© 2014 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating
new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the |IEEE.

DOI: 10.1109/BDCloud.2014.59.

Protecting access confidentiality with data distribution and swapping

Sabrina De Capitani di Vimercati*, Sara Foresti*, Stefano ParaboschiT, Gerardo Pelosii, Pierangela Samarati*
*Universita degli Studi di Milano, 26013 Crema - Italy Email: firstname.lastname @unimi.it
YUniversita degli Studi di Bergamo, 24044 Dalmine - Italy Email: parabosc @unibg.it
Ypolitecnico di Milano, 20133 Milano - Italy Email: gerardo.pelosi@polimi.it

Abstract—The protection of the confidentiality of outsourced
data is an important problem. A critical aspect is the ability
to efficiently access data that are stored in an encrypted
format, without giving to the server managing access requests
the ability to infer knowledge about the data content of the
access executed by the clients. The approaches that have been
proposed to solve this problem rely on a continuous rewriting
and re-encryption of the accessed data, like the shuffle index
that has recently been proposed. We here propose a different
approach that uses three independent servers to manage the
data structure. The use of three servers is motivated by the
increased protection that derives from the use of independent
servers compared to the use of a single server. The protection
shows to increase in a significant way if a constraint is
introduced that at every request an accessed node has to be
moved to a different server. The use of three servers permits
to keep the accessed data protected even when the servers
collude. The protection is evaluated with a probabilistic model
that estimates the loss of information that derives from the
application of the technique.

Keywords-Access confidentiality, Data distribution, Swapping

I. INTRODUCTION

A recent trend and innovation in the IT scenario has been
the increasing adoption of the cloud computing paradigm.
Companies can rely on the cloud for data storage and
management and then benefit from low costs and high avail-
ability. End users can benefit from cloud storage for enjoying
availability of data anytime anywhere, even from mobile
devices. Together with such a convenience comes however
a loss of control of the data (stored and managed by the
cloud). The problem of ensuring data confidentiality in data
outsourcing and cloud scenarios has received considerable
attention by the research and development communities in
the last few years and several solutions have been proposed.
A simple solution for guaranteeing data confidentiality con-
sists in encrypting data. Modern cryptographic algorithms
offer high efficiency and strong protection of data content.
As noted by more recent works, simply protecting data
content with an encryption layer does not fully solve the
confidentiality problem, as access confidentiality, that is,
the confidentiality of the specific accesses performed on
the data, remains at risks. There are several reasons for
which access confidentiality may be demanded [1], such
as the fact that breaches in access confidentiality may leak
information on access profiles of users and, in the end, even

Text

on the data themselves, therefore causing breaches in data
confidentiality.
Several approaches have been recently proposed to protect
Teatcess confidentiality [1], [2], [3]. While with different
variations, such approaches share the common observation
that the major problem to be tackled to provide access
confidentiality is to break the static correspondence between
data and the physical location. Among such proposals, the
shuffle index [1] provides a key-based hierarchical organiza-
tion of the data, supporting an efficient and effective access
execution (e.g., including support of range operations). In
this paper, we build on such an indexing structure and on the
idea of dynamically changing, at every access, the physical
location of data, and provide a new approach to access
confidentiality based on a combination of data distribution
and swapping. The idea of applying data distribution for
confidentiality protection is in line with the evolution of
the market, with an increasing number of providers offer-
ing computation and storage services, which represent an
opportunity for providing better functionality and security.
In particular, our approach relies on data distribution by
allocating the data structure over three different servers, each
of which will then see only a portion of the data blocks and
will similarly have a limited visibility of the actual accesses
on the data. Data swapping implies changing the physical
location of accessed data by swapping them between the
three involved servers. Swapping, in contrast to random
shuffling, forces the requirement that whenever a block is
accessed, the data retrieved from it (i.e., stored in the block
before the access) should not be stored at the same block
after the access. We illustrate in this paper how the use of
three servers (for distributed data allocation) together with
swapping (forcing data re-allocation across servers) provide
nice protection guarantees, typically outperforming the use
of a random shuffling assuming no collusion among servers,
and maintaining sufficient protection guarantees even in the
presence of collusions among two, or even all three, of the
involved servers.

II. BASIC CONCEPTS

A shuffle index is an unchained B+-tree such that: i)
each node stores up to F' — 1 (with F the fan-out of the
B+-tree) ordered values and has as many children as the
number of values stored plus one; ii) the tree rooted at

© 2014 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating
new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.
DOI: 10.1109/BDCloud.2014.59.

the j-th child of an internal node stores values included in
the range [v;_1,v;), where v;_1 and v, are the (j — 1)-
th and j-th values in the node, respectively; and iii) all
leaves, which store actual tuples, are at the same level of
the tree, that is, they all have the same distance from the
root node. Figure 1(a) illustrates an example of unchained
B—+-tree. In this figure, and in the remainder of the paper,
for simplicity, we refer to the content of each node with a
label (e.g., a), instead of explicitly reporting the values in
it. In the example, root node r has six children (a,..., f)
each with three to four children. For easy reference, we
label the leaf nodes, descendants of a node, with the same
label as the node concatenated with a progressive number
(e.g., a1, az,as are the children of node a). At the logical
level, each node is allocated to a logical identifier. Logical
node identifiers are also used in internal nodes as pointers to
their children. At the physical level, each node is translated
into an encrypted chunk stored at a physical block. The
encrypted chunk is obtained by encrypting the concatenation
of the node identifier and its content (values and pointers
to children). Encryption protects the confidentiality and
integrity of each node as well as of the overall data structure.

Retrieval of a value in the tree requires walking the tree
from the root to the target leaf, following at each level the
pointer to the child in the path to the target leaf. Being the
index stored in encrypted form, such an access requires an
iterative process with the client downloading at each level
the block of interest, decrypting it, and determining the next
block (storing the child of interest) to be requested.

Although the data structure is encrypted, by observing
a long enough sequence of accesses, the server (or other
observers having access to it) could reconstruct the topology
of the tree, identify repeated accesses, and possibly infer sen-
sitive data content [4], [5]. To protect data and accesses from
such inferences, the shuffle index uses of complementary
techniques bringing confusion to the observer and destroying
the static correspondence between nodes and blocks where
they are stored. In particular: i) to provide confusion as to
which block is the target of an access, more blocks (the
target plus some covers) are requested at every access; ii) a
cache is maintained with the most recently accessed paths;
and iii) at every access, the nodes/blocks accessed and the
ones in the cache are shuffled (randomly reassigning nodes
to blocks, and performing a new encryption) and all the
involved blocks rewritten back on the server.

III. RATIONALE OF THE APPROACH

Our approach builds on the shuffle index by borrowing
from it the base data structure (encrypted unchained B+-
tree) and the idea of breaking the otherwise static corre-
spondence between nodes and blocks at every access. It
differs from the shuffle index in the management of the
data structure, for storage and access (exploiting a distributed
allocation), and in the way the node-block correspondence

is modified, applying swapping instead of random shuffling,
forcing the node involved in an access to change the server
where it is stored (again exploiting the distributed alloca-
tion). Also, it departs from the cache, not requiring any
storage at the client.

The basic idea of our approach is to randomly partition
data among three independent servers, and, at every access,
randomly move (swap) data retrieved from a server to any
of the other two so that data retrieved from a server would
not be at the same server after the access. Since nodes are
randomly allocated to servers, the path from the root to
the leaf target of an access can traverse nodes at different
servers. Then, to provide uniform visibility at any access at
every server (which should operate as if it was the only one
serving the client), every time the node to be accessed at a
given level belongs to one server, our approach also requests
to access one additional block at the same level at each of
the other servers.

The reader may wonder why we are distributing the
shuffle index among three servers, and not two or four. The
rationale behind the use of multiple servers is to provide
limited visibility, at each of the servers, of the data structure
and of the accesses to it. In this respect, even adopting two
servers could work. However, an approach using only two
servers would remain too exposed to collusion (between the
two) that, by merging their knowledge, could reconstruct the
node-block correspondence and compromise access and data
confidentiality. The data swapping (in contrast to the random
shuffling) we adopt, while providing better protection with
respect to shuffling in general, implies deterministic realloca-
tion in the case of two servers and could then cause exposure
in case of collusion. The use of three servers provides
instead considerable better protection. Swapping ensures that
data are moved out from a server at every access, while
still providing non determinism in data reallocation (as the
data could have moved to any of the other two servers),
even in presence of collusion among the three servers.
While going from two servers to three servers provides
considerably higher protection guarantees, further increasing
the number of servers provides limited advantage, while
instead increasing the complexity of the system.

IV. DATA STRUCTURE AND THREE-SERVER ALLOCATION

At the abstract level, our structure is essentially the same
as the shuffle index, namely we consider an unchained B+-
tree defined over candidate key K, with fan-out F, and
storing data in its leaves. However, we consider the root to
have three times the capacity of internal nodes. Since internal
nodes and leaves will be distributed to three different servers,
assuming a three times larger root allows us to conveniently
split it among the servers (instead of replicating it) providing
better access performance by potentially reducing the height
of the tree. In fact, a B+-tree having at most 3F children
for the root node can store up to three times the number

ABSTRACT INDEX

Yo1 Go1 BO1
Yii Y12 G11 G12 B11 B12
Y21 Y22 Y23 Y24 Y25 Y26 Y27 (G21 G22 G23 G24 G25 G26 G27|B21 B22 B23 B24 B25 B26 B27

Figure 1: An example of abstract (a), logical (b), and
physical (c) shuffle index distributed at three servers

of tuples/values stored in a traditional B+-tree of the same
height. Formally, each internal abstract node n® in the tree
stores a list v1, . .., v, of ¢ values, with [%] —-1<¢<F-1
(g £ 3F — 1 for the root node), ordered from the smallest
to the greatest, and has ¢ + 1 children. The ¢-th child of a
node is the root of the subtree containing the values val with
Vi1 <wval < v;, i =2,...,q; the first child is the root of
the subtree with all values val < v, while the last child is
the root of the subtree with all values val > v,. Each leaf
node stores a set of values, together with the tuples in the
dataset having these values for attribute K. All the non-root
nodes have to be at least 33% full. Figure 1(a) illustrates an
example of our abstract data structure.

At the logical level, the abstract root node translates
to three logical nodes, say 7g, r1, 72, each storing one
third of the values and pointers to children of the abstract
root node. More precisely, rg stores values vy, ..., v;, with
i = L%J, and the corresponding pointers to children;
r1 stores values v;ja,...,v2,41, and the corresponding
children; and ro stores the remaining values vo;y3,...,Vq,
and the corresponding children. (Note that values v;i
and vg;42 are not necessary for the index definition and
are then not explicitly stored in the obtained roots.) For
instance, Figure 1(b) illustrates an example of logical index
representing the abstract index in Figure 1(a) where the
abstract root node r is represented by three logical nodes,
ro, 71, T2, each having two of the six children of the
abstract root node r. Each (non-root) abstract node n“

translates to a logical node n and is allocated to a logical
identifier n.id, used also to represent the pointer to n in its
parent. To regulate data distribution at the different servers,
we distinguish three subsets ZD;, i€{Y,G,B}, of logical
identifiers corresponding to the physical addresses stored at
each of the storage servers S;, 1€{Y,G,B}. Allocation of
abstract nodes to logical identifiers is defined through an
allocation function, formally defined as follows.

Definition 4.1 (Distributed allocation): Let N be the set
of abstract nodes in a shuffle index, Sy, Sg, Sp be the
servers storing it, and ZDy, ZDq, ZD g be the set of logical
identifiers at server Sy, Sq, Sp, respectively. A distributed
allocation function is a bijective function ¢: N*— IZDy U
ID¢g U IDp that associates a logical identifier with each
abstract node.

Given an abstract node n%, ¢(n®) determines the identifier
of the logical node n where n® is allocated, denoted n.id.
In the following, we denote with o(id) the server at which
the logical node with identifier id is stored. Note that the
order of logical identifiers is independent from the node
content. Also, the allocation of logical nodes to physical
blocks and, more in general, to servers does not depend
on the topology of the abstract structure. In other words,
a node may be stored at a different server with respect to
its parent and/or its siblings. An example of distribution of
the index in Figure 1(a) is illustrated in Figure 1(b). For
the sake of readability, logical identifiers are reported on the
top of each node and blocks are color-coded (yellow for
Sy, green for S, and blue for Sg). For simplicity and easy
reference, each logical identifier starts with a letter denoting
the server where the corresponding block is stored (Y for
Sy, G for Sg, and B for Sp), and the first digit denotes
its level in the tree. As an example, GGo4 is the identifier
of a node at level 2 of the index and stored at server Sq.
A distributed index Z can be represented, at the logical
level, as a pair (N ,(Sy,S5,5B)), with N the set of logical
nodes composing it, and Sy, Sg, and Sp the servers where
these nodes are physically stored. To guarantee distribution
among the different servers (and provide uniform visibility
at every server in access execution, as we will explain in
the following section), the distributed allocation function
guarantees that each non-root node in the index, as well
as rg, 1, and r together, has at least one child stored at
each server. At starting time, we then assume the structure
to be evenly distributed at the level of node, meaning that
the children of each node are equally distributed among Sy,
Sa, and Sp (i.e., each server will be allocated one third +1
of the children of every node). We also assume the structure
to be evenly distributed both globally and for each level in
the tree. Figure 1(b) represents an example of logical index
where the children of each node, the nodes in each level,
and the nodes in the tree are evenly distributed to servers.

At the physical level, logical addresses are translated

into physical addresses at the three servers. Node content
is prefixed with a random salt and encrypted in CBC
mode with a symmetric encryption function. The result of
encryption is concatenated with the result of a MAC function
applied to the encrypted node and its identifier, producing
an encrypted block b allocated to a physical address. The
presence of the node identifier in each block permits the
client to assess the authenticity and integrity of the block
content and, thanks to the identifiers of the children stored
in each node, also of the whole index structure. Figure 1(c)
illustrates the physical representation of the logical index
in Figure 1(b). In the following, for simplicity and without
loss of generality, we assume that the physical address of
a block corresponds to the logical identifier of the node it
stores. The view of each server S; corresponds to the portion
of the physical representation in Figure 1(c) allocated at
S;. Note that each server can see all and only the blocks
allocated to it. We use the term node to refer to an abstract
data content and block to refer to a specific memory slot
in the logical/physical structure. When either terms can be
used, we will use them interchangeably.

V. WORKING OF THE APPROACH

We illustrate how access execution is performed adopting
distributed covers and swapping to guarantee confidentiality
of the accesses and of the data structure.

A. Distributed covers

Like in the shuffle index, retrieval of a key value (or more
precisely the data indexed with that key value and stored
in a leaf node) entails traversing the index starting from
the root and following, at every node, the pointer to the
child in the path to the leaf possibly containing the target
value. Again, being data encrypted, such a process needs to
be performed iteratively, starting from the root to the leaf,
at every level decrypting (and checking for integrity) the
retrieved node to determine the child to follow at the next
level. Since our data structure is distributed among three
servers and the allocation of nodes to servers is independent
from the allocation of their ancestors and/or descendants,
the path from the root to a target leaf may (and usually
does) involve nodes stored at different servers. For instance,
with reference to Figure 1, retrieval of a value d; entails
traversing path (ri,d,d;) and hence accessing blocks Go1,
Y12, and Bsyy each stored at a different server. Retrieval of
value as entails traversing the path (rg,a,as) and hence
accessing blocks Yp1, Bi2, and Bas, the first stored at Sy
and the last two stored at Sg. Since each server can observe
different iterations and, after a long enough sequence of
observations, also infer the levels associated with blocks,
we aim at ensuring a uniform visibility at every server. In
other words, we want every server to observe, for every
search, the access to a block at each level, with each server
then operating as if it was the only one serving the client.

(Note that even if only one block is accessed at every level,
no information is leaked to the server on the tree topology,
since: i) the accessed blocks may not be actually in a parent-
child relationship, and ii) the content of accessed blocks
changes just after the access.) Our requirement of uniform
visibility at each server is captured by the following property.

Property 5.1 (Uniform visibility): Let 1 = (N,
(Sy.Se,Sp)) be a distributed index, and N = {nq,...,n;,}
be the set of logical nodes accessed by a search. The search
satisfies uniform visibility iff for each S;, i€{Y ,G,B}, and
for each level / in Z, 3! n € N such that: i) o(n.id)=S;;
and ii) n is at level [in Z.

For instance, our two sample accesses above do not satisfy
uniform visibility. To satisfy uniform visibility, we comple-
ment, at each level, the access required by the retrieval of
the target value with two additional accesses at the servers
that do not store the target block at that level. We call covers
these additional accesses as they resemble cover searches of
the shuffle index, although they have also many differences
(e.g., they cannot be pre-determined as data allocation is
unknown, they may not represent a path in the index, and
they are not observed by the same server observing the
target). Stressing their distributed nature, we term them
distributed covers, defined as follows.

Definition 5.1 (Distributed cover): Let I = (N,
(Sy.S¢,Sp)) be a distributed index, and n be a node
in N. A set of distributed covers for n is a pair of
nodes (n;,n;) in N such that the following conditions
hold: i) n,n;,n; belong to the same level of the index;
and ii) o(n.id) # o(n;.id), o(n.id) # o(n;.id), and

As stated by the definition above, distributed covers for
a node n are a pair of nodes (n;, m;) that belong to
the same level as n, and such that the three nodes are
allocated at different servers. For instance, distributed covers
for Y12 could be any of the following pairs: (B11,G11),
(Bll,Glg), (Blg,Gll), (Blg,Glg). Similarly, at the leaf
level, the distributed covers for Bgy could be any pair
of nodes (Ya.,Ga.), with % any value between 1 and 7
(e.g., (Ya3,G21)). The distributed covers of a root node are
the roots at the other two servers (e.g., (Go1,Bo01) is the
distributed cover pair for Yp,).

With the consideration of distributed covers, to guarantee
uniform visibility at every server, access execution works as
follows. Again, an iterative process is executed starting from
the root to the leaf level. First, the client retrieves the root
at all the three servers and decrypts them to determine the
target root (i.e., the one going to the target value) and the
target child node n to visit. It also chooses two distributed
covers for n, in such a way that covers are indistinguishable
from targets [1]. The client requests access to n and its
distributed covers to the respective servers. It then decrypts
the accessed nodes and iteratively performs the same process

until the leaves (target and distributed covers) are reached.
As an example, consider the data structure in Figure 1(b) and
assume value d; is to be accessed. The nodes along the path
to the target of the accesses are (r1, d, d1) entailing accesses
to target blocks (Go1, Y12, Bos). Assume that distributed
covers (Yo1, Bo1), (G11,B11), and (Ga1, Ya3) are used for
Go1, Y12, and Bay, respectively. The nodes involved by the
access, as observed by each server, are then Yy, Y12, Yos for
Sy, G()l, Gll’ Ggl for Sg, and BOI’ Bll’ 324 for SB. Note
that each server simply observes a sequence of three accesses
to three blocks, while it cannot see their content. In principle,
according to Definition 5.1, every pair of nodes at the same
level as n, but allocated at the other two servers, represents
a pair of distributed covers for n. However, in the choice
of distributed covers, we need to take into consideration
the fact that accessed nodes are reallocated. In fact, when
n is moved to a different block, the pointers to n in its
parent must be updated to maintain consistency of the index.
Therefore, the nodes involved in an access should always
form a sub-tree, possibly including paths of different lengths.
Each distributed cover at level / should then be child of the
node along the path to the target at level / — 1 or of one
of its distributed covers. This is formally captured by the
following definition of chained set of distributed covers.

Definition 5.2 (Chained distributed covers): Let
I=(N,(Sy,S¢.Sg)) be a distributed index, and
p = (ng,...,ny) be a path in Z. A chained set of
distributed covers for p is a set C(p) of nodes in N s.t.:
i) p C C(p); ii) Ynep, 3 {nj,n;}CC(p) with (n{,n})
distributed covers for n; and iii) VneC(p), either n is a
root node or its parent belongs to C(p).

The distributed covers in the example above are chained
as the covers at every level are children of a node accessed
(either as target or cover) in the level above. Note that while
in the example (for simplicity and readability of the figure)
every accessed node has exactly one accessed child, such a
condition is not needed. In fact, Definition 5.2 requires every
node to have its parent in the access (so to enable update
of pointers to the node in its parent), while a node can have
no children in the access. For instance, Yog (d4) could have
also been used instead of Y53 (e4) as one of the covers for
Bsy4, together with G21. The resulting set would have still
satisfied Definition 5.2.

B. Swapping

A desired requirement of our approach is that data re-
trieved (as target or cover) in an access are stored at a dif-
ferent server after the access. We capture such a requirement
with a property of continuous moving as follows.

Property 5.2 (Continuous moving): Let T = (N,
(Sy,Sc,Sp)) be a distributed index, and N = {ny,...,nm}
be the set of nodes in N accessed as target or distributed
cover by a search. The search satisfies continuous moving

BEFORE ACCESS

[a1] [a2] [[b2] [ba] [bal [c1] 2] [c3] [GHN [da] [EEY [da4] [e1] [e2] [EAN [e4] [fi] [£2] K&
(@)
SWAPPING
B12
G23 Y24 G23
a3
Yo1 — Go1 Go1 — Bor Boi1 — You
Gi1 — Y12 Yi2 = Bi1 Bi1 = Gn1
Ga1 — Y23 B2ga — G211 Y23 — Bog

(b)

AFTER ACCESS

Figure 2: Evolution of the distributed index for a search for
value d1

iff, for each node n € N, the server o(n.id) where n is
stored before the access is different from the one where it
is stored after the access.

Continuous moving prevents servers from building knowl-
edge based on accesses they can observe as a node is
immediately removed from a server after being accessed.
For instance, servers will not be able to observe repeated
accesses anymore. We guarantee satisfaction of this property
by swapping the content of the blocks accessed at every
level. Swapping is defined as follows.

Definition 5.3 (Swapping): Let ID be a set of logical
identifiers. A swapping for ID is a random permutation 7 :ID
— ID such that Vid€ID, o(id)#o (7 (id)).

Figure 2(b) illustrates a possible swapping among the
nodes/blocks accessed searching for value d; over the index
in Figure 1(a), assuming to adopt (Yo1, Bo1), (G11, B11),
and (Ga1,Yas3) as distributed covers for for Go1, Y12, and
B24. For instance, swap Y()l — GOl,G01 — B015B01 —
Yo1 causes g to move to Gy, 1 to move to Bgi, and 7o
to move to Yp;. Figure 2(c) illustrates the effect of such
a swapping on the data structure at the logical level. Note
that before re-writing blocks at the servers, the content of
the corresponding nodes is re-encrypted with a different

random salt that changes at every access. The adoption
of a different random salt in node encryption and the
concatenation with a different node identifier guarantees to
produce a different encrypted block, even if the content
represents the same node. This makes it impossible for
storage servers to track swapping operations. Given an index
characterized by a distributed allocation function ¢ and a
swapping function 7 over a subset ID of the identifiers in
the index, the allocation function resulting from the swap
is defined as: ¢(n®)=mw(p(n®)) iff p(n*)€ID; ¢(n*)=p(n®),
otherwise. Note that the assignment function resulting from
the application of a swap 7 still represents a distributed
assignment function, since 7 is a permutation function. For
instance, with reference to the example in Figure 2, we note
that each node is associated with one identifier before and
after the access, and vice versa each identifier is assigned to
one node only both before and after the access.

Moving nodes among servers may reduce the number of
children at a server for some nodes. In the worst case, a node
may be left with no children on one of the servers. We note
however that, since we initially define a balanced allocation
and in traditional systems the fan-out of the tree is high
(in the order of some hundreds), the probability that a node
is left without children on one of the servers is extremely
low, due to a natural regression to the mean that reduces the
stochastic drift. To completely solve this risk we check that
swapping does not create configurations where a server is
not represented in the descendants of a node.

C. Access execution algorithm

Figure 3 illustrates the pseudocode of the algorithm,
executed at the client-side, enforcing the search process over
a distributed index, extended with our protection techniques.
Given a request for searching rarget_value, the algorithm
first downloads from each server the block storing a portion
of the root node and swaps them according to a swapping
function 7 (lines 1-3). The algorithm then visits the in-
dex and, for each level /=1,...,h, determines the logical
identifier farget_id of the node at level ! along the path
to target_value (line 5), which is one of the children of
the nodes in Parents. It then chooses a pair of distributed
covers for rarget_id (line 6), that is, two nodes chosen among
the children of nodes in Parents, and allocated at different
servers, also with respect to target_id (Definition 5.1). The
algorithm downloads from the storage servers the blocks
of interest and decrypts their content retrieving the corre-
sponding nodes (line 7). It randomly chooses a swapping
function 7 (Definition 5.3) and reallocates accessed nodes
accordingly; if the permutation causes a node in Parents not
to have a descendant at each server, a new pair of covers
is selected (lines 8—10). To guarantee the consistency of the
tree structure, the algorithm updates the pointers to swapped
nodes in their parents (i.e., nodes in Parents), which are then
encrypted and sent back to the different servers for storage

1* I=(N,(Sy.Sc.,SB)): distributed index with height & */

INPUT target_value : value to be searched in Z
OUTPUT n : leaf node that contains target_value

MAIN
1: Parents := download and decrypt block Yp; from Sy
block Gp1 from S and block Bg; from Sp
2 let 7 be a permutation of identifiers in Parents s.t. o(id)#o (7 (id))
3: swap nodes in Parents according to 7
4for I:=1...h do /* visit the index level by level*/
s target_id := identifier of the node at level /
along the path to farget_value
6. randomly choose cover[1] and cover[2] s.t.
they are children of Parents and
o(target_id)#o(cover[1)), o(target_id)#o(cover[2]),
o(cover[1])#o(cover[2])
7. Read := download and decrypt each block with identifier
ide{target_id,cover([1],cover(2]} from o(id)
8. let m be a permutation of identifiers of nodes in Read s.t.
o(id)#o(m(id)) and
each n€Parents has a child at Sy ,S¢.Sp
o. if m does not exist, goto 6
10 swap nodes in Read according to
1: update pointers to children in Parents according to m
122 encrypt and write each node n €Parents at server o(n.id)
13: target_id := m(target_id)
14 cover[1] := mw(cover[1]), cover[2] := m(cover[2])
1s: Parents := Read
16: encrypt and write each node nERead at server o(n.id)
17: return node n ERead with n.id=target_id

Figure 3: Access algorithm

(lines 11-12). The algorithm also updates the identifier of
the target and distributed covers according to 7 to preserve
the correctness of the search process (lines 13—14). Once all
the levels in the tree have been visited, the algorithm returns
the leaf node where target value is stored, if such a value
belongs to the dataset (line 17).

The following theorem formally states and proves the
correctness of the algorithm, and in particular the fact that it
satisfies Properties 5.1 and 5.2 and maintains the correctness
of the index structure. The proof of the Theorem has been
omitted for space constraints.

Theorem 5.1: Let I=(N,(Sy.Sc.Sp)) be a distributed
index, and target_value be the target of an access. The
algorithm in Figure 3:

1) satisfies Property 5.1 (uniform visibility);

2) satisfies Property 5.2 (continuous moving);

3) maintains unchanged the number of blocks stored at
each server for each level I = 0, ..., h (distribution
invariance);

4) returns the unique node where farget_value is, or
should be, stored (access correctness);

5) maintains an index representing the original unchained
B+-tree (structure correctness).

D. Protection analysis

We evaluate the protection of our approach with respect to
guaranteeing confidentiality of the accesses against possible
observers. We consider the servers as our observers as they
have the most powerful view over the stored data and the
accesses to them. The servers know (or can infer from their
interactions with the client): the total number of blocks
(nodes) and the height % of the index; the identifier of each
block b and its level in the tree; the identifier of read and
written blocks for each access operation. On the contrary,
they do not know and cannot infer the content and the
topology of the index (i.e., the pointers between parent and
children), thanks to encryption of nodes. For simplicity, but
without loss of generality, we focus our analysis only on
leaf blocks/nodes since the high fan-out of the index ensures
that internal nodes are involved in swapping operations more
often than leaf nodes, resulting therefore more protected.

Guaranteeing access confidentiality means hiding to the
servers the correspondence (as our distribution and swap
aim to do) between nodes and the blocks where they are
stored. We model the knowledge of an observer on the
fact that a node n is stored at a block b as a prob-
ability value P(b,n), expressing the confidence in such
a knowledge, with P(b,n)=1 corresponding to certainty,
and P(b,n):wl‘ to complete absence of knowledge, with
N the set of leaves in the index. The uncertainty over
the block storing a node n;EAN is measured through the
entropy H,,=— ZIJA:/‘l P(bj,n;)log, P(bj,n;), applied on
the probabilities P(b;, n;) for all the blocks b; in the index.

We evaluate the knowledge degradation of each server
starting from the worst possible initial scenario, where each
server knows the exact correspondence between nodes and
blocks (i.e., H,, = 0, since P(b,n)=1 when n is allocated at
block n, P(b,n)=0 otherwise). At every access request, the
swapping performed by the client moves the content of each
retrieved block to a server different from the one where it
was initially stored. Hence, the entropy H,, of each accessed
node evolves as a consequence of the access. Such evolution
clearly depends on the server’s ability to observe accessed
blocks. In our base scenario (no collusion), Sy (but the same
applies to S¢ and S) initially knows the node stored at each
of its blocks, that is, P(b,n)=1 if n is allocated at block b
of server Sy; P(b,n)=1/N if n is not at Sy and b is at Sg
or Sp, with IV the number of blocks at S and Sg, as server
Sy does not have any knowledge of node-block allocation
at the other servers; P(b,n)=0, otherwise. For each access,
Sy can observe the access to one block only, say b,. After
the access, the content of b, is moved to a block b that is not
stored at Sy and on which it does not have any knowledge
(i.e., it is moved to any of the blocks at S¢ and Sp with
equal probability). Also, the content of one of the blocks
b stored at S¢ or Sp is moved to by,. In other words, the
content of b, after an access is, with equal probability, the

content of any of the blocks at S¢ and Sp. As an example,
assuming that initially block b,, stores node n,, after the first
access P(by,n,) becomes 0 (from 1) and P(b;,n,) becomes
1/N (from 0), with b; any block at S¢ or Sp. Also, P(b;,n;)
becomes 1/N (from 0), for each block b; at server Sy and
for each node n; initially stored at S or Sp. Then, for the
accessed blocks, the information is immediately degraded
near to the level of lowest information. Overall knowledge
about the correspondence between nodes and blocks will be
affected by a complete degradation as a sequence of accesses
is executed. (These observations have been confirmed by a
detailed analysis and experimental evaluation.)

We note that if two (or even three) servers collude,
their initial knowledge as well as the ability to observe
accesses to blocks improves. However, even in the worst
case of full collusion (i.e., collusion among all servers), the
knowledge of each server is progressively destroyed thanks
to the uncertainty (among the two other servers) of the new
allocation of the accessed nodes.

VI. RELATED WORK

The problem of protecting data in the cloud requires
the investigation of different aspects (e.g., [6], [7], [8]). In
particular, approaches supporting query execution consist in
attaching to the encrypted data some indexes used for fine-
grained information retrieval (e.g., [6], [9]), or in adopt-
ing specific cryptographic techniques for keyword-based
searches (e.g., [10]). The main problem of these solutions is
that they protect only the confidentiality of the data at rest.

Solutions for protecting access and pattern confidentiality
are based on Private Information Retrieval (PIR) tech-
niques. Such solutions, however, do not protect content
confidentiality and suffer from high computational costs
(e.g., [11]), even when different copies of the data are stored
at multiple non-communicating servers (e.g., [12]). Recent
approaches address the access and pattern confidentiality
problems through the definition of techniques that dynam-
ically change, at every access, the physical location of the
data. Some proposals have investigated the adoption of the
Oblivious RAM (ORAM) structure (e.g., [13]), in particular
with recent proposals aimed at making ORAM more practi-
cal such as ObliviStore [2], Path ORAM [3], and Melbourne
Shuffle [14]. ORAM has also been recently extended to
operate in a distributed scenario [15], [16]. The goal of these
solutions is to reduce communication costs for the client
and then make ORAM-based approaches available also to
clients using lightweight devices. The privacy guarantees
provided by distributed ORAM approaches however rely
on the fact that storage servers do not communicate or do
not collude with each other. Our approach is instead more
general and is specifically aimed at enhancing protection
guarantees provided to the client. Alternative solutions are
based on the adoption of a tree-based structure (e.g., [17],
[18]) to preserve the content and access confidentiality.

The shuffle index has been first introduced in [1] and then
adapted in [19], [20] to accommodate concurrent accesses on
a shuffle index stored at one storage server or to operate in a
distributed scenario with two storage providers. These solu-
tions differ from the approach proposed in this paper since
they rely on a traditional shuffling among accessed blocks
(which do not impose the constraint of changing the server
where nodes are allocated at each access). Furthermore, the
proposal in [19] provides lower protection guarantees, as
also demonstrated by our evaluation.

A different, although related, line of works is represented
by fragmentation-based approaches for protecting data con-
fidentiality (e.g., [7], [21]). These solutions are based on
the idea of splitting sensitive data among different relations,
possibly stored at different storage servers, to protect sensi-
tive associations between attributes in the original relation.
Although based on a similar principle, fragmentation-based
approaches only protect content confidentiality, and are not
concerned with access and pattern confidentiality.

VII. CONCLUSIONS

We have proposed an approach to protect both the confi-
dentiality of data stored at external servers and the accesses
to them. Our approach is based on the use of a key-
based dynamically allocated data structure distributed over
three independent servers. We have described our reference
data structure and illustrated how our distributed allocation
and swapping techniques operate at every access to ensure
protection of access confidentiality.

ACKNOWLEDGMENT

This work was supported in part by: the EC within the 7FP
under grant agreement 312797 (ABC4EU), and the Italian
Ministry of Research within PRIN project “GenData 2020”
(2010RTFWBH).

REFERENCES

[1] S. De Capitani di Vimercati, S. Foresti, S. Paraboschi,
G. Pelosi, and P. Samarati, “Efficient and private access to
outsourced data,” in Proc. of ICDCS, Minneapolis, MN, June
2011.

[2] E. Stefanov and E. Shi, “ObliviStore: High performance
oblivious cloud storage,” in Proc. of IEEE S&P, San Fran-
cisco, CA, May 2013.

[3] E. Stefanov, M. van Dijk, E. Shi, C. Fletcher, L. Ren, X. Yu,
and S. Devadas, “Path oram: An extremely simple Oblivious
RAM protocol,” in Proc. of CCS, Berlin, Germany, Nov. 2013.

[4] M. Islam, M. Kuzu, and M. Kantarcioglu, “Inference attack
against encrypted range queries on outsourced databases,” in
Proc. of CODASPY, San Antonio, TX, March 2014.

[5] H. Pang, J. Zhang, and K. Mouratidis, “Enhancing access
privacy of range retrievals over B+-trees,” IEEE TKDE,
vol. 25, no. 7, pp. 1533-1547, 2013.

[6] P. Samarati and S. De Capitani di Vimercati, “Data protection
in outsourcing scenarios: Issues and directions,” in Proc. of
ASIACCS, Beijing, China, April 2010.

[7] V. Ciriani, S. De Capitani di Vimercati, S. Foresti, S. Jajodia,
S. Paraboschi, and P. Samarati, “Combining fragmentation
and encryption to protect privacy in data storage,” ACM
TISSEC, vol. 13, no. 3, pp. 22:1-22:33, July 2010.

[8] R. Jhawar, V. Piuri, and P. Samarati, “Supporting security
requirements for resource management in cloud computing,”
in Proc. of CSE, Paphos, Cyprus, December 2012.

[9]1 H. Hacigiimiis, B. Iyer, S. Mehrotra, and C. Li, “Executing
SQL over encrypted data in the database-service-provider
model,” in Proc. of SIGMOD, Madison, WI, June 2002.

[10] C. Wang, N. Cao, K. Ren, and W. Lou, “Enabling secure and
efficient ranked keyword search over outsourced cloud data,”
IEEE TPDS, vol. 23, no. 8, pp. 1467-1479, 2012.

[11] R. Ostrovsky and W. E. Skeith, III, “A survey of single-
database private information retrieval: Techniques and appli-
cations,” in Proc. of PKC, Beijing, China, April 2007.

[12] C. Cachin, S. Micali, and M. Stadler, “Computationally
private information retrieval with polylogarithmic communi-
cation,” in Proc. of EUROCRYPT, Prague, Czech Republic,
May 1999.

[13] P. Williams, R. Sion, and B. Carbunar, “Building castles out
of mud: Practical access pattern privacy and correctness on
untrusted storage,” in Proc of CCS, Alexandria, VA, October
2008.

[14] O. Ohrimenko, M. Goodrich, R. Tamassia, and E. Upfal, “The
Melbourne Shuffle: Improving oblivious storage in the cloud,”
in Proc. of ICLAP, Copenhagen, Denmark, July 2014.

[15] S. Lu and R. Ostrovsky, “Distributed Oblivious RAM for
secure two-party computation,” in Proc. of TCC, Tokyo,
Japan, March 2013.

[16] E. Stefanov and E. Shi, “Multi-cloud oblivious storage,” in
Proc. of ACM CCS, Berlin, Germany, November 2013.

[17] P. Lin and K. Candan, “Hiding traversal of tree structured
data from untrusted data stores,” in Proc. of WOSIS, Porto,
Portugal, April 2004.

[18] K. Yang, J. Zhang, W. Zhang, and D. Qiao, “A light-weight
solution to preservation of access pattern privacy in un-trusted
clouds,” in Proc. of ESORICS, Leuven, Belgium, Sep. 2011.

[19] S. De Capitani di Vimercati, S. Foresti, S. Paraboschi,
G. Pelosi, and P. Samarati, “Distributed shuffling for preserv-
ing access confidentiality,” in Proc. of ESORICS, Egham, UK,
2013.

[20] ——, “Supporting concurrency and multiple indexes in pri-
vate access to outsourced data,” JCS, vol. 21, no. 3, pp. 425—
461, 2013.

[21] G. Aggarwal et al., “Two can keep a secret: A distributed
architecture for secure database services,” in Proc. of CIDR,
Asilomar, CA, January 2005.

