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 Introduction 
Information sharing and data dissemination are at the basis of our digital society.  Users as well as 
companies access, disseminate, and share information with other parties to offer services, to 
perform distributed computations, or to simply make information of their own available. Such a 
dissemination and sharing process however is typically selective, and different parties may be 
authorized to view only specific subsets of data. Exchanges of data and collaborative computations 
should be controlled to ensure that authorizations are properly enforced and that information is not 
improperly accessed, released, or leaked. For instance, data about the patients in a hospital and 
stored at one provider might be selectively released only to specific providers (e.g., research 
institutions collaborating with the hospital) and within specific contexts (e.g., for research 
purposes).  This situation calls for the definition of a policy specification and enforcement 
framework regulating information exchange and access in the interactions among parties. This 
problem has been under the attention of the research and development communities and several 
investigations have been carried out, proposing novel access control solutions for emerging and 
distributed scenarios.  In particular, attention has been devoted to the development of powerful 
and flexible authorization languages and frameworks for open environments, policy composition 
techniques, privacy-enhanced access control and identity management solutions, policy 
negotiation and trust management strategies, fault tolerant policies and selection of plans based on 
user’s requirements, and access control models and policies for regulating query execution in 
distributed multi-authority scenarios (e.g., [6] [7] [9][14] [15][16] [17][18][19] [27] 
[30][31][32][42]). Other works have addressed the problem of private and secure multi-party 
computation, where different parties perform a collaborative computation learning only the query 
results and nothing on the inputs (e.g., [41]). In this chapter, we focus on a scenario where different 
parties (data owners or providers) need to collaborate and share information for performing a 
distributed query computation with selective disclosure of data.  For the sake of simplicity, we will 
assume that the data stored at each provider are modeled by a relational table r(a1,…,am), with r 
the name of the relation and a1,…,am its attributes. In the following, we refer our examples to a set 
of four different providers, each storing one relation (Figure 10.1) Insurance company SI with 
relation Insurance, Hospital SP with relation Patient, Research Center ST with relation 
Treatment, and a Pharmaceutical Company SM with relation Medicine. In such a scenario, 
the problem of executing distributed query computations while ensuring that information is not 
improperly leaked, can be translated into the problem of producing query plans with data sharing 
constraints. Traditional query optimizers aim at optimizing query plans by pushing down selection 
and projection operations, and by choosing, for each operation in the query plan, the provider in 
charge of its evaluation and how the operation should be executed (e.g., they decide which join 
evaluation algorithm should be adopted and/or which index should be used). Query optimizers do 
not take into consideration possible share restrictions that data owners may wish to enforce over 
their data. For instance, the hospital may want to keep patients’ diseases confidential and allow 



  

  

the insurance company to access the data of their customers only. In the definition of efficient 
query plans, the query optimizer should therefore consider also access privileges to guarantee that 
query evaluation does not imply flows of information that should be forbidden. In the remainder 
of this chapter, we survey the following existing approaches that address the above-mentioned 
problems. 

• View-based access control: in the relational database context, it is necessary to define 
authorizations that provide access to portions of the original relations. In Section 10.2, we 
describe solutions that address this problem by defining views, which are used to both grant 
access privileges to users and to enforce them at query evaluation time. 

• Access patterns: in many scenarios data sources may have limited capabilities, that is, data 
can be accessed only by specifying the values for given attributes according to some 
patterns. In Section 10.3, we describe approaches that associate a profile with each relation 
to keep track of the attributes that should be provided as input to gain access to the data. 

• Sovereign join: when relations are owned by different parties, the evaluation of join 
operations among them may reveal sensitive information to both the server in charge of the 
evaluation and to the two providers owning the operands. In Section 10.4, we illustrate a 
join evaluation strategy that reveals to the server evaluating the join neither the operands 
nor the result. 

• Coalition networks: in coalition networks, different parties are aimed at sharing their data 
for efficiency in query evaluation while protecting data confidentiality. In Section 10.5, we 
describe a solution based on the definition of pairwise authorizations to selectively regulate 
data release. 

• User-based restrictions: besides providers, also users may wish to define privacy 
restrictions in query evaluation to protect the objective of their queries with respect to the 
providers. In Section 10.6, we illustrate a proposal that permits a user to specify preferences 
about the providers in charge of the evaluation of her queries. 

• Authorization composition and enforcement in distributed query evaluation: in distributed 
scenarios where data release is selective, it is necessary to define an authorization model 
that, while simple, guarantees that parties cannot improperly access data. In Section 10.7, 
we describe an authorization model regulating the view that each provider can have on the 
data and illustrate an approach for composing authorizations. 

• Encryption to enable distributed query evaluation: query evaluation could benefit from the 
availability of external cloud providers offering computational resources at competitive 
prices, which may however not be authorized for accessing plaintext data. In Section 10.8, 
we present an authorization model that distinguishes three visibility levels (i.e., no 
visibility, encrypted visibility, plaintext visibility) to enable the involvement of third 
parties in query evaluation, and illustrate an approach for enforcing such authorizations in 
query execution by possibly adjusting data visibility on-the-fly. 

FIGURE 10.1 An example of four relations stored at four different providers 
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SI: Insurance(ssn, type, premium) 
SP: Patient(ssn, name, dob, disease) 
ST: Treatment(ssn, mid, date, result) 
SM: Medicine(mid, principle, auth_date) 



  

  

 View-based access control 
In the relational database context, access restrictions can be defined over views that provide access 
to only certain portions of the underlying relations [29][35][38][39]. Authorization views represent 
a powerful and flexible mechanism for controlling what information can be accessed and can be 
distinguished between traditional relational views and parameterized views. A parameterized view 
makes use of input parameters (e.g., $user_id, $time) in its conditions to possibly change the 
authorized subset of data depending on the execution context (e.g., the identity of the subject 
performing the access). Access pattern views are parameterized views whose parameters are 
bounded at access time to any value. For instance, Figure 10.2(a-c) illustrates three authorization 
views over the relations in Figure 10.1. The first view (AvgPremium) is a traditional relational 
view that authorizes the release of the average premium for each insurance type. The second view 
(MyData) is a parameterized view that allows each user to access her data (variable $user_id) in 
relation Insurance. The third view (Customers) is an access pattern view that allows the access 
to treatments using medicines whose active principles are provided as input (variable $$values). 
The main disadvantage of a view-based solution is that it forces requesters (i.e., final users and 
providers) to know and directly query authorization views. To overcome such a limitation, more 
recent models operate in an authorization-transparent way (e.g., [35][38][39]). These solutions 
permit requesters to formulate their queries over base relations. The access control system will be 
in charge of checking whether such queries should be permitted or denied. Two models can be 
used to determine whether a query q satisfies the authorization views granted to the requester 
[29][38]. 
 

• Truman model: query q is rewritten substituting the original relations with the authorization 
views and base relations that the requester is authorized to access. This rewriting aims at 
ensuring that the requester does not obtain information that she cannot access. The 
advantage of this solution is that it always provides an answer to every query formulated 
by a requester. The drawback is that this approach may return misleading results. As an 

FIGURE 10.2 An example of traditional view (a), parameterized view (b), access pattern view 
(c), and valid query (d) 
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example, assume that a user is authorized to access view MyData and submits the query in 
Figure 10.2(d). Before evaluation, the query is reformulated as “SELECT AVG(premium) 
FROM MyData,” which will return the premium of the user. The user will then have the 
impression that her premium is exactly equal to the average premium of all the customers 
of the insurance company. 

• Non-Truman model: query q is subject to a validity check that aims at verifying whether 
the query can be answered using only the information contained in the authorization views 
and base relations that are accessible to the requester.  If the query is valid, it is executed 
as it is without any modification. Otherwise, the query q is rejected. To check its validity, 
query q is compared against the authorization views of the requester. For instance, the 
query in Figure 10.2(d) is valid with respect to the authorization views in Figure 10.2(a-c). 
In fact, the query can be evaluated over view AvgPremium. On the contrary, query “SELECT 
AVG(premium) FROM Insurance JOIN Patient ON I.ssn=P.ssn GROUP BY disease” is 
not valid. 

View-based access control solutions have been developed for centralized scenarios, but they can 
be adapted to operate also in distributed database systems. However, when the diversity of the 
providers involved and of their views is considerable and dynamic, view-based access control 
approaches result limiting, since they require to explicitly define a view for each possible access 
need. This aspect is particularly critical in distributed scenarios, where inter-organizational 
collaborations occur on a daily basis, and where the heterogeneity of the providers and of their 
access restrictions can be high. 

 Access patterns 
In many scenarios, data sources can be accessed only providing the values of certain attributes as 
input. These values are used to properly bound query results. For instance, to access data available 
on the web, users are often required to fill in a form that includes mandatory fields. The provider 
can then bound the returned data to the tuples matching the values specified in the form.  As 
another example, a research center may be willing to share the results of the testing of medicines 
with a pharmaceutical company only if the company provides as input the identifier of the 
medicines it produces. Access patterns [26] are used to formally define these kinds of access 
restrictions, which have to be properly enforced by query evaluation engines.  Each relation 
schema r(a1,…,am) in a distributed database is then assigned an access pattern α, which is a string 
of m symbols, one for each attribute in the schema, as formally defined in the following. 
 

Definition 10.1 (Access Pattern) Given a relation r defined over relational schema 
r(a1,…,am), an access pattern α associated with r, denoted rα, is a sequence of m symbols 
in {i, o}. 

 
 



  

  

If the j-th symbol of the access pattern is i, the j-th attribute aj in the relation schema is said to be 
an input attribute; it is an output attribute, otherwise. Input attributes are those that must be 
provided as input to gain access to a subset of tuples in relation r. Output attributes are instead not 
subject to constraints for access to the data. (Note that input and output attributes can also be 
referred as bounded and free attributes, denoted b and f, respectively.) Figure 10.3 illustrates an 
example of access patterns defined over the relations in Figure 10.1 where, for example, 
Insuranceioo(ssn, type, premium) indicates that the ssn of customers must be provided as input 
to access attributes type and premium of their insurance contracts. 
The presence of access patterns may complicate the process of query evaluation. In fact, the 
execution of a query q under access restrictions may require the evaluation of a recursive query 
plan where the values extracted from a relation (say ry), which may even not be explicitly 
mentioned in the query itself, have to be used to access another relation (say rx) in q. Clearly, the 
schema of relations rx and ry must include attributes characterized by the same domain (e.g., join 
attributes). For instance, with reference to the access patterns in Figure 10.3, the result of the 
projection over attribute ssn of relation Treatment can be used as input for relation 
Insurance, to obtain the plans subscribed by patients subject to a treatment. 
The enforcement of access restrictions modeled by access patterns requires a revision of the 
traditional query evaluation strategies. In fact, classical solutions do not take into consideration the 
fact that query plans may need to operate recursively. 
Most of the proposed solutions for the definition of query plans with access patterns consider 
conjunctive queries (e.g., [3][8][20][26][28][34][36]), that is, queries that include selection, 
projection, and join operations only and aim at identifying the tuples that satisfy all the conditions 
implied by the values given as input to the query. An effective (although not optimized) approach 
to determine a query plan that satisfies all the access restrictions operates according to the 
following three steps. 

• Initialize a set B of constant values with the constant values in q and a local cache to the 
empty set. 

• Iteratively access relations according to their access patterns using values in B and, for each 
accessed relation, update the cache with the tuples obtained and update B with the 
corresponding values. 

• Evaluate q over the tuples in the local cache. 
For instance, consider query q in Figure 10.4 and the access patterns in Figure 10.3. Condition 
M.principle=‘paracetamol’ provides the required input value to access the tuples in relation 
Medicine and to extract the list of identifiers mid of the medicines that contain this active 
principle. This list of mid values can in turn be provided as input for accessing the tuples of interest 
in relation Treatment, which include the ssn of the patients treated with these medicines. The 
list of ssn values, together with value flu for attribute disease, finally permit to get access to the 
tuples in relation Patient, which correspond to the result of query q. The above approach has 
been subsequently enhanced by considering, for example, run-time optimization techniques for the  
 

FIGURE 10.3 An example of access patterns 
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Insuranceioo (ssn, type, premium) 
Patientiooi (ssn, name, dob, disease) 
Treatmentoioo (ssn, mid, date, result) 
Medicineoio (mid, principle, auth_date) 



  

  

 
 
 
 
 

generation of a query plan and integrity constraints (e.g., [2][3][5][8][20][28][36]). 

 Sovereign joins 
When operating with different relations owned by different providers, the operation that most of 
all may reveal sensitive information to non-authorized subjects is the join operation, which 
combines tuples from different relations. In fact, the evaluation of the join between two relations 
rx and ry reveals the content of the two operands to the server S evaluating it. In many scenarios, 
however, the content of the relations involved in the join operation should be kept confidential, 
even if the join result can possibly be revealed to the requester who submitted the query. As an 
example, suppose that we need to extract the collateral effects of a medicine that depend on the 
age of the patients treated with that medicine. However, both the hospital and the research center 
conducting the experimentation want (or are legally forced) to keep their own data private. 
Sovereign join [1] has been proposed as a join evaluation strategy aimed at solving this privacy 
issue, permitting the evaluation of join operations without revealing the operands to the server in 
charge of the join computation, which is assumed to be none of the owners of the operands. The 
goal of sovereign join is to evaluate join operation rx ⋈J ry, with J an arbitrary join condition, in 
such a way that: i) only the party that requested the join can access the join result; and ii) no other 
party should be able to learn the content of relations rx, ry, and rx ⋈J ry. Sovereign join solution 
relies on a secure coprocessor located at server S, which is the only trusted component in the 
system. The secure coprocessor can access rx, ry, and the join result. 
To prevent unauthorized parties, including the server S, to access the content of rx, ry, and of the 
join result, all the information flows between provider Px (Py, respectively) storing rx (ry, 
respectively) and S, and between S and the requester are encrypted with a key shared between the 
coprocessor and each of the providers owing an operand relation, and between the coprocessor and 
the requester. 
Note that even if S has a secure coprocessor onboard, the evaluation of the join operation should 
be performed carefully. In fact, secure coprocessors have limited resources and, in particular, 
limited memory. Hence, the join operands cannot be completely loaded in memory. The join 
evaluation algorithm should then guarantee that any observation of the interactions between the 
coprocessor and S (i.e., read and write operations by the coprocessors) do not reveal any 
information about the join operands and the result. As an example, consider the following 
straightforward adaptation of the traditional nested-loop algorithm for join evaluation. S receives 
from Px and Py the encrypted version of rx and ry, respectively. Iteratively, the coprocessor reads 
one encrypted tuple from rx and decrypts it, obtaining tx. For each tuple tx, the coprocessor 
iteratively reads each tuple in ry, decrypts it obtaining ty, and checks whether it matches with tx. If 

FIGURE 10.4 An example of query over relations in Figure 10.1 
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SELECT P.ssn, P.name, P.dob 
FROM Treatment T JOIN Medicine M ON T.mid=M.mid 

JOIN Patient P ON T.ssn=P.ssn 
WHERE M.principle=‘paracetamol’ AND P.disease=‘flu’ 



  

  

tuples tx and ty join, the coprocessor encrypts the pair <tx, ty> and writes the resulting ciphertext in 
the join result. It then passes to the next tuple in ry. The join evaluation terminates when all the 
pairs of tuples in rx and ry have been evaluated by the coprocessor. By observing the sequence of 
read and write operations, S (as well as any observer) can infer which encrypted tuples in rx join 
with which encrypted tuples in ry. To prevent this leakage of sensitive information, sovereign join 
guarantees that every join computation satisfies the following two properties:  

• fixed time: the time for the evaluation of the join condition and for the composition of tuples 
is the same independently from the result;  

• fixed size: the size of the result obtained when comparing tuples is the same independently 
from the result.  

To guarantee the satisfaction of both these properties, the sovereign join solution adopts a variation 
of the nested-loop algorithm. This join computation strategy burns CPU cycles to maintain a fixed 
computation time, and relies on decoys (i.e., fake tuples) to maintain a fixed size of the join result. 
The algorithm is then designed to return an encrypted join tuple if the input tuples tx and ty satisfy 
the join condition, and an encrypted decoy of the same size, otherwise. Since decoys are 
indistinguishable from original tuples, server S cannot draw any inference observing information 
flows. 

 Pairwise authorizations 
Emerging scenarios where data need to be exchanged and shared among different parties are 
represented by coalition networks. A coalition network is a distributed system characterized by a 
set of providers that wish to collaborate and share their data to reach a common goal (e.g., coalition 
networks often combine organizations cooperating for military, scientific, or emergency purposes) 

FIGURE 10.5 An example of a graph modeling a coalition network (a) and its pairwise 
authorizations (b) 
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[43][44]. Each provider P in a coalition network owns one or more relations, as well as one or 
more servers for both computation and data storage purposes. The servers of a provider are said to 
be buddies and typically share the same privileges.  A coalition network is traditionally modeled 
as an undirected graph G(N,E) representing the corresponding overlay network among servers. 
Each server in the coalition network is represented by a node in N, and connections among servers 
are represented by weighted edges in E, where the weight of edge (Si,Sj) represents the cost of 
transmitting a data unit between servers Si and Sj. Figure 10.5(a) illustrates an example of weighted 
graph representing the overlay network among the servers storing the relations in Figure 10.1 and 
an additional server SQ that does not store any relation and is a buddy of SP. 
Given a query q, the goal of the query optimizer is to minimize data transmission costs among the 
servers involved in query evaluation. For instance, consider a query that requires to join relations 
Patient (SP), Treatment (ST), and Medicine (SM). A plan that minimizes data transmission 
costs would evaluate the join operations at server SP. In fact, the shortest path between ST, storing 
Treatment, and SM, storing Medicine, passes through SP, which stores Patient. This plan 
may however imply unauthorized data releases. In fact, in a coalition network not all the servers 
can perform all the operations in a query plan. The access control model regulating accesses to 
data in coalition networks must provide the data owner with the possibility to: i) authorize different 
parties for different portions of its dataset; ii) maintain full and autonomous control over who can 
access its data; and iii) define access control restrictions operating at tuple level. Pairwise 
authorizations satisfy all these requirements and are formally defined as follows [43]. 
 

Definiton 10.2 (Pairwise authorization). Given two providers Pi and Pj and a relation ri 
owned by Pi, a pairwise authorization defined by Pi over ri is a rule of the form  

Pi  Pj, with rx the subset of tuples in ri that satisfy a selection condition.  
 

A pairwise authorization Pi  Pj allows provider Pj to access a subset of the 
tuples in ri, according to s(ri). In fact, rx is the result of a selection restricting the tuples visible to 
Pj to all and only the tuples in ri that satisfy the selection condition. Note that all the servers 
belonging to Pj have the same visibility over ri, that is, they can access the tuples granted by the 
pairwise authorization. A server Sj that belongs to provider Pj is then authorized to access: i) all 
the relations owned by Pj, and ii) the subsets of tuples of any relation ri for which there exists a 

pairwise authorization Pi  Pj. Server Sj can also view any subset of tuples 
and/or attributes in the Cartesian product among the authorized relations, also when these views 
are the result of the evaluation of a (sub-)query. Figure 10.5(b) illustrates an example of a set of 
pairwise authorizations for the coalition network in Figure 10.5(a). According to these 
authorizations, for example, server SQ, which is owned by Hospital, can access relation 
Patient, relation Treatment, and the tuples in relation Medicine associated with values 
paracetamol and antacid for attribute principle. SQ can also access the result of any query 
operating on these relations. 
Given a query q, a coalition network G(N,E), and a set of pairwise authorizations, a safe query 
plan for q has to be determined, that is, a query plan that entails only authorized data exchanges 
(i.e., the server receiving some data must be authorized to see them). Such a plan should also 
minimize data transfers, according to the costs represented by the weight of edges in G. Unary 
operators (i.e., selection and projection) clearly do not require data transmission for their 

rx =σ(ri)! →!!!!!

rx =σ(ri)! →!!!!!

rx =σ(ri)! →!!!!!



  

  

evaluation. In fact, the server that knows the operand can evaluate the operator with no risk of 
violation of pairwise authorizations. Join operations may instead require the cooperation of 
different servers (at least the ones knowing the two operands). The server in charge of computing 
the join is called master and the server that cooperates with the master is called slave. The data 
transmitted between the two servers for the execution of the join vary depending on the specific 
strategy adopted. For each join in the query plan, it is important to choose the evaluation strategy 
that minimizes data transfers and implies only authorized flows.  In the following, we summarize 
four join strategies (see Figure 10.6 for more details about the operations performed at each server 
and the corresponding information flows) that can be applied for join evaluation. For 
concreteness, we consider join operation rx ⋈ax=ay ry required by server SQ, where relations rx and 
ry are stored at Sx and Sy, respectively. 

• Broker-join: both Sx and Sy send their relations to SQ, which computes the join result. This 
approach can be applied independently on whether Sx, SQ, and Sy are buddies or not. 

• Peer-join: server Sy sends relation ry to Sx, which computes the join and sends the result 
to SQ. This approach works well when Sx and SQ are buddies, while Sy is not. In fact, Sx 
and SQ have the same privileges and therefore any result computed by Sx can always be 
sent to SQ.  

• Semi-join: servers Sx and Sy interact to compute the join result, which operates in four 
steps. Assuming that Sx acts as master, it first sends the projection over the join attribute 
of relation rx to Sy. As a second step, Sy computes the join between the relation received 
from Sx and ry, and sends the result back to Sx. In the third step, Sx computes the join 
between the received relation and rx, obtaining the join result. In the fourth step, Sx sends 
the join result to SQ. This approach works well when Sx and Sy are buddies as they need to 
exchange attributes and/or tuples of their relations. 

• Split-join: let rx1 be the set of tuples in rx that server Sy can access, and ry1 be the set of 
tuples in ry that server Sx can access. To evaluate the join between rx and ry, the operation 
is rewritten as the union of three joins: (rx ⋈ax=ay ry1)  (rx1 ⋈ax=ay ry2)  (rx2 ⋈ax=ay ry2), 
with rx2 the set of tuples in rx that Sy cannot access, and ry2 the set of tuples in ry that Sx 

∪ ∪

FIGURE 10.6 Working of the different join evaluation strategies 
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broker join 
Sx: rx ! SQ 
Sy: ry ! SQ 
SQ: rJ := rx ⋈ax=ay ry  

semi-join 
Sx: rJx := πax (rx) 
     rJx ! Sy 
Sy: rJxy := rJx ⋈ax=ay ry 

     rJxy ! Sx 
Sx: rJ := rJxy ⋈ax=ay rx 

       rJ ! SQ 

split-join 
Sx: rx1 := authorized tuples 
     rx2 := rx - rx1 
     rx1 ! Sy 
Sy: ry1 := authorized tuples 
     ry2 := ry – ry1 
     ry1 ! Sx 

Sx: rJxy1 := rx ⋈ax=ay ry1 

       {rx2, rJxy1}! SQ 

Sy: rJx1y2 := rx1 ⋈ax=ay ry2 

       {ry2, rJx1y2}! SQ 
SQ: rJx2y2 := rx2 ⋈ax=ay ry2 

     rJ := rJxy1 ∪  rJx1y2 ∪  rJx2y2 

peer join 
Sy: ry ! Sx 
Sx: rJ := rx ⋈ax=ay ry 

       rJ ! SQ 
  



  

  

cannot access. The computation of the join result operates in three steps. First, Sx and Sy 
compute rx ⋈ax=ay ry1 as a peer-join with Sx acting as master. Second, Sx and Sy compute 
rx1 ⋈ax=ay ry2 as a peer-join with Sy acting as master. Third, SQ cooperates with both Sx and 
Sy and acts as a master for the evaluation of rx2 ⋈ax=ay ry2 as a broker join and computes 
the union of the three partial results. This approach can be applied independently on 
whether Sx, Sy, and SQ are buddies or not. Then, it is also suited to scenarios where Sx, Sy, 
and SQ belong to three different providers. 

As an example, consider the pairwise authorizations in Figure 10.5(b) and the query in Figure 10.4. 
Figure 10.7(a) illustrates a safe query plan for the query, which is represented as a tree where the 
leaf nodes are the relations appearing in the FROM clause, and each non-leaf node corresponds to 
a relational operator. In this figure, the server acting as master for each operation is reported on 
the side of each node.  The deepest join in the tree is evaluated as a split join, while the other join 
is evaluated as a peer join. The operations evaluated at each server and the corresponding 
information flows are detailed in Figure 10.7(b). 

 Preferences in query optimization 
Besides the parties owning the data in a distributed database system, also requesters (e.g., end 
users) accessing such data may be interested in specifying confidentiality requirements that the 
query evaluation process should take into consideration. In particular, a requester authorized to 
access different data sources may want to keep secret to the involved providers that she is joining 
their data to possibly find hidden correlations. As an example, suppose that Alice works for  
Hospital, which is involved in the experimentation of a new medicine, and that she suspects that 
this medicine has serious side effects on people suffering from diabetes. To verify her assumption, 
she formulates query “SELECT T.result FROM Treatment T JOIN Medicine M ON T.mid=M.mid 
JOIN Patient P ON T.ssn=P.ssn WHERE M.principle=‘expz01’ AND P.disease= ‘diabetes’ ”. Alice 
however wants to keep her intention secret from both Hospital (which may fire her) and 
Pharmaceutical Company (to not rise suspects). In this case, the intension of a query (i.e., the goal 
of the requester) has to be protected from some servers [22][23][24][25][37]. The query plan may 
then need to satisfy constraints (i.e., requirements and preferences) specified by the requester 
formulating the query (e.g., certain operations cannot be revealed to, and hence also executed by, 
a given provider). In particular, a requester associates conditions with those portions of the query 
that need to be handled in a specific way during the query evaluation process. Such requirements 
and preferences can be effectively expressed through the following specific clauses that extend the 
traditional SQL syntax [24]. 

1. REQUIRING condition HOLDS OVER node_descriptor  
expresses a mandatory condition that must be satisfied by the query evaluation plan 

2. PREFERRING condition HOLDS OVER node_descriptor 
expresses a non-mandatory condition representing user’s preferences. 

 
 



  

   
FIGURE 10. 7 An example of safe query tree plan for the query in Figure 10.4 (a) and 
corresponding information flow (b) 
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⋈ T.mid = M.mid 

πM.mid 

M.mid

 

π T.ssn, T.mid 

σ disease=‘flu’ 

σ principle=‘paracetamol’ 

Treatment Medicine Patient 

π P.ssn, P.name, P.dob 
@SP 

⋈ P.ssn = T.ssn 
peer @SP 

π P.ssn, P.name, P.dob @SP 

@SP 

@SP 

π T.ssn @SP 

@SM 

@SM 

@SM 

@ST 

@ST 

split @SP 

(a) 
 ST : T := πT.ssn,T.mid (Treatment) 
         Tr1 := σresult=‘success’(Treatment) 
            T1 := πT.ssn,T.mid (Tr1) 
            T2 := T - T1 
            T1 ! SM 
SM :  Mp := σprinciple=‘paracetamol’(Medicine) 
            Mp1 := σauthdata>1/1/1995 (Mp) 
            M := πM.mid (Mp) 
            M1 := πM.mid (Mp1) 
            M2 := M - M1 
            M1 ! ST 
            TM1 := T1 ⋈T.mid=M.mid M2 
            {TM1, T2} ! SP 
ST : TM2 := T ⋈T.mid=M.mid M1 
            {TM2, M2} ! SP 
SP : TM := (T2 ⋈T.mid=M.mid M2) ∪TM1 ∪TM2 
            Pd := σdisease=‘flu’ (Patient) 
            P := πP.ssn,P.name,P.dob (Pd) 
            J := P ⋈P.ssn=T.ssn TM 
            Res := πP.ssn,P.name,P.dob (J) 
            Res ! SQ (b) 

 

!

ST#:# T!:=!πT.ssn,T.mid#(Treatment)!
Tr1!:=!σresult=‘success’(Treatment)!
T1!:=!πT.ssn,T.mid#(Tr1)!
T2!:=!T!/!T1!
T1!!!SM#

SM#:# Mp!:=!σprinciple=‘paracetamol’(Medicine)!
Mp1!:=!σauthdata>1/1/1995!(Mp)!
M!:=!πM.mid#(Mp)!
M1!:=!πM.mid!(Mp1)!
M2!:=!M!/!M1!
M1!!!ST!
TM1!:=!T1!⋈T.mid=M.mid#M2!
{TM1,!T2}!!!SP!

ST!:# TM2!:=!T!⋈T.mid=M.mid!M1!
{TM2,!M2}!!!SP!

SP!:# TM!:=!(T2!⋈T.mid=M.mid!M2)!∪ TM1!∪TM2!
Pd!:=!σdisease=‘flu’!(Patient)!
P!:=!πP.ssn,P.name,P.dob#(Pd)!
J!:=!P!⋈P.ssn=T.ssn!TM!
Res!:=!πP.ssn,P.name,P.dob#(J)!
Res!!!SQ!

! !
!
! !
! !
!



  

  

The node_descriptor is used to identify the portion of the query to which condition applies and 
represents a node in the query tree plan. A node_descriptor is a triple of the form <operation, 
parameters, master>, where operation is the operation represented by the node in the query plan, 
parameters are its input parameters, and master is the provider in charge of its evaluation. Each of 
the three components in a node descriptor can include a free variable (denoted with symbol @) or 
wild character * (representing any possible value for the corresponding element). The condition in 
a REQUIRING or PREFERRING clause imposes restrictions on the values of the free variables 
appearing in the node_descriptor. For instance, node descriptor <*, {(Treatment.ssn)}, @p> 
refers to the evaluation by an arbitrary provider @p of any operation over attribute ssn in relation 
Treatment. Condition @p <> SP implies that Hospital cannot operate over the ssn attribute of 
patients who are subject to a treatment. 
Both REQUIRING and PREFERRING clauses may include multiple conditions. While the conditions 
in the REQUIRING clause can be connected only through the AND operator and must all be satisfied, 
the conditions in the PREFERRING clause can be combined also using the CASCADE operator. The 
CASCADE operator defines a precedence among preferred conditions, thus imposing a partial order 
relationship among them. Consider query q in the example above formulated by Alice. To prevent 
Hospital and Pharmaceutical Company to infer Alice’s intention, she can add a REQUIRING clause 
to her query as illustrated in Figure 10.8(a). 
Given a query q including REQUIRING and/or PREFERRING clauses, the corresponding query plan 
has to satisfy all the mandatory conditions in the REQUIRING clause and maximize the preferences 
for the conditions in the PREFERRING clause. To this aim, the approach in [24] proposes to modify 
traditional query optimizers. The proposed solution adopts a bottom-up dynamic programming 
approach, which iteratively builds a safe query tree plan involving a larger subset of relations in 
the query at each iteration. Figure 10.8(b) illustrates a safe query tree plan for the query in Figure 
10.8(a). We note that: i) the deepest join in the tree can only be evaluated by ST because SM cannot 
operate over attribute mid (as demanded by the REQUIRING clause in q); ii) the other join operation 
can only be evaluated by ST because SP cannot operate over attribute ssn (as demanded by the 
REQUIRING clause in q). 

 Collaborative query execution with multiple providers 
Collaborative distribute systems support the evaluation of distributed queries that may require the 
selective sharing of data stored and managed by different parties. In this scenario, the correct 
definition and enforcement of access privileges ensuring that data are not improperly accessed and 
shared are crucial points for an effective collaboration and integration of large-scale distributed 
systems (e.g., [11][12][13][33][40]). In this section, we present an approach for collaborative 
distributed query execution in presence of access restrictions [11][12][13]. 
 
 



  

  

10.7.1 Scenario and data model 
Given a set of collaborating providers, the set of all relations they store, denoted R, is assumed to 
be acyclic and lossless. Acyclicity means that the join path over any subset of the relations is 
unique. Lossless means that the join among relations produces only correct information. At the 
instance level, each relation r is a finite set of tuples, where each tuple t is a function mapping 
attributes to values in their domains and t[A] denotes the mapping for the set A of attributes in t. 
Each relation r has a primary key and a set of referential integrity constraints. The primary key K  
of a relation r(a1,….,am) is a subset of attributes in {a1,….,am} that univocally identifies the tuples 
of r, meaning that there is a functional dependency between the primary key of a relation and all 

FIGURE 10.8 An example of query with privacy preferences (a) and of corresponding safe 
query tree plan (b) 

 

(a) 

 

(b) 



  

  

the other attributes.1 A referential integrity constraint is a pair <Fj,Ki>, with Fj a subset of the 
attributes in relation rj and Ki the primary key of relation ri, stating that the set Fj of attributes, 
called foreign key, can assume only values that Ki assumes in the tuples of ri. Notation I denotes 
the set of all referential integrity constraints between relations in R. 
Tuples of different relations can be combined through a join operation, working on the attributes 
with the same name, which represent the same concept in the real world. In particular, the 
considered approach focuses on natural joins where the join conditions are conjunctions of 
expressions of the form ax=ay, with ax an attribute of the left operand and ay an attribute of the right 
operand. In the following, the conjunction of join conditions between rx and ry will be represented 
as a pair J=<Ax,Ay>, with Ax (Ay, respectively) the attributes in rx (ry, respectively) involved in join 
conditions. Notation J will be used to denote the set of all possible joins not implied by referential 
integrity constraints between relations in R. Figure 10.9 illustrates an example of referential 
integrity constraints and of joins defined over the relations in Figure 10.1, which have been 
reported in the figure for the sake of readability. A sequence of join operations that combines tuples 
belonging to more than two relations is called join path and is formally defined as follows. 
 

Definition 10.3 (Join path). Given a sequence of relations r1,…,rn, a join  path over it, 
denoted joinpath(r1,…,rn), is a sequence of n-1 joins J1,…,Jn-1 such that i=1,…,n-1, 
Ji=<Ak,Ai> (J I), with Ak attributes in Jk, k<i, and Ai attributes of relation ri. 

10.7.2  Security model 
The security model regulating access to data in the distributed system relies on the definition of 
permissions, stating which party can access which portion of the dataset, and on relation profiles, 
which represent the information content of relations. In the following of this section, we introduce 
permissions, relation profiles, and their graphical representation. 
 
Permission. A permission defines a view over data that a given subject can access and is 
formally defined as follows. 
 

 

1A functional dependency between two subsets Ai and Aj of attributes means that for each pair of tuples tx, ty in r such that 
tx[Ai]=ty[Ai], also tx[Aj]=ty[Aj] holds.  

∀
∈ ∪

FIGURE 10.9 An example of relations, referential integrity constraints, and joins 
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R Insurance(ssn, type, premium) 
Patient (ssn, name, dob, disease) 
Treatment (ssn, mid, date, result) 
Medicine (mid, principle, auth_date) 

I <Treatment.ssn, Patient.ssn> 
<Treatment.mid, Medicine.mid> 

J <Insurance.ssn, Patient.ssn> 
 



  

  

Definition 10.4 (Permission). A permission is a rule of the form [A,R]àP where A is a set 
of attributes belonging to one or more relations, R is a set of relations such that for each 
attribute in A there is a relation in R including it, and P is the subject of the permission. 

 
Permission [A,R]àP states that provider P (and hence also any server or user in its authorization 
domain) can view the sub-tuples over the set A of attributes belonging to the join among relations 
in R. Since the set R of relations is acyclic, the join over relations in R is unique. Note that only 
attribute names appear in the set A while the relations to which they belong are specified in R. 
This applies also to the attributes appearing in more than one relation, consistently with the fact 
that these attributes represent the same entity in the real word. Figure 10.10 illustrates a set of 
permissions for the relations in Figure 10.9. It is important to note that while the presence of a 
relation in the set R of a permission possibly implies the release of fewer tuples (only the tuples 
matching the join conditions are released), it does not imply the release of less information. In 
fact, the tuples whose release is authorized by a permission [A,R]àP implicitly give information 
on the fact that they satisfy the join path joinpath(R), meaning that they match tuples of other 
relations. For instance, permission p5 in Figure 10.10 allows Alice to access the identifier and the 
authorization date of a subset of medicines used to treat patients. The inclusion of a relation r in 
the set R does not disclose any additional information only if there is a referential integrity 
constraint from a foreign key of a relation in R referencing attributes in r. For instance, permission 
p2 in Figure 10.10 and a permission with the same set of attributes and the set (Treatment, 
Patient) of relations allows Alice to access the same information as p2. Note also that the set 
R of relations may include relations that do not have any attribute in A. This may occur when a 
relation is needed to: i) build a correct association among tuples belonging to different relations 
(connectivity constraint); or ii) restrict the values of the attributes in A to only those values 
appearing in tuples that can be associated with such a relation (instance-based restriction). For 
instance, permission p3 includes relation Treatment that is needed only to correctly associate 
tuples in Patient with tuples in Medicine, and permission p5 includes relation Treatment 
that is only needed to restrict the information on released medicines. 
 

Relation profile. The relation profile of a base or derived (i.e., computed through a query) relation 
r characterizes its information content and is necessary to determine whether a provider can access 
the relation. The profile of a relation r is a triple [rp,r⋈,rs], where rp is the set of attributes in r, 

r⋈ is the set of relations used in the definition/construction of r, and rs is the set of attributes 
involved in the selection conditions in the definition/construction of r. Intuitively, the meaning of 
a relation profile [rp,r⋈,rs] is that the base or derived relation r brings information on attributes 

FIGURE 10.10 An example of permissions for the relations in Figure 10.1 
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p1: [(ssn, name, dob, disease), (Patient)] !Alice 
p2: [(ssn, tid, date, result), (Treatment)] !Alice 
p3: [(name, principle), (Patient, Treatment, Medicine)] !Alice 
p4: [(ssn, type, premium), (Insurance)] !Alice 
p5: [(mid, auth_date), (Treatment, Medicine)] !Alice 

 



  

  

in rp rs appearing in the set r⋈ of joined relations. For instance, the profile of the relation 
resulting from the query in Figure 10.4 is [(ssn, name, dob), (Patient, Treatment, 
Medicine), (principle, disease)]. 
 
Schema and view graph. A set R of relations can be represented through a schema graph, which 
is a mixed graph with one node for each attribute of the relations in R, one non-oriented arc for 
each join in J, one oriented arc for each referential integrity constraint in I and functional 
dependency between the key of a relation and its non-key attributes. Figure 10.11(a) illustrates the 
schema graph representing relations, referential integrity constraints, and joins in Figure 10.9. 
Each permission [A,R]àP and each relation profile [rp,r⋈,rs] can be seen as a view over R that 
is modeled as a pair [Attr, Rel] where: Attr corresponds to the attributes in the permission/relation 
profile (i.e., A/rp rs), and Rel corresponds to the relations in the permission/relation profile (i.e., 

∪

∪

(a) schema graph (b) p1 (c) p2 

(d) p3 (e) p4 (f) p5 

 
FIGURE 10.11 Schema graph for the relations in Figure 10.9 (a) and view graphs of the 
permissions in Figure 10.10 (b-f) 



  

  

R/r⋈). In the characterization of views, we take into consideration the fact that the set Rel of 
relations can be extended by inserting all relations reachable from those already in Rel via 
referential integrity constraints without adding information. Given a set R of relations, we then 
denote with R* the set of relations obtained closing R via the set I of referential integrity 
constraints. For instance, the closure of R={Treatment} is R*={Treatment, Patient, 
Medicine}. In fact, all the values of attribute ssn in Treatment also appear in Patient; 
analogously, all the values of attribute mid in Treatment also appear in Medicine. 
A view V=[Attr, Rel] can be graphically represented as a view graph GV obtained coloring the 
schema graph with three colors: white, black, and clear. The graph coloring is performed according 
to the following rules [11]: i) all nodes appearing in Attr, and all arcs belonging to joinpath(Rel*) 
or going from the key of a relation in Rel* to an attribute in Attr joinpath(Rel*) are black; ii) all 
nodes belonging to a relation in Rel* that are not black and all arcs going from the key of a relation 
in Rel* to one of its attributes that neither belongs to Attr nor appears in joinpath(Rel*) are white; 
iii) the remaining nodes and arcs are clear. Figure 10.11(b-f) illustrates the view graphs 
corresponding to the permissions in Figure 10.10. In the figure, black nodes and arcs are 
represented by filled nodes and bold lines, white nodes and arcs are represented by continuous 
nodes and lines, and clear nodes and arcs are represented by dashed nodes and lines. 

10.7.3  Authorized views 
Given a subject and the set P of her permissions, the release of a base or derived relation to her is 
authorized when the information directly or indirectly conveyed by the relation is included in a 
permission. (In the following discussion, we refer to permissions of a specific subject and therefore 
we omit it). The indirect information release that a relation r computed through a query q may 
cause is related to: i) the attributes used in the WHERE clause but not appearing in the SELECT clause 
of q (i.e., the attributes not appearing in r), which are however captured by the relation profile (rs); 
and ii) the presence of join conditions in q that restrict its set of tuples. A permission p=[A,R] 
authorizes the release of a relation r if and only if p includes: i) at least all the attributes that directly 
or indirectly belong to r (i.e., (rp rs) ⊆ A); and ii) all and only the join conditions evaluated to 
determine r (i.e., R* = r⋈*). Note that the set of joins (extended to consider those corresponding 
to referential integrity constraints) must be exactly the same for the authorizing permission and the 
authorized relation. This guarantees that p and r refer to the same set of tuples (i.e., the tuples 
belonging to the join result). As an example, consider the set of permissions in Figure 10.10 and 
suppose that Alice submits a query for retrieving the name of all patients. Permission p1 authorizes 
the execution of the query. In terms of the view graphs, this is equivalent to say that the view graph 
Gr of the derived relation and the view graph Gp1 of the permission have exactly the same black 
arcs among attributes in different relations, and that all nodes that are black in the view graph of 
the query are also black in the view graph of the permission. 
Note that while a subject may not have a single permission p authorizing the release of a relation 
r, she may be able to compute r by joining other authorized relations. For instance, consider query 
“SELECT name FROM Patient JOIN Insurance ON Patient.ssn=Insurance.ssn”. Even if 
no permission in Figure 10.10 authorizes Alice for this query, such a query does not provide any 
information that she cannot access (Alice could execute two separate queries on Patient and 
Insurance and join their results). The release of a relation r should therefore be allowed 
whenever there is a permission or a composition thereof that authorizes it. However, the 
composition of permissions has to be carefully performed to avoid that the composed permission 
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authorizes releases that the original permissions do not authorize. In particular, two permissions 
pi=[Ai,Ri] and pj=[Aj,Rj] can be composed if and only if the join between the two corresponding 
views over R is lossless (i.e., the join produces a correct result w.r.t. R), meaning (in our scenario) 
that the attributes in the intersection Ai ∩ Aj form the key of one of the two views. For instance, 
permissions p1 and p4 in Figure 10.10 can be composed because the common attribute ssn is the 
key for relation Patient (and also for relation Insurance). On the contrary, p1 and p3 cannot 
be composed, because name is not the key of the views corresponding to the two permissions. In 
terms of the view graphs, two permissions pi and pj can be composed if and only if there is a path 
of black edges from a node n that is black in both Gpi and Gpj to each black node in Gpi (or to each 
black node in Gpj). The composition of two permissions pi=[Ai,Ri] and pj=[Aj,Rj] is a new 
permission pi ⊗ pj = [Ai  Aj, Ri Rj]. Figure 10.12 illustrates some of the permissions resulting 
from the composition of the permissions in Figure 10.10. Note that permission pi ⊗ pj may in turn 
be composed with another permission pk that could be composed with neither pi nor pj. Notation 
P⊗ denotes the closure of P with respect to the composition operation. For instance, the closure 

∪ ∪

 

(a)  p1 

 

(b) p2 (c)  p1⊗ p2 

 

(d) p1 (e) p4 (f)  p1⊗ p4 

FIGURE 10.12 An example of composed permissions 



  

  

of the permissions in Figure 10.10 is P⊗ = {p1, p2, p3, p4, p5, p1⊗ p2, p1⊗ p4, p2⊗p4, p2⊗ p5, p1⊗ p2⊗ 
p4, p1⊗p2⊗p5, p1⊗p2⊗ p4⊗p5}. Given the set P of permissions granted to a subject, she is authorized 
for r if there is a permission p in P⊗ that authorizes r. The work in [11] presents an efficient 
algorithm to verify whether a relation is authorized by a set of permissions without computing all 
possible compositions of permissions in P. 

10.7.4  Safe query plan 
Given a query tree plan for a query q, it is necessary to assign each operation to a server responsible 
for its execution. Such an assignment should be safe, meaning that the server should be authorized 
to execute the corresponding operation. Since each server is authorized to view the relations it 
holds, every unary operation (i.e, selection and projection) can be executed by the server holding 
the relation itself. Join operations instead require cooperation between the servers that hold the 
relations to be joined. Given a join operation rx ⋈J ry, with rx a relation of server Sx and ry a relation 
of server Sy, the join can be executed as a regular join or as a semi-join. Regular join means that 
the slave sends to the master its relation, and then the master computes the join. Semi-join means 
that the master sends to the slave the projection of its relation over the attributes involved in the 
join, and the slave computes the join with its relation. The slave then returns the result of such join 
operation to the master that in turn computes the final result. Table 10.1 summarizes the data 
exchanges occurring during the execution of a relational operation as well as the profile of the 
relation communicated at each exchange. In the table, before each operation, we report the server 
Si executing it. Column [m,s] reports the assignment as a pair, where the first element is the server 
serving as a master and the second element is the server serving as a slave. For a unary operation 
applied over relation r, the master is the server where relation r is stored, and the slave is NULL. In 
[12] the authors present an approach that, given a query tree plan, computes a safe assignment (if 

 
TABLE 10.1 Execution of relational operations and required views and profiles [12] 



  

  

it exists), meaning that each node of a query tree plan is assigned to a pair of servers so that there  
are only authorized information flows. 
As an example, consider the additional permissions in Figure 10.13 and assume that Alice submits 
query q in Figure 10.4. The algorithm proposed in [12] to compute a safe assignment first verifies 
whether Alice is authorized for the relation profile resulting from q. In this case, it is immediate to 
see that the profile of q, [(ssn, name, dob), (Patient, Treatment, Medicine), (principle, 
disease)], is authorized by the permission resulting from p1⊗p2 = [(ssn, name, dob, disease, mid, 

⋈ T.mid = M.mid 

p M.mid p T.ssn, T.mid 

s disease=‘flu’ 

s principle=‘paracetamol’ 

Treatment Medicine Patient 

p P.ssn, P.name, P.dob @[SP, NULL] 

⋈ P.ssn = T.ssn 
@[SP, SM] 

p P.ssn, P.name, P.dob p T.ssn @[SM, NULL] 

@[SM, NULL] 

@[SM, NULL] 

@[SM, NULL] 

@[SM, NULL] 

@[ST, NULL] 

@[ST, NULL] 

@[SP, NULL] 

@[SP, NULL] 

@[SP, NULL] 

FIGURE 10.14 An example of a safe assignment for the query in Figure 10.4 

p6: [(ssn, type, premium), (Insurance)] à Insurance 
p7: [(ssn, name, dob, disease),(Patient)] à Hospital 
p8: [(ssn, result, principle), (Patient, Treatment, Medicine)] àHospital 
p9: [(ssn, mid, date, result), (Treatment)] à Research Center 
p10: [(mid, principle, auth_date), (Medicine)] à Pharmaceutical Company 
p11: [(ssn, mid, results), (Treatment)]  à Pharmaceutical Company 
p12: [(ssn), (Patient)] à Pharmaceutical Company 

 FIGURE 10.13 An example of permissions for the relations in Figure 10.9 



  

  

date, results), (Patient, Treatment, Medicine)]. The algorithm then determines a safe 
assignment for all operations appearing in the query tree plan. Figure 10.14 illustrates the relation 
profile associated with each node in the corresponding query tree plan, and a safe executor 
assignment for the same. 

 Encryption for enabling multi-provider queries  

Controlled data sharing for collaborative queries can benefit from the presence of providers 
offering computational resources at competitive prices. However, data could be sensitive or subject 
to access restrictions that can affect the possibility of relying on external providers for their 
management and processing. The model described in  [10] addresses this problem by proposing 
an approach that enables collaborative and distributed query execution with the controlled 
involvement of providers that might be not fully trusted to access the data content. For 
concreteness, but without loss of generality, the approach is framed in the context of relational 
database systems. The proposed approach is based on the definition of three levels of visibility: 

• plaintext visibility: the subject can access the plaintext values of the attribute of a relation;  
• encrypted visibility: the subject cannot access the plaintext values of the attribute of a 

relation, but can view an encrypted version of the same;  
• no visibility: the subject cannot access the values of the attributes of a relation neither 

plaintext nor encrypted. 
To enable the owners of relations (authorities) to formulate permissions independently (i.e., 
without the need to coordinate with each other), each permission regulates the release of a single 
relation (the one owned by the authority). Formally, a permission is defined as follows. 
 

Definition 10.5 (Permission – with encrypted visibility). Given a relation r and a set P 
of providers, a permission is a rule of the form [A,E]àP, where AÍr and EÍr are subsets 
of attributes in r such that AÇE=Æ, and PÎ PÈ{any}. 

Permission [A,E]àP states that provider P (and hence also any server or user in its authorization 
domain) can view the attributes in A in plaintext and the attributes in E encrypted, while P cannot 
see the attributes in r that belong neither to A nor to E. Note that each provider can have only one 
permission for each relation. A default permission, specified using keyword ‘any’ as subject of the 
rule, applies when no permission has been defined for the provider. Figure 10.15 illustrates a set 
of permissions over relations Insurance and Patient in Figure 10.1 for servers SI and SP, for 
user Alice, and for an external server SX that could possibly be involved in query evaluation. As 
visible from the figure, each data owner is authorized to access all the attributes in its relation in 
plaintext (e.g., SP can access in plaintext all the attributes of relation Patient), and possibly also 
attributes of relations owned by other authorities in plaintext or encrypted (e.g., SP can access 
attribute ssn of relation Insurance in plaintext and attribute type encrypted, while it cannot 
access attribute premium). External providers can access a subset of the attributes of relations in 
plaintext or encrypted (e.g., SX can access attribute premium of relation Insurance in plaintext 
and attribute ssn encrypted, but it cannot access attribute type). 
To verify if a subject is authorized to see a relation (base or resulting from the evaluation of a sub-
query) it is necessary to capture its information content. To this purpose, similarly to what 



  

  

illustrated in Section 10.7, each relation is characterized by a relation profile that depends on the 
explicit and implicit information leaked by the relation. To take into consideration both plaintext 
and encrypted visibility of attributes, the relation profile is defined as a 5-uple [rvp, rve, rip, rie, r~] 
where: 

• rvp and rve are the sets of visible attributes appearing (in plaintext and encrypted, 
respectively) in the schema of relation r; 

• rip and rie are the sets of implicit (plaintext and encrypted, respectively) attributes, that is, 
attributes that might not appear in the schema of relation r, but that have been involved in 
its computation (e.g., attributes appearing in a selectin condition or in a grouping clause); 

• r~ is the set of equivalent attributes, that is, attributes that have been compared in a 
condition or combined in a computation in the (sub-)query producing r.  

Consider a query operating on the relations in Figure 10.1 returning the premium paid by patients 
suffering from flu (i.e., SELECT I.premium, P.disease FROM Insurance JOIN Patient ON 
I.ssn=P.ssn WHERE P.disease=‘flu’). Figure 10.16 illustrates an example of query plan, extended 
with encryption and decryption operations, for the evaluation of this query. In the figure, each node 
is complemented with the profile of the relation resulting from the evaluation of the node itself. 
Encrypted attributes are represented on gray background. The profile of the result of the join 
operation includes attributes I.premium and P.diesase in the visible plaintext component, and 
attributes I.ssn and P.ssn in the visible encrypted component. The implicit component includes 
P.disease  in plaintext, since it keeps track of the evaluation of selection condition P.disease=‘flu’. 
Finally, the equivalence component includes attributes I.ssn and P.ssn, which have been compared 
by the join condition.  
Given a (base or derived) relation r with profile [rvp, rve, rip, rie, r~], a subject P is authorized to 
access r if her permissions enable her to access the information explicitly and implicitly conveyed 
by r. More precisely, P is authorized for r if the following conditions are satisfied. 

1. P is authorized to access in plaintext all the attributes, visible and implicit, represented in 
plaintext in r (i.e., attributes in rvp È rip). 

2. P is authorized to access in plaintext or in encrypted form all the attributes, visible and 
implicit, represented in encrypted form in r (i.e., attributes in rve È rie). Indeed, plaintext 
visibility naturally implies encrypted visibility since the encrypted representation of 
attribute values conveys less information than the corresponding plaintext values. 

3. P is authorized to access in the same form, be it plaintext or encrypted, all the equivalent 
attributes (i.e., attributes appearing in the same equivalence set in r~). The idea is that the 
release of any of the attributes in an equivalence set indirectly leaks information also on  

[(P.ssn, P.name, P.dob, P.disease), -] à SP 
[(I.ssn), (I.type)] à SP 
[(P.dob), (P.ssn, P.name, P.disease), -] à SI 
[(I.ssn, I.type, I.premium), -] à SI 
[(P.ssn, P.name, P.dob, P.disease), -] à Alice 
[(I.ssn, I.type, I.premium), -] à Alice 
[(P.disease), (P.ssn)] à SX 
[(I.premium), (I.ssn)] à SX 
 

FIGURE 10.15 An example of permissions for relations Insurance and Patient in 
Figure 10.1 



  

  

 
  
 
 
 
                                                 
   
 
     

 
 
 

 
 
 
 

 
 
 
 
 

the values of the other attributes in the same equivalence set. Uniform visibility then  
prevents unintended information leakage of attribute values due to comparisons in query 
evaluation. For instance, the evaluation of condition P.ssn=I.ssn should not leak the values 
of P.ssn to a subject authorized for accessing I.ssn in plaintext and P.ssn encrypted. 

Consider, as an example, the permissions in Figure 10.15 and the query plan in Figure 10.16 
extended with encryption operations. Server SX is authorized for the relation resulting from the 
join operation, while neither SI nor SP can access it. In fact, SP is not authorized for attribute 
I.premium, represented in plaintext in the relation profile.  On the other hand, SI can access all the 
attributes in the visible and implicit components of the relation, but it does not have uniform 
visibility over I.ssn and P.ssn, which are compared in the join condition. Indeed, SI can access 
P.ssn only encrypted, while it has plaintext access to I.ssn. 
Considering a query plan q, each operation should be assigned to a server for its execution in 
respect of the authorization policy [3][10][21]. Intuitively, an operation can be assigned to any 
server that is authorized to view: i) the operands of the operation, taking into consideration the fact 
that all the attributes in the relation schema that are not needed for the evaluation of the operation 
can be encrypted on-the-fly for query evaluation, and ii) the operation result. The choice, among 
all the potential candidates, of the server in charge of the execution of each operation is then based 
on economic and/or performance parameters. Encryption and decryption operations can be 
inserted on-the-fly to adjust visibility of attributes to satisfy permissions and to enable the 
evaluation of operations. In particular, encryption can be used to protect attributes so to permit the 

@SP 

⋈ I.ssn = P.ssn 

p P.ssn, P.disase 

p I.ssn, I.premium s P.disease=‘flu’ 

Insurance Patient 

p I.premium, P.disease 

P.ssn, P.disease 
- 
- 

P.ssn, P.disease 
P.disease 
- 

I.premium, P.disease    I.ssn, P.ssn 
P.disease 
I.ssn, P.ssn 

Enc(P.ssn) Enc(P.ssn) P.disease  P.ssn 
P.disease 
- 

I.ssn, I.premium 
- 
- 

I.premium  I.ssn 
- 
- 

I.premium,P.disease 
P.disease 
I.ssn, P.ssn 

I.ssn,I .type, I.premium 
- 
- 

P.ssn, P.name, P.dob, 
P.disease 
- 
- 

FIGURE 10.16 An example of query plan, extended with encrypt operations, with profiles and 
assignments 

@SX 

@SX 

@SI @SP 

@SP 

@SP 

@SI 

@SI 



  

  

assignment of operations to servers that could not be considered otherwise. Decryption permits 
accessing plaintext values of encrypted attributes when needed in the computation. For instance, 
for each node in the query plan, Figure 10.16 reports its assignment. Note that attributes P.ssn and 
I.ssn are encrypted before the join operation since server SX, which is in charge of join evaluation, 
is not authorized to access these attributes in plaintext. 

 Summary 
The need of a party to share information and to cooperate with others is growing every day. This 
situation requires the definition of approaches for easily defining and effectively enforcing the 
selective sharing requirements of information stored at different providers, possibly also crossing 
administrative and enterprise domains. In this chapter, we have surveyed recent solutions aimed 
at providing effective control to data owners interested in selectively sharing their data for 
collaborative distributed computations. We have also illustrated approaches for defining query 
evaluation plans that satisfy all the restrictions to data release defined by the different collaborating 
parties. 
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