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Abstract Data mining technology has attracted significant interest as a means
of identifying patterns and trends from large collections of data. It
is however evident that the collection and analysis of data that include
personal information may violate the privacy of the individuals to whom
information refers. Privacy protection in data mining is then becoming
a crucial issue that has captured the attention of many researchers.

In this chapter, we first describe the concept of k-anonymity and il-
lustrate different approaches for its enforcement. We then discuss how
the privacy requirements characterized by k-anonymity can be violated
in data mining and introduce possible approaches to ensure the satis-
faction of k-anonymity in data mining.
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1. Introduction

The amount of data being collected every day by private and pub-
lic organizations is quickly increasing. In such a scenario, data mining
techniques are becoming more and more important for assisting decision
making processes and, more generally, to extract hidden knowledge from
massive data collections in the form of patterns, models, and trends that
hold in the data collections. While not explicitly containing the original
actual data, data mining results could potentially be exploited to infer
information - contained in the original data - and not intended for re-
lease, then potentially breaching the privacy of the parties to whom the
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data refer. Effective application of data mining can take place only if
proper guarantees are given that the privacy of the underlying data is not
compromised. The concept of privacy preserving data mining has been
proposed in response to these privacy concerns [6]. Privacy preserving
data mining aims at providing a trade-off between sharing information
for data mining analysis, on the one side, and protecting information to
preserve the privacy of the involved parties on the other side. Several
privacy preserving data mining approaches have been proposed, which
usually protect data by modifying them to mask or erase the original
sensitive data that should not be revealed [4, 6, 13]. These approaches
typically are based on the concepts of: loss of privacy , measuring the
capacity of estimating the original data from the modified data, and
loss of information, measuring the loss of accuracy in the data. In
general, the more the privacy of the respondents to which the data re-
fer, the less accurate the result obtained by the miner and vice versa.
The main goal of these approaches is therefore to provide a trade-off
between privacy and accuracy. Other approaches to privacy preserving
data mining exploit cryptographic techniques for preventing information
leakage [20, 30]. The main problem of cryptography-based techniques
is, however, that they are usually computationally expensive.

Privacy preserving data mining techniques clearly depend on the def-
inition of privacy, which captures what information is sensitive in the
original data and should therefore be protected from either direct or
indirect (via inference) disclosure. In this chapter, we consider a spe-
cific aspect of privacy that has been receiving considerable attention
recently, and that is captured by the notion of k-anonymity [11, 26, 27].
k-anonymity is a property that models the protection of released data
against possible re-identification of the respondents to which the data
refer. Intuitively, k-anonymity states that each release of data must
be such that every combination of values of released attributes that
are also externally available and therefore exploitable for linking can be
indistinctly matched to at least k respondents. k-anonymous data min-
ing has been recently introduced as an approach to ensuring privacy-
preservation when releasing data mining results. Very few, preliminary,
attempts have been presented looking at different aspects in guaran-
teeing k-anonymity in data mining. We discuss possible threats to k-
anonymity posed by data mining and sketch possible approaches to their
counteracting, also briefly illustrating some preliminary results existing
in the current literature. After recalling the concept of k-anonymity
(Section 2) and some proposals for its enforcement (Section 3), we dis-
cuss possible threats to k-anonymity to which data mining results are
exposed (Section 4). We then illustrate (Section 5) possible approaches
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combining k-anonymity and data mining, distinguishing them depending
on whether k-anonymity is enforced directly on the private data (before
mining) or on the mined data themselves (either as a post-mining san-
itization process or by the mining process itself). For each of the two
approaches (Section 6 and 7, respectively) we discuss possible ways to
capture k-anonymity violations to the aim, on the one side, of defining
when mined results respect k-anonymity of the original data and, on the
other side, of identifing possible protection techniques for enforcing such
a definition of privacy.

2. k-Anonymity

k-anonymity [11, 26, 27] is a property that captures the protection
of released data against possible re-identification of the respondents
to whom the released data refer. Consider a private table PT, where
data have been de-identified by removing explicit identifiers (e.g., SSN
and Name). However, values of other released attributes, such as ZIP,
Date of birth, Marital status, and Sex can also appear in some ex-
ternal tables jointly with the individual respondents’ identities. If some
combinations of values for these attributes are such that their occur-
rence is unique or rare, then parties observing the data can determine
the identity of the respondent to which the data refer or reduce the
uncertainty over a limited set of respondents. k-anonymity demands
that every tuple in the private table being released be indistinguishably
related to no fewer than k respondents. Since it seems impossible, or
highly impractical and limiting, to make assumptions on which data are
known to a potential attacker and can be used to (re-)identify respon-
dents, k-anonymity takes a safe approach requiring that, in the released
table itself, the respondents be indistinguishable (within a given set of
individuals) with respect to the set of attributes, called quasi-identifier ,
that can be exploited for linking. In other words, k-anonymity requires
that if a combination of values of quasi-identifying attributes appears in
the table, then it appears with at least k occurrences.

To illustrate, consider a private table reporting, among other at-
tributes, the marital status, the sex, the working hours of individu-
als, and whether they suffer from hypertension. Assume attributes
Marital status, Sex, and Hours are the attributes jointly constituting
the quasi-identifier. Figure 1.1 is a simplified representation of the pro-
jection of the private table over the quasi-identifier. The representation
has been simplified by collapsing tuples with the same quasi-identifying
values into a single tuple. The numbers at the right hand side of the
table report, for each tuple, the number of actual occurrences, also spec-
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Marital status Sex Hours #tuples (Hyp. values)

divorced M 35 2 (0Y, 2N)

divorced M 40 17 (16Y, 1N)
divorced F 35 2 (0Y, 2N)
married M 35 10 (8Y, 2N)
married F 50 9 (2Y, 7N)
single M 40 26 (6Y, 20N)

Figure 1.1. Simplified representation of a private table

ifying how many of these occurrences have values Y and N, respectively,
for attribute Hypertension. For simplicity, in the following we use such
a simplified table as our table PT.

The private table PT in Figure 1.1 guarantees k-anonymity only for
k ≤ 2. In fact, the table has only two occurrences of divorced (fe)males
working 35 hours. If such a situation is satisfied in a particular cor-
related external table as well, the uncertainty of the identity of such
respondents can be reduced to two specific individuals. In other words,
a data recipient can infer that any information appearing in the table
for such divorced (fe)males working 35 hours, actually pertains to one
of two specific individuals.

It is worth pointing out a simple but important observation (to which
we will come back later in the chapter): if a tuple has k occurrences,
then any of its sub-tuples must have at least k-occurrences. In other
words, the existence of k occurrences of any sub-tuple is a necessary (not
sufficient) condition for having k occurrences of a super-tuple. For in-
stance, with reference to our example, k-anonymity over quasi-identifier
{Marital status, Sex, Hours} requires that each value of the individual
attributes, as well as of any sub-tuple corresponding to a combination
of them, appears with at least k occurrences. This observation will
be exploited later in the chapter to assess the non satisfaction of a k-
anonymity constraint for a table based on the fact that a sub-tuple of
the quasi-identifier appears with less than k occurrences. Again with
reference to our example, the observation that there are only two tuples
referring to divorced females allows us to assert that the table will cer-
tainly not satisfy k-anonymity for k > 2 (since the two occurrences will
remain at most two when adding attribute Hours).

Two main techniques have been proposed for enforcing k-anonymity
on a private table: generalization and suppression, both enjoying the
property of preserving the truthfulness of the data.

Generalization consists in replacing attribute values with a general-
ized version of them. Generalization is based on a domain generaliza-
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Figure 1.2. An example of domain and value generalization hierarchies

tion hierarchy and a corresponding value generalization hierarchy on the
values in the domains. Typically, the domain generalization hierarchy
is a total order and the corresponding value generalization hierarchy
a tree, where the parent/child relationship represents the direct gener-
alization/specialization relationship. Figure 1.2 illustrates an example
of possible domain and value generalization hierarchies for the quasi-
identifying attributes of our example.

Generalization can be applied at the level of single cell (substituting
the cell value with a generalized version of it) or at the level of attribute
(generalizing all the cells in the corresponding column). It is easy to see
how generalization can enforce k-anonymity: values that were different
in the private table can be generalized to a same value, whose number of
occurrences would be the sum of the number of occurrences of the values
that have been generalized to it. The same reasoning extends to tuples.
Figure 1.11(d) reports the result of a generalization over attribute Sex

on the table in Figure 1.1, which resulted, in particular, in divorced
people working 35 hours to be collapsed to the same tuple {divorced,
any sex, 35}, with 4 occurrences. The table in Figure 1.11(d) satisfies
k-anonymity for any k ≤ 4 (since there are no less than 4 respondents for
each combination of values of quasi-identifying attributes). Note that
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Suppression

Generalization Tuple Attribute Cell None

Attribute AG TS AG AS ≡ AG AG CS AG ≡ AG AS
Cell CG TS CG AS CG CS ≡ CG CG ≡ CG CS

not applicable not applicable
None TS AS CS

not interesting

Figure 1.3. Classification of k-anonymity techniques [11]

4-anonymity could be guaranteed also by only generalizing (to any sex)
the sex value of divorced people (males and females) working 35 hours
while leaving the other tuples unaltered, since for all the other tuples
not satisfying this condition there are already at least 4 occurrences in
the private table. This cell generalization approach has the advantage
of avoiding generalizing all values in a column when generalizing only a
subset of them suffices to guarantee k-anonymity. It has, however, the
disadvantage of not preserving the homogeneity of the values appearing
in the same column.

Suppression consists in protecting sensitive information by removing
it. Suppression, which can be applied at the level of single cell, entire
tuple, or entire column, allows reducing the amount of generalization
to be enforced to achieve k-anonymity. Intuitively, if a limited number
of outliers would force a large amount of generalization to satisfy a k-
anonymity constraint, then such outliers can be removed from the table
thus allowing satisfaction of k-anonymity with less generalization (and
therefore reducing the loss of information).

Figure 1.3 summarizes the different combinations of generalization
and suppression at different granularity levels (including combinations
where one of the two techniques is not adopted), which correspond to
different approaches and solutions to the k-anonymity problem [11]. It
is interesting to note that the application of generalization and suppres-
sion at the same granularity level is equivalent to the application of
generalization only (AG ≡AG AS and CG ≡CG CS), since suppression
can be modeled as a generalization to the top element in the value gen-
eralization hierarchy. Combinations CG TS (cell generalization, tuple
suppression) and CG AS (cell generalization, attribute suppression) are
not applicable since the application of generalization at the cell level
implies the application of suppression at that level too.
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3. Algorithms for Enforcing k-Anonymity

The application of generalization and suppression to a private table
PT produces less precise (more general) and less complete (some val-
ues are suppressed) tables that provide protection of the respondents’
identities. It is important to maintain under control, and minimize, the
information loss (in terms of loss of precision and completeness) caused
by generalization and suppression. Different definitions of minimality
have been proposed in the literature and the problem of finding minimal
k-anonymous tables, with attribute generalization and tuple suppres-
sion, has been proved to be computationally hard [2, 3, 22].

Within a given definition of minimality, more generalized tables, all
ensuring minimal information loss, may exist. While existing approaches
typically aim at returning any of such solutions, different criteria could
be devised according to which a solution should be preferred over the
others. This aspect is particularly important in data mining, where there
is the need to maximize the usefulness of the data with respect to the
goal of the data mining process (see Section 6). We now describe some
algorithms proposed in literature for producing k-anonymous tables.

Samarati’s Algorithms. The first algorithm for AG TS (i.e., gen-
eralization over quasi-identifier attributes and tuple suppression) was
proposed in conjunction with the definition of k-anonymity [26]. Since
the algorithm operates on a set of attributes, the definition of domain
generalization hierarchy is extended to refer to tuples of domains. The
domain generalization hierarchy of a domain tuple is a lattice, where
each vertex represents a generalized table that is obtained by generaliz-
ing the involved attributes according to the corresponding domain tuple
and by suppressing a certain number of tuples to fulfill the k-anonymity
constraint. Figure 1.4 illustrates an example of domain generalization
hierarchy obtained by considering Marital status and Sex as quasi-
identifying attributes, that is, by considering the domain tuple 〈M0, S0〉.
Each path in the hierarchy corresponds to a generalization strategy ac-
cording to which the original private table PT can be generalized. The
main goal of the algorithm is to find a k -minimal generalization that sup-
presses less tuples. Therefore, given a threshold MaxSup specifying the
maximum number of tuples that can be suppressed, the algorithm has
to compute a generalization that satisfies k-anonymity within the Max-

Sup constraint. Since going up in the hierarchy the number of tuples
that must be removed to guarantee k-anonymity decreases, the algo-
rithm performs a binary search on the hierarchy. Let h be the height of
the hierarchy. The algorithm first evaluates all the solutions at height
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Figure 1.4. Generalization hierarchy for QI={Marital status, Sex}

⌊h/2⌋. If there is at least a k-anonymous table that satisfies the Max-

Sup threshold, the algorithm checks solutions at height ⌊h/4⌋; otherwise
it evaluates solutions at height ⌊3h/4⌋, and so on, until it finds the
lowest height where there is a solution that satisfies the k-anonymity
constraint. As an example, consider the private table in Figure 1.1 with
QI={Marital status, Sex}, the domain and value generalization hier-
archies in Figure 1.2, and the generalization hierarchy in Figure 1.4.
Suppose also that k = 4 and MaxSup= 1. The algorithm first evalu-
ates solutions at height ⌊3/2⌋, that is, 〈M0, S1〉 and 〈M1, S0〉. Since both
the solutions are 4-anonymous within the MaxSup constraint, the al-
gorithm evaluates solutions at height ⌊3/4⌋, that is, 〈M0, S0〉. Solution
〈M0, S0〉 corresponds to the original table that is not 4-anonymous and
violates the MaxSup constraint since 4-anonymity requires to suppress
the two tuples 〈divorced, F〉. Consequently, the two solutions 〈M0, S1〉
and 〈M1, S0〉 are considered as minimal.

Bayardo-Agrawal’s Algorithm. Bayardo and Agrawal [10] pro-
posed another algorithm for AG TS, called k-Optimize. Given a private
table PT, and an ordered set QI={A1, . . . , An} of quasi-identifying at-
tributes, k-Optimize assumes that each attribute Ai ∈ QI is defined over
a totally ordered domain Di. An attribute generalization of A on D
consists in partitioning D into a set of ordered intervals {I1, . . . , Im}
such that

⋃m
i=1 Ii = D and ∀vi ∈ Ii, ∀vj ∈ Ij if i < j, then vi < vj .

The approach associates an integer, called index , with each interval
in any domain of the quasi-identifying attributes. The index assign-
ment reflects the total order relationship over intervals in the domains
and among quasi-identifier attributes. As an example, consider the
private table in Figure 1.1 where the quasi-identifying attributes are
Marital status and Sex. Suppose that the order between the quasi-
identifying attributes is Marital status followed by Sex, and the or-
der among values inside each attribute domain is married, divorced,
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Marital status Sex

〈[married] [divorced] [single]〉 〈[F] [M]〉
1 2 3 4 5

Figure 1.5. Index assignment to attributes Marital status and Sex

single for Marital status, and F, M for Sex. Figure 1.5 represents the
index assignment obtained when no generalization is applied, that is,
when each attribute value represents an interval.

A generalization is represented through the union of generalized sets
for each attribute domain. Since the least value from each attribute
domain must appear in any valid generalization for the attribute domain,
it can be omitted. With respect to our example in Figure 1.5, the least
values are 1 (Marital status=married) and 4 (Sex=F). As an example,
consider now the index list {3, 5}. After adding the least values, we
obtain the generalizer sets {1,3} for attribute Marital status and {4,
5} for attribute Sex, which in turn correspond to the following intervals
of domain values: 〈[married or divorced], [single]〉 and 〈[F], [M]〉. The
empty set { } represents the generalization where, for each domain, all
values in the domain are generalized to the most general value. In our
example, { } corresponds to index values {1} for Marital status and
{4} for Sex, which in turn correspond to 〈[married or divorced or single]〉
and 〈[F or M]〉 generalized domain values.

The k-Optimize algorithm builds a set enumeration tree over the set
I of index values, which is a tree representing all possible subsets of I,
without duplications. The children of a node n correspond to the sets
that can be formed by appending a single element of I to n, with the
restriction that this single element must follow every element already in
n according to the total order previously defined. Figure 1.6 illustrates
an example of set enumeration tree over I = {1, 2, 3}. Since each node
in the tree represents how to generalize the original table PT, the visit
of the set enumeration tree is equivalent to the evaluation of each pos-
sible solution to the k-anonymity problem. At each node n in the tree,
the algorithm computes the cost (as determined by some cost metric)
associated with the table that can be obtained by applying the general-
ization represented by n. This cost is then compared against the best
cost found until that point. If the cost is lower than the best cost found
until that point, it becomes the new best cost and node n is retained.
Since a complete visit of the tree may however be impractical (the tree
contains 2|I| nodes), k-Optimize proposes an heuristic pruning strategy.
Intuitively, a node n can be pruned when the cost associated with its
descendants cannot be optimal. To this purpose, the algorithm com-
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Figure 1.6. An example of set enumeration tree over set I = {1, 2, 3} of indexes

putes a lower bound on the cost that can be obtained by any node in
the subtree rooted at n. If this lower bound is greater than the current
best cost, node n is pruned. Note that k-Optimize can also be exploited
as an heuristic algorithm, by stopping in advance the visit of the tree.

Incognito. Incognito, proposed by LeFevre, DeWitt and Ramakr-
ishnan [18], is an algorithm for AG TS based on the observation that
k-anonymity with respect to any subset of QI is a necessary (not suffi-
cient) condition for k-anonymity with respect to QI. Consequently, given
a generalization hierarchy over QI, the generalizations that are not k-
anonymous with respect to a subset QI′ of QI can be discarded along
with all their descendants in the hierarchy.

Exploiting this observation, at each iteration i, for i = 1, . . . , | QI |,
Incognito builds the generalization hierarchies for all subsets of the quasi-
identifying attributes of size i. It then visits each node of the hierarchies
discarding the generalizations that do not satisfy k-anonymity with re-
spect to the considered set of attributes. Note that if a node of a gener-
alization hierarchy satisfies k-anonymity, also all its generalizations sat-
isfy k-anonymity and therefore they are not checked in the subsequent
visits of the hierarchy. The algorithm then constructs the generaliza-
tion hierarchies for all subsets of the quasi-identifying attributes of size
i + 1 by considering only the generalizations of size i that satisfy the
k-anonymity constraint at iteration i. Incognito terminates when the
whole set of attributes in QI has been considered.

As an example, consider the table PT in Figure 1.1 and suppose that
QI = {Marital status, Sex} and k = 12. The first iteration of Incognito
finds that the original table is 12-anonymous with respect to M0, and S1.
Note that since PT is 12-anonymous with respect to M0, the table is
12-anonymous also with respect to M1 and M2 and therefore they are
not checked. The algorithm then builds the generalization hierarchy on
the 〈Marital status, Sex〉 pair by considering only the generalizations
M0, M1, M2 and S1 that are 12-anonymous. The algorithm finds that
the table is 12-anonymous with respect to 〈M0, S1〉. Consequently, all
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Figure 1.7. Sub-hierarchies computed by Incognito for the table in Figure 1.1

generalizations of 〈M0, S1〉 (i.e., 〈M1, S1〉 and 〈M2, S1〉) are 12-anonymous
and the search terminates. Figure 1.7 illustrates on the left-hand side
the complete domain generalization hierarchies and on the right-hand
side the sub-hierarchies computed by Incognito at each iteration.

Mondrian. The Mondrian algorithm, proposed by LeFevre, DeWitt
and Ramakrishnan [19], is based on the multidimensional global recoding
technique. A private table PT is represented as a set of points in a
multidimensional space, where each attribute represents one dimension.
To the aim of computing a k-anonymous table, the multidimensional
space is partitioned in regions that have to contain at least k points. All
points in a given region are then generalized to the same value for QI.
Note that tuples in different regions can be generalized in different ways.
It is proved that any multidimensional space partition contains at most
2d(k − 1) + m points, where d = |QI| and m is the maximum number of
tuples with the same quasi-identifier value in PT.

Since the computation of a multidimensional partitioning that min-
imizes information loss is a NP-hard problem, the authors propose a
greedy algorithm that works as follows. Given a space region r, at each
iteration the algorithm chooses a dimension d (if such a dimension ex-
ists) and splits the region at the median value x of d: all points such
that d > x will belong to one of the resulting regions, while all points
with d ≤ x will belong to the other region. Note that this splitting
operation is allowed only if there are more than k points within any
region. The algorithm terminates when there are no more splitting op-
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Figure 1.8. Spatial representation (a) and possible partitioning (b)-(d) of the table
in Figure 1.1

erations allowed. The tuples within a given region are then generalized
to a unique tuple of summary statistics for the considered region. For
each quasi-identifying attribute, a summary statistic may simply be a
static value (e.g., the average value) or the pair of maximum and mini-
mum values for the attribute in the region. As an example, consider the
private table PT in Figure 1.1 and suppose that QI = {Marital status,
Sex} and k = 10. Figure 1.8(a) illustrates the two dimensional repre-
sentation of the table for the Marital status and Sex quasi-identifying
attributes, where the number associated with each point corresponds to
the occurrences of the quasi-identifier value in PT. Suppose to perform
a split operation on the Marital status dimension. The resulting two
regions illustrated in Figure 1.8(b) are 10-anonymous. The bottom re-
gion can be further partitioned along the Sex dimension, as represented
in Figure 1.8(c). Another splitting operation along the Marital status

dimension can be performed on the region containing the points that
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correspond to the quasi-identifying values 〈married, M〉 and 〈divorced,
M〉. Figure 1.8(d) illustrates the final solution.

The experimental results [19] show that the Mondrian multidimen-
sional method obtains good solutions for the k-anonymity problem, also
compared with k-Optimize and Incognito.

Approximation Algorithms. Since the majority of the exact al-
gorithms proposed in literature have computational time exponential in
the number of the attributes composing the quasi-identifier, approxima-
tion algorithms have been also proposed. Approximation algorithms for
CS and CG have been presented, both for general and specific values
of k (e.g., 1.5-approximation1 for 2-anonymity, and 2-approximation for
3-anonymity [3]).

The first approximation algorithm for CS was proposed by Meyer-
son and Williams [22] and guarantees a O(k log(k))-approximation. The
best-known approximation algorithm for CS is described in [2] and guar-
antees a O(k)-approximate solution. The algorithm constructs a com-
plete weighted graph from the original private table PT. Each vertex
in the graph corresponds to a tuple in PT, and the edges are weighted
with the number of different attribute values between the two tuples rep-
resented by extreme vertices. The algorithm then constructs, starting
from the graph, a forest composed of trees containing at least k vertices,
which represents the clustering for k-anonymization. Some cells in the
vertices are suppressed to obtain that all the tuples in the same tree
have the same quasi-identifier value. The cost of a vertex is evaluated
as the number of cells suppressed, and the cost of a tree is the sum of
the weights of its vertices. The cost of the final solution is equal to the
sum of the costs of its trees. In constructing the forest, the algorithm
limits the maximum number of vertices in a tree to be 3k−3. Partitions
with more than 3k− 3 elements are decomposed, without increasing the
total solution cost. The construction of trees with no more than 3k − 3
vertices guarantees a O(k)-approximate solution.

An approximation algorithm for CG is described in [3] as a direct
extension of the approximation algorithm for CS presented in [2]. For
taking into account the generalization hierarchies, each edge has a weight
that is computed as follows. Given two tuples i and j and an attribute
a, the generalization cost hi,j(a) associated with a is the lowest level of
the value generalization hierarchy of a such that tuples i and j have the
same generalized value for a. The weight w(e) of the edge e = (i, j) is

1In a minimization framework, a p-approximation algorithm guarantees that the cost C of
its solution is such that C/C∗ ≤ p, where C∗ is the cost of an optimal solution [17].
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therefore w(e) = Σahi,j(a)/la, where la is the number of levels in the
value generalization hierarchy of a. The solution of this algorithm is
guaranteed to be a O(k)-approximation.

Besides algorithms that compute k-anonymized tables for any value
of k, ad-hoc algorithms for specific values of k have also been proposed.
For instance, to find better results for Boolean attributes, in the case
where k = 2 or k = 3, an ad-hoc approach has been provided in [3]. The
algorithm for k = 2 exploits the minimum-weight [1, 2]-factor built on
the graph constructed for the 2-anonymity. The [1, 2]-factor for graph
G is a spanning subgraph of G built using only vertices with no more
than 2 outgoing edges. Such a subgraph is a vertex-disjoint collection of
edges and pairs of adjacent vertices and can be computed in polynomial
time. Each component in the subgraph is treated as a cluster, and a 2-
anonymized table is obtained by suppressing each cell, for which the vec-
tors in the cluster differ in value. This procedure is a 1.5-approximation
algorithm. The approximation algorithm for k = 3 is similar and guar-
antees a 2-approximation solution.

4. k-Anonymity Threats from Data Mining

Data mining techniques allow the extraction of information from large
collections of data. Data mined information, even if not explicitly includ-
ing the original data, is built on them and can therefore allow inferences
on original data to be withdrawn, possibly putting privacy constraints
imposed on the original data at risk. This observation holds also for
k-anonymity. The desire to ensure k-anonymity of the data in the collec-
tion may therefore require to impose restrictions on the possible output
of the data mining process. In this section, we discuss possible threats
to k-anonymity that can arise from performing mining on a collection
of data maintained in a private table PT subject to k-anonymity con-
straints.

We discuss the problems for the two main classes of data mining
techniques, namely association rule mining and classification mining.

4.1 Association Rules

The classical association rule mining operates on a set of transactions,
each composed of a set of items, and produce association rules of the
form X → Y , where X and Y are sets of items. Intuitively, rule X → Y
expresses the fact that transactions that contain items X tend to also
contain items Y . Each rule has a support and a confidence, in the form of
percentage. The support expresses the percentage of transactions that
contain both X and Y , while the confidence expresses the percentage
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of transactions, among those containing X, that also contain Y. Since
the goal is to find common patterns, typically only those rules that
have support and confidence greater than some predefined thresholds
are considered of interest [5, 28, 31].

Translating association rule mining over a private table PT on which
k-anonymity should be enforced, we consider the values appearing in
the table as items, and the tuples reporting respondents’ information
as transactions. For simplicity, we assume here that the domains of
the attributes are disjoint. Also, we assume support and confidence
to be expressed in absolute values (in contrast to percentage). The
reason for this assumption, which is consistent with the approaches in
the literature, is that k-anonymity itself is expressed in terms of absolute
numbers. Note, however, that this does not imply that the release itself
will be made in terms of absolute values.

Association rule mining over a private table PT allows then the ex-
traction of rules expressing combination of values common to different
respondents. For instance, with reference to the private table in Fig-
ure 1.1, rule {divorced} → {M} with support 19, and confidence 19

21
states that 19 tuples in the table refer to divorced males, and among
the 21 tuples referring to divorced people 19 of them are male. If the
quasi-identifier of table PT contains both attributes Marital status

and Sex, it is easy to see that such a rule violates any k-anonymity for
k > 19, since it reflects the existence of 19 respondents who are divorced
male (being Marital status and Sex included in the quasi-identifier,
this implies that no more than 19 indistinguishable tuples can exist for
divorced male respondents). Less trivially, the rule above violates also
k-anonymity for any k > 2, since it reflects the existence of 2 respon-
dents who are divorced and not male; again, being Marital status and
Sex included in the quasi-identifier, this implies that no more than 2
indistinguishable tuples can exist for non male divorced respondents.

4.2 Classification Mining

In classification mining, a set of database tuples, acting as a training
sample, are analyzed to produce a model of the data that can be used as
a predictive classification method for classifying new data into classes.
Goal of the classification process is to build a model that can be used to
further classify tuples being inserted and that represents a descriptive
understanding of the table content [25].

One of the most popular classification mining techniques is repre-
sented by decision trees, defined as follows. Each internal node of a
decision tree is associated with an attribute on which the classification
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Figure 1.9. An example of decision tree

is defined (excluding the classifying attributes, which in our example is
Hypertension). Each outgoing edge is associated with a split condition
representing how the data in the training sample are partitioned at that
tree node. The form of a split condition depends on the type of the
attribute. For instance, for a numerical attribute A, the split condition
may be of the form A ≤ v, where v is a possible value for A. Each node
contains information about the number of samples at that node and how
they are distributed among the different class values.

As an example, the private table PT in Figure 1.1 can be used as a
learning set to build a decision tree for predicting if people are likely to
suffer from hypertension problems, based on their marital status, if they
are male, and on their working hours, if they are female. A possible
decision tree for such a case performing the classification based on some
values appearing in quasi-identifier attributes is illustrates in Figure 1.9.
The quasi-identifier attributes correspond to internal (splitting) nodes
in the tree, edges are labeled with (a subset of) attribute values instead
of reporting the complete split condition, and nodes simply contain the
number of respondents classified by the node values, distinguishing be-
tween people suffering (Y) and not suffering (N) of hypertension.

While the decision tree does not directly release the data of the private
table, it indeed allows inferences on them. For instance, Figure 1.9
reports the existence of 2 females working 35 hours (node reachable from
path 〈F,35〉). Again, since Sex and Hours belong to the quasi-identifier,
this information reflects the existence of no more than two respondents
for such occurrences of values, thus violating k-anonymity for any k > 2.
Like for association rules, threats can also be possible by combining
classifications given by different nodes along the same path. For instance,
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Figure 1.10. Different approaches for combining k-anonymity and data mining

considering the decision tree in Figure 1.9, the combined release of the
nodes reachable from paths 〈F〉 (with 11 occurrences) and 〈F, 50〉 (with
9 occurrences) allows to infer that there are 2 female respondents in PT

who do not work 50 hours per week.

5. k-Anonymity in Data Mining

Section 4 has illustrated how data mining results can compromise the
k-anonymity of a private table, even if the table itself is not released.
Since proper privacy guarantees are a must for enabling information
sharing, it is then important to devise solutions ensuring that data min-
ing does not open the door to possible privacy violations. With partic-
ular reference to k-anonymity, we must ensure that k-anonymity for the
original table PT be not violated.

There are two possible approaches to guarantee k-anonymity in data
mining.

Anonymize-and-Mine: anonymize the private table PT and per-
form mining on its k-anonymous version.

Mine-and-Anonymize: perform mining on the private table PT

and anonymize the result. This approach can be performed by
executing the two steps independently or in combination.

Figure 1.10 provides a graphical illustration of these approaches, re-
porting, for the Mine-and-Anonymize approach, the two different cases:
one step or two steps. In the figure, boxes represent data, while arcs
represent processes producing data from data. The different data boxes
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are: PT, the private table; PTk, an anonymized version of PT; MD, a re-
sult of a data mining process (without any consideration of k-anonymity
constraints); and MDk, a result of a data mining process that respects
the k-anonymity constraint for the private table PT. Dashed lines for
boxes and arcs denote data and processes, respectively, reserved to the
data holder, while continuous lines denote data and processes that can
be viewed and executed by other parties (as their visibility and execution
does not violate the k-anonymity for PT).

Let us then discuss the two approaches more in details and their trade-
offs between applicability and efficiency of the process on the one side,
and utility of data on the other side.

Anonymize-and-Mine (AM) This approach consists in applying a k-
anonymity algorithm on the original private table PT and releasing
then a table PTk that is a k-anonymized version of PT. Data min-
ing is performed, by the data holder or even external parties, on
PTk. The advantage of such an approach is that it allows the de-
coupling of data protection from mining, giving a double benefit.
First, it guarantees that data mining is safe: since data mining is
executed on PTk (and not on PT), by definition the data mining
results cannot violate k-anonymity for PT. Second, it allows data
mining to be executed by others than the data holder, enabling dif-
ferent data mining processes and different uses of the data. This is
convenient, for example, when the data holder may not know a pri-
ori how the recipient may analyze and classify the data. Moreover,
the recipient may have application-specific data mining algorithms
and she may want to directly define parameters (e.g., accuracy and
interpretability) and decide the mining method only after exam-
ining the data. On the other hand, the possible disadvantages of
performing mining on anonymized data is that mining operates on
less specialized and complete data, therefore usefulness and signif-
icance of the mining results can be compromised. Since classical
k-anonymity approaches aim at satisfying k-anonymity minimiz-
ing information loss (i.e., minimizing the amount of generalization
and suppression adopted), a k-anonymity algorithm may produce
a result that is not suited for mining purposes. As a result, clas-
sical k-anonymity algorithms may hide information that is highly
useful for data mining purposes. Particular care must then be
taken in the k-anonymization process to ensure maximal utility of
the k-anonymous table PTk with respect to the goals of the data
mining process that has to be executed. In particular, the aim of
k-anonymity algorithms operating on data intended for data min-
ing should not be the mere minimization of information loss, but
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the optimization of a measure suitable for data mining purposes.
A further limitation of the Anonymize-and-Mine approach is that
it is not applicable when the input data can be accessed only once
(e.g., when the data source is a stream). Also, it may be overall
less efficient, since the anonymization process may be quite ex-
pensive with respect to the mining one, especially in case of sparse
and large databases [1]. Therefore, performing k-anonymity before
data mining is likely to be more expensive than doing the contrary.

Mine-and-Anonymize (MA) This approach consists in mining origi-
nal non-k-anonymous data, performing data mining on the original
table PT, and then applying an anonymization process on the data
mining result. Data mining can then be performed by the data
holder only, and only the sanitized data mining results (MDk) are
released to other parties. The definition of k-anonymity must then
be adapted to the output of the data mining phase. Intuitively, no
inference should be possible on the mined data allowing violating
k-anonymity for the original table PT. This does not mean that the
table PT must be k-anonymous, but that if it was not, it should
not be known and the effect of its non being k-anonymous be not
visible in the mined results. In the Mine-and-Anonymize approach,
k-anonymity constraints can be taken into consideration after data
mining is complete (two-step Mine-and-Anonymize) or within the
mining process itself (one-step Mine-and-Anonymize). In two-step
Mine-and-Anonymize the result needs to be sanitized removing
from MD all data that would compromise k-anonymity for PT. In
one-step Mine-and-Anonymize the data mining algorithm needs to
be modified so to ensure that only results that would not com-
promise k-anonymity for PT are computed (MDk). The two pos-
sible implementations (one step vs two steps) provide different
trade-offs between applicability and efficiency: two-step Mine-and-
Anonymize does not require any modification to the mining pro-
cess and therefore can use any data mining tool available (provided
that results are then anonymized); one-step Mine-and-Anonymize
requires instead to redesign data mining algorithms and tools to
directly enforce k-anonymity, combining the two steps can however
result in a more efficient process giving then performance advan-
tages. Summarizing, the main drawback of Mine-and-Anonymize
is that it requires mining to be executed only by the data holder
(or parties authorized to access the private table PT). This may
therefore impact applicability. The main advantages are efficiency
of the mining process and quality of the results: performing min-
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ing before, or together with, anonymization can in fact result more
efficient and allow to keep data distortion under control to the goal
of maximizing the usefulness of the data.

6. Anonymize-and-Mine

The main objective of classical k-anonymity techniques is the mini-
mization of information loss. Since a private table may have more than
one minimal k-anonymous generalization, different preference criteria
can be applied in choosing a minimal generalization, such as minimum
absolute distance, minimum relative distance, maximum distribution, or
minimum suppression [26]. In fact, the strategies behind heuristics for
k-anonymization can be typically based on preference criteria or even
user policies (e.g., the discourage of the generalization of some given
attributes).

In the context of data mining, the main goal is retaining useful in-
formation for data mining, while determining a k-anonymization that
protects the respondents against linking attacks. However, it is neces-
sary to define k-anonymity algorithms that guarantee data usefulness for
subsequent mining operations. A possible solution to this problem is the
use of existing k-anonymizing algorithms, choosing the maximization of
the usefulness of the data for classification as a preference criteria.

Recently, two approaches that anonymize data before mining have
been presented for classification (e.g., decision trees): a top-down [16]
and a bottom-up [29] technique. These two techniques aim at releas-
ing a k-anonymous table T (A1, . . . , Am, class) for modeling classification
of attribute class considering the quasi-identifier QI = {A1, . . . , Am}.
k-anonymity is achieved with cell generalization and cell suppression
(CG ), that is, different cells of the same attribute may have val-
ues belonging to different generalized domains. The aim of preserving
anonymity for classification is then to satisfy the k-anonymity constraint
while preserving the classification structure in the data.

The top-down approach starts from a table containing the most gen-
eral values for all attributes and tries to refine (i.e., specialize) some
values. For instance, the table in Figure 1.11(a) represents a completely
generalized table for the table in Figure 1.1. The bottom-up approach
starts from a private table and tries to generalize the attributes until the
k-anonymity constraint is satisfied.

In the top-down technique a refinement is performed only if it has
some suitable properties for guaranteeing both anonymity and good clas-
sification. For this purpose, a selection criterion is described for guiding
the top-down refinement process to heuristically maximize the classifi-
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cation goal. The refinement has two opposite effects: it increases the
information of the table for classification and it decreases its anonymity.
The algorithm is guided by the functions InfoGain(v) and AnonyLoss(v)
measuring the information gain and the anonymity loss, respectively,
where v is the attribute value (cell) candidate for refinement. A good
candidate v is such that InfoGain(v) is large, and AnonyLoss(v) is small.
Thus, the selection criterion for choosing the candidate v to be refined

maximizes function Score(v) = InfoGain(v)
AnonyLoss(v)+1 . Function Score(v) is com-

puted for each value v of the attributes in the table. The value with the
highest score is then specialized to its children in the value generalization
hierarchy.

An attribute value v, candidate for specialization, is considered useful
to obtain a good classification if the frequencies of the class values are
not uniformly distributed for the specialized values of v. The entropy
of a value in a table measures the dominance of the majority: the more
dominating the majority value in the class is, the smaller the entropy is.
InfoGain(v) then measures the reduction of entropy after refining v (for
a formal definition of InfoGain(v) see [16]). A good candidate is a value v
that reduces the entropy of the table. For instance, with reference to the
private table in Figure 1.1 and its generalized version in Figure 1.11(a),
InfoGain(any marital status) is high since for been married we have
14 N and 26 Y, with a difference of 12, and for never married we have
20 N and 6 Y, with a difference of 14 (see Figure 1.11(b)). On the
contrary, InfoGain([1, 100)) is low since for [0, 40) we have 8 Y and 6
N, with a difference of 2, and for [40, 100) we have 24 Y and 28 N, with
a difference of 2. Thus Marital status is more useful for classification
than Hours.

Let us define the anonymity degree of a table as the maximum k
for which the table is k-anonymous. The loss of anonymity, defined
as AnonyLoss(v), is the difference between the degrees of anonymity
of the table before and after refining v. For instance, the degrees of
the tables in Figures 1.11(b) and 1.11(c) are 26 (tuples containing:
never married, any sex, [1,100)) and 19 (tuples containing: married,
any sex, [1,100)), respectively. Since the table in Figure 1.11(c) is ob-
tained by refining the value been married of the table in Figure 1.11(b),
AnonyLoss(been married) is 7.

The algorithm terminates when any further refinement would violate
the k-anonymity constraint.

Example 1.1 Consider the private table in Figure 1.1, and the
value generalization hierarchies in Figure 1.2. Let us suppose QI =
{Marital status, Sex, Hours} and k = 4. The algorithm starts from
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Marital status Sex Hours #tuples (Hyp. values)

any marital status any sex [1,100) 66 (32Y, 34N)

(a) Step 1: the most general table

Marital status Sex Hours #tuples (Hyp. values)

been married any sex [1,100) 40 (26Y, 14N)

never married any sex [1,100) 26 (6Y, 20N)

(b) Step 2

Marital status Sex Hours #tuples (Hyp. values)

divorced any sex [1,100) 21 (16Y, 5N)

married any sex [1,100) 19 (10Y, 9N)
never married any sex [1,100) 26 (6Y, 20N)

(c) Step 3

Marital status Sex Hours #tuples (Hyp. values)

divorced any sex 35 4 (0Y, 4N)

divorced any sex 40 17 (16Y, 1N)
married any sex 35 10 (8Y, 2N)
married any sex 50 9 (2Y, 7N)
single any sex 40 26 (6Y, 20N)

(d) Final table (after 7 steps)

Figure 1.11. An example of top-down anonymization for the private table in Fig-
ure 1.1

the most generalized table in Figure 1.11(a), and computes the scores:
Score(any marital status), Score(any sex), and Score([1, 100)).

Since the maximum score corresponds to value any marital status,
this value is refined, producing the table in Figure 1.11(b). The re-
maining tables computed by the algorithm are shown in Figures 1.11(c),
and 1.11(d). Figure 1.11(d) illustrates the final table since the only pos-
sible refinement (any sex to M and F) violates 4-anonymity. Note that
the final table is 4-anonymous with respect to QI = {Marital status,
Sex, Hours}.

The bottom-up approach is the dual of the top-down approach. Start-
ing from the private table, the objective of the bottom-up approach is to
generalize the values in the table to determine a k-anonymous table pre-
serving good qualities for classification and minimizing information loss.
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The effect of generalization is thus measured by a function involving
anonymity gain (instead of anonymity loss) and information loss.

Note that, since these methods compute a minimal k-anonymous ta-
ble suitable for classification with respect to class and QI, the computed
table PTk is optimized only if classification is performed using the entire
set QI. Otherwise, the obtained table PTk could be too general. For
instance, consider the table in Figure 1.1, the table in Figure 1.11(d)
is a 4-anonymization for it considering QI = {Marital status, Sex,

Hours}. If classification is to be done with respect to a subset QI′

= {Marital status, Sex} of QI, such a table would be too general.
As a matter of fact, a 4-anonymization for PT with respect to QI′ can
be obtained from PT by simply generalizing divorced and married to
been married. This latter generalization would generalize only 40 cells,
instead of the 66 cells (M and F to any sex) generalized in the table in
Figure 1.11(d).

7. Mine-and-Anonymize

The Mine-and-Anonymize approach performs mining on the original
table PT. Anonymity constraints must therefore be enforced with re-
spect to the mined results to be returned. Regardless of whether the
approach is executed in one or two steps (see Section 5), the problem to
be solved is to translate k-anonymity constraints for PT over the mined
results. Intuitively, the mined results should not allow anybody to infer
the existence of sets of quasi-identifier values that have less than k oc-
currences in the private table PT. Let us then discuss what this implies
for association rules and for decision trees.

7.1 Enforcing k-Anonymity on Association Rules

To discuss k-anonymity for association rules it is useful to distinguish
the two different phases of association rule mining:

1 find all combinations of items whose support (i.e., the number
of joint occurrences in the records) is greater than a minimum
threshold σ (frequent itemsets mining);

2 use the frequent itemsets to generate the desired rules.

The consideration of these two phases conveniently allows express-
ing k-anonymity constraints with respect to observable itemsets instead
of association rules. Intuitively, k-anonymity for PT is satisfied if the
observable itemsets do not allow inferring (the existence of) sets of quasi-
identifier values that have less than k occurrences in the private table.
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Itemset Support

{∅} 66

{M} 55
{M, 40} 43
{single, M, 40} 26
{divorced} 21
{divorced, M} 19
{married} 19

Figure 1.12. Frequent itemsets extracted from the table in Figure 1.1

It is trivial to see that any itemset X that includes only values on quasi-
identifier attributes and with a support lower than k is clearly unsafe.
In fact, the information given by the itemset corresponds to stating that
there are less than k respondents with occurrences of values as in X,
thus violating k-anonymity. Besides trivial itemsets such as this, also
the combination of itemsets with support greater than or equal to k can
breach k-anonymity.

As an example, consider the private table in Figure 1.1, where
the quasi-identifier is {Marital status, Sex, Hours} and suppose 3-
anonymity must be guaranteed. All itemsets with support lower than 3
clearly violate the constraint. For instance, itemset {divorced, F} with
support 2, which holds in the table, cannot be released. Figure 1.12 illus-
trates some examples of itemsets with support greater than or equal to
19 (assuming lower supports are not of interest). While one may think
that releasing these itemsets guarantees any k-anonymity for k ≤ 19,
it is not so. Indeed, the combination of the two itemsets {divorced,
M}, with support 19, and {divorced}, with support 21, clearly violates
it. In fact, from their combination we can infer the existence of two
tuples in the private table for which the condition ‘Marital status =
divorced ∧ ¬(Sex = M)’ is satisfied. Being Marital status and Sex

included in the quasi-identifier, this implies that no more than 2 indis-
tinguishable tuples can exist for divorced non male respondents, thus
violating k-anonymity for k > 2. In particular, since Sex can assume
only two values, the two itemsets above imply the existence of (not re-
leased) itemset {divorced, F} with support 2. Note that, although both
itemsets ({divorced}, 21) and ({divorced, M}, 19) cannot be released,
there is no reason to suppress both, since each of them individually taken
is safe.

The consideration of inferences such as those, and of possible solu-
tions for suppressing itemsets to block the inferences while maximiz-
ing the utility of the released information, bring some resembling with
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Marital status Sex Hours #tuples

been married M [1-40) 12

been married M [40-100) 17
been married F [1-40) 2
been married F [40-100) 9
never married M [40-100) 26

(a) PT

A B C #tuples

1 1 0 12

1 1 1 17
1 0 0 2
1 0 1 9
0 1 1 26

(b) T

Figure 1.13. An example of binary table

the primary and secondary suppression operations in statistical data re-
lease [12]. It is also important to note that suppression is not the only
option that can be applied to sanitize a set of itemsets so that no unsafe
inferences violating k-anonymity are possible. Alternative approaches
can be investigated, including adapting classical statistical protection
strategies [12, 14]. For instance, itemsets can be combined, essentially
providing a result that is equivalent to operating on generalized (in con-
trast to specific) data. Another possible approach consists in introducing
noise in the result, for example, modifying the support of itemsets in such
a way that their combination never allows inferring itemsets (or patterns
of them) with support lower than the specified k.

A first investigation of translating the k-anonymity property of a pri-
vate table on itemsets has been carried out in [7–9] with reference to
private tables where all attributes are defined on binary domains. The
identification of unsafe itemsets bases on the concept of pattern, which is
a boolean formula of items, and on the following observation. Let X and
X ∪ {Ai} be two itemsets. The support of pattern X ∧ ¬Ai can be ob-
tained by subtracting the support of itemset X ∪{Ai} from the support
of X. By generalizing this observation, we can conclude that given two
itemsets X = {Ax1

. . . Axn} and Y = {Ax1
. . . Axn , Ay1

. . . Aym}, with
X ⊂ Y , the support of pattern Ax1

∧ . . . ∧ Axn ∧ ¬Ay1
∧ . . . ∧ ¬Aym

(i.e., the number of tuples in the table containing X but not Y − X)
can be inferred from the support of X, Y , and all itemsets Z such that
X ⊂ Z ⊂ Y . This observation allows stating that a set of itemsets sat-
isfies k-anonymity only if all itemsets, as well as the patterns derivable
from them, have support greater than or equal to k.

As an example, consider the private table PT in Figure 1.13(a), where
all attributes can assume two distinct values. This table can be trans-
formed into the binary table T in Figure 1.13(b), where A corresponds
to ‘Marital status = been married’, B corresponds to ‘Sex = M’, and
C corresponds to ‘Hours = [40,100)’. Figure 1.14 reports the lattice
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Figure 1.15. Itemsets with support at least equal to 40 (a) and corresponding
anonymized itemsets (b)

of all itemsets derivable from T together with their support. Assume
that all itemsets with support greater than or equal to the threshold
σ = 40, represented in Figure 1.15(a), are of interest, and that k = 10.
The itemsets in Figure 1.15(a) present two inference channels. The first
inference is obtained through itemsets X1 = {C} with support 52, and
Y1 = {BC} with support 43. According to the observation previously
mentioned, since X1 ⊂ Y1, we can infer that pattern C∧¬B has support
52− 43 = 9. The second inference channel is obtained through itemsets
X2 ={∅} with support 66, Y2 = {BC} with support 43, and all item-
sets Z such that X2 ⊂ Z ⊂ Y2, that is, itemsets {B} with support 55,
and {C} with support 52. The support of pattern ¬B ∧ ¬C can then
be obtained by applying again the observation previously mentioned.
Indeed, from {BC} and {B} we infer pattern B ∧ ¬C with support
55 − 43 = 12, and from {BC} and {C} we infer pattern ¬B ∧ C with
support 52 − 43 = 9. Since the support of itemset {∅} corresponds to
the total number of tuples in the binary table, the support of ¬B ∧ ¬C
is computed by subtracting the support of B∧¬C (12), ¬B∧C (9), and
B ∧ C (43) from the support of {∅}, that is, 66 − 12 − 9 − 43 = 2. The
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result is that release of the itemsets in Figure 1.15(a) would not satisfy
k-anonymity for any k > 2.

In [9] the authors present an algorithm for detecting inference channels
that is based on a classical data mining solution for concisely represent-
ing all frequent itemsets (closed itemsets [24]) and on the definition of
maximal inference channels. In the same work, the authors propose to
block possible inference channels violating k-anonymity by modifying the
support of involved itemsets. In particular, an inference channel due to
a pair of itemsets X = {Ax1

. . . Axn} and Y = {Ax1
. . . Axn , Ay1

. . . Aym}
is blocked by increasing the support of X by k. In addition, to avoid
contradictions among the released itemsets, also the support of all sub-
sets of X is increased by k. For instance, with respect to the previous
two inference channels, since k is equal to 10, the support of itemset {C}
is increased by 10 and the support of {∅} is increased by 20, because {∅}
is involved in the two channels. Figure 1.15(b) illustrates the resulting
anonymized itemsets. Another possible strategy for blocking channels
consists in decreasing the support of the involved itemsets to zero. Note
that this corresponds basically to removing some tuples in the original
table.

7.2 Enforcing k-Anonymity on Decision Trees

Like for association rules, a decision tree satisfies k-anonymity for the
private table PT from which the tree has been built if no information
in the tree allows inferring quasi-identifier values that have less than k
occurrences in the private table PT. Again, like for association rules, k-
anonymity breaches can be caused by individual pieces of information or
by combination of apparently anonymous information. In the following,
we briefly discuss the problem distinguishing two cases depending on
whether the decision tree reports frequencies information for the internal
nodes also or for the leaves only.

Let us first consider the case where the tree reports frequencies in-
formation for all the nodes in the tree. An example of such a tree is
reported in Figure 1.9. With a reasoning similar to that followed for
itemsets, given a k, all nodes with a number of occurrences lower than
k are unsafe as they breach k-anonymity. For instance, the fourth leaf
(reachable through path 〈F,35〉) is unsafe for any k-anonymity higher
than 2. Again, with a reasoning similar to that followed for itemsets, also
combinations of nodes that allow inferring patterns of tuples containing
quasi-identifying attributes with a number of occurrences lower than k
breach k-anonymity for the given k. For instance, nodes corresponding
to paths 〈F〉 and to 〈F,50〉, which taken individually would appear to
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Figure 1.16. 3-anonymous version of the tree of Figure 1.9

satisfy any k-anonymity constraint for k ≤ 9, considered in combination
would violate any k-anonymity for k > 2 since their combination allows
inferring that there are no more than two tuples in the table referring to
females working a number of hours different from 50. It is interesting to
draw a relationship between decision trees and itemsets. In particular,
any node in the tree corresponds to an itemset dictated by the path to
reach the node. For instance, with reference to the tree in Figure 1.9,
the nodes correspond to itemsets: {}, {M}, {M,married}, {M,divorced},
{M,single}, {F}, {F,35}, {F,40}, {F,50}, where the support of each
itemset is the sum of the Ys and Ns in the corresponding node. This
observation can be exploited for translating approaches for sanitizing
itemsets for the sanitization of decision trees (or viceversa). With re-
spect to blocking inference channels, different approaches can be used to
anonymize decision trees, including suppression of unsafe nodes as well
as other nodes as needed to block combinations breaching anonymity
(secondary suppression). To illustrate, suppose that 3-anonymity is to
be guaranteed. Figure 1.16 reports a 3-anonymized version of the tree
in Figure 1.9. Here, besides suppressing node 〈F,35〉, its sibling 〈F,50〉
has been suppressed to block the inference channel described above.

Let us now consider the case where the tree reports frequencies in-
formation only for the leaf nodes. Again, there is an analogy with the
itemset problem with the additional consideration that, in this case,
itemsets are such that none of them is a subset of another one. It is
therefore quite interesting to note that the set of patterns of tuples iden-
tified by the tree nodes directly corresponds to a generalized version of
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the private table PT, where some values are suppressed (CG ). This
property derives from the fact that, in this case, every tuple in PT sat-
isfies exactly one pattern (path to a leaf). To illustrate, consider the
decision tree in Figure 1.17, obtained from the tree in Figure 1.9 by
suppressing occurrences in non-leaf nodes. Each leaf in the tree corre-
sponds to a generalized tuple reporting the value given by the path (for
attributes appearing in the path). The number of occurrences of such
a generalized tuple is reported in the leaf. If a quasi-identifier attribute
does not appear along the path, then its value is set to ∗. As a particular
case, if every path in the tree contains all the quasi-identifier attributes
and puts conditions on specific values, the generalization coincides with
the private table PT. For instance, Figure 1.18 reports the table con-
taining tuple patterns that can be derived from the tree in Figure 1.17,
and which corresponds to a generalization of the original private table
PT in Figure 1.1. The relationship between trees and generalized ta-
bles is very important as it allows us to express the protection enjoyed
of a decision tree in terms of the generalized table corresponding to it,
with the advantage of possibly exploiting classical k-anonymization ap-
proaches referred to the private table. In particular, this observation
allows us to identify as unsafe all and only those nodes corresponding
to tuples whose number of occurrences is lower than k. In other words,
in this case (unlike for the case where frequencies of internal nodes val-
ues are reported) there is no risk that combination of nodes, each with
occurrences higher than or equal to k, can breach k-anonymity.

Again, different strategies can be applied to protect decision trees
in this case, including exploiting the correspondence just withdrawn,
translating on the tree the generalization and suppression operations
that could be executed on the private table. To illustrate, consider
the tree in Figure 1.17, the corresponding generalized table is in Fig-
ure 1.18, which clearly violates any k-anonymity for k > 2. Figure 1.19
illustrates a sanitized version of the tree for guaranteeing 11-anonymity
obtained by suppressing the splitting node Hours and combining nodes
〈M,married〉 and 〈M,divorced〉 into a single node. Note how the two
operations have a correspondence with reference to the starting table in
Figure 1.18 with an attribute generalization over Hours and a cell gener-
alization over Marital status, respectively. Figure 1.20 illustrates the
table corresponding to the tree in Figure 1.19.

The problem of sanitizing decision trees has been studied in the lit-
erature by Friedman et al. [15, 16], who proposed a method for directly
building a k-anonymous decision tree from a private table PT. The pro-
posed algorithm is basically an improvement of the classical decision tree
building algorithm, combining mining and anonymization in a single pro-
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Figure 1.17. Suppression of occurrences in non-leaf nodes in the tree in Figure 1.9

Marital status Sex Hours #tuples (Hyp. values)

divorced M ∗ 19 (16Y, 3N)

∗ F 35 2 (0Y, 2N)
married M ∗ 10 (8Y, 2N)

∗ F 50 9 (2Y, 7N)
single M ∗ 26 (6Y, 20N)

Figure 1.18. Table inferred from the decision tree in Figure 1.17
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Figure 1.19. 11-anonymous version of the tree in Figure 1.17

cess. At initialization time, the decision tree is composed of a unique
root node, representing all the tuples in PT. At each step, the algorithm
inserts a new splitting node in the tree, by choosing the attribute in
the quasi-identifier that is more useful for classification purposes, and
updates the tree accordingly. If the tree obtained is non-k-anonymous,
then the node insertion is rolled back. The algorithm stops when no node
can be inserted without violating k-anonymity, or when the classification
obtained is considered satisfactory.
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Marital status Sex Hours #tuples (Hyp. values)

been married M ∗ 29 (24Y, 5N)

∗ F ∗ 11 (2Y, 9N)
single M ∗ 26 (6Y, 20N)

Figure 1.20. Table inferred from the decision tree in Figure 1.19

8. Conclusions

A main challenge in data mining is to enable the legitimate usage
and sharing of mined information while at the same time guarantee-
ing proper protection of the original sensitive data. In this chapter,
we have discussed how k-anonymity can be combined with data mining
for protecting the identity of the respondents to whom the data being
mined refer. We have described the possible threats to k-anonymity
that can arise from performing mining on a collection of data and char-
acterized two main approaches to combine k-anonymity in data mining.
We have also discussed different methods that can be used for detecting
k-anonymity violations and consequently eliminate them in association
rule mining and classification mining.

k-anonymous data mining is however a recent research area and
many issues are still to be investigated such as: the combination of k-
anonymity with other possible data mining techniques; the investigation
of new approaches for detecting and blocking k-anonymity violations;
and the extension of current approaches to protect the released data
mining results against attribute, in contrast to identity, disclosure [21].
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