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Abstract—The current cloud market features a multitude of
cloud services that differ from one another in terms of function-
ality or of security/performance guarantees. Users wishing to use
a cloud service for storing, processing, or sharing their data must
be able to select the service that best matches their desiderata.
In this paper, we propose a novel, user-centric, brokering service
for supporting users in the specification of requirements and
enabling their evaluation against available cloud plans, assessing
how much the different plans can satisfy the user’s desiderata.
Our brokering service allows users to specify their desiderata in
an easy and intuitive way by using natural language expressions
and high-level concepts. Fuzzy logic and fuzzy inference systems
are adopted to quantitatively assess the compliance of cloud
services with the users’ desiderata, and hence to help users in
the cloud service selection process.

Index Terms—Cloud computing, cloud service selection, bro-
kering service, natural language, fuzzy logic, fuzzy inference

I. INTRODUCTION

THANKS to the undeniable benefits that data and appli-
cations outsourcing can bring to users, cloud computing

has rapidly earned first-class citizenship in the current ICT
panorama, and represents today a popular solution to store
and analyze data and to deploy applications. As forecasted
by analysts, this trend is expected to grow: a recent study
by Gartner estimates that approximately 28% of the total
market revenue for infrastructure, middleware, application and
business processes will shift to the cloud by 2021 (from 17%
in 2016) [1]. This scenario has fostered the appearance in
the cloud market of a multitude of service plans, differing
from one another in terms of functionality and/or secu-
rity/performance guarantees, typically expressed via Service
Level Objectives (SLOs) declared by providers in their Service
Level Agreements (SLAs). As in any situation where a user
can choose among alternatives offered by a rich and diversified
market, selecting the right solution is a key requirement
to ensure a satisfactory experience. Hence, the problem for
users is to specify their desiderata and to map them onto
the characteristics of cloud providers [2]. As testified by the
growing academic and industrial efforts towards the creation of
tools to enable cloud plan assessments (e.g., [2], [3], [4], [5],
[6]), this problem is central to a wider adoption of the cloud.
Research in this regard is however in its early stages, and
the majority of existing solutions aim at a global assessment
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of cloud service plans compared to pre-defined baselines,
while providing limited support for specific requirements by
individual users [2], [6].

A simple approach to account for the specific needs of
different users is to require users to look at the configuration
parameters of the various cloud service plans and specify
requirements on their values: for example, a user who needs to
outsource mission-critical tasks can require a monthly uptime
greater than 99.99%, hence ruling out all plans with lower
uptime values. While this approach would certainly do, it has
some drawbacks. First, operating directly with numbers (and
crisp values in general) requires users to identify sharp bound-
aries between values that are acceptable (e.g., 99.99% uptime)
and those that are not (e.g., a plan with 99.989% uptime would
be discarded, although the difference with 99.99% can be -
for many applications - negligible). Second, the features that
characterize cloud service plans can be technically low-level
and not immediately understandable to non-skilled users (e.g.,
the SLA of commercial providers can include terms such as
‘API Error’, ‘Cluster’, and ‘Load Balancer’ [7], which may not
be understandable by users who do not have technical back-
ground). Third, different providers may use different terms to
refer to similar/equivalent features, further complicating the
scenario for users (e.g., both ‘monthly uptime’ in Amazon’s
Compute SLA [8] and ‘monthly availability’ in Rackspace’s
Cloud SLA [7] indicate, with a percentage, the time in which
a plan is available in a month).

In this paper, we propose a fuzzy-based brokering service
for cloud plan assessment with the specific goal of addressing
and solving the three issues mentioned above. In particular,
we address the first issue by allowing users to specify their
needs by using natural language expressions (using terms
such as ‘high’ and ‘low’ instead of crisp values) and fuzzy
logic (in contrast to classical Boolean logic) to evaluate
them, so to avoid sharp boundaries between acceptable and
unacceptable values. We address the second issue by allowing
users to operate on high-level concepts, easily usable and
understandable also by non-skilled users, hence departing
from the low-level technical details characterizing plans. We
address the third issue by introducing a broker, acting as
an intermediary between potential users and the cloud ser-
vice plans, supporting users in the specification of high-level
requirements and evaluating them against specific low-level
plan characteristics. Our brokering service, allowing users to
specify their requirements with natural language over high-
level concepts and automatically comparing them against the
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low-level characteristics of cloud plans, relieves the need for
having technical skills at the user side. Our solution enables
specification of desiderata also from non-skilled users, making
the cloud a more appealing computing model to a wider
audience.

The remainder of this paper is organized as follows. Sec-
tion II presents the reference scenario. Section III illustrates an
abstract model allowing users to easily express their desiderata
using natural language expressions and high-level concepts.
Section IV shows the semantics of parameters, concepts, and
users’ desiderata in terms of Fuzzy Set Theory. Section V
describes how the cloud plan assessment works by relying on
fuzzy inferences. Section VI discusses related work. Finally,
Section VII concludes the paper.

II. REFERENCE SCENARIO

Our reference scenario is characterized by: i) cloud

providers that offer service plans, ii) users, each in need to
choose cloud service plans in line with her specific desiderata
(e.g., a user may be interested in a plan that guarantees
high throughput, while another user may prefer plans with
a high replication factor), and iii) a broker that mediates the
interaction between users and cloud providers. The brokering
service offers an easy way for users to express their desiderata,
and a mechanism for evaluating them against technical char-
acteristics. In particular, the brokering service enables users
to express their desiderata using natural language expressions
without the need to refer to low-level technical characteristics
of cloud service plans. It then evaluates such desiderata against
the characteristics of available cloud service plans assessing
how much each plan complies with the specific desiderata.

The plans offered by cloud providers are characterized by
a set P = {p1, . . . , pn} of configuration parameters, typically
corresponding to Service Level Indicators (SLIs) used for the
definition of SLOs. A parameter models a generic feature
that can be measured/assessed and that characterizes the plans
themselves (e.g., the reputation of a provider or its rating
given by users). We consider as parameter any characteristic
of interest for the users, provided that there is a method for
verifying or measuring it. Each parameter p∈P is associated
with a domain of crisp values, denoted D(p), including all the
values that p can assume. In our running example, we consider
the following parameters (Figure 1, first and second column).

• uptime (the average percentage of time in a month in
which a plan is available), with domain [96.00,99.99];

• replicas (the number of replicas guaranteed for the
outsourced data), with domain [1,10] of integer values;

• throughput (rate of successful message delivery in
Gbps), with domain [1,16];

• bandwidth (data transfer rate in Gbps), with domain
[0.2,25];

• reputation (average rating of the plan given by users),
with normalized domain [0,1].

A cloud service plan, denoted s, is characterized by a
combination of values for the parameters in P and can be
formally represented as a specification vector πs with a cell
for each parameter in P , defined as follows.

Parameter Domain Lingustic values
p D(p) L(p)

uptime [96.00, 99.90] {low,med,high}
replicas [1, 10] {scarce,many}
throughput [1, 16] {low,med,high}
bandwidth [0.2, 25] {small,large}
reputation [0, 1] {abad,avg,good}

Fig. 1. An example of configuration parameters

Definition II.1 (Specification Vector). Given a cloud service

plan s, a set P = {p1, . . . , pn} of configuration parameters,

with D(pi) the domain of crisp values for pi, i = 1, . . . , n, the
specification vector πs of s is a vector of n elements where

πs [i] ∈ D(pi) is the value that cloud service plan s assumes
for parameter pi, i = 1, . . . , n.

For instance, a storage service plan s that guaran-
tees 99.90% average monthly uptime, 10 replicas of
stored data, 2.5Gbps throughput, 10Gbps bandwidth, and
that has a reputation equal to 0.7 is represented by
vector: πs [uptime, replicas, throughput, bandwidth,
reputation]=[99.90, 10, 2.5, 10, 0.7].

III. ABSTRACT MODEL

Users, especially non technically skilled ones, may find it
difficult to understand the meaning of low-level configuration
parameters and therefore to specify precise constraints on their
values that correspond to the needs of data and applications
to be outsourced. Our approach to help users in formulating
their desiderata is based on the idea that users can find it
easier to use linguistic values (e.g., ‘high’ and ‘low’) instead of
crisp parameter values and to operate on high-level properties
(e.g., ‘reliability’ and ‘performance’) instead of low-level
parameters. To this purpose, we introduce two constructs:
abstract parameters and abstract concepts. Intuitively, ab-
stract parameters allow users to express their requirements
over the configuration parameters through natural language
expressions, which can be used to define in a user-friendly
and flexible manner the boundaries between preferred and
non-preferred configurations (e.g., a user can ask for ‘many’
replicas, without specifying the exact number). Abstract con-
cepts provide high-level abstractions over parameters (e.g.,
abstract concept performance can be defined over parameters
throughput and bandwidth), expressing plan characteristics
in a more intuitive way for users.

A. Abstract parameters and concepts

Abstract parameters allow users to express their desiderata
without referring to specific crisp values of configuration
parameters. This is done using linguistic values (e.g., low,
med, high), which intuitively quantify in a less precise and
more informal manner the value that configuration parameters
can assume. An abstract parameter is then associated with (and
can take values from) a set of linguistic values, as formally
defined in the following.

Definition III.1 (Abstract Parameter). Given a configuration

parameter p ∈ P with domain D(p), an abstract parameter
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Concept Linguistic values Involved parameters
c L(c) φ(c)

reliability {low,med,high} {uptime, replicas}
performance {low,med,high} {throughput, bandwidth}

Fig. 2. An example of concepts

is a triple ⟨p,D(p),L(p)⟩ that extends p with a set L(p) of

linguistic values for p.

For instance, parameter uptime can be associated with
set L(uptime)={low,med,high} of linguistic values. The last
column in Figure 1 reports the set of linguistic values that can
be associated with the configuration parameters of our running
example. For simplicity, in the following, when clear from the
context, we refer to abstract parameters simply using the term
parameters.

Besides abstract parameters, our brokering service permits
users to express their desiderata through abstract concepts.
For instance, concept performance is an example of a high-
level property that can characterize cloud service plans, with a
semantics accessible also to non-skilled users. Each concept is
associated with a set of linguistic values. Formally, a concept
is defined as follows.

Definition III.2 (Abstract Concept). An abstract concept is a
pair ⟨c,L(c)⟩, where L(c) is a domain of linguistic values for

c.

Like for parameters, for simplicity, in the paper we use
the term concept to denote abstract concepts. Concepts enable
users to specify how much the properties (e.g., performance
or reliability) they represent are relevant for their needs.
In accordance to this, linguistic values for concepts correspond
to levels of importance and we can assume them to be totally
ordered (e.g., L(c)={low,med,high}, with low lower that med

and med lower than high).
Figure 2 (first and second column) illustrates an example

of two concepts together with their sets of linguistic values.
The definition of high-level concepts naturally depends on
configuration parameters. Such a correspondence is however
completely transparent to the user as it is mediated by the
broker. For instance, with reference to the parameters in
Figure 1, the performance (concept) of a plan depends
on its guaranteed throughput and bandwidth (parameters).
Users can express their desiderata through conditions on
performance, without the need to know that the satisfaction
of such conditions depends on the values that parameters
throughput and bandwidth assume in the cloud service plan
specification.

The relationship linking concepts and parameters is repre-
sented through a set of implication rules, dictating which val-
ues for parameters imply which values of high-level concepts.
Intuitively, an implication rule identifies the combinations of
values assumed by configuration parameters that imply a given
linguistic value for a concept (e.g., performance is high if
uptime is high or replicas is many). Note that each lin-
guistic value l∈L(c) must be regulated by an implication rule
for guaranteeing a correct and non-ambiguous interpretation of
concepts by the broker (see Section V). Formally, the set of

Implication rules for concept reliability

⟨uptime = high⟩ ∨ ⟨replicas = many⟩ =⇒ ⟨reliability = high⟩
⟨uptime = med⟩ =⇒ ⟨reliability = med⟩
⟨uptime = low⟩ ∨ ⟨replicas = scarce⟩ =⇒ ⟨reliability = low⟩

Implication rules for concept performance

⟨throughput = high⟩ ∨ ⟨bandwidth = large⟩ =⇒ ⟨performance = high⟩
⟨throughput = med⟩ =⇒ ⟨performance = med⟩
⟨throughput = low⟩ ∨ ⟨bandwidth = small⟩ =⇒ ⟨performance = low⟩

Desiderata of user u1

⟨reliability = high⟩ ∨ ⟨reputation = good⟩ =⇒ ⟨satisfaction = high⟩
⟨reliability = med⟩ ∨ ⟨reputation = avg⟩ =⇒ ⟨satisfaction = med⟩
⟨reliability = low⟩ ∨ ⟨reputation = abad⟩ =⇒ ⟨satisfaction = low⟩

Fig. 3. An example of implication rules for concepts and of user’s desiderata

implication rules governing a concept c is defined as follows.

Definition III.3 (Implication Rules). Given an abstract con-

cept ⟨c,L(c)⟩, and a set P of abstract parameters, the set R(c)
of implication rules governing c is a set of rules of the form
“cond =⇒ ⟨c = l⟩”, where l ∈ L(c) and cond is a monotonic

Boolean formula over base clauses of the form ⟨pi = lj⟩ with
pi∈P and lj∈L(pi). There is a rule in R(c) for each linguistic

value l in L(c).

Each rule in R(c) identifies the configurations of parameter
(linguistic) values that are associated with a linguistic value
for concept c. Note that a single rule is sufficient to represent
all the configurations of parameter values that imply c=l.
Indeed, a single rule permits to express combinations of
values as well as alternatives among them. For instance,
since L(performance) includes three linguistic values (i.e.,
low, med, high), the set R(performance) of rules regulating
performance will include three implication rules (one for
low, one for med, and one for high). Figure 3 illustrates the
implication rules for our running example. For instance, the
first rule in R(reliability) states that a high reliability

is provided by plans that have either high uptime or many
replicas. We expect the broker to rely on a pool of experts
in the field for the identification of the implication rules
governing the definition of concepts.

In the following, φ(c) is used to denote the set of parameters
influencing concept c, that is, those parameters that appear in
at least a rule in R(c). Clearly, a parameter can influence
different concepts. Also, concepts can be defined on top of
other concepts, thus forming a hierarchy of concepts where
high-level concepts depend on low-level concepts. This would
be possible by allowing concepts in the definition of the
implication rules governing other (higher-level) concepts. For
simplicity, but without loss of generality, in the following
we will consider simple concepts directly depending on pa-
rameters only, while noting that our approach can be easily
extended to the consideration of a hierarchy of concepts.

B. User’s desiderata

The desiderata of a user express her preferences with respect
to the configurations of cloud service plans that suit her
needs. Intuitively, user’s desiderata reflect the different levels
of satisfaction (e.g., high, med, low) of the user with respect
to different cloud service plan configurations. In line with our
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goal of supporting users in the definition of their desiderata
using natural language expressions, the broker allows users
to use linguistic values for specifying levels of satisfaction.
We then use a variable, called satisfaction, which can
take values from a set L(satisfaction) of linguistic val-
ues, reflecting different levels of satisfaction. Desiderata are
expressed by users via rules declaring the level of satisfaction
implied by a combination of parameters and concepts. For
generality, accounting for scenarios where users may want to
express preferences also over low-level configuration param-
eters and/or using crisp values, we include the possibility of
referring to them in such rules.

Formally, the set of rules modeling a set of user’s desiderata
is defined as follows.

Definition III.4 (User’s Desiderata). Given a set P of abstract

parameters and a set C of concepts, the set of user’s desiderata
governing satisfaction is a set R(satisfaction) of im-

plication rules of the form “cond =⇒ ⟨satisfaction= l⟩”,

where l ∈ L(satisfaction) and cond is a monotonic
Boolean formula over base clauses of the form: ⟨pi = lj⟩,
with pi∈P and lj ∈ L(pi); ⟨pi = vj⟩, with pi∈P and

vj ∈ D(pi); or ⟨ci = lj⟩, with ci∈C and lj ∈ L(ci). There
is a rule in R(satisfaction) for each linguistic value l in

L(satisfaction).

Intuitively, each rule in R(satisfaction) identifies the
configurations that are associated by the user with level l
of satisfaction. Similarly to what already noted for concepts,
one rule is sufficient to express all the configurations pro-
viding the same level of satisfaction. Figure 3 illustrates
an example of a set of user’s desiderata, defined over the
parameters and concepts in Figures 1 and 2. In this exam-
ple, rule ⟨reliability=high⟩ ∨ ⟨reputation=good⟩ =⇒
⟨satisfaction=high⟩ states that a cloud service plan that
guarantees high reliability or has good reputation is considered
highly satisfactory by the user.

In the following, we use φ(satisfaction) to denote the
set of parameters and concepts influencing satisfaction,
that is, those parameters and concepts that appear in at least
a rule in R(satisfaction). With reference to our running
example, φ(satisfaction)={reliability, reputation}.

IV. FUZZY MODELING

Our brokering service enables users to express their desider-
ata through conditions over parameters and/or concepts using
linguistic values. Clearly, to evaluate such conditions, the
broker needs to establish a mapping between concepts and
parameters (according to implication rules) and between crisp
and linguistic values. In this respect, the broker can operate
in different ways. An intuitive approach for translating crisp
values into linguistic values consists in partitioning the domain
D(p) of crisp values of each parameter p in a set of intervals,
and map each interval to a linguistic value l in L(p). For
instance, the domain of parameter bandwidth could be par-
titioned in two intervals, where range [0.2,1] corresponds to
small and range (1,25] corresponds to large. Such a translation,
while intuitive, has the disadvantage of maintaining sharp

boundaries between the intervals of crisp values that corre-
spond to linguistic values. Hence, while bandwidth=1Gbps is
considered small, bandwidth=1.01Gbps is considered large,
even if these values are quite close. The transition between
two linguistic values is instead usually perceived by the
user as smooth (e.g., there is not a sharp boundary between
values of bandwidth that are considered small and those
that are considered large) and crisp values can correspond,
to a different extent, to more than one linguistic value. A
bandwidth of 1Gbps can then be considered small, but not
as much as 0.2Gbps, but it can also be considered large,
but not as much as 25Gbps. To better model the understand-
ing of users when expressing their preferences in terms of
linguistic values, we interpret parameters and concepts as
fuzzy variables. Fuzzy variables can assume crisp as well as
linguistic values, which are interpreted as fuzzy sets. A fuzzy
set is a set whose elements have degrees of membership. In
contrast to the classical set theory, where an element either
belongs or does not belong to a set, fuzzy set theory permits a
gradual assessment of the membership of an element to a set
through a membership function. In our context, each pair ⟨x, l⟩
(with x either a parameter, a concept, or satisfaction, and
l ∈ L(x)) corresponds to a fuzzy set and the membership
function for it maps crisp values of D(x) to their degree
of membership. The degree of membership is a value in the
interval [0,1], with 0 corresponding to no membership and 1
to full membership.

In the remainder of this section, we discuss the interpreta-
tion, according to fuzzy logic, of parameters, concepts, and
user’s desiderata.

A. Fuzzy parameters

The fuzzy variable modeling a parameter is called fuzzy
parameter and enriches an abstract parameter p with a
fuzzy interpretation regulating the relationship between crisp
values and linguistic values through membership functions.
According to fuzzy set theory, each linguistic value l in
L(p) represents a fuzzy set with a membership function
µp,l :D(p)→[0,1], assessing the degree of membership of a
crisp value v in D(p) to the fuzzy set represented by the
linguistic value l. Figures 4(a)-(e) illustrate an example of
membership functions for the parameters in Figure 1. Each
subfigure reports the functions for the different linguistic
values of the considered parameter. For simplicity, we refer our
examples to triangular membership functions. Our approach is
however general and does not restrict membership functions to
be defined in a particular way nor to assume specific shapes,
and other functions (e.g., trapezoidal, Gaussian, or sigmoidal)
can be used.

As already noted, a crisp value v in D(p) can have
membership greater than 0 for more than one linguistic value.
In fact, a value in D(p) can belong to different fuzzy sets
with a different membership degree. For instance, according
to the functions in Figure 4, value uptime=99% is considered
med with membership µuptime,med(99.2%)=0.326, and high

with membership µuptime,high(99.2%)=0.531. We can then say
that 99% is perceived as both med and high, with the second
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Fig. 4. An example of membership functions for the parameters in Figure 1 (a)-(e), for concepts in Figure 2 (f)-(g), and for satisfaction (h)

linguistic value being more representative than the first one.
This flexibility provided by the adoption of fuzzy variables
permits to model user’s reasoning on the relationship between
crisp and linguistic values without the need of setting sharp
boundaries in the mapping of crisp values to linguistic values.
Formally, a fuzzy parameter is defined as follows.

Definition IV.1 (Fuzzy Parameter). Given an abstract pa-

rameter p ∈ P (Def. III.1), a fuzzy parameter is a quadru-

ple ⟨p,D(p),L(p),M(p)⟩ that extends the abstract parame-
ter p with a set M(p) of membership functions such that

M(p)={µp,l :D(p)→ [0, 1] | l ∈ L(p)}.

For instance, abstract parameter uptime in
Figure 1 is represented as a fuzzy parameter
⟨uptime, [96.00, 99.90], {low,med, high}, {µuptime,low,
µuptime,med, µuptime,high}⟩, with µuptime,low, µuptime,med,
and µuptime,high the membership functions illustrated in
Figure 4(a).

The membership functions of a fuzzy parameter are pro-
vided by the broker and depend on the specific application
scenario. We expect the broker to rely on experts in the
field for the definition of the set of linguistic values, and the
corresponding membership functions, for each configuration
parameter. Linguistic values and membership functions are
made available to the final user, who can take them into
consideration when formulating her desiderata.

B. Fuzzy concepts

The fuzzy variable modeling a concept is called fuzzy

concept and extends a concept c with a domain D(c) of
crisp values (which is not naturally associated with an abstract
concept) and a set of membership functions. Intuitively, the
crisp values of a concept should quantify how much a cloud
service plan is compliant with the concept itself (e.g., how
much a plan guarantees performance), which is based on
the values of the configuration parameters governing the
concept (i.e., parameters in φ(c)). To enable quantification of
compliance with a concept, we use the continuous interval

[0,1] as domain for concept c, where higher values represent
higher compliance with the concept (value 0 models non
compliance with the concept at all, while value 1 models full
compliance with the concept). As already discussed, linguistic
values correspond to different degrees of compliance for the
considered concept and are ordered.

In the interpretation of a concept c as a fuzzy concept,
each linguistic value l∈L(c) represents a fuzzy set and is
associated with a membership function. Figures 4(f)-(g) il-
lustrate an example of membership functions for abstract
concepts reliability and performance. Note that, in the
definition of the membership functions, we assume the domain
to be a superset of [0,1] to guarantee that the centroid of
any possible area defined by a membership degree over the
different membership functions covers the whole interval [0,1].
The reason for this is that, as it will be clear in the following
section, for concepts both fuzzification and defuzzification
(which we perform taking an area’s centroid) need to be
computed. To guarantee such conditions, the extreme member-
ship functions (i.e., the membership functions with maximum
equal to 0 and 1) must be designed in such a way that their
centroids correspond to 0 and 1, respectively. Concretely, this
means that the domain of these functions must be larger than
[0,1]. In our example, the membership functions corresponding
to fuzzy sets low and high of concepts reliability and
performance are defined over the range [−0.5, 1.5]. Formally,
a fuzzy concept is defined as follows.

Definition IV.2 (Fuzzy Concept). Given an abstract con-

cept ⟨c,L(c)⟩ (Def. III.2), a fuzzy concept is a quadruple

⟨c,D(c),L(c),M(c)⟩ that extends the abstract concept with
a domain D(c) = [0, 1] of crisp values and a set M(c) of

membership functions such that there is a membership function
µc,l in M(c) for each linguistic value l in L(c).

For instance, abstract concept reliability

in Figure 2 is represented as a fuzzy concept
⟨reliability, [0, 1], {low,med, high}, {µreliability,low,
µreliability,med, µreliability,high}⟩, with µreliability,low,
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Fig. 5. Graphical representation of the steps for cloud plan assessment

µreliability,med, and µreliability,high the membership
functions in Figure 4(f).

C. Fuzzy user’s desiderata

The degree of satisfaction of user’s desiderata is modeled
as a fuzzy variable defined similarly to fuzzy concepts.

Definition IV.3 (Satisfaction). Given variable satisfaction

modeling the satisfaction of a user along with the

corresponding set L(satisfaction) of linguistic
values, the fuzzy user’s desiderata is a quadruple

⟨satisfaction, D(satisfaction), L(satisfaction),
M(satisfaction)⟩ where D(satisfaction) = [0, 1]
and M(satisfaction) is a set of membership functions

such that there is a membership function µsatisfaction,l

in M(satisfaction) for each linguistic value l in

L(satisfaction).

The domain D(satisfaction) of crisp values for
satisfaction, necessary to quantify the degree of satis-
faction, is the interval [0,1], with higher values representing
higher levels of satisfaction. Figure 4(h) illustrates an example
of membership functions for satisfaction, modeling the
smooth transition between linguistic values. Like for concepts,
the domains of these functions are designed in such a way
that the centroid of any area defined by a membership degree
over the different membership functions covers the whole [0,1]
interval.

V. CLOUD PLAN ASSESSMENT

The broker evaluates the available cloud service plans
against users’ desiderata to assess the level of satisfaction in
the different cloud service plans for each user. The brokering
process operates in two phases, the first one abstracting to
concepts, and the second one performing assessment. Each
phase relies on a set of Fuzzy Inference Systems (FISs)
(Figure 5). Phase 1 provides reasoning on fuzzy parameters
to derive concepts. It takes as input the specification of cloud
service plans (Def. II.1), the specifications of fuzzy parameters
(Def. IV.1) and fuzzy concepts (Def. IV.2), and the implication

rules for concepts (Def. III.3) and produces as output a
(crisp) value for each concept for each cloud service plan.
Phase 2 evaluates concepts and parameters of the different
cloud service plans to determine the user’s satisfaction in
the cloud service plans. It takes as input the specification of
cloud service plans (Def. II.1), the crisp values of concepts
computed in Phase 1, the specification of parameters and
concepts (Def. IV.1 and Def. IV.2) as well as the specification
of satisfaction provided by users (Def. IV.3) and the rules
establishing desiderata (Def. III.4), and produces as output a
(crisp) value of satisfaction for each user and each plan.
Note that, since the specification of fuzzy parameters and
concepts is provided by the broker itself with the help of a
pool of experts, Phase 1 is user-independent, while Phase 2,
evaluating satisfaction of individual users (and hence regulated
by different rules for each user) is user-dependent.

The rulebases input to the FISs are obtained by translating
the rules in input (implication rules for concepts for Phase 1
and user’s desiderata for Phase 2) in the form of “IF-THEN”
rules. More precisely, each rule “cond =⇒ f”, with f either
⟨p=l⟩ or ⟨c=l⟩, is transformed into an equivalent rule “IF

cond′ THEN f ′” where cond′ is obtained substituting ∧ and
∨ with and and or in cond, respectively, and f ′ is obtained
substituting = with ‘is’ in f . Figure 6 reports the translation of
the implication rules and desiderata (for user u1) in Figure 3.

For the design of the FISs we use the Mamdani’s
method [9], since it is one of the most common methods
adopted in decision support systems [10]. Accordingly, the
output of each rule is interpreted as a fuzzy set.

Each of the two phases, while operating on fuzzy specifica-
tions and inferences, has crisp values as input and as output,
and comprises the following three steps (Figure 5).

• Fuzzification. It maps input crisp values into degrees
of membership for each fuzzy set of the fuzzy pa-
rameters/concepts to which the input value refers, by
evaluating the corresponding membership functions.

• Inference reasoning. It evaluates the different rules with
respect to the fuzzy values computed in the previous
(fuzzification) step.
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Implication rules for concept reliability

IF ⟨uptime is high⟩ or ⟨replicas is many⟩ THEN ⟨reliability is high⟩
IF ⟨uptime is med⟩ THEN ⟨reliability is med⟩
IF ⟨uptime is low⟩ or ⟨replicas is scarce⟩ THEN ⟨reliability is low⟩

Implication rules for concept performance

IF ⟨throughput is high⟩ or ⟨bandwidth is large THEN ⟨performance is high⟩
IF ⟨throughput is med⟩ THEN ⟨performance is med⟩
IF ⟨throughput is low⟩ or ⟨bandwidth is small THEN ⟨performance is low⟩

Desiderata of user u1

IF ⟨reliability is high⟩ or ⟨reputation is good⟩ THEN ⟨satisfaction is high⟩
IF ⟨reliability is med⟩ or ⟨reputation is avg⟩ THEN ⟨satisfaction is med⟩
IF ⟨reliability is low⟩ or ⟨reputation is abad⟩ THEN ⟨satisfaction is low⟩

Desiderata of user u2

IF ⟨reliability is high⟩ THEN ⟨satisfaction is high⟩
IF ⟨reliability is med⟩ THEN ⟨satisfaction is med⟩
IF ⟨reliability is low⟩ THEN ⟨satisfaction is low⟩

Desiderata of user u3

IF ⟨reputation is good⟩ and (⟨reliability is high⟩ or ⟨performance is high⟩)
THEN ⟨satisfaction is high⟩

IF ⟨reputation is good⟩ and (⟨reliability is med⟩ or ⟨performance is med⟩)
THEN ⟨satisfaction is med⟩

IF ⟨reputation is good⟩ and (⟨reliability is low⟩ or ⟨performance is low⟩)
THEN ⟨satisfaction is low⟩

IF ⟨reputation is avg⟩ THEN ⟨satisfaction is low⟩
IF ⟨reputation is low⟩ THEN ⟨satisfaction is low⟩

Fig. 6. Rules for concepts performance and reliability, and for the
desiderata of users u1, u2, and u3

• Aggregation and defuzzification. It combines the results
of the different rules to determine a single (crisp) value
as a result.

We now describe the working of the two phases. In the
discussion, we consider the cloud service plans in Figure 7
the fuzzy values and membership functions for parameters
and concepts in Figures 4(a)-(g), and the implication rules
for concepts and users’ desiderata in Figure 6. Note that our
approach is general and does not require the adoption of
specific and pre-defined methods for executing the different
operations needed in the inference process (e.g., the adoption
of the centroid method for defuzzification) [11]. The methods
illustrated in the discussion (i.e., min for computing the and
among values and for evaluating rule implication; max for
computing the or among values and for evaluating rules
aggregation; and centroid for defuzzification) are chosen as
an example, among the possible ones, due to their intuitive
interpretation.

Phase 1. It provides reasoning for mapping parameters to
concepts. The FIS operates on each concept as follows.

• Fuzzification. It fuzzifies the parameters involved in the
concept’s definition. Input to a concept’s FIS are the
cloud service plans (more precisely, crisp values of the
parameters that are involved in the concept). For instance,
for concept reliability, input crisp values will be the
values of uptime and replicas. Figure 7 reports the
result of the fuzzification step for the different parameters.
For instance, for service plan s1, fuzzification of uptime
produces µuptime,high(99)=0.531, µuptime,med(99)=0.326,
and µuptime,low(99)=0.

• Inference reasoning. Reasoning works on the rulebase
corresponding to the implication rules defining the con-
cept (for reliability the first set of rules in Figure 6).

Cloud service plans
s1 s2 s3 s4 s5

P
a
ra

m
et

er
s

uptime

crisp 99 99.9 99 97 96
high 0.531 1 0.531 0 0
med 0.326 0 0.326 0.391 0
low 0 0 0 0.494 1

crisp 5 10 0 2 1
replicas many 0.500 0 1 0.800 0.900

scarce 0.500 1 0 0.200 0.100

throughput

crisp 14 8.5 16 8.5 8.5
high 0.733 0 1 0 0
med 0.083 1 0 1 1
low 0 0 0 0 0

crisp 18.5 12.5 25 12.5 12.5
bandwidth large 0.738 0.496 1 0.496 0.496

small 0.262 0.504 0 0.504 0.504

reputation

crisp 1 0.5 1 0.5 0.25
good 1 0 1 0 0
avg 0 1 0 1 0.375

abad 0 0 0 0 0.500

C
o
n

ce
p

ts

reliability

crisp 0.509 1 0.435 0.319 0.159
high 0.018 1 0 0 0
med 0.982 1 0.870 0.638 0.318
low 0 0 0.130 0.362 0.682

performance

crisp 0.671 0.498 1 0.498 0.498
high 0.342 0 1 0 0
med 0.658 0.996 0 0.996 0.996
low 0 0.004 0 0.004 0.004

S
a
t.

satisfaction
u1 0.669 0.750 0.685 0.325 0.265
u2 0.513 1 0.416 0.306 0.175
u3 0.669 0 0.685 0 0

Fig. 7. Parameters of five service plans in the example, corresponding
concepts, and resulting users’ satisfaction. (Gray cells denote crisp values
for parameters and concept quantifications)

For each rule, the antecedent is evaluated by considering,
for each individual clause in it, the corresponding mem-
bership degree, and enforcing and (or, resp.) combination
of clauses by taking their min (max, resp.) value. The
final result is, for the rule consequent, the area truncated
at the resulting degree of membership on its fuzzy set.
Figure 8(a) graphically reports the evaluation of the
implication rules for concept reliability for service
plan s1, illustrating both the evaluation of the antecedents
of the rules and the output truncated fuzzy sets. For
instance, for the first rule: µuptime,high(99)=0.531 and
µreplicas,many(5)=0.5, corresponding to the yellow (light
gray in b/w printout) areas in the membership function.
Their or combination, that is, their maximum value, is
then 0.531 for the rule consequent (i.e., reliability is
high) producing the truncated fuzzy set as in the figure.

• Aggregation and defuzzification. The results of all the
rules referring to the concept are aggregated by taking
the union of the areas corresponding to the truncated
fuzzy sets produced by each rule. Defuzzification is
computed by taking the centroid of the area. Figure 8(a)
graphically reports such a step for the rules on concept
reliability for service plan s1. The aggregation of
the different rules produces the area at the very bottom,
whose centroid is 0.509, which then corresponds to the
quantification of concept reliability for cloud service
plan s1. Note that the reason for producing a crisp value
for the concepts (to be fed to Phase 2 on which they
will be fuzzified) is that the result of rule aggregation
is a truncated fuzzy set, having a shape that does not
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correspond to any membership function for the concept.
Also, passing through crisp values, the evaluation of
concepts is completely independent from the evaluation
of the satisfaction of cloud service plans.

The evaluation of the other cloud service plans works
in an analogous way, producing the values for concepts
reliability and performance reported in Figure 7.

Phase 2. It provides reasoning on users’ desiderata to produce,
for each user, the satisfaction for the different cloud
service plans. The FIS operates on each user as follows.

• Fuzzification. It fuzzifies, for each plan, the pa-
rameters and concepts involved in user’s desider-
ata. Figure 7 reports the result of the fuzzifi-
cation step for the different parameters and con-
cepts. For instance, for user u1, for whom con-
cept reliablity and parameter reputation need to
be considered, fuzzification for service plan s1 pro-
duces for reliability: µreliability,high(0.509)=0.018,
µreliability,med(0.509)=0.982, µreliability,low(0.509)=0.

• Inference reasoning. Fuzzy reasoning works on the rule-
base corresponding to the rules representing the desider-
ata of the user. Rule evaluation operates like for the first
phase: the antecedent is evaluated by considering for each
individual clause in it the corresponding membership
degree,1 and enforcing and (or, resp.) combination of
clauses by taking their min (max, resp.) value. The final
result is, for the rule consequent, the area truncated at
the resulting degree of membership on its fuzzy set.
Figure 8(b) graphically reports the evaluation of the
implication rules for the desiderata of user u1, illus-
trating both the evaluation of the antecedents of the
rules and the output truncated fuzzy sets. For instance,
µreliability,high(0.509)=0.018, and µreputation,good(1)=1,
corresponding to the yellow (light gray in b/w printout)
areas in the membership functions. Their or combination,
that is, their maximum value, is then 1 for the rule
consequent (i.e., satisfaction is high) producing the
truncated fuzzy set as in the figure.

• Aggregation and defuzzification. The results of all the
rules representing the desiderata of the user are aggre-
gated by taking the union of the areas corresponding
to the truncated fuzzy sets produced by each rule. De-
fuzzification is computed by taking the centroid of the
area. Figure 8(b) graphically reports such a step for the
rules on the desiderata of u1 computing satisfaction

in service plan s1. The aggregation of the different rules
produces the area at the very bottom, whose centroid is
0.669, which then corresponds to the quantification of the
satisfaction of uses u1 for cloud service plan s1.

Evaluation of other plans and for other users works in an
analogous way, producing the results in Figure 7.

Interpreting the results obtained for the five cloud service
plans reported in Figure 7 and for the three users with
desiderata reported in Figure 6, we can comment as follows

1For the evaluation of clauses of the form ⟨pi=vj⟩, we define a membership
function having value 1 for vj , and value 0 for any other value in D(pi).

(a) Inferences for reliability

(b) Inferences for satisfaction

Fig. 8. Evaluation of concepts reliability (a) and satisfaction (b) for
service plan s1 and user u1

the resulting values of satisfaction. For user u1, for whom
reliability (which is a concept based on uptime and
replicas) or reputation are important, the best matching
plan is s2, with s1 and s3 less preferred but still probably
acceptable, while s4 and s5 are not satisfactory. For user
u2, where reliability is the only deciding factor, service
plan s2 (providing the maximum number of replicas) is fully
satisfactory while the others (providing limited number of
replicas) are much less satisfactory. For user u3, for whom
satisfaction depends on reputation of service plan being
good and then on reliability or performance, service
plans s2, s4, and s5 are not satisfactory, while service plans
s1 and s3 provide some (comparable) satisfaction.

VI. RELATED WORK

The problem of selecting a cloud provider/service con-
sidering user requirements has been recently widely inves-
tigated [12]. The line of work closest to ours provides
support for the use of fuzzy logic and/or natural language
expressions [13]. The solution in [6], while sharing with our
work the use of fuzzy inferences to assess cloud services,
specifically focuses on storage services. Also, our solution
offers specific support for the definition of desiderata on
abstract concepts. The approach in [5] allows users to specify
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desiderata with linguistic labels to reflect the importance of
the different parameters characterizing plans, while we support
more general requirements based on parameters and concepts.
In [14], the authors propose a framework for cloud service
composition under fuzzy user preferences: besides pursuing
a different goal (determining optimal compositions of cloud
services), user preferences model different desiderata (proper-
ties that service compositions should satisfy). The fuzzy AHP-
based framework in [15] supports imprecise user requirements
expressed through linguistic labels over attributes organized
in a fixed hierarchy. In [16], the authors present a multi-
criteria decision making approach for cloud service selection
that relays on the definition of a fuzzy ontology. While the
ontology might resemble our relationship between parameters
and concepts, our approach explicitly aims to map high-
level concepts accessible to users to low-level parameters
characterizing cloud services.

Our work shows similarities with other approaches that
provide support for crisp user requirements in cloud
provider/service selection (e.g., [17], [18], [19], [20]), which
however address complementary problems. The approach
in [2] proposes a language for expressing user requirements
and preferences, a formal model for reasoning on them, and
different strategies for ranking acceptable services. This work
differs from ours as it manages requirements and preferences
on crisp values, while we operate with linguistic expressions
and high-level concepts.

Another related line of work deals with the general problem
of cloud provider/service assessment (e.g., [21], [22], [23],
[24]). Existing solutions, however, typically aim at identifying
KPIs (Key Performance Indicators) [21] and operate on pre-
defined metrics [22].

VII. CONCLUSIONS

In the rapidly evolving cloud scenario, selecting the right
cloud service plan is an important yet complex task that
users need to face. We have proposed a novel, user-centric,
brokering service for assessing cloud service plans according
to the desiderata of users. To facilitate users, our brokering
service supports desiderata expressed using natural language,
possibly with high-level concepts easily accessible also to
non-skilled users. Such desiderata are automatically mapped
by the broker onto the parameters characterizing plans. Our
broker relies on fuzzy logic and fuzzy inferences to assess the
extent to which a candidate plan complies with a set of user’s
desiderata. The fuzzy reasoning accommodates for flexibility
in the specification and enforcement of desiderata, and can
be further extended to membership functions by adopting a
type-2 fuzzy system. This can be an interesting direction to
investigate as future work.
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