
Recent Advances in Access Control

S. De Capitani di Vimercati, S. Foresti, and P. Samarati

Dipartimento di Tecnologie dell’Informazione
Università degli Studi di Milano
26013 Crema, Italy
{decapita,foresti,samarati}@dti.unimi.it

Summary. Access control is the process of mediating every request to resources
and data maintained by a system and determining whether the request should be
granted or denied. Traditional access control models and languages result limiting
for emerging scenarios, whose open and dynamic nature requires the development
of new ways of enforcing access control. Access control is then evolving with the
complex open environments that it supports, where the decision to grant an access
may depend on the properties (attributes) of the requestor rather than her identity
and where the access control restrictions to be enforced may come from different
authorities. These issues pose several new challenges to the design and implemen-
tation of access control systems. In this chapter, we present the emerging trends in
the access control field to address the new needs and desiderata of today’s systems.

1 Introduction

Information plays an important role in any organization and its protection
against unauthorized disclosure (secrecy) and unauthorized or improper mod-
ifications (integrity), while ensuring its availability to legitimate users (no
denials-of-service) is becoming of paramount importance. An important ser-
vice in guaranteeing information protection is the access control service. Ac-
cess control is the process of mediating every request to resources and data
maintained by a system and determining whether the request should be
granted or denied. An access control system can be considered at three dif-
ferent abstractions of control: access control policy , access control model , and
access control mechanism. A policy defines the high level rules used to verify
whether an access request is to be granted or denied. A policy is then formal-
ized through a security model and is enforced by an access control mechanism.
The separation between policies and mechanisms has a number of advantages.
First, it is possible to discuss protection requirements independently of their
implementation. Second, it is possible to compare different access control poli-
cies as well as different mechanisms that enforce the same policy. Third, it is
possible to design access control mechanisms able to enforce multiple policies.

2 S. De Capitani di Vimercati, S. Foresti, and P. Samarati

In this way, a change in the access control policy does not require any changes
in the mechanism. Also, the separation between model and mechanism makes
it possible to formally prove security properties on the model; any mechanism
that correctly enforces the model will then enjoy the same security properties
proved for the model.

The variety and complexity of the protection requirements that may need
to be imposed in today’s systems makes the definition of access control policies
a far from trivial process. An access control system should be simple and
expressive. It should be simple to make easy the management task of specifying
and maintaining the security specifications. It should be expressive to make
it possible to specify in a flexible way different protection requirements that
may need to be imposed on different resources and data. Moreover, an access
control system should include support for the following features.

• Policy combination. Since information may not be under the control of a
single authority, access control policies information may take into consider-
ation the protection requirements of the owner, but also the requirements
of the collector and of other parties. These multiple authorities scenario
should be supported from the administration point of view providing solu-
tions for modular, large-scale, scalable policy composition and interaction.

• Anonymity. Many services do not need to know the real identity of a user.
It is then necessary to make access control decisions dependent on the
requester’s attributes, which are usually proved by digital certificates.

• Data outsourcing. A recent trend in the information technology area is rep-
resented by data outsourcing, according to which companies shifted from
fully local management to outsourcing the administration of their data by
using externally service providers [1, 2, 3]. Here, an interesting research
challenge consists in developing an efficient mechanism for implementing
selective access to the remote data.

These features pose several new challenges to the design and implementa-
tion of access control systems. In this chapter, we present the emerging trends
in the access control field to address the new needs and desiderata of today’s
systems. The remainder of the chapter is organized as follows. Section 2 briefly
discusses some basic concepts about access control, showing the main charac-
teristics of the discretionary, mandatory, and role-based access control policies
along with their advantages and disadvantages. Section 3 introduces the prob-
lem of enforcing access control in open environments. After a brief overview
of the issues that need to be addressed, we describe some proposals for trust
negotiation and for regulating service access. Section 4 addresses the problem
of combining access control policies that may be independently stated. We
first describe the main features that a policy composition framework should
have and then illustrate some current solutions. Section 5 presents the main
approaches for enforcing selective access in an outsourced scenario. Finally,
Sect. 6 concludes the chapter.

Recent Advances in Access Control 3

Document1 Document2 Program1 Program2

Ann read, write read execute
Bob read read read, execute
Carol read, write read, execute
David read, write, execute read, write, execute

Fig. 1. An example of access matrix

2 Classical Access Control Models

Classical access control models can be grouped into three main classes: dis-
cretionary access control (DAC), which bases access decisions on users’ iden-
tity; mandatory access control (MAC), which bases access decisions on man-
dated regulations defined by a central authority; and role-based access control
(RBAC), which bases access decisions on the roles played by users in the mod-
els. We now briefly present the main characteristics of these classical access
control models.

2.1 Discretionary Access Control

Discretionary access control is based on the identity of the user requesting
access and on a set of rules, called authorizations, explicitly stating which
user can perform which action on which resource. In the most basic form, an
authorization is a triple (s, o, a), stating that user s can execute action a on
object o. The first discretionary access control model proposed in the literature
is the access matrix model [4, 5, 6]. Let S, O, and A be a set of subjects,
objects, and actions, respectively. The access matrix model represents the set
of authorizations through a |S|×|O| matrix A. Each entry A[s, o] contains the
list of actions that subject s can execute over object o. Figure 1 illustrates an
example of access matrix where, for example, user Ann can read and write
Document1.

The access matrix model can be implemented through different mecha-
nisms. The straightforward solution exploiting a two-dimensional array is not
viable, since A is usually sparse. The mechanisms typically adopted are:

• Authorization table. The non empty entries of A are stored in a table with
three attributes: user, action, and object.

• Access control list (ACL). The access matrix is stored by column, that
is, each object is associated with a list of subjects together with a set of
actions they can perform on the object.

• Capability. The access matrix is stored by row, that is, each subject is
associated with a list indicating, for each object, the set of actions the
subject can perform on it.

Figure 2 depicts the authorization table, access control lists, and capability
lists corresponding to the access matrix of Fig. 1.

4 S. De Capitani di Vimercati, S. Foresti, and P. Samarati

User Action Object

Ann read Document1
Ann write Document1
Ann read Document2
Ann execute Program1
Bob read Document1
Bob read Document2
Bob read Program1
Bob execute Program1
Carol read Document2
Carol write Document2
Carol execute Program2
David read Program1
David write Program1
David execute Program1
David read Program2
David write Program2
David execute Program2

(a)

Document1 Ann

read
write

Bob

read

Document2 Ann

read

Bob

read

Carol

read
write

Program1 Ann

execute

Bob

read

David

read
writeexecute
execute

Program2 Carol

execute

David

read
write
execute

(b)

Ann Document1

read
write

Bob

Carol

David

Document2

read

Program1

execute

Document1

read

Document2

read

Program1

read
execute

Document2

read
write

Program2

execute

Program1

read
write

Program2

execute

read
write
execute

(c)

Fig. 2. Access matrix implementation mechanisms

From the access matrix model, discretionary access control systems have
evolved and they include support for the following features.

• Conditions. To make authorization validity depend on the satisfaction of
some specific constraints, today’s access control systems typically support
conditions associated with authorizations. [5]. For instance, conditions im-
pose restrictions on the basis of: object content (content-dependent condi-
tions), system predicates (system-dependent conditions), or accesses pre-
viously executed (history-dependent conditions).

Recent Advances in Access Control 5

Personnel

Administration

nnnnnn
Medical

JJJJJ

Nurse

ttttt
Doctor

EEEE

Ann Bob Carol

JJJJJ
yyyy
David

Fig. 3. An example of user-group hierarchy

• Abstractions. To simplify the authorization definition process, discre-
tionary access control supports also user groups and classes of objects,
which may also be hierarchically organized. Typically, authorizations spec-
ified on an abstraction propagate to all its members according to different
propagation policies [7]. Figure 3 illustrates an example of user-group hi-
erarchy. Here, for example, an authorization specified for the Nurse group
applies also to Bob and Carol.

• Exceptions. The definition of abstractions naturally leads to the need of
supporting exceptions in authorization definition. Suppose, for example,
that all users belonging to a group but u can access resource r. If exceptions
were not supported, it would be necessary to associate an authorization
with each user in the group but u, therefore not exploiting the possibility
of specifying the authorization of the group. This situation can be easily
solved by supporting both positive and negative authorizations: the system
would have a positive authorization for the group and a negative autho-
rization for u.
The introduction of both positive and negative authorizations brings to
two problems: inconsistency , when conflicting authorizations are associ-
ated with the same element in a hierarchy; and incompleteness, when
some accesses are neither authorized nor denied.
Incompleteness is usually easily solved by assuming a default policy, open
or closed (this latter being more common), where no authorization applies.
In this case, an open policy approach allows the access, while the closed
policy approach denies it.
To solve the inconsistency problem, different conflict resolution policies
have been proposed [7, 8], such as:
– No conflict. The presence of a conflict is considered an error.
– Denials take precedence. Negative authorizations take precedence.
– Permissions take precedence. Positive authorizations take precedence.
– Nothing takes precedence. Conflicts remain unsolved.
– Most specific takes precedence. An authorization associated with an

element n overrides a contradicting authorization (i.e., an authoriza-
tion with the same subject, object, and action but with a different
sign) associated with an ancestor of n for all the descendants of n. For
instance, consider the user-group hierarchy in Fig. 3 and the autho-

6 S. De Capitani di Vimercati, S. Foresti, and P. Samarati

S, {Admin, Medical}

S, {Admin}

lllllll
U, {Admin, Medical} S, {Medical}

RRRRRRR

U, {Admin}

lllllll
S, {}

llllllll

RRRRRRRR
U, {Medical}

RRRRRRR

U, {}

RRRRRRRR
llllllll

(a)

C, {Admin, Medical}

C, {Admin}

lllllll
I, {Admin, Medical} C, {Medical}

RRRRRRR

I, {Admin}

lllllll
C, {}

llllllll

RRRRRRRR
I, {Medical}

RRRRRRR

I, {}

RRRRRRRR
llllllll

(b)

Fig. 4. An example of security (a) and integrity (b) lattices

rizations (Medical,Document1,+r) and (Nurse,Document1,−r). Carol
cannot read Document1, since the Nurse group is more specific than
the Medical group.

– Most specific along a path takes precedence. An authorization associ-
ated with an element n overrides a contradicting authorization asso-
ciated with an ancestor n′ for all the descendants of n, only for the
paths passing from n. The overriding has no effect on other paths. For
instance, with respect to the previous example, Carol gains a positive
authorization from the path 〈Medical,Doctor,Carol〉, and a negative
one from path 〈Nurse,Carol〉.

While convenient for their expressiveness and flexibility, in high security
settings discretionary access control results limited for its vulnerability to
Trojan horses. The reason for this vulnerability is that discretionary access
control does not distinguish between users (i.e., human entity whose identity
is exploited to select the privileges for making the access control decision) and
subjects (i.e., process generated by a user and that makes requests to the sys-
tem). A discretionary access control system evaluates the requests made by a
subject against the authorizations of the user who generated the correspond-
ing process. It is then vulnerable from processes executing malicious programs
that exploit the authorizations of the user invoking them. Protection against
these processes requites controlling the flows of information within processes
execution and possibly restricting them. Mandatory policies provide a way to
enforce information flow control through the use of labels.

2.2 Mandatory Access Control

Mandatory security policies enforce access control on the basis of regulations
mandated by a central authority. The most common form of mandatory policy
is the multilevel security policy, based on the classifications of subjects and
objects in the system. Each subject and object in the system is associated with
an access class, usually composed of a security level and a set of categories.
Security levels in the system are characterized by a total order relation, while

Recent Advances in Access Control 7

categories form an unordered set. As a consequence, the set of access classes
is characterized by a partial order relation, denoted ≥ and called dominance.
Given two access classes c1 and c2, c1 dominates c2, denoted c1 ≥ c2, iff the
security level of c1 is greater than or equal to the security level of c2 and
the set of categories of c1 includes the set of categories of c2. Access classes
together with their partial order dominance relationship form a lattice [9].

Mandatory policies can be classified as secrecy-based and integrity-based,
operating in a dual manner.

Secrecy-Based Mandatory Policy [10, 11, 12, 13]. The main goal of secrecy-
based mandatory policies is to protect data confidentiality. As a consequence,
the security level of the access class associated with an object reflects the
sensitivity of its content, while the security level of the access class associated
with a subject, called clearance, reflects the degree of trust placed in the
subject not to reveal sensitive information. The set of categories associated
with both subjects and objects defines the area of competence of users and
data. A user can connect to the system using her clearance or any access class
dominated by her clearance. A process generated by a user connected with a
specific access class has the same access class as the user.

The access requests submitted by a subject are evaluated by applying the
following two principles.

No-Read-Up. A subject s can read an object o if and only if the access class
of the subject dominates the access class of the object.

No-Write-Down. A subject s can write an object o if and only if the access
class of the object dominates the access class of the subject.

Consider, as an example, the security lattice in Fig. 4(a), where there
are two security levels, Secret (S) and Unclassified (U), with S>U, and
the set of categories {Admin, Medical}. Suppose that user Ann has clearance
〈S,{Admin}〉 and she connects to the system as the 〈S,{}〉 subject. She is
allowed to read objects 〈S,{}〉 and 〈U,{}〉. She can write objects with access
class 〈S,{}〉, 〈S,{Admin}〉, 〈S,{Medical}〉, and 〈S,{Admin,Medical}〉.

Note that a user is allowed to connect to the system at different access
classes to the aim of accessing information at different levels (provided that
she is cleared for it). Otherwise, these accesses would be blocked by the no-
write-down principle.

The principles of the secrecy-based mandatory policy prevent information
flows from high level subjects/objects to subjects/objects at lower (or incom-
parable) levels, thus preserving information confidentiality. However, these
two principles may turn out to be too restrictive. For instance, in a real sce-
nario data may need to be downgraded (e.g., this may happen at the end of
the embargo). To consider also these situations, the secrecy-based mandatory
models can allow exceptions for processes that are trusted and ensure that
the information produced is sanitized .

8 S. De Capitani di Vimercati, S. Foresti, and P. Samarati

Integrity-Based Mandatory Policy [14]. The main goal of integrity-based
mandatory policies is to prevent subjects from indirectly modifying informa-
tion they cannot write. The integrity level associated with a user reflects then
the degree of trust placed in the subject to insert and modify sensitive infor-
mation. The integrity level associated with an object indicates the degree of
trust placed on the information stored in the object and the potential damage
that could result from unauthorized modifications of the information. Again,
the set of categories associated with both subjects and objects defines the
area of competence of users and data.

The access requests submitted by a subject are evaluated by applying the
following two principles.

No-Read-Down. A subject s can read an object o if and only if the integrity
class of the object dominates the integrity class of the subject.

No-Write-Up. A subject s can write an object o if and only if the integrity
class of the subject dominates the integrity class of the object.

Consider, as an example, the integrity lattice in Fig. 4(b), where there
are two integrity levels Crucial (C) and Important (I), with C>I, and the
set of categories {Admin, Medical}. Suppose that user Ann connects to the
system as the 〈C,{Admin}〉 subject. She can read objects having integrity class
〈C,{Admin}〉 and 〈C,{Admin,Medical}〉 and she can write objects with integrity
class 〈C,{Admin}〉, 〈C, {}〉, 〈I,{Admin}〉, and 〈I,{}〉.

These two principles are the dual with respect to the principles adopted by
secrecy-base policies. As a consequence, the integrity model prevents flows of
information from low level objects to higher objects. A major limitation of this
model is that it only captures integrity breaches due to improper information
flows. However, integrity is a much broader concept and additional aspects
should be taken into account [15].

Note that secrecy-based and integrity-based models are not mutually ex-
clusive, since it may be useful to protect both the confidentiality and the
integrity properties. Obviously, in this case, objects and subjects will be as-
sociated with both a security and an integrity class.

A major drawback of mandatory policies is that they control only flows
of information happening through overt channels, that is, channels operating
in a legitimate way. As a consequence, the mandatory policies are vulnerable
to covert channels [16], which are channels not intended for normal commu-
nication but that still can be exploited to infer information. For instance, if a
low level subject requests the use of a resource currently used by a high level
subject, it will receive a negative response, thus inferring that another (higher
level) subject is using the same resource.

2.3 Role-Based Access Control

A third approach for access control is represented by Role-Based Access Con-
trol (RBAC) models [17, 18]. A role is defined as a set of privileges that any

Recent Advances in Access Control 9

user playing that role is associated with. When accessing the system, each user
has to specify the role she wishes to play and, if she is granted to play that
role, she can exploit the corresponding privileges. The access control policy is
then defined through two different steps: first the administrator defines roles
and the privileges related to each of them; second, each user is assigned with
the set of roles she can play. Roles can be hierarchically organized to exploit
the propagation of access control privileges along the hierarchy.

A user may be allowed to simultaneously play more than one role and
more users may simultaneously play the same role, even if restrictions on
their number may be imposed by the security administrator.

It is important to note that roles and groups of users are two different
concepts. A group is a named collection of users and possibly other groups,
and a role is a named collection of privileges, and possibly other roles. Fur-
thermore, while roles can be activated and deactivated directly by users at
their discretion, the membership in a group cannot be deactivated.

The main advantage of RBAC, with respect to DAC and MAC, is that
it better suits to commercial environments. In fact, in a company, it is not
important the identity of a person for her access to the system, but her re-
sponsibilities. Also, the role-based policy tries to organize privileges mapping
the organization’s structure on the roles hierarchy used for access control.

3 Credential-Based Access Control

In an open and dynamic scenario, parties may be unknown to each other and
the traditional separation between authentication and access control cannot
be applied anymore. Such parties can also play the role of both client, when
requesting access to a resource, and server for the resources it makes available
for other users in the system. Advanced access control solutions should then
allow to decide, on one hand, which requester (client) is to be granted access
to the resource, and, on the other hand, which server is qualified for providing
the same resource. Trust management has been developed as a solution for
supporting access control in open environments [19]. The first approaches
proposing a trust management solution for access control are PolicyMaker [20]
and KeyNote [21]. The key idea of these proposals is to bind public keys to
authorizations and to use credentials to describe specific delegations of trust
among keys. The great disadvantage of these early solutions is that they assign
authorizations directly to users’ keys. The authorization specification is then
difficult to manage and, moreover, the public key of a user may act as a
pseudonym of herself, thus reducing the advantages of trust management,
where the identity of the users should not be considered.

The problem of assigning authorizations directly to keys has been solved
by the introduction of digital certificates. A digital certificate is the on-line
counterpart of paper credentials (e.g., a driver licence). A digital certificate is
a statement, certified by a trusted entity (the certificate authority), declaring

10 S. De Capitani di Vimercati, S. Foresti, and P. Samarati

a set of properties of the certificate’s holder (e.g., identity, accreditation, or
authorizations). Access control models, by exploiting digital certificates for
granting or denying access to resources, make access decisions on the basis of
a set of properties that the requester should have. The final user can prove to
have such properties by providing one or more digital certificates [22, 23, 24,
25, 26].

The development and effective use of credential-based access control mod-
els require however tackling several problems related to credential manage-
ment and disclosure strategies, delegation and revocation of credentials, and
establishment of credential chains [27, 28, 29, 30]. In particular, when devel-
oping an access control system based on credentials, the following issues need
to be carefully considered [22].

• Ontologies. Since there is a variety of security attributes and requirements
that may need to be considered, it is important to guarantee that different
parties will be able to understand each other, by defining a set of common
languages, dictionaries, and ontologies.

• Client-side and server-side restrictions. Since parties may act as either a
client or a server, access control rules need to be defined both client-side
and server-side.

• Credential-based access control rules. New access control languages sup-
porting credentials need to be developed. These languages should be both
expressive (to define different kinds of policies) and simple (to facilitate
policy definition).

• Access control evaluation outcome. The resource requester may not be
aware of the attributes she needs to gain access to the requested resource.
As a consequence, access control mechanisms should not simply return a
permit or deny answer, but should be able to ask the final user for the
needed credentials to access the resource.

• Trust negotiation strategies. Due to the large number of possible alternative
credentials that would enable an access request, a server cannot formulate
a request for all these credentials, since the client may not be willing to
release the whole set of her credentials. On the other hand, the server
should not disclose too much of the underlying security policy, since it
may contain sensitive information.

In the following, we briefly describe some proposals that have been devel-
oped for trust negotiation and for regulating service access in open environ-
ments.

3.1 Overview of Trust Negotiation Strategies

As previously noted, since the interacting parties may be unknown to each
other, the resource requester may not be aware of the credentials necessary
for gaining access privileges. Consequently, during the access control process,

Recent Advances in Access Control 11

the two parties exchange information about the credentials needed for access.
The access control decision comes then after a complex process, where par-
ties exchange information not only related to the access itself, but also to
additional restrictions imposed by the counterpart. This process, called trust
negotiation, has the main goal of establishing trust between the interacting
parties in an automated manner. A number of trust negotiation strategies
have been proposed in the literature, which are characterized by the following
steps.

• The client first requests to access a resource.
• The server then checks if the client provided the necessary credentials. In

case of a positive answer, the server grants access to the resource; otherwise
it communicates the client the policies that she has to fulfil.

• The client selects the requested credentials, if possible, and sends them to
the server.

• If the credentials satisfy the request, the client is granted access to the
resource.

This straightforward trust negotiation process suffers of privacy problems,
since both the server discloses its access control policy entirely and the client
exposes all her certificates to gain access to a resource. To solve such an
inconvenience, a gradual trust establishment process can be enforced [31]. In
this case, upon receiving an access request, the server selects the policy that
governs the access to the service and discloses only the information that it is
willing to show to an unknown party. The client, according to its practices,
decides if it is willing to disclose the requested credentials. Note that this
incremental exchange of requests and credentials can be iteratively repeated
as many times as necessary.

PRUdent NEgotiation Strategy (PRUNES) is another negotiation strat-
egy whose main goal is to minimize the number of certificates that the client
communicates to the server [30]. It also ensures that the client communicates
her credentials to the server only if the access will be granted. Each party
defines a set of credential policies on which the negotiation process is based.
The established credential policies can be graphically represented through a
tree, called negotiation search tree, composed of two kinds of nodes: credential
nodes, representing the need for a specific credential, and disjunctive nodes,
representing the logic operators connecting the conditions for credential re-
lease. The root of the tree represents the resource the client wants to access.
The negotiation process can be seen as a backtracking operation on the tree.
To the aim of avoiding the cost of a brute-force backtracking, the authors pro-
pose the PRUNES method to prune the search tree without compromising
completeness or correctness of the negotiation process. The basic idea is that
if a credential has just been evaluated and the state of the system has not
changed too much, then it is useless to evaluate again the same credential.

A large set of negotiation strategies, called disclosure tree strategy (DTS)
family [32], has been also defined and proved to be closed. This means that,

12 S. De Capitani di Vimercati, S. Foresti, and P. Samarati

if two parties use different strategies from the DST family, they will be able
to negotiate trust. A Unified Schema for Resource Protection (UniPro) [33]
has been proposed to protect the information specified within policies. UniPro
gives (opaque) names to policies and allows any named policy P1 to have its
own policy P2, meaning that the content of P1 can only be disclosed to parties
who satisfy P2. Another solution is the Adaptive Trust Negotiation and Access
Control (ATNAC) approach [34]. This method grants (or denies) access on
the basis of a suspicion level associated with subjects. The suspicion level
is not fixed but may vary on the basis of the probability that the user has
malicious intents.

It is important to note that in recent, more complicated, scenarios disclo-
sure policies can be defined both on resources and on credentials [22]. In this
case, the client, upon receiving a request for a certificate, can answer with a
counter-request to the server for another certificate.

3.2 Overview of a Credential-Based Access Control Framework

One of the first solutions providing a uniform framework for credential-based
access control specification and enforcement was presented by Bonatti and
Samarati [22]. The proposed access control system includes an access control
model, a language, and a policy filtering mechanism.

The paper envisions a system composed of two entities: a client and a
server, interacting through a predefined negotiation process. The server is
characterized by a set of resources. Both the client and the server have a port-
folio, which is a collection of credentials (i.e., statements issued by authorities
trusted for making them [35]) and declarations (statements issued by the party
itself). Credentials correspond to digital certificates and are guaranteed to be
unforgeable and verifiable through the public key of the issuing authority.

To the aim of performing gradual trust establishment between the two
interacting parties, the server defines a set of service accessibility rules, and
both the client and the server define their own set of portfolio disclosure rules.
The service accessibility rules specify the necessary and sufficient conditions
for accessing a resource, while portfolio disclosure rules define the conditions
that govern the release of credentials and declarations. Both the two classes
of rules are expressed by using a logic language. A special class of predicates
is represented by abbreviations. Since there may exist a number of alternative
combinations of certificates allowing access to a resource, abbreviation pred-
icates may be used for reducing the communication cost of such certificates.
The predicates of the language adopted exploit the current state (i.e., parties’
characteristics, certificates already exchanged in the negotiation, and requests
made by the parties) to take a decision about a release. The information about
the state is classified as persistent state, when the information is stored at the
site and spans different negotiations, and negotiation state, when it is acquired
during the negotiation and is deleted when the same terminates.

Recent Advances in Access Control 13

negot.-dep.
permanent/

State

Portfolio

declarations
credentials/

Policy

information
release

����
����
����
����

negot.-dep.
permanent/

State

Portfolio

declarations
credentials/

Policy

services/
info. release

����
����
����
����

service request

request for prerequisites P

requirements R request

prerequisites P

requirements R’ counter-req.

R’

R

service granted

ServerClient

Fig. 5. Client-server negotiation

The main advantage of this proposal is that it maximizes both server and
client’s privacy, by minimizing the set of certificates exchanged. In particular,
the server discloses the minimal set of policies for granting access, while the
client releases the minimal set of certificates to access the resource. To this pur-
pose, service accessibility rules are distinguished in prerequisites and requisites.
Prerequisites are conditions that must be satisfied for a service request to be
taken into consideration (they do not guarantee that it will be granted); req-
uisites are conditions that allow the service request to be successfully granted.
Therefore, the server will not disclose a requisite rule until the client satisfies
a prerequisite rule. Figure 5 illustrates the resulting client/server interaction.
It is important to highlight here that, before releasing rules to the client, the
server needs to evaluate state predicates that involve private information. For
instance, the client is not expected to be asked many times the same informa-
tion during the same session and if the server has to evaluate if the client is
considered not trusted, it cannot communicate this request to the client itself.

4 Policy Composition

In many real word scenarios, access control enforcement needs to take into
consideration different policies independently stated by different administra-
tive subjects, which must be enforced as if they were a single policy. As an
example of policy composition, consider an hospital, where the global policy
may be obtained by combining together the policies of its different wards and
the externally imposed constraints (e.g., privacy regulations). Policy compo-
sition is becoming of paramount importance in all those contexts in which
administrative tasks are managed by different, non collaborating, entities.

Policy composition is an orthogonal aspect with respect to policy models,
mechanisms, and languages. As a matter of fact, the entities expressing the

14 S. De Capitani di Vimercati, S. Foresti, and P. Samarati

policies to be composed may even not be aware of the access control system
adopted by the other entities specifying access control rules. The main desider-
ata for a policy composition framework can be summarized as follows [36].

• Heterogeneous policy support. The framework should support policies ex-
pressed in different languages and enforced by different mechanisms.

• Support of unknown policies. The framework should support policies that
are not fully defined or are not fully known when the composition strategy
is defined. Consequently, policies are to be treated as black-boxes and are
supposed to return a correct and complete response when queried at access
control time.

• Controlled interference. The framework cannot simply merge the sets of
rules defined by the different administrative entities, since this behavior
may cause side effects. For instance, the accesses granted/denied might
not correctly reflect the specifications anymore.

• Expressiveness. The framework should support a number of different ways
for combining the input policies, without changing the input set of rules
or introducing ad-hoc extensions to authorizations.

• Support of different abstraction levels. The composition should highlight
the different components and their interplay at different levels of abstrac-
tion.

• Formal semantics. The language for policy composition adopted by the
framework should be declarative, implementation independent, and based
on a formal semantic to avoid ambiguity.

We now briefly describe some solutions proposed for combining different
policies.

4.1 Overview of Policy Composition Solutions

Various models have been proposed to reason about security policies [37,
38, 39, 40]. In [37, 39] the authors focus on the secure behavior of program
modules. McLean [40] introduces the algebra of security, which is a Boolean
algebra that enables to reason about the problem of policy conflict, arising
when different policies are combined. However, even though this approach
permits to detect conflicts between policies, it does not propose a method to
resolve the conflicts and to construct a security policy from inconsistent sub-
policies. Hosmer [38] introduces the notion of meta-policies, which are defined
as policies about policies. Metapolicies are used to coordinate the interaction
about policies and to explicitly define assumptions about them. Subsequently,
Bell [41] formalizes the combination of two policies with a function, called
policy combiner , and introduces the notion of policy attenuation to allow the
composition of conflicting security policies. Other approaches are targeted to
the development of a uniform framework to express possibly heterogeneous
policies [42, 43, 44, 45, 46].

Recent Advances in Access Control 15

A different approach has been illustrated in [36], where the authors propose
an algebra for combining security policies together with its formal semantics.
Here, a policy, denoted Pi, is defined as a set of triples of the form (s,o,a),
where s is a constant in (or a variable over) the set of subjects S, o is a constant
in (or a variable over) the set of objects O, and a is a constant in (or a variable
over) the set of actions A. Policies of this form are composed through a set of
algebra operators whose syntax is represented by the following BNF:

E ::=id|E + E|E&E|E − E|E∧C|o(E,E,E)|E ∗R|T (E)|(E)
T ::= τ id.E

where id is a unique policy identifier, E is a policy expression, T is a construct,
called template, C is a construct describing constraints, and R is a construct
describing rules. The order of evaluation of algebra operators is determined
by the precedence, which is (from higher to lower) τ , ., + and & and -, * and
∧.

The semantic of algebra operators is defined by a function that maps
policy expressions in a set of ground authorizations (i.e., a set of authorization
triples). The function that maps policy identifiers into sets of triples is called
environment , and is formally defined as follows.

Definition 1. An environment e is a partial mapping from policy identifiers
to sets of authorization triples. By e[X/S] we denote a modification of envi-
ronment e such that

e[X/S](Y) =
{

S if Y = X
e(Y) otherwise

The semantic of an identifier X in the environment e is denoted by [[X]]e =
e(X).

The operators defined by the algebra for policy composition basically re-
flect the features supported by classical policy definition systems. As an ex-
ample, it is possible to manage exceptions (such as negative authorizations),
propagation of authorizations, an so on. The set of operators together with
their semantic is briefly described in the following.

• Addition (+). It merges two policies by returning their union.

[[P1 + P2]]e = [[P1]]e ∪ [[P2]]e
Intuitively, additions can be applied in any situation where accesses can be
authorized if allowed by any of the component policies (maximum privilege
principle).

• Conjunction (&). It merges two policies by returning their intersection.

[[P1&P2]]e = [[P1]]e ∩ [[P2]]e
This operator enforces the minimum privilege principle.

16 S. De Capitani di Vimercati, S. Foresti, and P. Samarati

• Subtraction (−). It deletes from a first policy, all the authorizations spec-
ified in a second policy.

[[P1 − P2]]e = [[P1]]e \ [[P2]]e
Intuitively, subtraction operator is used to handle exceptions, and has the
same functionalities of negative authorizations in existing approaches. It
does not generate conflicts since P1 prevails on P2 by default.

• Closure (∗). It closes a policy under a set of derivation rules.

[[P ∗R]]e = closure(R, [[P]]e)

The closure of policy P under derivation rules R produces a new policy
that contains all the authorizations in P and those that can be derived
evaluating R on P , according to a given semantics. The derivation rules
in R can enforce, for example, an authorization propagation along a pre-
defined subject or object hierarchy.

• Scoping Restriction (∧). It restricts the applicability of a policy to a given
subset of subjects, objects, and actions of the system.

[[P∧
1 c]]e = {t ∈ [[P]]e | t satisfy c}

where c is a condition. It is useful when administration entities need to
express their policy on a confined subset of subjects and/or objects (e.g.,
each ward can express policies about the doctors working in the ward).

• Overriding (o). It overrides a portion of policy P1 with the specifications
in policy P2; the fragment that is to be substituted is specified by a third
policy P3.

[[o(P1, P2, P3)]]e = [[(P1 − P3) + (P2&P3)]]e
• Template(τ). It defines a partially specified (i.e., parametric) policy that

can be completed by supplying the parameters.

[[τX.P]]e(S) = [[P]]e[S/X]

where S is the set of all policies, and X is a parameter. Templates are
useful for representing policies as black-boxes. They are needed any time
when some components are to be specified at a later stage. For instance,
the components might be the result of a further policy refinement, or might
be specified by a different authority.

Due to the formal definition of the semantic of algebra operators, it is
possible to exploit algebra expressions to formally prove the security properties
of the obtained (composed) policy.

Once the policies have been composed through the algebraic operators
described above, for their enforcement it is necessary to provide executable
specifications compatible with different evaluation strategies. To this aim,
the authors propose the following three main strategies to translate policy
expressions into logic programs.

Recent Advances in Access Control 17

• Materialization. The expressions composing policies are explicitly evalu-
ated, by obtaining a set of ground authorizations that represents the policy
that needs to be enforced. This strategy can be applied when all the com-
posed policies are known and reasonably static.

• Partial materialization. Whenever materialization is not possible since
some of the policies to be composed are not available, it is possible to
materialize only a subset of the final policy. This strategy is useful also
when some of the policies are subject to sudden and frequent changes, and
the cost of materialization may be too high with respect to the advantages
it may provide.

• Run-time evaluation. In this case no materialization is performed and run-
time evaluation is needed for each request (access triple), which is checked
against the policy expressions to determine whether the triple belongs to
the result.

The authors then propose a method (pe2lp) for transforming algebraic pol-
icy composition expressions into a logic program. The method proposed can be
easily adapted to one of the three materialization strategies introduced above.
Basically, the translation process creates a distinct predicate symbol for each
policy identifier and for each algebraic operator in the expression. The logic
programming formulation of algebra expressions can be used to enforce ac-
cess control. As already pointed out while introducing algebra operators, this
policy composition algebra can also be used to express simple access control
policies, such as open and closed policy, propagation policies, and exceptions
management. For instance, let us consider a hospital composed of three wards,
namely Cardiology, Surgery, and Orthopaedics. Each ward is responsible for
granting access to data under its responsibility. Let PCardiology, PSurgery
and POrthopaedics be the policies of the three wards. Suppose now that an
access is authorized if any of the wards policies state so and that authoriza-
tions in policy PSurgery are propagated to individual users and documents
by classical hierarchy-based derivation rules, denoted RH . In terms of the
algebra, the hospital policy can be represented as follows.

PCardiology&PSurgery ∗RH&POrthopaedics

Following this work, Jajodia et al. [47] presented a propositional algebra
for policies with a syntax consisting of abstract symbols for atomic policy
expressions and composition operators.

5 Access Control Through Encryption

Since the amount of data that organizations need to manage is increasing
very quickly, data outsourcing is becoming more and more attractive. Data
outsourcing provides data storage at a low rate, allowing the data owner to

18 S. De Capitani di Vimercati, S. Foresti, and P. Samarati

concentrate its activity on its core business where data are managed by an
external service provider. The main drawback of this practice is that the ser-
vice provider may not be fully trusted. The data owner and final users are
usually supposed to trust the provider for managing data stored on its server,
and to correctly execute queries on it, but the provider is not fully trusted
for accessing data content. To solve this problem, different solutions have
been proposed in the literature, mainly based on the use of cryptography as
a mechanism for protecting data privacy [1, 2, 3]. Most of the proposals in
this area focus on issues related to querying encrypted data, to the aim of
avoiding server-side decryption, while minimizing client-side burden in query
evaluation. Another drawback of existing proposals is that they assume that
any client has complete access to the query results, and therefore the data
owner has to be involved for filtering out the data not accessible by the client.
This would cause an excessive burden on the owner, thus nullifying the ad-
vantages of outsourcing data management. On the other hand, the remote
server cannot enforce access control policies, since it may not be allowed to
know the access control policy defined by the owner. Since neither the data
owner nor the remote server can enforce the access control policy, for either
security or efficiency reasons, the data themselves need to implement selective
access. This can be realized through selective encryption, which consists in
encrypting data using different keys and distributing the keys so that users
can decrypt only the data they are authorized to access.

The problem of enforcing access control policies through selective encryp-
tion has been analyzed both for databases and for XML documents. In the
following, we briefly introduce the most important proposals for these two
scenarios [48, 49, 50].

5.1 Overview of Database Outsourcing Solutions

Let us consider a system composed of a set U of users and a set R of resources.
A resource may be a table, an attribute, a tuple, or even a cell, depending on
the granularity at which the data owner wishes to define her policy. Since this
distinction does not affect access control policy enforcement, we will always
refer generically to resources. The access control policy defined by the data
owner can be easily represented through a traditional access matrix A, where
each cell A[u,r] may assume either the value 1, if u can access r, or the value
0, otherwise (currently only read privileges have been considered). Figure 6
represents an example of access matrix, where there are four users, namely A,
B, C, and D, and four resources r1, r2, r3, and r4.

A first solution that could be adopted for selectively encrypting data for
access control purposes consists in using a different key for each resource,
and in communicating each user the set of keys used to protect the resources
belonging to her capability list (i.e., the set of resources that the user can
access). This solution requires each user to keep a possibly great number of

Recent Advances in Access Control 19

r1 r2 r3 r4

A 1 1 0 1
B 1 1 0 0
C 1 0 1 0
D 0 1 1 0

Fig. 6. An example of binary access matrix

(secret) keys, depending on the number of her privileges. To the aim of reduc-
ing the number of keys that each user has to manage, key derivation methods
can be adopted [51]. A key derivation method allows the computation of an
encryption key, by proving the knowledge of another secret key in the system.
By adequately organizing encryption keys and adopting a derivation method,
it is possible to communicate a small number of keys to users, granting then
the possibility of deriving from these keys, those needed for accessing data.
Typically, these methods assume the existence of a partial order relationship
defined on the set of keys. Given the set of encryption keys K in the system,
and a partial order relationship � defined on it, the pair (K, �) represents
the key derivation hierarchy of the system, where ∀ki, kj ∈ K, if kj � ki then
kj is derivable from ki. Consequently, by knowing a key ki, it is possible to
compute the value of any kj such that kj � ki. Graphically, a key derivation
hierarchy can be represented as a graph, with a vertex for each key in K, and
a path from ki to kj if kj � ki. A key derivation hierarchy can however assume
three different graphical structures, which in turn influence the key derivation
method that can be adopted, as described in the following.

• Chain of vertexes. The relation � is a total order relation for K; the value
of ki depends only on the value of the key of its (unique) direct ancestor
kj [52].

• Tree. The relation � is a partial order relation for K such that if ki � kj

and ki � kl, then either kj � kl or kl � kj ; the value of ki depends on the
value of the key of its (unique) direct ancestor kj , and on the public label
li associated with ki [52, 53, 54].

• DAG. Different classes of solutions have been proposed for DAGs [51].
In particular, Atallah et al. [55] introduce an interesting solution that
allows insertion an deletion of keys in the hierarchy without the need
of redefining the whole set of keys K. This method associates a piece of
public information (called token) with each edge in the DAG. Given an
edge connecting key ki with kj , token Ti,j = kj ⊕ h(ki, lj), where lj is a
publicly available label associated with kj , h is a secure hash function, and
⊕ is the n-ary xor operator.

Damiani et al. [56] propose an access control solution for outsourcing data
that is based on the definition of a key derivation hierarchy reflecting the
user-group containment relation. Given a set U of users, a user-based hierarchy,
denoted UH, is defined as a pair (P (U),�), where P (U) represents the powerset

20 S. De Capitani di Vimercati, S. Foresti, and P. Samarati

∅

A

ppppppppp
B

�����
C

?????
D

NNNNNNNNN

AB

����

sssssss
AC

jjjjjjjjjjjjj
AD

;;;;
jjjjjjjjjjjjj

BC

OOOOOOOO
BD

TTTTTTTTTTTTT
CD

8888
LLLLLLL

ABC

7777
jjjjjjjjjjj

ABD

KKKKKK
jjjjjjjjjjj

ACD

OOOOOOO

TTTTTTTTTTT
rrrrrr

BCD

<<<<
����

ABCD

@@@@@
NNNNNNN

ppppppp
�����

(a)

r1r2r3r4

yy
yy

y
mmmmmmmm

QQQQQQQQ
EE

EE
E

r1r2r3

��
��

VVVVVVVVVVVVVr1r2r4

ooooooo
VVVVVVVVVVVVV r1r3r4

llllllll

hhhhhhhhhhhhh
OOOOOOOr2r3r4

}}
}}

}
<<

<<

r1r2

<<
<<

OOOOOOOOr1r3

VVVVVVVVVVVVVVV r1r4

}}
}}

}
VVVVVVVVVVVVVVV r2r3

llllllllll r2r4

hhhhhhhhhhhhhhh r3r4

��
��

oooooooo

r1

QQQQQQQQQQ r2

DD
DD

D r3

zz
zz

z
r4

mmmmmmmmmm

∅
(b)

Fig. 7. An example of UH (a) and RH (b)

(i.e., the set of all subsets of U) of U , and contains 2|U| items, and � is defined
as the set containment relation, that is, ∀a, b ∈ P (U), a � b if and only if
b ⊆ a. Each vertex vi in UH is associated with a private key ki. Each user
ui∈U is then communicated key ki associated with the vertex representing
the singleton set {ui}. Each resource rj is instead encrypted with the key kj

associated with the vertex representing its acl. Since partial order relation
� is defined on the basis of the set containment relation, any user in the
system, by knowing the key of vertex {ui}, can derive all and only the keys
of vertexes representing sets of users including ui. Figure 7(a) represents the
user hierarchy suitable for the access matrix in Fig. 6. To correctly enforce
the given access control policy, r1 is encrypted with the key of vertex ABC,
r2 with the key of vertex ABD, r3 with the key of vertex CD, and r4 with the
key of vertex A. Due to this key assignment, any user can access exactly the
resources in her capability list. As an example, with respect to the hierarchy
in Fig. 7(a), it is easy to see that B can derive the key associated with vertexes
AB and BD that in turn can be used for deriving the keys associated with
vertexes ABC and ABD, this allowing to access r1 and r2, respectively.

In a dual way, it is possible to build a key derivation hierarchy on the
basis of the resources in the system. A resource-based hierarchy, denoted RH,
is defined as a pair (P (R),�), where P (R) represents the powerset of R, and
� is a partial order relation such that ∀a, b ∈ P (R), a � b if and only if a ⊆ b.
To correctly enforce the given policy, each user ui is assigned the key of the
vertex representing her capability list, while each resource rj is encrypted with
the key of the vertex representing the singleton set {rj}. Considering again the
access matrix in Fig. 6, the corresponding resource hierarchy is represented
in Fig. 7(b).

Although both the models presented for defining a key derivation hierarchy
correctly enforce the access control policy defined by the owner, there is an
important difference that should be considered when deciding which structure
to adopt. As a matter of fact, UH allows resources to share the same encryp-
tion key, while each user has her secret key. By contrast, when adopting RH,

Recent Advances in Access Control 21

A

11
11

11
11

11
B

C

��
��

��
��

��
�� 77

77
D

CD

ABC ABD

Fig. 8. An example of transformed user hierarchy.

different users can share the same secret key, while resources are all encrypted
using a different key. Moreover, since the number of vertexes in the hierarchy
depends on the number of users (resources, respectively) in the system, if U is
smaller than R, UH will be probably more convenient than RH. In the following,
we focus on the user-based hierarchy, but the discussion is however applicable
also to the resource-based hierarchy.

It is easy to note that UH structure defines a great number of keys, some
of which may be useful neither for encryption nor for distribution to users.
This causes both an expensive key derivation process on the client side, and
an excessive storage workload for the server. As a matter of fact, the length
of key derivation paths in UH is linear in |U|, and the number of tokens stored
on the server grows with |U|.

To the aim of reducing both key derivation costs and, more generally, the
size of the key derivation hierarchy, the authors propose to remove from UH
all those vertexes that are not necessary for access control enforcement [48].
Therefore, the vertexes that are maintained in the hierarchy are those that
represent singleton sets of users and resources’ acls. These vertexes are then
connected in a new hierarchical structure, according to the � partial order
relation. The resulting hierarchy should guarantee that any user ui can com-
pute, from her private key, the keys used to encrypt all and only the resources
belonging to her capability list. To this purpose, the authors propose an algo-
rithm that, starting from the set of required vertexes, builds a key derivation
hierarchy on which they apply the Atallah et al. key derivation method. To
improve the key derivation process for final users, the algorithm tries to min-
imize the number of tokens in the system. To this aim, other vertexes besides
the necessary ones are possibly added to the hierarchical structure. Consider-
ing the user hierarchy in Fig. 7, Fig. 8 illustrates the hierarchy corresponding
to the access control policy in Fig. 6, and containing only the vertexes needed
for a correct enforcement of the policy.

Zych and Petkovic [49] exploit Diffie-Hellman key generation scheme and
asymmetric encryption for enforcing selective access on outsourced data.
Given a user-based hierarchy, the authors propose to build a V-graph start-
ing from it. For each vertex in the V-graph, the number of incoming edges is
either 2 or 0, and for any two vertexes, there is at most one common parent
vertex. The resulting structure is a binary tree, whose leaves represent single-
ton sets of users, and whose root represents the group containing all the users

22 S. De Capitani di Vimercati, S. Foresti, and P. Samarati

in the system. Also, any user knows the private key of the vertex representing
herself in the hierarchy, and each resource is encrypted with the private key
associated with the vertex representing its acl. However, differently from other
proposals, key derivation goes from leaves to the root of the tree.

5.2 Overview of XML Document Outsourcing Solutions

Besides traditional databases, also XML documents can contain sensitive in-
formation, and their outsourcing may cause privacy breaches. As a conse-
quence, it is necessary to develop techniques for enforcing access control on
outsourced XML data as well. Although some of the approaches presented
for the relational database outsourcing scenario are suited for XML data out-
sourcing, they do not exploit the main characteristics of XML documents
(e.g., their tree structure) and different specific approaches have then been
proposed. The solutions presented exploit once again selective encryption as
a way for enforcing access control when publishing or outsourcing sensitive
data.

Miklau and Suciu [50] propose a way for differentiating the encryption
of different portions of an XML document, on the basis of users or groups
who can access them. The proposed access control mechanism is enriched by
adding metadata XML nodes, adopted to enforce access control rules with
conditions on the values contained in the document. Wang et al. [57] present
an access control system that both protects data stored in the XML document
and the associations among data by introducing association constraints that
need to be satisfied by the encryption model adopted.

6 Conclusions

This chapter discussed recent trends in the access control field. We described
the basic concepts of access control and investigated different issues concern-
ing the development of an access control system. In particular, we outlined
the needs for providing means to: support access control in open environ-
ments, where the identities of the involved parties may be unknown; combine
authorization specifications that may be independently stated; enforce ac-
cess control through the use of selective encryption. For these contexts, we
described recent proposals and ongoing work.

Acknowledgements

This work was supported in part by the European Union under contract IST-
2002-507591, and by the Italian Ministry of Research, within programs FIRB,
under project “RBNE05FKZ2”, and PRIN 2006, under project “Basi di dati
crittografate” (2006099978).

Recent Advances in Access Control 23

References

1. Hacigümüs, H., Iyer, B., Mehrotra, S., Li, C.: Executing SQL over encrypted
data in the database-service-provider model. In: Proc. of the ACM SIGMOD
2002, Madison, Wisconsin, USA (2002)

2. Hacigümüs, H., Iyer, B., Mehrotra, S.: Providing database as a service. In: Proc.
of 18th International Conference on Data Engineering, San Jose, California, USA
(2002)

3. Damiani, E., De Capitani di Vimercati, S., Jajodia, S., Paraboschi, S., Samarati,
P.: Balancing confidentiality and efficiency in untrusted relational DBMSs. In:
Proc. of the 10th ACM Conference on Computer and Communications Security
(CCS03), Washington, DC, USA (2003)

4. Graham, G., Denning, P.: Protection- principles and practice. In: Proc. of
the Spring Jt. Computer Conference. Volume 40., Montvale, NJ, USA (1972)
417–429

5. Harrison, M., Ruzzo, W., Ullman, J.: Protection in operating systems. Com-
munications of the SCM 19(8) (August 1976) 461–471

6. Lampson, B.W.: Protection. ACM Operating Systems Review 8(1) (January
1974) 18–24

7. Jajodia, S., Samarati, P., Sapino, M., Subrahmanian, V.: Flexible support for
multiple access control policies. ACM Transaction on Database Systems 26(2)
(June 2001) 214–260

8. Lunt, T.: Access control policies: Some unanswered questions. In: Proc. of IEEE
Computer Security Foundations Workshop II, Franconia, New Hampshire (1988)

9. Sandhu, R.: Lattice-based access control models. IEEE Computer 26(11) (1993)
9–19

10. Bell, D., La Padula, L.: Secure computer systems: A mathematical model.
Technical Report MTR-2547, Vol 2, MITRE Corp., Bedford, MA (November
1973)

11. Bell, D., La Padula, L.: Secure computer systems: Mathematical foundations.
Technical Report MTR-2547, Vol 1, MITRE Corp., Bedford, MA (November
1973)

12. Bell, D., La Padula, L.: Secure computer systems: A refinement of the math-
ematical model. Technical Report MTR-2547, Vol 3, MITRE Corp., Bedford,
MA (April 1974)

13. Bell, D., La Padula, L.: Secure computer systems: Unified exposition and multics
interpretation. Technical Report MTR-2997, Vol 4, MITRE Corp., Bedford, MA
(July 1975)

14. Biba, K.J.: Integrity considerations for secure computer systems. MTR-3153
rev., MITRE Corp., Vol 1, Bedford, MA (April 1977)

15. Samarati, P., De Capitani di Vimercati, S.: Access control: Policies, models, and
mechanisms. In Focardi, R., Gorrieri, R., eds.: Foundations of Security Analysis
and Design. LNCS 2171. Springer-Verlag (2001)

16. McLean, J.: Security models. In Marciniak, J., ed.: Encyclopedia of Software
Engineering. John Wiley & Sons (1994)

17. Ferraiolo, D., Kuhn, D.: Role-based access control. In: Proc. of the 15th National
Computer Security Conference. (1992)

18. Sandhu, R., Coyne, E., Feinstein, H., Youman, C.: Role-based access control
models. IEEE Computer 29(2) (1996) 38–47

24 S. De Capitani di Vimercati, S. Foresti, and P. Samarati

19. Security and trust management (2005)
http://www.ercim.org/publication/Ercim News/enw63/.

20. Blaze, M., Feigenbaum, J., Lacy, J.: Decentralized trust management. In: Proc.
of the 17th Symposium on Security and Privacy, Oakland, California, USA (May
1996)

21. Blaze, M., Feigenbaum, J., Ioannidis, J., Keromytis, A.: The KeyNote Trust
Management System (Version 2). Internet RFC 2704 edn. (1999)

22. Bonatti, P., Samarati, P.: A unified framework for regulating access and infor-
mation release on the web. Journal of Computer Security 10(3) (2002) 241–272

23. Irwin, K., Yu, T.: Preventing attribute information leakage in automated trust
negotiation. In: Proc. of the 12th ACM Conference on Computer and Commu-
nications Security, Alexandria, VA, USA (2005)

24. Li, N., Mitchell, J., Winsborough, W.: Beyond proof-of-compliance: Security
analysis in trust management. Journal of the ACM 52 (2005) 474–514

25. Ni, J., Li, N., Winsborough, W.: Automated trust negotiation using crypto-
graphic credentials. In: Proc. of the 12th ACM Conference on Computer and
Communications Security, Alexandria, VA, USA (2005)

26. Yu, T., Winslett, M., Seamons, K.: Supporting structured credentials and sen-
sitive policies trough interoperable strategies for automated trust. ACM Trans-
actions on Information and System Security (TISSEC) 6(1) (February 2003)
1–42

27. Seamons, K.E., Winsborough, W., Winslett, M.: Internet credential acceptance
policies. In: Proc. of the Workshop on Logic Programming for Internet Appli-
cations, Leuven, Belgium (July 1997)

28. Seamons, K.E., Winslett, M., Yu, T., Smith, B., Child, E., Jacobson, J., Mills,
H., Yu, L.: Requirements for policy languages for trust negotiation. In: Proc.
of the 3rd International Workshop on Policies for Distributed Systems and Net-
works (POLICY 2002), Monterey, CA (June 2002)

29. Winslett, M., Ching, N., Jones, V., Slepchin, I.: Assuring security and privacy
for digital library transactions on the web: Client and server security policies.
In: Proc. of the ADL ’97 — Forum on Research and Tech. Advances in Digital
Libraries, Washington, DC (May 1997)

30. Yu, T., Ma, X., Winslett, M.: An efficient complete strategy for automated
trust negotiation over the internet. In: Proc. of the 7th ACM Computer and
Communication Security, Athens, Greece (November 2000)

31. Seamons, K., Winslett, M., Yu, T.: Limiting the disclosure of access control
policies during automated trust negotiation. In: Proc. of the Symposium on
Network and Distributed System Security, San Diego, CA (April 2001)

32. Yu, T., Winslett, M., Seamons, K.: Interoperable strategies in automated trust
negotiation. In: Proc. of the 8th ACM Conference on Computer and Commu-
nications Security, Philadelphia, Pennsylvania (November 2001)

33. Yu, T., Winslett, M.: A unified scheme for resource protection in automated
trust negotiation. In: Proc. of the IEEE Symposium on Security and Privacy,
Berkeley, California (May 2003)

34. Ryutov, T., Zhou, L., Neuman, C., Leithead, T., Seamons, K.: Adaptive trust
negotiation and access control. In: Proc. of the 10th ACM Symposium on Access
Control Models and Technologies, Stockholm, Sweden (June 2005)

35. Gladman, B., Ellison, C., Bohm, N.: Digital signatures, certificates and elec-
tronic commerce. http://www.clark.net/pub/cme/html/spki.html.

Recent Advances in Access Control 25

36. Bonatti, P., De Capitani di Vimercati, S., Samarati, P.: An algebra for com-
posing access control policies. ACM Transactions on Information and System
Security 5(1) (February 2002) 1–35

37. Abadi, M., Lamport, L.: Composing specifications. ACM Transactions on Pro-
gramming Languages 14(4) (October 1992) 1–60

38. Hosmer, H.: Metapolicies II. In: Proc. of the 15th National Computer Security
Conference, Baltimore, MD (October 1992)

39. Jaeger, T.: Access control in configurable systems. Lecture Notes in Computer
Science 1603 (2001) 289–316

40. McLean, J.: The algebra of security. In: Proc. of the 1988 IEEE Computer
Society Symposium on Security and Privacy, Oakland, CA, USA (April 1988)

41. Bell, D.: Modeling the multipolicy machine. In: Proc. of the New Security
Paradigm Workshop, Little Compton, Rhode Island, USA (August 1994)

42. Bertino, E., Jajodia, S., Samarati, P.: A flexible authorization mechanism for re-
lational data management systems. ACM Transactions on Information Systems
17(2) (April 1999) 101–140

43. Jajodia, S., Samarati, P., Sapino, M., Subrahmanian, V.: Flexible support for
multiple access control policies. ACM Transactions on Database Systems 26(2)
(June 2001) 214–260

44. Jajodia, S., Samarati, P., Subrahmanian, V., Bertino, E.: A unified framework
for enforcing multiple access control policies. In: Proc. of the 1997 ACM In-
ternational SIGMOD Conference on Management of Data, Tucson, AZ (May
1997)

45. Li, N., Feigenbaum, J., Grosof, B.: A logic-based knowledge representation for
authorization with delegation. In: Proc. of the 12th IEEE Computer Security
Foundations Workshop, Washington, DC, USA (July 1999)

46. Woo, T., Lam, S.: Authorizations in distributed systems: A new approach.
Journal of Computer Security 2(2,3) (1993) 107–136

47. Wijesekera, D., Jajodia, S.: A propositional policy algebra for access control.
ACM Transactions on Information and System Security 6(2) (May 2003) 286–
325

48. Damiani, E., De Capitani di Vimercati, S., Foresti, S., Jajodia, S., Paraboschi,
S., Samarati, P.: An experimental evaluation of multi-key strategies for data
outsourcing. In: Proc. of the 22nd IFIP TC-11 International Information Secu-
rity Conference (SEC 2007), Sandton, South Africa (May 2007)

49. Zych, A., Petkovic, M.: Key management method for cryptographically enforced
access control. In: Proc. of the 1st Benelux Workshop on Information and System
Security, Antwerpen, Belgium (2006)

50. Miklau, G., Suciu, D.: Controlling access to published data using cryptography.
In: Proc. of the 29th VLDB Conference, Berlin, Germany (September 2003)

51. Crampton, J., Martin, K., Wild, P.: On key assignment for hierarchical access
control. In: In Proc. of the 19th IEEE Computer Security Foundations Workshop
(CSFW’06), Los Alamitos, CA, USA (2006)

52. Sandhu, R.: On some cryptographic solutions for access control in a tree hi-
erarchy. In: Proc. of the 1987 Fall Joint Computer Conference on Exploring
Technology: Today and Tomorrow, Dallas, Texas, USA (1987)

53. Gudes, E.: The design of a cryptography based secure file system. IEEE Trans-
actions on Software Engineering 6 (1980) 411–420

54. Sandhu, R.: Cryptographic implementation of a tree hierarchy for access control.
Information Processing Letters 27 (1988) 95–98

26 S. De Capitani di Vimercati, S. Foresti, and P. Samarati

55. Atallah, M., Frikken, K., Blanton, M.: Dynamic and efficient key management
for access hierarchies. In: Proc. of the 12th ACM conference on Computer and
Communications Security (CCS05), Alexandria, VA, USA (2005)

56. Damiani, E., De Capitani di Vimercati, S., Foresti, S., Jajodia, S., Paraboschi,
S., Samarati, P.: Selective data encryption in outsourced dynamic environments.
In: Proc. of the Second International Workshop on Views On Designing Com-
plex Architectures (VODCA 2006). Electronic Notes in Theoretical Computer
Science, Bertinoro, Italy, Elsevier (2006)

57. Wang, H., Lakshmanan, L.V.S.: Efficient secure query evaluation over encrypted
XML databases. In: Proc. of the 32nd VLDB Conference, Seoul, Korea (Septem-
ber 2006)

