10

Specification and Enforcement of Access

Policies in Emerging Scenarios

Sabrina De Capitani di Vimercati
Universita degli Studi di Milano

Sara Foresti
Universita degli Studi di Milano

Pierangela Samarati
Universita degli Studi di Milano

Contents

0 0 S 1 4 o T 11 T Y o TN 2
10.2. View-based access CONtIOl........cccccceirieeiiiiieiiiiinniirreneceerennesrensesrensessenssesrenssessennnnns 4
0 0 TR Yol of =T o Y= 4 =Y 5
10.4. SOVEIISN JOINS ..ccuuiiiuiieeiieniiienierneiernettensiesnserenserenserensernssssnssssnssssnsassnssssnssssnssssnsennes 7
10.5. Pairwise aUthOrizations........cccccireeeiiiiiiiiiiiccerrccrreecrrenee s reneesrensseseensssrensseseennnnns 8
10.6. Preferences in query optimization.....ccccccieeeeiiieeiiiiiiiciniiiirrecerenneereneeeesennsessenanes 11
10.7. Collaborative query execution with multiple providerscccccereencirrinccerinnccrrenann. 13

10.7.1 Scenario and data MO ...c.uieciiiiieeie e et teesbe e st e e sabeesbeeebeeensaeeaeas 14

10.7.2 SECUITEY MO ...ttt st st s bttt e b et e e i e s abesabesaeesaeesbeenbeebeeabean 15

10.7.3 F Y01 o Lo T b2=Te IV SPRU 18

10.7.4 SAfE QUETY PIAN. ..t sttt ettt ettt st st she e sheenbeebeeabean 20
10.8. Encryption for enabling multi-provider queriescccccorveeiiiiecciriiciireeccerreeeeenenn 22
10.9. SUMMAIY..iciieiiieiiiiieiiieiieeiieiieiiseiisesiaierssisestasrstsssstassrsssssstssssassssssssssassssssasssasssnssns 25

=S ==L o= 25

10.1 Introduction

Information sharing and data dissemination are at the basis of our digital society. Users as well as
companies access, disseminate, and share information with other parties to offer services, to
perform distributed computations, or to simply make information of their own available. Such a
dissemination and sharing process however is typically selective, and different parties may be
authorized to view only specific subsets of data. Exchanges of data and collaborative computations
should be controlled to ensure that authorizations are properly enforced and that information is not
improperly accessed, released, or leaked. For instance, data about the patients in a hospital and
stored at one provider might be selectively released only to specific providers (e.g., research
institutions collaborating with the hospital) and within specific contexts (e.g., for research
purposes). This situation calls for the definition of a policy specification and enforcement
framework regulating information exchange and access in the interactions among parties. This
problem has been under the attention of the research and development communities and several
investigations have been carried out, proposing novel access control solutions for emerging and
distributed scenarios. In particular, attention has been devoted to the development of powerful
and flexible authorization languages and frameworks for open environments, policy composition
techniques, privacy-enhanced access control and identity management solutions, policy
negotiation and trust management strategies, fault tolerant policies and selection of plans based on
user’s requirements, and access control models and policies for regulating query execution in
distributed multi-authority scenarios (e.g., [6] [7] [9][14] [15][16] [17][18][19] [27]
[30][31][32][42]). Other works have addressed the problem of private and secure multi-party
computation, where different parties perform a collaborative computation learning only the query
results and nothing on the inputs (e.g., [41]). In this chapter, we focus on a scenario where different
parties (data owners or providers) need to collaborate and share information for performing a
distributed query computation with selective disclosure of data. For the sake of simplicity, we will
assume that the data stored at each provider are modeled by a relational table r(ay,...,an), with
the name of the relation and ajy,...,an its attributes. In the following, we refer our examples to a set
of four different providers, each storing one relation (Figure 10.1) Insurance company S; with
relation Insurance, Hospital Sp with relation Patient, Research Center St with relation
Treatment, and a Pharmaceutical Company Sy with relation Medicine. In such a scenario,
the problem of executing distributed query computations while ensuring that information is not
improperly leaked, can be translated into the problem of producing query plans with data sharing
constraints. Traditional query optimizers aim at optimizing query plans by pushing down selection
and projection operations, and by choosing, for each operation in the query plan, the provider in
charge of its evaluation and how the operation should be executed (e.g., they decide which join
evaluation algorithm should be adopted and/or which index should be used). Query optimizers do
not take into consideration possible share restrictions that data owners may wish to enforce over
their data. For instance, the hospital may want to keep patients’ diseases confidential and allow

S;: Insurance (ssu, type, premium)

Sp: Patient(ssn, name, dob, disease)

Sr: Treatment(ssn, mid, date, result)
Sy Medicine(mid, principle, auth_date)

FIGURE 10.1 An example of four relations stored at four different providers

the insurance company to access the data of their customers only. In the definition of efficient
query plans, the query optimizer should therefore consider also access privileges to guarantee that
query evaluation does not imply flows of information that should be forbidden. In the remainder
of this chapter, we survey the following existing approaches that address the above-mentioned
problems.

View-based access control: in the relational database context, it is necessary to define
authorizations that provide access to portions of the original relations. In Section 10.2, we
describe solutions that address this problem by defining views, which are used to both grant
access privileges to users and to enforce them at query evaluation time.

Access patterns: in many scenarios data sources may have limited capabilities, that is, data
can be accessed only by specifying the values for given attributes according to some
patterns. In Section 10.3, we describe approaches that associate a profile with each relation
to keep track of the attributes that should be provided as input to gain access to the data.
Sovereign join: when relations are owned by different parties, the evaluation of join
operations among them may reveal sensitive information to both the server in charge of the
evaluation and to the two providers owning the operands. In Section 10.4, we illustrate a
join evaluation strategy that reveals to the server evaluating the join neither the operands
nor the result.

Coalition networks: in coalition networks, different parties are aimed at sharing their data
for efficiency in query evaluation while protecting data confidentiality. In Section 10.5, we
describe a solution based on the definition of pairwise authorizations to selectively regulate
data release.

User-based restrictions: besides providers, also users may wish to define privacy
restrictions in query evaluation to protect the objective of their queries with respect to the
providers. In Section 10.6, we illustrate a proposal that permits a user to specify preferences
about the providers in charge of the evaluation of her queries.

Authorization composition and enforcement in distributed query evaluation: in distributed
scenarios where data release is selective, it is necessary to define an authorization model
that, while simple, guarantees that parties cannot improperly access data. In Section 10.7,
we describe an authorization model regulating the view that each provider can have on the
data and illustrate an approach for composing authorizations.

Encryption to enable distributed query evaluation: query evaluation could benefit from the
availability of external cloud providers offering computational resources at competitive
prices, which may however not be authorized for accessing plaintext data. In Section 10.8,
we present an authorization model that distinguishes three visibility levels (i.e., no
visibility, encrypted visibility, plaintext visibility) to enable the involvement of third
parties in query evaluation, and illustrate an approach for enforcing such authorizations in
query execution by possibly adjusting data visibility on-the-fly.

CREATE AUTH VIEW AvgPremium AS CREATE AUTH VIEW MyData AS

SELECT type, AVG(premium) AS avg SELECT *
FROM Insurance FROM Insurance
GROUP BY fype WHERE ssn=3user_id
(a) (b)
CREATE AUTH VIEW Customers as SELECT AVG(premium)
SELECT ssn, date, result FROM Insurance

FROM Treatment T
JOIN Medicine M
ON T.mid=M.mid
WHERE M.principle IN $8values

(c) (d)

FIGURE 10.2 An example of traditional view (a), parameterized view (b), access pattern view
(c), and valid query (d)

10.2 View-based access control

In the relational database context, access restrictions can be defined over views that provide access
to only certain portions of the underlying relations [29][35][38][39]. Authorization views represent
a powerful and flexible mechanism for controlling what information can be accessed and can be
distinguished between traditional relational views and parameterized views. A parameterized view
makes use of input parameters (e.g., Suser id, $time) in its conditions to possibly change the
authorized subset of data depending on the execution context (e.g., the identity of the subject
performing the access). Access pattern views are parameterized views whose parameters are
bounded at access time to any value. For instance, Figure 10.2(a-c) illustrates three authorization
views over the relations in Figure 10.1. The first view (4vgPremium) is a traditional relational
view that authorizes the release of the average premium for each insurance type. The second view
(MyData) is a parameterized view that allows each user to access her data (variable Suser id) in
relation Insurance. The third view (Customers) is an access pattern view that allows the access
to treatments using medicines whose active principles are provided as input (variable $$values).
The main disadvantage of a view-based solution is that it forces requesters (i.e., final users and
providers) to know and directly query authorization views. To overcome such a limitation, more
recent models operate in an authorization-transparent way (e.g., [35][38][39]). These solutions
permit requesters to formulate their queries over base relations. The access control system will be
in charge of checking whether such queries should be permitted or denied. Two models can be
used to determine whether a query ¢ satisfies the authorization views granted to the requester
[29][38].

e Truman model: query q is rewritten substituting the original relations with the authorization
views and base relations that the requester is authorized to access. This rewriting aims at
ensuring that the requester does not obtain information that she cannot access. The
advantage of this solution is that it always provides an answer to every query formulated
by a requester. The drawback is that this approach may return misleading results. As an

example, assume that a user is authorized to access view MyData and submits the query in
Figure 10.2(d). Before evaluation, the query is reformulated as “SELECT AVG(premium)
FROM MyData,” which will return the premium of the user. The user will then have the
impression that her premium is exactly equal to the average premium of all the customers
of the insurance company.

e Non-Truman model: query q is subject to a validity check that aims at verifying whether
the query can be answered using only the information contained in the authorization views
and base relations that are accessible to the requester. If the query is valid, it is executed
as it is without any modification. Otherwise, the query ¢ is rejected. To check its validity,
query g is compared against the authorization views of the requester. For instance, the
query in Figure 10.2(d) is valid with respect to the authorization views in Figure 10.2(a-c).
In fact, the query can be evaluated over view AvgPremium. On the contrary, query “SELECT
AVG(premium) FROM Insurance JOIN Patient ON I.ssn=P.ssn GROUP BY disease” is
not valid.

View-based access control solutions have been developed for centralized scenarios, but they can
be adapted to operate also in distributed database systems. However, when the diversity of the
providers involved and of their views is considerable and dynamic, view-based access control
approaches result limiting, since they require to explicitly define a view for each possible access
need. This aspect is particularly critical in distributed scenarios, where inter-organizational
collaborations occur on a daily basis, and where the heterogeneity of the providers and of their
access restrictions can be high.

10.3 Access patterns

In many scenarios, data sources can be accessed only providing the values of certain attributes as
input. These values are used to properly bound query results. For instance, to access data available
on the web, users are often required to fill in a form that includes mandatory fields. The provider
can then bound the returned data to the tuples matching the values specified in the form. As
another example, a research center may be willing to share the results of the testing of medicines
with a pharmaceutical company only if the company provides as input the identifier of the
medicines it produces. Access patterns [26] are used to formally define these kinds of access
restrictions, which have to be properly enforced by query evaluation engines. Each relation
schema r(ai,...,an) in a distributed database is then assigned an access pattern o, which is a string
of m symbols, one for each attribute in the schema, as formally defined in the following.

Definition 10.1 (Access Pattern) Given a relation » defined over relational schema
r(ai,...,am), an access pattern o, associated with », denoted 7%, is a sequence of m symbols
in {i, o}.

Insurance’ (ssn, type, premium)
Patient™ (ssn, name, dob, disease)
Treatment’” (ssn, mid, date, resulf)
Medicine® (mid, principle, auth_date)

FIGURE 10.3 An example of access patterns

If the j-th symbol of the access pattern is 7, the j-th attribute g; in the relation schema is said to be
an input attribute; it is an output attribute, otherwise. Input attributes are those that must be
provided as input to gain access to a subset of tuples in relation . Output attributes are instead not
subject to constraints for access to the data. (Note that input and output attributes can also be
referred as bounded and free attributes, denoted b and f; respectively.) Figure 10.3 illustrates an
example of access patterns defined over the relations in Figure 10.1 where, for example,
Insurance(ssn, type, premium) indicates that the ssn of customers must be provided as input
to access attributes #ype and premium of their insurance contracts.

The presence of access patterns may complicate the process of query evaluation. In fact, the
execution of a query ¢ under access restrictions may require the evaluation of a recursive query
plan where the values extracted from a relation (say 7,), which may even not be explicitly
mentioned in the query itself, have to be used to access another relation (say 7x) in g. Clearly, the
schema of relations r, and 7, must include attributes characterized by the same domain (e.g., join
attributes). For instance, with reference to the access patterns in Figure 10.3, the result of the
projection over attribute ssn of relation Treatment can be used as input for relation
Insurance, to obtain the plans subscribed by patients subject to a treatment.

The enforcement of access restrictions modeled by access patterns requires a revision of the
traditional query evaluation strategies. In fact, classical solutions do not take into consideration the
fact that query plans may need to operate recursively.

Most of the proposed solutions for the definition of query plans with access patterns consider
conjunctive queries (e.g., [3][8][20][26][28][34][36]), that is, queries that include selection,
projection, and join operations only and aim at identifying the tuples that satisfy all the conditions
implied by the values given as input to the query. An effective (although not optimized) approach
to determine a query plan that satisfies all the access restrictions operates according to the
following three steps.

e Initialize a set B of constant values with the constant values in ¢ and a local cache to the
empty set.

e Iteratively access relations according to their access patterns using values in B and, for each
accessed relation, update the cache with the tuples obtained and update B with the
corresponding values.

e Evaluate g over the tuples in the local cache.

For instance, consider query ¢ in Figure 10.4 and the access patterns in Figure 10.3. Condition
M.principle=‘paracetamol’ provides the required input value to access the tuples in relation
Medicine and to extract the list of identifiers mid of the medicines that contain this active
principle. This list of mid values can in turn be provided as input for accessing the tuples of interest
in relation Treatment, which include the ssn of the patients treated with these medicines. The
list of ssn values, together with value flu for attribute disease, finally permit to get access to the
tuples in relation Patient, which correspond to the result of query g. The above approach has
been subsequently enhanced by considering, for example, run-time optimization techniques for the

SELECT P.ssn, P.name, P.dob

FROM Treatment T JOIN Medicine M ON T.mid=M.mid
JOIN Patient P ON T.ssn=P.ssn

WHERE M. principle=‘paracetamol’ AND P.disease=‘flu’

FIGURE 10.4 An example of query over relations in Figure 10.1

generation of a query plan and integrity constraints (e.g., [2][3][5][8][20][28][36]).

10.4 Sovereign joins

When operating with different relations owned by different providers, the operation that most of
all may reveal sensitive information to non-authorized subjects is the join operation, which
combines tuples from different relations. In fact, the evaluation of the join between two relations
rx and r, reveals the content of the two operands to the server S evaluating it. In many scenarios,
however, the content of the relations involved in the join operation should be kept confidential,
even if the join result can possibly be revealed to the requester who submitted the query. As an
example, suppose that we need to extract the collateral effects of a medicine that depend on the
age of the patients treated with that medicine. However, both the hospital and the research center
conducting the experimentation want (or are legally forced) to keep their own data private.
Sovereign join [1] has been proposed as a join evaluation strategy aimed at solving this privacy
issue, permitting the evaluation of join operations without revealing the operands to the server in
charge of the join computation, which is assumed to be none of the owners of the operands. The

goal of sovereign join is to evaluate join operation »x > r,, with J an arbitrary join condition, in
such a way that: i) only the party that requested the join can access the join result; and ii) no other
party should be able to learn the content of relations 7, 7, and rx > r,. Sovereign join solution

relies on a secure coprocessor located at server S, which is the only trusted component in the
system. The secure coprocessor can access 7y, 7y, and the join result.

To prevent unauthorized parties, including the server S, to access the content of 7y, r,, and of the
join result, all the information flows between provider P: (P, respectively) storing rx (7y,
respectively) and S, and between S and the requester are encrypted with a key shared between the
coprocessor and each of the providers owing an operand relation, and between the coprocessor and
the requester.

Note that even if S has a secure coprocessor onboard, the evaluation of the join operation should
be performed carefully. In fact, secure coprocessors have limited resources and, in particular,
limited memory. Hence, the join operands cannot be completely loaded in memory. The join
evaluation algorithm should then guarantee that any observation of the interactions between the
coprocessor and S (i.e., read and write operations by the coprocessors) do not reveal any
information about the join operands and the result. As an example, consider the following
straightforward adaptation of the traditional nested-loop algorithm for join evaluation. S receives
from Py and P, the encrypted version of ». and r,, respectively. Iteratively, the coprocessor reads
one encrypted tuple from 7. and decrypts it, obtaining #. For each tuple #, the coprocessor
iteratively reads each tuple in r,, decrypts it obtaining #,, and checks whether it matches with .. If

5 =0(T)

Research Center
ri= SELECT*
FROM Treatment

Hospital

r,=0(M)

Pharmaceutical Company
rz= SELECT *
FROM Medicine
WHERE principle IN
{paracetamol, antacid}
I;=0(T)

Hospital

Research Center
ry= SELECT*
FROM Treatment
WHERE result = ‘success’

Pharmaceutical Company

5=0(M)

Pharmaceutical Company Research Center

rg= SELECT*
FROM Medicine
WHERE auth_data >01/01/1995

(a) (b)

FIGURE 10.5 An example of a graph modeling a coalition network (a) and its pairwise
authorizations (b)

tuples ¢, and ¢, join, the coprocessor encrypts the pair <t,, £,> and writes the resulting ciphertext in
the join result. It then passes to the next tuple in 7,. The join evaluation terminates when all the
pairs of tuples in 7, and r, have been evaluated by the coprocessor. By observing the sequence of
read and write operations, S (as well as any observer) can infer which encrypted tuples in 7, join
with which encrypted tuples in 7,. To prevent this leakage of sensitive information, sovereign join
guarantees that every join computation satisfies the following two properties:
e fixed time: the time for the evaluation of the join condition and for the composition of tuples
is the same independently from the result;
e fixed size: the size of the result obtained when comparing tuples is the same independently
from the result.
To guarantee the satisfaction of both these properties, the sovereign join solution adopts a variation
of the nested-loop algorithm. This join computation strategy burns CPU cycles to maintain a fixed
computation time, and relies on decoys (i.e., fake tuples) to maintain a fixed size of the join result.
The algorithm is then designed to return an encrypted join tuple if the input tuples #. and #, satisfy
the join condition, and an encrypted decoy of the same size, otherwise. Since decoys are
indistinguishable from original tuples, server S cannot draw any inference observing information
flows.

10.5 Pairwise authorizations

Emerging scenarios where data need to be exchanged and shared among different parties are
represented by coalition networks. A coalition network is a distributed system characterized by a
set of providers that wish to collaborate and share their data to reach a common goal (e.g., coalition
networks often combine organizations cooperating for military, scientific, or emergency purposes)

[43][44]. Each provider P in a coalition network owns one or more relations, as well as one or
more servers for both computation and data storage purposes. The servers of a provider are said to
be buddies and typically share the same privileges. A coalition network is traditionally modeled
as an undirected graph G(V,E) representing the corresponding overlay network among servers.
Each server in the coalition network is represented by a node in &V, and connections among servers
are represented by weighted edges in £, where the weight of edge (S,,5)) represents the cost of
transmitting a data unit between servers S; and S;. Figure 10.5(a) illustrates an example of weighted
graph representing the overlay network among the servers storing the relations in Figure 10.1 and
an additional server Sp that does not store any relation and is a buddy of Sp.

Given a query ¢, the goal of the query optimizer is to minimize data transmission costs among the
servers involved in query evaluation. For instance, consider a query that requires to join relations
Patient (Sp), Treatment (S7), and Medicine (Sy). A plan that minimizes data transmission
costs would evaluate the join operations at server Sp. In fact, the shortest path between St, storing
Treatment, and Sy, storing Medicine, passes through Sp, which stores Patient. This plan
may however imply unauthorized data releases. In fact, in a coalition network not all the servers
can perform all the operations in a query plan. The access control model regulating accesses to
data in coalition networks must provide the data owner with the possibility to: i) authorize different
parties for different portions of its dataset; /i) maintain full and autonomous control over who can
access its data; and iii) define access control restrictions operating at tuple level. Pairwise
authorizations satisfy all these requirements and are formally defined as follows [43].

Definiton 10.2 (Pairwise authorization). Given two providers P; and P; and a relation 7;
owned by P;, a pairwise authorization defined by P; over r; is a rule of the form

Pi r.=0(r;)

P;, with r, the subset of tuples in r; that satisfy a selection condition.

I=0(r;)

A pairwise authorization P; P; allows provider P; to access a subset of the
tuples in 7;, according to o(7;). In fact, 7« is the result of a selection restricting the tuples visible to
P; to all and only the tuples in 7; that satisfy the selection condition. Note that all the servers
belonging to P; have the same visibility over 7;, that is, they can access the tuples granted by the
pairwise authorization. A server S; that belongs to provider P; is then authorized to access: i) all
the relations owned by P;, and ii) the subsets of tuples of any relation 7; for which there exists a

r=0(r;)

pairwise authorization P; P;. Server S; can also view any subset of tuples
and/or attributes in the Cartesian product among the authorized relations, also when these views
are the result of the evaluation of a (sub-)query. Figure 10.5(b) illustrates an example of a set of
pairwise authorizations for the coalition network in Figure 10.5(a). According to these
authorizations, for example, server Sp, which is owned by Hospital, can access relation
Patient, relation Treatment, and the tuples in relation Medicine associated with values
paracetamol and antacid for attribute principle. Sp can also access the result of any query
operating on these relations.

Given a query ¢, a coalition network G(V,E), and a set of pairwise authorizations, a safe query
plan for g has to be determined, that is, a query plan that entails only authorized data exchanges
(i.e., the server receiving some data must be authorized to see them). Such a plan should also
minimize data transfers, according to the costs represented by the weight of edges in G. Unary
operators (i.e., selection and projection) clearly do not require data transmission for their

broker join semi-join split-join
Sy e 2 So S P = Tlax (1) Sy: ry; = authorized tuples
Sy: ry, > So rr> S, Fr2 1= Fy- Pyl

So: 1y = 1 Day=ay Iy > S,

S:er =V D<lax=ay T .
T v S,: ry; = authorized tuples

Py > Sk Fy2 = Fy— Tyl
Sy ryi= Vyxy Plax=ay ¥x Pyl > S,
r> SQ Sx: Faxyr := Fx Dlax=ay Fy1
{re2, Fey1} =2 So
peer join Syt Puxty2 1= xr Plax=ay 132
S, r, > S, {ry2, rixiy2} > So
Sy ryi=ry Dl ax=ay ¥y SQI Vyx2yp2 i= Fx2 D<lax=ay 7'y2
;> So Py = Pyl U P2 U Froy

FIGURE 10.6 Working of the different join evaluation strategies

evaluation. In fact, the server that knows the operand can evaluate the operator with no risk of
violation of pairwise authorizations. Join operations may instead require the cooperation of
different servers (at least the ones knowing the two operands). The server in charge of computing
the join is called master and the server that cooperates with the master is called slave. The data
transmitted between the two servers for the execution of the join vary depending on the specific
strategy adopted. For each join in the query plan, it is important to choose the evaluation strategy
that minimizes data transfers and implies only authorized flows. In the following, we summarize
four join strategies (see Figure 10.6 for more details about the operations performed at each server
and the corresponding information flows) that can be applied for join evaluation. For
concreteness, we consider join operation 7 Max—ay 7y required by server Sp, where relations 7, and

ry are stored at Sy and S, respectively.

e Broker-join: both Sy and S, send their relations to Sp, which computes the join result. This
approach can be applied independently on whether S, S, and S are buddies or not.

e Peer-join: server S, sends relation r, to S,, which computes the join and sends the result
to Sp. This approach works well when Sy and Sp are buddies, while S, is not. In fact, Sk
and Sp have the same privileges and therefore any result computed by S can always be
sent to Sp.

o Semi-join: servers Sy and S, interact to compute the join result, which operates in four
steps. Assuming that S, acts as master, it first sends the projection over the join attribute
of relation 7« to S,. As a second step, S, computes the join between the relation received
from S, and r,, and sends the result back to S.. In the third step, Sx computes the join
between the received relation and 7, obtaining the join result. In the fourth step, Sy sends
the join result to Sp. This approach works well when Sy and S, are buddies as they need to
exchange attributes and/or tuples of their relations.

o Split-join: let ry; be the set of tuples in 7, that server S, can access, and r,; be the set of
tuples in r, that server Sy can access. To evaluate the join between 7, and 7, the operation

is rewritten as the union of three joins: (7x Dax=ay 7y1) U (Fx1 Dax=ay 7y2) U (72 Dax=ay 7y2),
with 72 the set of tuples in 7, that S, cannot access, and 7,2 the set of tuples in 7, that Sy

cannot access. The computation of the join result operates in three steps. First, Sy and S,
compute 7 Dla=qy 7y @s a peer-join with Sy acting as master. Second, S, and S, compute

7x1 Dax=ay Fy2 as a peer-join with S, acting as master. Third, Sp cooperates with both S, and

S, and acts as a master for the evaluation of ry2 Ma—ay 7,2 as a broker join and computes
y y Ty

the union of the three partial results. This approach can be applied independently on

whether S, Sy, and Sp are buddies or not. Then, it is also suited to scenarios where S, Sy,

and Sp belong to three different providers.
As an example, consider the pairwise authorizations in Figure 10.5(b) and the query in Figure 10.4.
Figure 10.7(a) illustrates a safe query plan for the query, which is represented as a tree where the
leaf nodes are the relations appearing in the FROM clause, and each non-leaf node corresponds to
a relational operator. In this figure, the server acting as master for each operation is reported on
the side of each node. The deepest join in the tree is evaluated as a split join, while the other join
is evaluated as a peer join. The operations evaluated at each server and the corresponding
information flows are detailed in Figure 10.7(b).

10.6 Preferences in query optimization

Besides the parties owning the data in a distributed database system, also requesters (e.g., end
users) accessing such data may be interested in specifying confidentiality requirements that the
query evaluation process should take into consideration. In particular, a requester authorized to
access different data sources may want to keep secret to the involved providers that she is joining
their data to possibly find hidden correlations. As an example, suppose that Alice works for
Hospital, which is involved in the experimentation of a new medicine, and that she suspects that
this medicine has serious side effects on people suffering from diabetes. To verify her assumption,
she formulates query “SELECT T.result FROM Treatment T JOINMedicine M ON T.mid=M.mid
JOIN Patient P ON T.ssn=P.ssn WHERE M.principle=‘expz01’ AND P.disease= ‘diabetes’ ”. Alice
however wants to keep her intention secret from both Hospital (which may fire her) and
Pharmaceutical Company (to not rise suspects). In this case, the intension of a query (i.e., the goal
of the requester) has to be protected from some servers [22][23][24][25][37]. The query plan may
then need to satisfy constraints (i.e., requirements and preferences) specified by the requester
formulating the query (e.g., certain operations cannot be revealed to, and hence also executed by,
a given provider). In particular, a requester associates conditions with those portions of the query
that need to be handled in a specific way during the query evaluation process. Such requirements
and preferences can be effectively expressed through the following specific clauses that extend the
traditional SQL syntax [24].

1. REQUIRING condition HOLDS OVER node_descriptor
expresses a mandatory condition that must be satisfied by the query evaluation plan
2. PREFERRING condition HOLDS OVER node_descriptor
expresses a non-mandatory condition representing user’s preferences.

@Sp

JU P.ssn, P.name, P.dob

peer @Sr DX P.ssn=T.ssn
@Sp JU T.ssn JU P.ssn, P.name, P.dob @Sr
split @3r D> T.mid = M.mid O disease=flu’ | &7
@Sr JU T.ssn, T.mid TUM.mid @Su
O principle="‘paracetamol’ @S
@Sr| Treatment Medicine |@Su Patient |@Sp

(a)

STI T:= T[T.ssn,T.mid [Treatment)
Tr1:= 0result=’success'(Treatment)
T::= TUT.ssn, T.mid (Trl)
T:=T-T;
T1 > Su
Sum: Mp = Gprinciple='paraCetamol'(Medicine)
Mp1 := Oauthdata>1/1/1995 (Mp)
M := Tty mia (Mp)
Mj := Ttmmia (Mp1)
Mz:=M - M;
M; > St
TMj := T1 ™M Tmid=Mmia M2z
{TMy, T2} > Sp
St: TM:z:= T X Tmid=Mmid M1
(TMz, Mz} > SP
Sp: TM:= (T2 XN Tmig=mmida M2) U TM1 U TM;
Pd := Odisease=flu’ (Patient)
P:= TUp.ssn,P.name,P.dob (Pd)
]:: P >p.ssn=T.ssn ™
Res := TEP.ssn,P.name,P.dob (D
Res > Sy

(b)
FIGURE 10. 7 An example of safe query tree plan for the query in Figure 10.4 (a) and
corresponding information flow (b)

The node_descriptor is used to identify the portion of the query to which condition applies and
represents a node in the query tree plan. A node_descriptor is a triple of the form <operation,
parameters, master>, where operation is the operation represented by the node in the query plan,
parameters are its input parameters, and master is the provider in charge of its evaluation. Each of
the three components in a node descriptor can include a free variable (denoted with symbol @) or
wild character * (representing any possible value for the corresponding element). The condition in
a REQUIRING or PREFERRING clause imposes restrictions on the values of the free variables
appearing in the node_descriptor. For instance, node descriptor <*, {(Treatment.ssn)}, @p>
refers to the evaluation by an arbitrary provider @p of any operation over attribute ssz in relation
Treatment. Condition @p <> Sp implies that Hospital cannot operate over the ssn attribute of
patients who are subject to a treatment.

Both REQUIRING and PREFERRING clauses may include multiple conditions. While the conditions
in the REQUIRING clause can be connected only through the AND operator and must all be satisfied,
the conditions in the PREFERRING clause can be combined also using the CASCADE operator. The
CASCADE operator defines a precedence among preferred conditions, thus imposing a partial order
relationship among them. Consider query ¢ in the example above formulated by Alice. To prevent
Hospital and Pharmaceutical Company to infer Alice’s intention, she can add a REQUIRING clause
to her query as illustrated in Figure 10.8(a).

Given a query ¢ including REQUIRING and/or PREFERRING clauses, the corresponding query plan
has to satisfy all the mandatory conditions in the REQUIRING clause and maximize the preferences
for the conditions in the PREFERRING clause. To this aim, the approach in [24] proposes to modify
traditional query optimizers. The proposed solution adopts a bottom-up dynamic programming
approach, which iteratively builds a safe query tree plan involving a larger subset of relations in
the query at each iteration. Figure 10.8(b) illustrates a safe query tree plan for the query in Figure
10.8(a). We note that: i) the deepest join in the tree can only be evaluated by S because Sis cannot
operate over attribute mid (as demanded by the REQUIRING clause in ¢); ii) the other join operation
can only be evaluated by Sr because Sp cannot operate over attribute ssn (as demanded by the
REQUIRING clause in g).

10.7 Collaborative query execution with multiple providers

Collaborative distribute systems support the evaluation of distributed queries that may require the
selective sharing of data stored and managed by different parties. In this scenario, the correct
definition and enforcement of access privileges ensuring that data are not improperly accessed and
shared are crucial points for an effective collaboration and integration of large-scale distributed
systems (e.g., [11][12][13][33][40]). In this section, we present an approach for collaborative
distributed query execution in presence of access restrictions [11][12][13].

SELECT T.result

FROM Treatment T JOIN Medicine M ON T.mid=M.mid
JOIN Patient P ON T.ssn=P.ssn
WHERE M.principle=‘expz01’ AND P.disease="‘diabetis’

REQUIRING (@p <> Sp HOLDS ON <*, {(T.ssn)}, @p>
AND @p <> Sjr HOLDS ON <*, {(T.mid)}, @p>

(a)
@St TU T.result
@sr P}l P.ssn=T.ssn
@Sr JU T.ssn JU P.ssn, P.name, P.dob @Sr
@Sr DX} T.mid = M.mid O disease="‘diabetis’ @Se
@Sr JU T.ssn, T.mid IU M.mid @S
Oprinciple=‘expz01’ @S
@Sr| Treatment Medicine |@Su Patient |@Sp

(b)

FIGURE 10.8 An example of query with privacy preferences (a) and of corresponding safe
query tree plan (b)

10.7.1 Scenario and data model

Given a set of collaborating providers, the set of all relations they store, denoted R, is assumed to
be acyclic and lossless. Acyclicity means that the join path over any subset of the relations is
unique. Lossless means that the join among relations produces only correct information. At the
instance level, each relation 7 is a finite set of tuples, where each tuple 7 is a function mapping
attributes to values in their domains and 7[4] denotes the mapping for the set 4 of attributes in ¢.
Each relation r has a primary key and a set of referential integrity constraints. The primary key K
of a relation r(ajy,....,an) is a subset of attributes in {ay,....,an} that univocally identifies the tuples
of r, meaning that there is a functional dependency between the primary key of a relation and all

‘R | Insurance (ssn, type, premium)
Patient (ssu, name, dob, disease)
Treatment (ssn, mid, date, result)
Medicine (mid, principle, auth date)
TJ <Treatment.ssn, Patient.ssn>
<Treatment.mid, Medicine.mid>
J | <Insurance.ssn, Patient.ssn>

FIGURE 10.9 An example of relations, referential integrity constraints, and joins

the other attributes.! A referential integrity constraint is a pair <F;,K;>, with F; a subset of the
attributes in relation 7; and K; the primary key of relation 7;, stating that the set F; of attributes,
called foreign key, can assume only values that K; assumes in the tuples of 7;. Notation I denotes

the set of all referential integrity constraints between relations in R.

Tuples of different relations can be combined through a join operation, working on the attributes
with the same name, which represent the same concept in the real world. In particular, the
considered approach focuses on natural joins where the join conditions are conjunctions of
expressions of the form a,=a,, with a, an attribute of the left operand and a, an attribute of the right
operand. In the following, the conjunction of join conditions between 7, and r, will be represented
as a pair J=<4,,4,>, with 4, (4,, respectively) the attributes in r, (7, respectively) involved in join
conditions. Notation J will be used to denote the set of all possible joins not implied by referential

integrity constraints between relations in R. Figure 10.9 illustrates an example of referential
integrity constraints and of joins defined over the relations in Figure 10.1, which have been
reported in the figure for the sake of readability. A sequence of join operations that combines tuples
belonging to more than two relations is called join path and is formally defined as follows.

Definition 10.3 (Join path). Given a sequence of relations ry,...,rs, a join path over it,
denoted joinpath(ri,...,r»), is a sequence of n-1 joins Jj,...,J,:; such that Vi=1,...,n-1,
J=<Ar,A> €(JUI), with 4 attributes in Jx, k<i, and A4; attributes of relation 7;.

10.7.2 Security model

The security model regulating access to data in the distributed system relies on the definition of
permissions, stating which party can access which portion of the dataset, and on relation profiles,
which represent the information content of relations. In the following of this section, we introduce
permissions, relation profiles, and their graphical representation.

Permission. A permission defines a view over data that a given subject can access and is
formally defined as follows.

'A functional dependency between two subsets 4; and 4; of attributes means that for each pair of tuples ¢, #, in 7 such that
t[Ai]=t,[4:], also t.[4;]=t,[A/] holds.

pr: [(ssn, name, dob, disease), (Patient)] = Alice

po. [(ssn, tid, date, result), (Treatment)] 2 Alice

ps. [(name, principle), (Patient, Treatment, Medicine)] = Alice
p+ [(ssn, type, premium), (Insurance)] = Alice

ps: [(mid, auth date), (Treatment, Medicine)] 2> Alice

FIGURE 10.10 An example of permissions for the relations in Figure 10.1

Definition 10.4 (Permission). A permission is a rule of the form [4,R]> P where 4 is a set
of attributes belonging to one or more relations, R is a set of relations such that for each
attribute in 4 there is a relation in R including it, and P is the subject of the permission.

Permission [4,R]-> P states that provider P (and hence also any server or user in its authorization
domain) can view the sub-tuples over the set 4 of attributes belonging to the join among relations
in R. Since the set R of relations is acyclic, the join over relations in R is unique. Note that only
attribute names appear in the set 4 while the relations to which they belong are specified in R.
This applies also to the attributes appearing in more than one relation, consistently with the fact
that these attributes represent the same entity in the real word. Figure 10.10 illustrates a set of
permissions for the relations in Figure 10.9. It is important to note that while the presence of a
relation in the set R of a permission possibly implies the release of fewer tuples (only the tuples
matching the join conditions are released), it does not imply the release of less information. In
fact, the tuples whose release is authorized by a permission [4,R]-> P implicitly give information
on the fact that they satisfy the join path joinpath(R), meaning that they match tuples of other
relations. For instance, permission ps in Figure 10.10 allows Alice to access the identifier and the
authorization date of a subset of medicines used to treat patients. The inclusion of a relation in
the set R does not disclose any additional information only if there is a referential integrity
constraint from a foreign key of a relation in R referencing attributes in 7. For instance, permission
p2 in Figure 10.10 and a permission with the same set of attributes and the set (Treatment,
Patient) of relations allows Alice to access the same information as p,. Note also that the set
R of relations may include relations that do not have any attribute in 4. This may occur when a
relation is needed to: i) build a correct association among tuples belonging to different relations
(comnectivity constraint); or ii) restrict the values of the attributes in 4 to only those values
appearing in tuples that can be associated with such a relation (instance-based restriction). For
instance, permission p; includes relation Treatment that is needed only to correctly associate
tuples in Patient with tuples in Medicine, and permission psincludes relation Treatment
that is only needed to restrict the information on released medicines.

Relation profile. The relation profile of a base or derived (i.e., computed through a query) relation
r characterizes its information content and is necessary to determine whether a provider can access

the relation. The profile of a relation 7 is a triple [#",7>,7°], where #" is the set of attributes in r,
9 is the set of relations used in the definition/construction of r, and ° is the set of attributes
involved in the selection conditions in the definition/construction of . Intuitively, the meaning of

a relation profile [#",7>,7°] is that the base or derived relation brings information on attributes

N

I.premium Ltype L.premium Lssn Ltype ILpremium

P.disease P.ssn P.name P.dob P.disease P.dob P.diseas¢

.
T.date T.results T.date T.results T.date T.results
N
M.mid M.principle M.auth_date M.mid IQLprinciple M.authﬁdate M.mid M.principle M.auth_date
(a) schema graph (b) pi (c) p2
-I-:type f:premium Lssn Ltype [.premium Lssn Ltype Lpremium
. -
P.dob P.disease i Pssn P.name P.dob P.diseas P.name P.dob P.disea
T.date T.results T.date T.result T.date T.resul
S
M.mid M.principle M.auth_date M.mid M.principle M.auth_date M.mid M.principle M.auth_date
(d) ps (e) p4 (H) ps

FIGURE 10.11 Schema graph for the relations in Figure 10.9 (a) and view graphs of the
permissions in Figure 10.10 (b-f)

in ¥"Ur® appearing in the set 7 of joined relations. For instance, the profile of the relation

resulting from the query in Figure 10.4 is [(ssn, name, dob), (Patient, Treatment,
Medicine), (principle, disease)].

Schema and view graph. A set R of relations can be represented through a schema graph, which
is a mixed graph with one node for each attribute of the relations in R, one non-oriented arc for
each join in J, one oriented arc for each referential integrity constraint in J and functional
dependency between the key of a relation and its non-key attributes. Figure 10.11(a) illustrates the
schema graph representing relations, referential integrity constraints, and joins in Figure 10.9.

Each permission [4,R]> P and each relation profile [+",7,7°] can be seen as a view over R that
is modeled as a pair [Attr, Rel] where: Attr corresponds to the attributes in the permission/relation

profile (i.e., A/#™ Ur®), and Rel corresponds to the relations in the permission/relation profile (i.e.,

R/r). In the characterization of views, we take into consideration the fact that the set Rel of

relations can be extended by inserting all relations reachable from those already in Rel/ via
referential integrity constraints without adding information. Given a set R of relations, we then
denote with R* the set of relations obtained closing R via the set J of referential integrity
constraints. For instance, the closure of R={Treatment} is R*={Treatment, Patient,
Medicine}. In fact, all the values of attribute ssn in Treatment also appear in Patient;
analogously, all the values of attribute mid in Treatment also appear in Medicine.

A view V=[Attr, Rel] can be graphically represented as a view graph Gv obtained coloring the
schema graph with three colors: white, black, and clear. The graph coloring is performed according
to the following rules [11]: i) all nodes appearing in Attr, and all arcs belonging to joinpath(Rel*)
or going from the key of a relation in Re/* to an attribute in Attr Ujoinpath(Rel*) are black; ii) all
nodes belonging to a relation in Re/* that are not black and all arcs going from the key of a relation
in Rel* to one of its attributes that neither belongs to Atfr nor appears in joinpath(Rel*) are white;
iii) the remaining nodes and arcs are clear. Figure 10.11(b-f) illustrates the view graphs
corresponding to the permissions in Figure 10.10. In the figure, black nodes and arcs are
represented by filled nodes and bold lines, white nodes and arcs are represented by continuous
nodes and lines, and clear nodes and arcs are represented by dashed nodes and lines.

10.7.3 Authorized views

Given a subject and the set 2 of her permissions, the release of a base or derived relation to her is
authorized when the information directly or indirectly conveyed by the relation is included in a
permission. (In the following discussion, we refer to permissions of a specific subject and therefore
we omit it). The indirect information release that a relation » computed through a query ¢ may
cause is related to: i) the attributes used in the WHERE clause but not appearing in the SELECT clause

of g (i.e., the attributes not appearing in), which are however captured by the relation profile (+°);
and 7i) the presence of join conditions in ¢ that restrict its set of tuples. A permission p=[A4,R]
authorizes the release of a relation » if and only if p includes: i) at least all the attributes that directly

or indirectly belong to 7 (i.e., (*" Ur°) € A); and ii) all and only the join conditions evaluated to
determine 7 (i.e., R* = r>*). Note that the set of joins (extended to consider those corresponding

to referential integrity constraints) must be exactly the same for the authorizing permission and the
authorized relation. This guarantees that p and r refer to the same set of tuples (i.e., the tuples
belonging to the join result). As an example, consider the set of permissions in Figure 10.10 and
suppose that Alice submits a query for retrieving the name of all patients. Permission p; authorizes
the execution of the query. In terms of the view graphs, this is equivalent to say that the view graph
G, of the derived relation and the view graph G,; of the permission have exactly the same black
arcs among attributes in different relations, and that all nodes that are black in the view graph of
the query are also black in the view graph of the permission.

Note that while a subject may not have a single permission p authorizing the release of a relation
r, she may be able to compute » by joining other authorized relations. For instance, consider query
“SELECT name FROM Patient JOIN Insurance ON Patient.ssn=Insurance.ssn”. Even if
no permission in Figure 10.10 authorizes Alice for this query, such a query does not provide any
information that she cannot access (Alice could execute two separate queries on Patient and
Insurance and join their results). The release of a relation r should therefore be allowed
whenever there is a permission or a composition thereof that authorizes it. However, the
composition of permissions has to be carefully performed to avoid that the composed permission

Y

{ Lssn L.type I.premium

i Lssn Ltype I.premium L.premium

P.ssn P.name P.dob P.disease

P.dob P.diseas¢ P.diseas

T.results T.date T.results T.date T.result:
M.mid M.principle M.auth_date M.mid M.principle M.auth_date M.mid M.principle M.auth_date
(a) pi (b) p2 (c) pi®p:

____________ o b

f :type 1 :premium Lssn Ltype L.premium I.premium

o s
P.ssn P.name P.dob P.disease P.ssn ..I;.‘rllame .Eéob .-l"-.l(.iiseas P.ssn P.name P.dob P.diseas
» . |
\'i“'.'results ‘;-f-:'tiale “"i“-.'.result: ;:;iate ‘{resuli
------------- B L
.-l‘\-/l.mid]Qi.principle \I;)i,authfdate lM.mid ..l;}i.principle ‘.M.auth_date .R/E.mid .M:principle ‘-]Q;.authidate
(d) p: (e) p+ () p1® p4

FIGURE 10.12 An example of composed permissions

authorizes releases that the original permissions do not authorize. In particular, two permissions
pi=[Ai,Ri] and p/=[A4;,R;] can be composed if and only if the join between the two corresponding
views over Ris lossless (i.e., the join produces a correct result w.r.t. R), meaning (in our scenario)
that the attributes in the intersection 4; 1 A; form the key of one of the two views. For instance,
permissions p; and p4 in Figure 10.10 can be composed because the common attribute ssz is the
key for relation Patient (and also for relation Insurance). On the contrary, p; and p3 cannot
be composed, because name is not the key of the views corresponding to the two permissions. In
terms of the view graphs, two permissions p; and p; can be composed if and only if there is a path
of black edges from a node # that is black in both G,; and G,; to each black node in G; (or to each
black node in Gp). The composition of two permissions p=[4;,R;] and p/=[4;,R;] is a new
permission p; ® p; = [4; U 4;, RiUR;]. Figure 10.12 illustrates some of the permissions resulting
from the composition of the permissions in Figure 10.10. Note that permission p; ® p; may in turn
be composed with another permission py that could be composed with neither p; nor p;. Notation
P® denotes the closure of P with respect to the composition operation. For instance, the closure

Oper. [m, s] Operation/Flow | Views (S)) Views (S,) View Profiles

7ty (1) [Sx, NULL] | S,: 7y ()
ox(ry) [Sx NULL] | Sy: ox (1)
re ™y | [Su NULL] | Sy:ry = Sy ry I, n,ryN,ryO]
Sx:rx Dy
[Sy, NULL] | Sx:re 2> Sy Ix [rxn,rxb“,rxc]
Sy:rx>yry
[SX' SJ’] Sx: Ijx 1= Tx (rx)
Seirx> Sy 7 (1) [l ,-xc]
Sy iy =gy
Sy:rpy=> Sy Ty () Dy 1y U n " U’ U nl]

Sx:r/xy DX ry

[Sy, S Sy:ry:=my (ry)

' o
Sy:ry=> S my (1y) Uyry™ry]

Sx: rx]y:= er]r]y

Sxilgy=> Sy redymy () | [, UL Un,nl U n]

Sy:rxlylxl]ry

TABLE 10.1 Execution of relational operations and required views and profiles [12]

of the permissions in Figure 10.10 is P® = {py, p2, p3, p+, ps, p1® p2, p1® P4, p2®p4, p2® ps, p1® p2®
P4, PI®P2®ps, pi®p2® p4®ps}. Given the set P of permissions granted to a subject, she is authorized
for » if there is a permission p in P® that authorizes . The work in [11] presents an efficient
algorithm to verify whether a relation is authorized by a set of permissions without computing all
possible compositions of permissions in 2.

10.7.4 Safe query plan

Given a query tree plan for a query g, it is necessary to assign each operation to a server responsible
for its execution. Such an assignment should be safe, meaning that the server should be authorized
to execute the corresponding operation. Since each server is authorized to view the relations it
holds, every unary operation (i.e, selection and projection) can be executed by the server holding
the relation itself. Join operations instead require cooperation between the servers that hold the
relations to be joined. Given a join operation r >, ry, with r, a relation of server Sy and 7, a relation

of server S, the join can be executed as a regular join or as a semi-join. Regular join means that
the slave sends to the master its relation, and then the master computes the join. Semi-join means
that the master sends to the slave the projection of its relation over the attributes involved in the
join, and the slave computes the join with its relation. The slave then returns the result of such join
operation to the master that in turn computes the final result. Table 10.1 summarizes the data
exchanges occurring during the execution of a relational operation as well as the profile of the
relation communicated at each exchange. In the table, before each operation, we report the server
Si executing it. Column [m,s] reports the assignment as a pair, where the first element is the server
serving as a master and the second element is the server serving as a slave. For a unary operation
applied over relation 7, the master is the server where relation r is stored, and the slave is NULL. In
[12] the authors present an approach that, given a query tree plan, computes a safe assignment (if

ps: [(ssn, type, premium), (Insurance)] = Insurance

p7: [(ssn, name, dob, disease),(Patient)] 2 Hospital

ps: [(ssn, result, principle), (Patient, Treatment, Medicine)] >Hospital
po: [(ssn, mid, date, result), (Treatment)] =2 Research Center

pio: [(mid, principle, auth_date), (Medicine)] = Pharmaceutical Company
pii: [(ssn, mid, results), (Treatment)] - Pharmaceutical Company

pi2: [(ssn), (Patient)] = Pharmaceutical Company

FIGURE 10.13 An example of permissions for the relations in Figure 10.9

@LSp NULLY 10 b o0 Poname, P.dob
@[S, Sv] D} P.ssn=T.ssn
@1 NULLT| 1 oo TC P.ssn, Pname, Pdob | 157 NULL]
@[Sm, NULL] 5 Tomid — Momid G disease=*flu’ @[Sp, NULL]
@ISt NULLY 10 1 o, Tmid TC Momia | @S NULL]
O principle=‘paracetamol’ @[S, NULL]
@[St NULL]| Treatment Medicine |@[Sm, NULL] Patient |@[Sp, NULL]

FIGURE 10.14 An example of a safe assignment for the query in Figure 10.4

it exists), meaning that each node of a query tree plan is assigned to a pair of servers so that there
are only authorized information flows.
As an example, consider the additional permissions in Figure 10.13 and assume that Alice submits
query ¢ in Figure 10.4. The algorithm proposed in [12] to compute a safe assignment first verifies
whether Alice is authorized for the relation profile resulting from ¢. In this case, it is immediate to
see that the profile of g, [(ssn, name, dob), (Patient, Treatment, Medicine), (principle,
disease)], is authorized by the permission resulting from p;®p. = [(ssn, name, dob, disease, mid,

date, results), (Patient, Treatment, Medicine)]. The algorithm then determines a safe
assignment for all operations appearing in the query tree plan. Figure 10.14 illustrates the relation
profile associated with each node in the corresponding query tree plan, and a safe executor
assignment for the same.

10.8 Encryption for enabling multi-provider queries

Controlled data sharing for collaborative queries can benefit from the presence of providers
offering computational resources at competitive prices. However, data could be sensitive or subject
to access restrictions that can affect the possibility of relying on external providers for their
management and processing. The model described in [10] addresses this problem by proposing
an approach that enables collaborative and distributed query execution with the controlled
involvement of providers that might be not fully trusted to access the data content. For
concreteness, but without loss of generality, the approach is framed in the context of relational
database systems. The proposed approach is based on the definition of three levels of visibility:

e plaintext visibility: the subject can access the plaintext values of the attribute of a relation;
o encrypted visibility: the subject cannot access the plaintext values of the attribute of a
relation, but can view an encrypted version of the same;
e no visibility: the subject cannot access the values of the attributes of a relation neither
plaintext nor encrypted.
To enable the owners of relations (authorities) to formulate permissions independently (i.e.,
without the need to coordinate with each other), each permission regulates the release of a single
relation (the one owned by the authority). Formally, a permission is defined as follows.

Definition 10.5 (Permission — with encrypted visibility). Given a relation » and a set 2

of providers, a permission is a rule of the form [4,E]> P, where Acr and Ecr are subsets
of attributes in r such that ANE=(J, and Pe PU{any}.

Permission [4,E]-> P states that provider P (and hence also any server or user in its authorization
domain) can view the attributes in 4 in plaintext and the attributes in £ encrypted, while P cannot
see the attributes in 7 that belong neither to 4 nor to E. Note that each provider can have only one
permission for each relation. A default permission, specified using keyword ‘any’ as subject of the
rule, applies when no permission has been defined for the provider. Figure 10.15 illustrates a set
of permissions over relations Insurance and Patient in Figure 10.1 for servers S;and Sp, for
user Alice, and for an external server Sx that could possibly be involved in query evaluation. As
visible from the figure, each data owner is authorized to access all the attributes in its relation in
plaintext (e.g., Spcan access in plaintext all the attributes of relation Patient), and possibly also
attributes of relations owned by other authorities in plaintext or encrypted (e.g., Sp can access
attribute ssn of relation Insurance in plaintext and attribute #ype encrypted, while it cannot
access attribute premium). External providers can access a subset of the attributes of relations in
plaintext or encrypted (e.g., Sx can access attribute premium of relation Insurance in plaintext
and attribute ssn encrypted, but it cannot access attribute type).

To verify if a subject is authorized to see a relation (base or resulting from the evaluation of a sub-
query) it is necessary to capture its information content. To this purpose, similarly to what

[(P.ssn, P.name, P.dob, P.disease), -] > Sp
[(Lssn), (I.type)] = Sp

[(P.dob), (P.ssn, P.name, P.disease), -] 2 Si
[(Lssn, Ltype, Lpremium), -1 2 Si

[(P.ssn, P.name, P.dob, P.disease), -] 2 Alice
[(Lssn, Ltype, 1.premium), -] > Alice
[(P.disease), (P.ssn)] = Sx

[(Lpremium), (1.ssn)] = Sx

FIGURE 10.15 An example of permissions for relations Insurance and Patient in
Figure 10.1

illustrated in Section 10.7, each relation is characterized by a relation profile that depends on the
explicit and implicit information leaked by the relation. To take into consideration both plaintext
and encrypted visibility of attributes, the relation profile is defined as a 5-uple [, 7¢, ¥?, ¢, r~]
where:

e 77 and r° are the sets of visible attributes appearing (in plaintext and encrypted,
respectively) in the schema of relation 7;

e r?and ¢ are the sets of implicit (plaintext and encrypted, respectively) attributes, that is,
attributes that might not appear in the schema of relation 7, but that have been involved in
its computation (e.g., attributes appearing in a selectin condition or in a grouping clause);

e 7~ is the set of equivalent attributes, that is, attributes that have been compared in a
condition or combined in a computation in the (sub-)query producing r.

Consider a query operating on the relations in Figure 10.1 returning the premium paid by patients
suffering from flu (i.e., SELECT L.premium, P.disease FROM Insurance JOIN Patient ON
Lssn=P.ssn WHERE P.disease=‘flu’). Figure 10.16 illustrates an example of query plan, extended
with encryption and decryption operations, for the evaluation of this query. In the figure, each node
is complemented with the profile of the relation resulting from the evaluation of the node itself.
Encrypted attributes are represented on gray background. The profile of the result of the join
operation includes attributes I.premium and P.diesase in the visible plaintext component, and
attributes Lssn and P.ssn in the visible encrypted component. The implicit component includes
P.disease in plaintext, since it keeps track of the evaluation of selection condition P.disease=‘flu’.
Finally, the equivalence component includes attributes I.ssn and P.ssn, which have been compared
by the join condition.

Given a (base or derived) relation » with profile [#7, r*¢, P, ¥, r~], a subject P is authorized to
access r if her permissions enable her to access the information explicitly and implicitly conveyed
by r. More precisely, P is authorized for 7 if the following conditions are satisfied.

1. P is authorized to access in plaintext all the attributes, visible and implicit, represented in
plaintext in 7 (i.e., attributes in 77 U 1),

2. P is authorized to access in plaintext or in encrypted form all the attributes, visible and
implicit, represented in encrypted form in r (i.e., attributes in "¢ U). Indeed, plaintext
visibility naturally implies encrypted visibility since the encrypted representation of
attribute values conveys less information than the corresponding plaintext values.

3. P is authorized to access in the same form, be it plaintext or encrypted, all the equivalent
attributes (i.e., attributes appearing in the same equivalence set in 77). The idea is that the
release of any of the attributes in an equivalence set indirectly leaks information also on

@ S Lpremium,P.disease
X | TC Lpremium, P.disease P.disease
Lssn, P.ssn

Lpremium, P.disease 'Lssn,P.ssn
Dq _ P.disease
@SX Lssn =P.ssn Lssn, P.ssn
Lpremium 1L.ssn i

S1| Enc(P.ssn Enc(P.ssn P.disease P.ssn

@ ! () - @SP () P.disease

Lssn, Lpremium P.ssn, P.disease

@S1| TU Lssn, 1Lpremium - @SP O P.disease="flv’ P.disease

P.ssn, P.disease

@Sp TC P.ssn, P.disase -

Lssn,l .type, Lpremium P.ssn, P.name, P.dob,

@S[Insurance - @SP Patient P.disease

FIGURE 10.16 An example of query plan, extended with encrypt operations, with profiles and
assignments
the values of the other attributes in the same equivalence set. Uniform visibility then
prevents unintended information leakage of attribute values due to comparisons in query
evaluation. For instance, the evaluation of condition P.ssn=I.ssn should not leak the values
of P.ssn to a subject authorized for accessing L.ssn in plaintext and P.ssn encrypted.
Consider, as an example, the permissions in Figure 10.15 and the query plan in Figure 10.16
extended with encryption operations. Server Sy is authorized for the relation resulting from the
join operation, while neither S; nor Sp can access it. In fact, Sp is not authorized for attribute
Lpremium, represented in plaintext in the relation profile. On the other hand, S; can access all the
attributes in the visible and implicit components of the relation, but it does not have uniform
visibility over Lssn and P.ssn, which are compared in the join condition. Indeed, S; can access
P.ssn only encrypted, while it has plaintext access to Lssn.
Considering a query plan g, each operation should be assigned to a server for its execution in
respect of the authorization policy [3][10][21]. Intuitively, an operation can be assigned to any
server that is authorized to view: i) the operands of the operation, taking into consideration the fact
that all the attributes in the relation schema that are not needed for the evaluation of the operation
can be encrypted on-the-fly for query evaluation, and i) the operation result. The choice, among
all the potential candidates, of the server in charge of the execution of each operation is then based
on economic and/or performance parameters. Encryption and decryption operations can be
inserted on-the-fly to adjust visibility of attributes to satisfy permissions and to enable the
evaluation of operations. In particular, encryption can be used to protect attributes so to permit the

assignment of operations to servers that could not be considered otherwise. Decryption permits
accessing plaintext values of encrypted attributes when needed in the computation. For instance,
for each node in the query plan, Figure 10.16 reports its assignment. Note that attributes P.ssn and
Lssn are encrypted before the join operation since server Sy, which is in charge of join evaluation,
is not authorized to access these attributes in plaintext.

10.9 Summary

The need of a party to share information and to cooperate with others is growing every day. This
situation requires the definition of approaches for easily defining and effectively enforcing the
selective sharing requirements of information stored at different providers, possibly also crossing
administrative and enterprise domains. In this chapter, we have surveyed recent solutions aimed
at providing effective control to data owners interested in selectively sharing their data for
collaborative distributed computations. We have also illustrated approaches for defining query
evaluation plans that satisfy all the restrictions to data release defined by the different collaborating
parties.

Acknowledgement

This work was supported in part by the EC within the H2020 program under grant agreement
825333 (MOSAICrOWN), and by the Italian Ministry of Research within PRIN 2017 project
2017MMIJRE (HOPE).

References

[1] R. Agrawal, D. Asonov, M. Kantarcioglu, and Y. Li. “Sovereign joins.” In Proc. of the
22nd International Conference on Data Engineering (ICDE 2006), Atlanta, GA, USA,
April 2006.

[2] A. Amarilli and M. Benedikt. “When can we answer queries using result-bounded data
interfaces?” In Proc. of the 37th ACM SIGMOD-SIGACT-SIGAI Symposium on Principles
of Database Systems (PODS 2018), Huston, TX, USA, June 2018.

[3] E. Bacis, S. De Capitani di Vimercati, D. Facchinetti, S. Foresti, G. Livraga, S. Paraboschi,
M. Rosa, and P. Samarati. “Multi-provider secure processing of sensors data.” In Proc. of
the 17th IEEE International Conference on Pervasive Computing and Communications
(PerCom 2019), Kyoto, Japan, March 2019.

[4] V. Barany, M. Benedikt, and P. Bourhis. “Access patterns and integrity constraints
revisited.” In Proc. of the 16th International Conference on Database Theory (ICDT 2013),
Genoa, Italy, March 2013.

[5] M. Benedikt, J. Leblay, and E. Tsamoura. “Querying with access patterns and integrity
constraints.” Proceedings of the VLDB Endowment, 8§(6):690-701, February 2015.

[6] T. Bianchi, R. Donida Labati, V. Piuri, A. Piva, F. Scotti, S. Turchi. “Implementing
FingerCode-based identity matching in the encrypted domain.” In Proc. of the 2010 IEEE
Workshop on Biometric Measurements and Systems for Security and Medical Applications
(BioMS 2010), Taranto, Italy, September 2010.

[7] P. Bonatti and P. Samarati. “A uniform framework for regulating service access and
information release on the web.” Journal of Computer Security (JCS), 10(3):241-271,
2002.

[8] A. Cali and D. Martinenghi. “Querying data under access limitations.” In Proc. of the 24th
International Conference on Data Engineering (ICDE 2008), Cancun, Mexico, April 2008.
[9]1 S. Dawson, S. Qian, and P. Samarati. “Providing security and interoperation of
heterogeneous systems.” Distributed and Parallel Databases, 8(1):119-145, January 2000.

[10] S. De Capitani di Vimercati, S. Foresti, S. Jajodia, S. Paraboschi, and P. Samarati. “An
authorization model for multi-provider queries.” In Proc. of the VLDB Endowment
(PVLDB), 11(3):256-268, November 2017.

[11] S. De Capitani di Vimercati, S. Foresti, S. Jajodia, S. Paraboschi, and P. Samarati.
“Assessing query privileges via safe and efficient permission composition.” In Proc. of the
15th ACM Conference on Computer and Communications Security (CCS 2008), Alexandria,
VA, USA, October 2008.

[12] S. De Capitani di Vimercati, S. Foresti, S. Jajodia, S. Paraboschi, and P. Samarati.
“Authorization enforcement in distributed query evaluation.” Journal of Computer Security
(JCS), 19(4):751-794, 2011.

[13] S. De Capitani di Vimercati, S. Foresti, S. Jajodia, S. Paraboschi, and P. Samarati.
“Controlled information sharing in collaborative distributed query processing.” In Proc. of
the 28th International Conference on Distributed Computing Systems (ICDCS 2008),
Beijing, China, June 2008.

[14] S. De Capitani di Vimercati, S. Foresti, G. Livraga, V. Piuri, P. Samarati. “A Fuzzy-based
Brokering Service for Cloud Plan Selection.” IEEE Systems Journal (ISJ), 13(4): 4101-4109,
December 2019.

[15] S. De Capitani di Vimercati, S. Foresti, G. Livraga, V. Piuri, P. Samarati. “Security-Aware
Data Allocation in Multicloud Scenarios.” IEEE Transactions on Dependable and Secure
Computing (TDSC), 2019 (to appear)

[16]S. De Capitani di Vimercati, S. Foresti, S. Jajodia, and P. Samarati. “Access control
policies and languages.” International Journal of Computational Science and Engineering
(IJCSE), 3(2):94-102, 2007.

[17]S. De Capitani di Vimercati, S. Foresti, S. Jajodia, and P. Samarati. “Access control policies
and languages in open environments.” Secure Data Management in Decentralized Systems,
T. Yu, S. Jajodia (eds.), Springer-Verlag, 2007.

[18]S. De Capitani di Vimercati and P. Samarati. “Access control in federated systems.” In Proc.
of the ACM SIGSAC New Security Paradigms Workshop (NSPW 1996), Lake Arrowhead,
CA, USA, September 1996.

[19]S. De Capitani di Vimercati and P. Samarati. “Authorization specification and enforcement
in federated database systems.” Journal of Computer Security (JCS), 5(2):155-188, 1997.

[20] A. Deutsch, B. Ludascher, and A. Nash. “Rewriting queries using views with access
patterns under integrity constraints.” In Proc. of the 10th International Conference on
Database Theory (ICDT 2005), Edinburgh, Scotland, January 2005.

[21] E.B. Dimitrova, P.K. Chrysanthis, and A.J. Lee. “Authorization-aware optimization for
multi-provider queries.” In Proc. of the 34th ACM/SIGAPP Symposium on Applied
Computing (SAC 2019), Limassol, Cyprus, April 2019.

[22] N.L. Farnan, A.J. Lee, P.K. Chrysanthis, and T. Yu. “Don’t reveal my intension: Protecting
user privacy using declarative preferences during distributed query processing.” In Proc. of
the 16th European Symposium On Research In Computer Security (ESORICS 2011),
Leuven, Belgium, September 2011.

[23] N.L. Farnan, A.J. Lee, P.K. Chrysanthis, and T. Yu. “PAQO: A preference-aware query

optimizer for PostgreSQL,” Proceedings of the VLDB Endowment, 6(12):1334-1337,
August 2013.

[24] N.L. Farnan, A.J. Lee, P.K. Chrysanthis, and T. Yu. “PAQO: Preference-aware query
optimization for decentralized database systems.” In Proc. of the 30th IEEE International
Conference on Data Engineering (ICDE 2014), Chicago, IL, USA, March-April 2014.

[25] N.L. Farnan, A.J. Lee, and T. Yu. “Investigating privacy-aware distributed query
evaluation.” In Proc. of the 9th ACM Workshop on Privacy in the Electronic Society (WPES
2010), Chicago, IL, USA, October 2010.

[26] D. Florescu, A.Y. Levy, I. Manolescu, and D. Suciu. “Query optimization in the presence
of limited access patterns.” In Proc. of the 1999 ACM SIGMOD International Conference
on Management of Data (SIGMOD 1999), Philadelphia, PA, USA, June 1999.

[27] S. Foresti. Preserving Privacy in Data Outsourcing, Springer, 2011.

[28] G. Gottlob and A. Nash. “Data exchange: Computing cores in polynomial time.” In Proc.
of the 25th ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems
(PODS 2006), Chicago, IL, USA, June 2006.

[29] M. Guarnieri and D. Basin. “Optimal security-aware query processing.” Proceedings of the
VLDB Endowment, 7(12):1307-1318, August 2014.

[30] R. Jhawar and V. Piuri. “Fault tolerance management in laaS clouds.” In Proc. of the 2012
IEEE Conference in Europe about Space and Satellite Telecommunications (ESTEL 2012),
Rome, Italy, October 2012.

[31] R. Jhawar, V. Piuri, and P. Samarati. “Supporting security requirements for resource
management in cloud computing.” In Proc. of the 2012 IEEE International Conference on
Computational Science and Engineering (CSE 2012), Paphos, Cyprus, December 2012.

[32] R. Jhawar, V. Piuri, and M. Santambrogio. “A comprehensive conceptual system-level
approach to fault tolerance in cloud computing.” In Proc. of the 2012 IEEE International
Systems Conference (SysCon 2012), Vancouver, BC, Canada, March 2012.

[33] M. Le, K. Kant, and S. Jajodia. “Consistency and enforcement of access rules in
cooperative data sharing environment.” Computers and Security, 41:3-18, March 2014.
[34] C.Li. “Computing complete answers to queries in the presence of limited access patterns.”

VLDB Journal, 12(3):211-227, October 2003.

[35] A. Motro. “An access authorization model for relational databases based on algebraic
manipulation of view definitions.” In Proc. of the 5th International Conference on Data
Engineering (ICDE 1989), Los Angeles, CA, USA, February 1989.

[36] A.Nash and A. Deutsch. “Privacy in GLAV information integration.” In Proc. of the 10th
International Conference on Database Theory (ICDT 2005), Barcelona, Spain, January
2007.

[37] N.R. Ong, S.E. Rojcewicz, N.L. Farnan, A.J. Lee, P.K. Chrysanthis, and T. Yu. “Interactive
preference-aware query optimization.” In Proc. of the 31st IEEE International Conference
on Data Engineering (ICDE 2015), Seoul, Korea, April 2015.

[38] S.Rizvi, A. Mendelzon, S. Sudarshan, and P. Roy. “Extending query rewriting techniques
for fine-grained access control.” In Proc. of the 2004 ACM SIGMOD International
Conference on Management of Data (SIGMOD 2004), Paris, France, June 2004.

[39] A.Rosenthal and E. Sciore. “Administering permissions for distributed data: Factoring and
automated inference.” In Proc. of the 15th IFIP Annual Working Conference on Database
and Application Security (DBSec 2001), Niagara on the Lake, Ontario, Canada, July 2001.

[40] G. Salvaneschi, M. Kohler, D. Sokolowski, P. Haller, S. Erdweg, and M. Mezini.

“Language-integrated privacy-aware distributed queries.” Proceedings of the ACM on
Programming Languages (OOPSLA), October 2019.

[41] A.C.C. Yao. “How to generate and exchange secrets.” In Proc. of the 27th Annual
Symposium on Foundations of Computer Science (SFCS 1986), Toronto, Canada, October
1986.

[42] T. Yu, M. Winslett, and K.E. Seamons. “Supporting structured credentials and sensitive
policies trough interoperable strategies for automated trust.” ACM TISSEC, 6(1):1-42,
February 2003.

[43] Q. Zeng, M. Zhao, P. Liu, P. Yadav. S. Calo, and J. Lobo. “Enforcement of autonomous
authorizations in collaborative distributed query evaluation.” [EEE Transactions on
Knowledge and Data Engineering (TKDE), 27(4):979-992, April 2015.

[44] M. Zhao, P. Liu, and J. Lobo. “Towards collaborative query planning in multi-party
database networks.” In Proc. of the 29th Conference on Data and Applications Security and
Privacy (DBSec 2015), Fairfax, VA, USA, July 2015.

