against byzantine failures in Cloud computing 

Byzantine Fault Tolerance (BFT) protocols are powerful approaches to obtain highly reliable 
and available systems. Despite numerous efforts, most BFT systems have been too expensive 
for practical use – so far, no commercial data centers have employed BFT techniques. For 
example, the BFT algorithm presented in [CL.1999] for asynchronous, distributed, client-server 
systems requires at least 3f+1 replica (1 primary and remaining backup) to execute a three-
phase protocol that can tolerate f byzantine faults. Note that, as described in Section 3, 
systems that tolerate faults at a finer granularity such as the byzantine faults also consume 
very high amounts of resources, and as discussed in Section 4, it is critical to consider the 
resource costs while implementing a fault tolerance solution.  

The high resource consumption cost in BFT protocols is most likely due to the way faults are 
normally handled. BFT approaches typically replicate the server (state machine replication -- 
SMR) and each replica is forced to execute the same request in the same order. This 



enforcement requirement demands the server replicas to reach an agreement on the ordering 
of a given set of requests even in the presence of byzantine faulty servers and clients. For this 
purpose, an agreement protocol that is referred as Byzantine Agreement is used. When an 
agreement on the ordering is reached, service execution is performed and majority voting 
scheme is devised to choose the correct output (and to detect the faulty server). This implies 
that two clusters of replicas are necessary to realize BFT protocols. 

It is observed that when realistic data center services implement BFT protocols, the dominant 
costs are due to the hardware performing service execution and not due to running the 
agreement protocol [WSV.2011]. For instance, a toy application running null requests with the 
Zyzzyva BFT approach [KAD.2009] exhibits a peak throughput of 80K requests/second while a 
database service running the same protocol on comparable hardware exhibits almost three 
times lower throughput. Based on this observation, ZZ, an execution approach that can be 
integrated with existing BFT SMR and agreement protocols is presented in [WSV.2011]. The 
prototype of ZZ is built on the BASE implementation [CL.1999] and guarantees BFT while 
significantly reducing resource consumption costs during fail-free periods. Table 2 compares 
resource costs of well-known BFT techniques. Since ZZ provides an effective balance between 
resource consumption costs and fault tolerance model, further in this section we discuss its 
system design in detail. 

 
Table 2 Resource consumption costs incurred by well-known byzantine fault tolerance protocols [WSV.2011] 

 PBFT [CL.1999] SEP [YMV.2003] Zyzzyva 
[KAD.2009] 

ZZ [WSV.2011] 

Agreement 
replicas 

3 +1 3 +1 3 +1 3 +1 

Execution 
replicas 

3 +1 2 +1 2 +1 (1+ ) +1 

 

The design of ZZ is based on the virtualization technology and targeted to tolerate byzantine 
faults while reducing the resource provisioning costs incurred by BFT protocols during fail-free 
periods. The cost reduction benefits of ZZ can be obtained only when BFT is used in the data 
center running multiple applications so that sleeping replicas can be distributed across the 
pool of servers and higher peak throughput can be achieved when execution dominates the 
request processing cost and resources are constrained. These assumptions make ZZ a suitable 
scheme to be applied in a Cloud computing environment.  

The system model of ZZ makes the following assumptions similar to most existing BFT systems: 



 The service is either deterministic or non-deterministic operations in the service can 
be transformed to deterministic ones using an agreement protocol (i.e., ZZ assumes a 
SMR based BFT system).  

 The system involves two kinds of replicas (i) agreement replicas that assign an order to 
client’s requests and (ii) execution replicas that execute each client’s request in the 
same order and maintain the application state.  

 Each replica fails independently and exhibits Byzantine behavior (i.e., faulty replicas 
and clients may behave arbitrarily).  

 An adversary can coordinate faulty nodes in an arbitrary manner, but it cannot 
circumvent standard cryptographic measures (e.g., collision resistant hash functions, 
encryption scheme and digital signatures).  

 An upper bound   on number of faulty agreement replicas and   execution replicas is 
assumed for a given window of vulnerability. 

 System can ensure safety in an asynchronous network, but liveness is guaranteed only 
during periods of synchrony. 

Since the system runs replicas inside virtual machines, to maintain failure independence, it 
requires that a physical host can deploy at most one agreement and one execution replicas of 
the service simultaneously. The novelty in the system model is that it considers a Byzantine 
hypervisor. Note that, as a consequence of the above replica placement constraint, a malicious 
hypervisor can be treated by simply considering a single fault in all the replicas deployed on 
that physical host. Similarly, an upper bound   on the number of faulty hypervisors is assumed. 

The BFT execution protocol reduces the replication cost from 2 +1 to  +1 based on the 
following principle: 

 A system that is designed to function correctly in an asynchronous environment will 
provide correct results even if some of the replicas are outdated.  

 A system that is designed to function correctly in the presence of   Byzantine faults 
will, during fault-free period, remain unaffected even if up to   replicas are turned off. 

The second observation is used to commission only  +1 replica to actively execute requests. 
The system is in a correct state if the response obtained from all  +1 replica is the same. In 
case of a failure (i.e., when responses do not match), the first observation is used to continue 
system operation as if the   standby replicas were slow but correct replicas. 

To correctly realize this design, the system requires an agile replica wake-up mechanism. To 
achieve this, the system exploits virtualization technology by maintaining additional replicas 
(VMs) in a “dormant” state, which are either pre-spawned but paused VMs or the VM that is 
hibernated to a disk. There is a trade-off in adopting either method. Pre-spawned VM can 
resume execution in very short span (in the order of few milliseconds) but consumes memory 



higher resources, whereas, VMs hibernated to disks incur greater recovery times but occupy 
only storage space. This design also raises several interesting challenges such as how can a 
restored replica obtain the necessary application state that is required to execute the current 
request? How can the replication cost be made robust to faulty replica or client behavior? Does 
the transfer of entire application state take unacceptably long time?  

The system builds on the BFT protocol that uses independent agreement and execution 
clusters (similar to [YMV.2003]). Let   represent the set of replicas in the agreement cluster, 
        , that run the three-phase agreement protocol [CL.1999]. When a client   sends 
its request   to the agreement cluster to process an operation   with timestamp  , the 
agreement cluster assigns a sequence number   to the request. The timestamp is used to 
ensure that each client request is executed only once and a faulty client behavior does not 
affect other clients’ requests. When an agreement replica   learns of the sequence number   
committed to  , it sends a commit message   to all execution replicas. 

Let   represent the set of replicas in the execution cluster where         during fail-free 
periods. When an execution replica   receives      valid and matching commit messages 
from  , in the form of a commit certificate {  },         , and if it has already processed 
all the requests with lower sequence than  , it produces a reply   and sends it to the client. 
The execution cluster also generates an execution report    for the agreement cluster. 
  
During normal execution, the response certificate {  },         obtained by the client 
matches replies from all     execution nodes. To avoid unnecessary wakeups due to a 
partially faulty execution replica which replies correctly to the agreement cluster but delivers a 
wrong response to the client, ZZ introduces an additional check as follows: when the replies 
are not matching, the client resends the same request to the agreement cluster. The 
agreement cluster sends a reply affirmation    to the client if it has     valid responses for 
the retransmitted request. In this context, the client accepts the reply if it receives     
messages containing a response digest  ̅ that matches one of the replies already received. 
Finally, if the agreement cluster does not generate an affirmation for the client, additional 
nodes are started. 
 
ZZ uses periodic checkpoints to update the state of newly commissioned replicas and to 
perform garbage collection on replica’s logs. Execution nodes create checkpoints of the 
application state and reply logs, generate a checkpoint proof   , and send it all execution and 
agreement nodes. The checkpoint proof is in the form of a digest that allows recovering node 
in identifying the checkpoint data they obtain from potentially faulty nodes, and the  
checkpoint certificate {   },         is a set of        messages with matching digests.  
Fault detection in the execution replicas is based on timeouts. Both lower and higher values of 
timeouts may impact the system’s performance. The former may falsely detect failures and the 
later may provide a window to the faulty replicas to degrade the system’s performance. To set 



appropriate timeouts, ZZ suggests the following procedure: the agreement replica sets the 
timeout   to     upon receiving the first response to the request with sequence number  ; 
  is the response time and   is a preconfigured variance bound. Based on this trivial theory, ZZ 
proves that a replica faulty with a given probability   can inflate average response time by a 
factor of: 
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 ( ) represents the probability of   simultaneous failures and  ( ) is the response time 
inflation that   faulty nodes can inflict. Assuming identically distributed response times for a 
given distribution,              is the expected minimum time for a set of       replicas and 

          is the expected maximum response time of all     replicas [WSV.2011]. Replication 

costs vary from     to      depending on the probability of replicas being faulty   and the 
likelihood of false timeouts   . Formally, the expected replication cost is less than (   )  

 , where     (   )    (   )     .  
 
Therefore, virtualization technology can be effectively used to realize byzantine fault tolerance 
mechanisms at a significantly lower resource consumption costs.  

 
 
7. Fault tolerance as a service in Cloud computing 
 
The drawback of the solutions discussed in Section 5 and Section 6 is that the user must either 
tailor its application using a specific protocol (e.g., ZZ) by taking into account the system 
architecture details, or require the service provider to implement a solution for its applications 
(e.g., Remus). Note that the (i) fault tolerance properties of the application remain constant 
throughout its life-cycle using this methodology and (ii) users may not have all the 
architectural details of service provider’s system. However, the availability of a pool of fault 
tolerance mechanisms that provide transparency and generality can allow realization of the 
notion of fault tolerance as a service. The latter perspective to fault tolerance intuitively 
provides immense benefits. 
 



As a motivating example, consider a user that offers a web-based e-commerce service to its 
customers that allows them to pay their bills and manage fund transfers over the Internet. The 
user implements the e-commerce service as a multi-tier application that uses the storage 
service of the service provider to store and retrieve its customer data, and compute service to 
process its operations and respond to customer queries. In this context, a failure in service 
provider’s system can impact the reliability and availability of the e-commerce service. The 
implications of storage server failure may be much higher than a failure in one of the compute 
nodes. This implies that each tier of the e-commerce application must possess different levels 
of fault tolerance, and the reliability and availability goals may change over time based on the 
business demands. Using traditional methods, fault tolerance properties of the e-commerce 
application remains constant throughout its life-cycle and hence, in user’s perspective, it is 
complementary to engage with a third party (the fault tolerance service provider ftSP), specify 
its requirements based on the business needs, and transparently possess desired fault 
tolerance properties without studying the low level fault tolerance mechanisms. 
 
The ftSP must realize a range of fault tolerance techniques as individual modules (e.g., 
separate agreement and execution protocols, and heartbeat based fault detection technique 
as an independent module) to benefit from the economies of scale. For example, since failure 
detection technique in Remus and ZZ are based on the same principle, instead of integrating 
the liveness requests within the checkpointing stream, the heartbeat test module can be 
reused in both the solutions. However, realization of this notion requires a technique for 
selection of appropriate fault tolerance mechanisms based on user’s requirements and a 
general purpose framework that can integrate with the Cloud computing environment. 
Without such a framework, individual applications must implement its own solution, resulting 
in highly complex system environment. Further in this section, we present a solution that 
supports ftSP to realize its service effectively.    

 
In order to abstract low-level system procedures from the users, a new dimension to fault 
tolerance is presented in [JPS.2012b] wherein applications deployed in the VM instances in a 
Cloud computing environment can obtain desired fault tolerance properties from a third-party 
as a service. The new dimension realizes a range of fault tolerance mechanisms that can 
transparently function on user's applications as independent modules, and a set of metadata is 
associated with each module to characterize its fault tolerance properties. The metadata is 
used to select appropriate mechanisms based on user’s requirements. A complete fault 
tolerance solution is then composed using selected fault tolerance modules and delivered to 
the user's application.  
 
Consider ft_unit to be the fundamental module that applies a coherent fault tolerance 
mechanism, in a transparent manner, to a recurrent system failure at the granularity of a VM 
instance. An ft_unit handles the impact of hardware failures by applying fault tolerance 



mechanisms at the virtualization layer rather than user’s application. Examples of ft_units 
include the replication scheme for the e-commerce application that uses checkpointing 
technique such as Remus (ft_unit1), and node failures detection technique using heartbeat 
test (ft_sol2). Assuming that the ftSP realizes a range of fault tolerance mechanisms as 
ft_units, a two stage delivery scheme that can deliver fault tolerance as a service is as follows: 
 
The design stage starts when a user requests the ftSP to deliver a solution with a given set of 
fault tolerance properties to its application. Each ft_unit provides a unique set of properties; 
the ftSP banks on this observation and defines the fault tolerance property   corresponding to 
each ft_unit as   (   ̂  ) where   represents the ft_unit,  ̂ denotes the high level abstract 
properties such as reliability and availability, and   denotes the set of functional, structural 
and operational attributes that characterizes the ft_unit  . The set   sufficiently refers to the 
granularity at which the ft_unit can handle failures, its limitations and advantages, resource 
consumption costs and quality of service parameters. Each attribute     takes a value  ( ) 
from a domain    and a partial (or total) ordered relationship is defined on the domain  . The 
values for the abstract properties are derived using the notion of fault trees and Markov model 
as described for the availability property in Table 1. An example of fault tolerance property for 
the ft_unit    is   (    ̂  {reliability=98.9%, availability=99.95%},   {mechanism=semi-
active_replication, fault_model=server_crashes, power_outage, number_of_replicas=4}) 
 
Similar to the domain of attribute values, a hierarchy of fault tolerance properties    is also 

defined: if   is the set of properties, and given two properties        ,        if 

    ̂      ̂ and for all    ,   ( )    ( ). This hierarchy suggests that all ft_units that hold 

the property    also satisfy the property   . Fault tolerance requirements of the users are 

assumed to be specified as desired properties   , and for each user request, the ftSP first 
generates a shortlisted set   of ft_units that match   . Each ft_unit within the set   is then 
compared, and an ordered list based on user’s requirements is created. An example of the 
matching, comparison and selection process is as follows: 
 
As an example, assume that the ftSP realizes three ft_units with properties  
   (        {mechanism=heartbeat_test, timeout_period=50ms, number_of_replicas=3, 
fault_model=node_crashes}) 
   (        {mechanism=majority_voting, fault_model=programming_errors}) 
   (        {mechanism=heartbeat_test, timeout_period=25ms, number_of_replicas=5, 
fault_model=node_crashes}) 
respectively. If the user requests fault tolerance support with a robust crash failure detection 
scheme, the set   (     ) is first generated (   is not included in the set because it doesn’t 
target server crash failures alone, and its attribute values that contribute to robustness are not 
defined) and finally after comparing each ft_unit within  , ftSP leverages    since it is more 
robust than    . 



 
Note that each ft_unit serves only as a single fundamental fault tolerance module. This implies 
that the overall solution ft_sol that must be delivered to the user’s application can be obtained 
by combining a set of ft_units as per specific execution logic. For instance, a heartbeat test 
based fault detection module must be applied only after performing replication, and recovery 
mechanism must be applied after a failure is detected. In other words, ft_units must be used 
to realize as a process that provides a complete fault tolerance solution, such as: 

ft sol[ 

invoke:ft unit(VM-instances replication) 

invoke:ft unit(failure detection) 

do{ 

execute(failure detection ft unit) 

}while(no failures) 

if(failure detected) 

invoke:ft unit(recovery mechanism) 
] 

 
By composing ft_sol using a set of modules on-the-fly, the dimension and intensity of the fault 
tolerance support can be changed dynamically. For example, the more robust fault detection 
mechanism can be replaced with a less robust one in the ft_sol based on the user’s business 
demands. Similarly, by realizing each ft_unit as a configurable module, resource consumption 
costs can also be made limited. For example, a replication scheme using 5 replicas can be 
replaced with one having 3 replicas if desired by the user.  
 
The runtime stage starts immediately after ft_sol is delivered to the user. This stage is essential 
to maintain a high level of service because the context of the Cloud computing environment 
may change at runtime resulting in mutable behavior of the attributes. To this aim, the ftSP 
defines a set of rules   over attributes     and their values  ( ) such that the validity of all 
the rules      establishes that the property   is supported by ft_sol (violation of a rule 
indicates that the property is not satisfied). Therefore, in this stage, the attribute values of 
each ft_sol delivered to user’s applications is continuously monitored at runtime and 
corresponding set of rules are verified using a validation function  (   ). The function returns 
true if all the rules are satisfied, otherwise, it returns false. The matching and comparison 
process defined for the design stage is used to generate a new ft_sol in case of a rule violation. 
By continuously monitoring and updating the attribute values, note that the fault tolerance 
service offers support valid throughout the life cycle of the application (both initially during 
design time and runtime). 



 

Fig. 5  Architecture of the Fault Tolerance Manager showing all the components 

 
As an example, for a comprehensive fault tolerance solution ft_sol    with property  
   (    ̂   {reliability=98.9%, availability=99.95%},    {mechanism=active_replication, 
fault_detection=heartbeat_test, number_of_replicas=4, recovery_time=25ms})  a set of rules 
  that can sufficiently test the validity of    can be defined as: 

   number_of_server_instances   3 
   heartbeat_frequency   5ms 
   recovery_time   25ms 

These rules ensure that end reliability and availability is always greater than or equal to 98.9% 
and 99.95% respectively. 
 
A conceptual architectural framework, the Fault Tolerance Manager (FTM), is also introduced 
in [JPS.2012] that provides the basis to realize the design stage and runtime stage of the 
delivery scheme, and serves as the basis to offer fault tolerance as a service. FTM is inserted as 
a dedicated service layer between the physical hardware and user applications along the 
virtualization layer. FTM is build using the principles of service oriented architectures, where 
each ft_unit is realized as an individual web service and ft_sol is created by orchestrating a set 
of ft_units (web services) using the business process execution language (BPEL) constructs. 
This allows the ftSP to satisfy its scalability and interoperability goals. 
 
The central computing component, denoted as the FTMKernel, is composed of three main 
components: 

 Service Directory: It is the registry of all ft_units realized by the service provider in the 
form of web services that i) describes its operations and input/output data structures 



(e.g., WSDL and WSCL), and ii) allows other ft_units to coordinate and assemble with 
it. This component also registers the metadata representing the fault tolerance 
property of each ft_unit. Service Directory performs a matching of user’s preferences 
and generates the set   of ft_units that satisfy   .  

 Composition Engine: It receives an ordered set of ft_units from the service directory as 
input, and generates a comprehensive fault tolerance solution ft_sol as output. In 
terms of service oriented architectures, the composition engine is a web service 
orchestration engine that exploits BPEL constructs to build a fault tolerance solution. 

 Evaluation Unit: It monitors the composed fault tolerance solutions at runtime using 
the validation function and the set of rules defined corresponding to each ft_sol. The 
interface exposed by web services (e.g., WSDL and WSCL) allows the evaluation unit to 
validate the rules. If a violation is detected, the evaluation unit updates the present 
attribute values in the metadata, otherwise, the service continues uninterrupted. 

A set of components that provide a complementary support to fault tolerance mechanisms are 
included in FTM. These components affect the quality of service and support ftSP in satisfying 
user’s requirements and constraints. Figure 5 illustrates the overall architecture of the FTM. A 
brief discussion on the functionality of each component is as follows: 

 Client Interface: This component provides a specification language which allows clients 
to specify and define their requirements.  

 Resource Manager: This component maintains a consistent view of all computing 
resources in the Cloud to (i) efficiently perform resource allocation during each user 
request and (ii) avoid over provisioning during failures. Resource manager monitors 
the working state of physical and virtual resources, maintains a database of inventory 
and log information, and a graph representing the topology and working state of all 
the resources in the Cloud. 

 Replication Manager: This component supports the replication mechanisms by 
invoking the replicas and managing their execution as defined in the ft_unit. The set of 
replicas that are controlled by a single replication mechanism is denoted as a replica 
group. The task of the replication manager is to make the user perceive a replica group 
as a single service, and ensure that each replica exhibits correct behavior in the fail-
free periods.  

 Fault Detection/Prediction Manager: This component provides FTM with failure 
detection support at two different levels. The first level offers failure detection 
globally, to all the nodes in the Cloud (infrastructure-centric) and the second level 
provides support only to detect failures among individual replicas in each replica group 
(user application-centric). This component supports several well-known failure 
detection algorithms (e.g., gossip-based protocols, heartbeat protocol) that are 
configured at runtime according to user’s preferences. When a failure is detected in a 
replica, a notification is sent to fault masking manager and recovery manager. 



 Fault Masking Manager: The goal of this component is to support ft_units that realize 
fault masking mechanisms so that occurrence of faults in the system can be hidden 
from users. This component applies masking procedures immediately after a failure is 
detected so as to prevent faults from resulting into errors.  

 Recovery Manager: The goal of this component is to achieve system-level resilience by 
minimizing the downtime of the system during failures. It supports ft_units that realize 
recovery mechanisms so that an error-prone node can be resumed back to a normal 
operational mode. The support offered by this component is complementary to that of 
the failure detection/prediction manager and fault masking manager, when an error is 
detected in the system. FTM maximizes the lifetime of the Cloud infrastructure by 
continuously checking for occurrence of faults and by recovering from failures. 

 Messaging monitor: This component extends through all the components of FTM and 
offers the communication infrastructure in two different forms: message exchange 
within a replica group, and inter-component communication within the framework. 
Messaging monitor integrates WS-RM standard with other application protocols to 
ensure correct messaging infrastructure even in the presence of failures. This 
component is therefore critical in providing maximum interoperability, and serves as a 
key QoS factor.  

 
For example, consider that at the start of the service, the resource manager generates a profile 
of all computing resources in the Cloud and identifies five processing nodes {       }   
with the network topology represented in Figure 6a. Further consider that the FTMKernel, 
upon gathering the user’s requirements from the Client Interface, chooses a passive replication 
mechanism for the e-commerce service. Based on the chosen fault tolerance mechanism (i.e., 
the set of ft_units that realize the envisioned passive replication scheme), FTMKernel requires 
the following conditions to be satisfied: (i) the replica group must contain one primary and two 
backup nodes (ii) the node on which the primary replica executes must not be shared with any 
other VM instances, (iii) all the replicas must be located on different nodes at all times, and (iv) 
node    must not allow any user-level VM instance (rather it should be used only to run 
system-level services such as monitoring unit). An overview of the activities performed by each 
supporting component in the FTM is as follows: 

 The replication manager (RM) selects the node    for the primary replica and nodes 
   and    respectively for two backup replicas so that a replica group can be formed 
(see Figure 6b). Assume that the replication manager synchronizes the state between 
the replicas by frequently checkpointing the primary and updating the state of backup 
replicas. 

 The messaging manager establishes the infrastructure required for carrying out the 
checkpointing protocol, and forms the replica group for the e-commerce service (see 
Figure 6c).  



 Assume that the service directory selects a proactive fault tolerance mechanism. As a 
consequence, the failure detection/prediction manager continuously gathers the state 
information of nodes       and   , and verifies if all system parameter values satisfy 
threshold values (e.g., physical memory usage of a node allocated to a VM instance 
must be less than 70% of its total capacity). 

 When the failure detection/prediction manager predicts a failure in node   , it invokes 
the fault masking ft_unit that performs a live migration of the VM instance. The entire 
OS at node    is moved to another location (node   ) so that e-commerce customers 
do not experience any impact of the failure.  

 Though the high availability goals are satisfied using the fault masking manager, the 
IaaS may be affected since the system now consists of four working nodes only. 
Therefore, FTM applies robust recovery mechanisms at node    to resume it to normal 
working state, increasing the system’s overall lifetime. 

 

  
Fig. 6a  Resource Graph Fig. 6b  Nodes selected by Replication Manager 

 

  
Fig. 6c  Messaging Infrastructure created (forms a 

replica group) 
Fig. 6d Failure detected at node n1 

 
 

 
 

Fig. 6e  Fault masking performed – VM instance 
migrated to node n2 

Fig. 6f  Recovery Manager brings back node n1 to 
working state 



Using the FTM framework, the notion of providing fault tolerance as a service can therefore be 
effectively realized for the Cloud computing environment. Based on the delivery scheme that 
FTM uses, users can achieve high levels of reliability and availability for their applications 
without having any knowledge about the low-level mechanisms, and dynamically change the 
fault tolerance properties of its applications (based on the business needs) at runtime. 
 

 
8. Conclusions 
 
Fault tolerance and resilience in Cloud computing are critical to ensure correct and continuous 
system operation. We discussed the failure characteristics of typical Cloud-based services and 
analyzed the impact of each failure type on user’s applications. Since failures in the Cloud 
computing environment arise mainly due to crash faults and byzantine faults, we discussed 
two fault tolerance solutions, each corresponding to one of these two classes of faults. The 
choice of the fault tolerance solutions was also driven by the large set of additional properties 
that they offer (e.g., generality, agility, transparency and reduced resource consumption 
costs).  
 
We also presented an innovative delivery scheme that leverages existing solutions and their 
properties to deliver high levels of fault tolerance based on a given set of desired properties. 
The delivery scheme was supported by a conceptual framework which realized the notion of 
offering fault tolerance as a service to user’s applications. Due to the complex nature of Cloud 
computing architecture and difficulties in realizing fault tolerance using traditional methods, 
we advocate fault tolerance as a service to be an effective alternative to address user’s 
reliability and availability concerns. 
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