
Computing manuscript No.
(will be inserted by the editor)

Dependability Certification of Services: A
Model-Based Approach

Claudio A. Ardagna · Ravi Jhawar ·
Vincenzo Piuri

Abstract The advances and success of the Service-Oriented Architecture
(SOA) paradigm have produced a revolution in ICT, particularly, in the way
in which software applications are implemented and distributed. Today, ap-
plications are increasingly provisioned and consumed as web services over the
Internet, and business processes are implemented by dynamically composing
loosely-coupled applications provided by different suppliers. In this highly dy-
namic context, clients (e.g., business owners or users selecting a service) are
concerned about the dependability of their services and business processes.

In this paper, we define a certification scheme that allows to verify the
dependability properties of services and business processes. Our certification
scheme relies on discrete-time Markov chains and awards machine-readable de-
pendability certificates to services, whose validity is continuously verified using
run-time monitoring. Our solution can be integrated within existing SOAs, to
extend the discovery and selection process with dependability requirements
and certificates, and to support a dependability-aware service composition.

Keywords BPEL, Dependability Certification, Markov Chains, Web Services

1 Introduction

The increasing demand for flexibility and extensibility in software reuse and
integration has resulted in the wide adoption of web services and SOA ap-
plications. The availability of a range of web services published by different
providers, coupled with standard XML-based protocols, form a digital ecosys-
tem that allows for the design and dynamic composition of business processes
across organization boundaries [26]. While the benefits are immense, this soft-
ware building paradigm has changed the dimension of risks in business pro-
cesses, because the failures in partner services are beyond the scope of the busi-
ness process owner [18, 19, 31]. As a result, clients are increasingly concerned

Dipartimento di Informatica · Università degli Studi di Milano · Crema (CR), 26013, Italy
E-mail: firstname.lastname@unimi.it

2 Claudio A. Ardagna et al.

about service failures that may affect the functional and non-functional prop-
erties of their business processes. In this context, trustworthiness of services
is a critical factor for clients, and raises the need of adapting current devel-
opment, validation, and verification techniques to the SOA vision [12, 14]. In
particular, the definition of assurance techniques increasing clients confidence
that a service complies with their non-functional requirements becomes of ut-
most importance.

A suitable technique to address the above concerns is based on certifica-
tion [11]. Originally, certification schemes targeted static and monolithic soft-
ware, and produced human-readable certificates to be used at deployment and
installation time [15,34]. With the advent of web services, the problem of cer-
tifying software systems has been exacerbated and now requires the definition
of certification schemes that address the issues introduced by a service-based
ecosystem and its dynamics. An interesting line of work is focusing on se-
curity certification of services [3, 4], involving definition of approaches that
support machine-readable certificates and can be integrated within the service
discovery and selection process. However, since other non-functional proper-
ties, such as reliability, availability, and safety, are important in this context,
we concentrate here on the larger domain of dependability certification. The
fundamental requirement for our certification scheme is the ability to verify
dependability properties of services and business processes with a given level
of assurance, and prove service robustness against failures to the clients.

In this paper, we define a certification scheme that, starting from a model
of the service as a Symbolic Transition System (STS) (Section 3), generates
a certification model in the form of a discrete-time Markov chain (Section 4).
The certification model is used to validate whether the service supports a given
dependability property with a given level of assurance. The result of property
validation and certification is a machine-readable certificate that represents
the reasons why the service supports a dependability property and serves as
a proof to the clients that appropriate dependability mechanisms have been
used while building it. To complement the dynamic nature of service-based
infrastructures, the certificate validity is continuously verified using run-time
monitoring, making the certificate usable both at discovery- and run-time
(Section 5). Our certification scheme allows clients to select services with a set
of certified dependability properties (Section 6), and supports dependability
certification of composite services (Section 7).

The contribution of this paper is threefold: i) we define a dependability cer-
tification scheme for services; ii) we provide an approach to service selection
that considers clients’ dependability requirements; iii) we define a solution to
the dependability certification of composite services, where the dependability
properties of a composite service are calculated on the basis of the depend-
ability certificates of the component services. This paper extends the work
in [5] by: i) defining an STS-based modeling solution for services under certi-
fication, and a process that generates the corresponding certification models;
ii) providing an enhanced solution to dependability-aware service selection;
iii) proposing a novel approach to the certification of composite services.

Dependability Certification of Services: A Model-Based Approach 3

Table 1 Summary of operations realized by eShop partner services

Service Operation Description

Vendor browseItems(query) Allows customers to browse available items
buyGoods(itemID,data) Allows customers to buy an item

Shipping shipItems(itemID,addr) Allows customers to ship an item to an address
Storage login(usr,pwd) Provides password-based authentication and

returns an authentication token
write(data,token) Stores data in the remote server
read(query,token) Provides access to data stored in the server
logout(token) Allows customers to log out

2 Reference Scenario and Basic Concepts

In this section, we describe our reference scenario and some basic concepts on
dependability certification.

2.1 Reference Scenario

Our certification solution considers a highly dynamic and distributed service-
based infrastructure that involves the following main parties: i) a trusted cer-
tification authority that certifies the dependability properties of services; ii) a
service provider that implements a service and engages with the certification
authority to obtain a certificate for the service; iii) a client (business owner)
that establishes a business relationship with one or more service providers and
uses a set of certified services to implement its business process; iv) a service
discovery that enhances a registry of published services to support the certi-
fication process and metadata. We note that the client can also be a service
consumer searching for and selecting a single certified service.

Our reference scenario is an online shopping service (eShop) that allows its
customers to browse and compare available items, purchase goods, and make
shipping orders over the Internet. The eShop business owner is the client of our
framework, who implements eShop as a business process using i) three vendor
services that offer a range of goods for trade to eShop, ii) two shipment services
that deliver items to a customer address, and iii) an external storage service
to store, retrieve, and update shopping information. Table 1 summarizes the
details about the operations of partner services.

When a query to browse available items is provided to eShop, a call to
operation browseItems of all three vendor services is made. The result from
each vendor is reported to the customer, say in a tabular form, to enable com-
parison. The customer can then choose to purchase an item from a specific
vendor. In this case, first a call to operation buyGoods of that vendor service
is made, and then operation shipItems of the shipment service with mini-
mum freight cost is invoked. For each transaction, eShop stores the customer,
vendor, and shipping specific data using operation write of the storage ser-
vice. Shopping information is then accessed using operation read whenever
necessary. Operations write and read are invoked after a successful login.

4 Claudio A. Ardagna et al.

Intuitively, failures in the partner services may have an impact on eShop
and, therefore, in addition to the functional properties, dependability proper-
ties of partner services become of paramount importance to eShop. For exam-
ple, a failure in one of the vendor services may result in quality degradation
of eShop, while a failure in the storage service may affect its overall reliabil-
ity and availability. Hence, eShop must integrate only those external services
that satisfy its dependability requirements. In this context, a dependability
certificate can serve as an effective means of assurance to the eShop business
owner, by providing a proof that its partner services support a given set of de-
pendability properties. A service discovery that provides a selection approach
based on dependability certificates can further serve as a means to search and
integrate appropriate partner services. For simplicity, whenever not strictly re-
quired, we will use a simplified version of the motivating scenario and discuss
the concepts in this paper using the storage service.

2.2 Basic Concepts

A service provider implements its service using a set of dependability mecha-
nisms, and engages with the certification authority in a process that certifies
the dependability properties of the service. To realize this process, the certifi-
cation authority must define: i) a hierarchy of dependability properties to be
certified; ii) a model of the service to drive the certification process; and iii) a
policy to assess and prove that a given property holds for the service.

Hierarchy of dependability properties. According to [6,33], dependability
concept usually consists of three parts: the threats affecting dependability, the
attributes of dependability, and the means by which dependability is achieved.
The threats identify the errors, faults, and failures that may affect a system.
The attributes integrate different aspects of dependability and include the
basic concepts of availability, reliability, safety, confidentiality, integrity, and
maintainability. In this paper, we consider a subset of dependability attributes,
that is, availability, reliability, and safety, which measure the ability of the
service to be up and running, and to be resistant to failures. Finally, the means
define the categories of mechanisms, such as fault prevention, fault tolerance,
and fault removal, that can be used to achieve system dependability.

Starting from the above definition of dependability, we define a hierarchy
of dependability properties that are the target of our certification scheme.
First, we consider the dependability attributes (abstract properties below)
to represent the general purpose dependability characteristics of the service
under certification. Then, a concrete property p=(p̂, A) enriches the abstract
property p.p̂ with a set p.A of attributes that refer to the threats the service
proves to handle, the mechanisms used to realize the service, or to a specific
configuration of the mechanisms that characterizes the service to be certified.
We note that the mechanisms represent specific implementations of depend-
ability means. For each attribute attr∈A, according to its type, a partial or
total order relationship �attr can be defined on its domain Ωattr, and v(attr)

Dependability Certification of Services: A Model-Based Approach 5

*

Safety

p8=(Safety,
{mechanism=
disaster recovery
fault type=
catastrophic events})

Reliability

p1=(Reliability,
{mechanism=redundancy
no of server instances=2
fault type=server crashes})

p2=(Reliability,
{mechanism=redundancy
no of server instances=3
fault type=server crashes
recovery time≤15ms})

p3=(Reliability,
{mechanism=redundancy
no of server instances=3
fault type=pgming errors})

Availability

p6=(Availability,
{mechanism=checkpointing
type=cold standby
frequency=1min})

p7=(Availability,
{mechanism=checkpointing
type=hot standby
frequency=50ms})

p4=(Availability,
{mechanism=redundancy
no of server instances=3
recovery time≤30ms})

p5=(Availability,
{mechanism=redundancy
no of server instances=3
recovery time≤10ms})

Fig. 1 An example of a hierarchy of dependability properties

represents the value of attr. If an attribute does not contribute to a prop-
erty configuration, its value is not specified. In general, attributes represent
a service provider’s claims on the dependability of its service. For instance,
when attr is fault type, v(attr) can be crash failure, programming error, or
byzantine failure.

The hierarchical ordering of dependability properties can be defined by a
pair (P,�P), where P is the set of all concrete properties, and �P is a partial
order relationship over P. We note that an abstract property corresponds to a
concrete property with no attributes specified. Given two properties pi,pj∈P,
we write pi�P pj if i) pi.p̂=pj .p̂ and ii) ∀attr∈A either vi(attr) is not specified
for pi or vi(attr)�attrvj(attr). The relation pi�P pj means that pi is weaker
than pj and a service certified for pj also holds pi. Figure 1 shows an example
of a hierarchy of dependability properties. Each node represents a concrete
property p=(p̂,A). Each child node of a given node represents a stronger prop-
erty and takes precedence in the hierarchy. For instance, p1�P p2, p4�P p5,
and p6�P p7. p1�P p2 since p2 specifies additional guarantees on the recov-
ery time). We note that some properties are incomparable despite the same
abstract property (e.g., p4 and p6).

Symbolic Transition System (STS). In our context, the service model
must succinctly represent the functional and dependability properties of the
service. To this aim, it must represent the different states of the service, the
dependability mechanisms, and their specific configurations. Following the ap-
proaches in [14, 21, 32], we model services, interactions within a service, and
communications between different services using STSs. An STS extends a finite
state automaton with variables, actions, and guards to capture the complex
interactions in a system. It can be defined as follows.

Definition 1 (Symbolic Transition System) A symbolic transition sys-

tem is a 6-tuple 〈S, s1,V, I,A,
a,g,u→ 〉, where S is the set of states in the service,

s1∈S is the initial state, V is the set of (location) internal variables specifying
data dependent flow, I is the set of interaction variables representing operation

inputs and outputs, A is the set of actions, and
a,g,u→ is the transition relation.

Each transition (si, sj)∈
a,g,u→ between two states si, sj∈S is associated with an

action a∈A that encapsulates a guard g, defining the conditions on transition,
and an update mapping u, providing new assignments to the variables in V.

6 Claudio A. Ardagna et al.

In the following, when possible, we will refer to the transition relation simply
with →. Differently from [14,21,32], our modeling approach is also used when
the real implementation of the service (and its dependability mechanisms) is
available. This approach permits to generate fine-grained test cases that can
be used to generate the certification model of our solution, and validate the
dependability properties against various threats (see Sections 4, 5, and 7).

Policy. A certification scheme must verify and prove that a dependability
property p is supported by the service. Proving p is equivalent to validat-
ing the implementation of dependability mechanisms used by the service to
counteract a given (set of) threat. Based on this observation, we define a
policy Pol(p)→{c1, . . . , cm} that contains all conditions c1, . . . , cm on depend-
ability mechanisms necessary to prove that p holds for the service. We note
that while the threats specified in the property drive the certification and
testing processes (e.g., by defining a given fault injection model), they are
not considered in policy specification. This is due to the fact that policies
only include conditions that can be quantitatively measured to validate a
given mechanism. Hence, we can define a policy corresponding to each prop-
erty configuration, where each ci∈Pol(p) defines a relationship derived by
the attributes in p.A and mechanisms used to implement the service. For
instance, for property p2 in Figure 1, a policy can be defined with conditions:
c1:no of server instances≥3 and c2:recovery time≤15ms. In this context, a de-
pendability certificate is granted to the service when it satisfies the policy
proving that it holds a property p with a given level of assurance against a
given set of threats (see Section 5).

3 Service Modeling

The complete modeling of the service under certification represents a funda-
mental step to realize dependability certification, and serves as the basis for
the certification authority to carry out its validation process. In this section,
we present a modeling approach that allows the certification authority to gen-
erate an STS-based model of a service, based on i) the dependability property
to be certified and ii) the information released by the service provider in the
Web Service Description Language (WSDL) interface and/or the Web Service
Conversation Language (WSCL) document.

3.1 WSDL-based Model

The WSDL interface is the least set of information that a service provider has
to release to publish its service, and specifies the set of service operations and
the methods of accessing them. In our context, the WSDL interface is used to
define the WSDL-based model of the service, as follows.

Definition 2 (WSDL-based model) Let M be the set of STS-based ser-
vice models, a WSDL-based model Mwsdl∈M of a service ws is an STS that

Dependability Certification of Services: A Model-Based Approach 7

consists of a set {mwsdl} of connected components, each one modeling a single
service operation. Each mwsdl is in turn modeled as an STS 〈S, s1,V, I,A,→〉
(see Definition 1), where the number of actions modeling operation input and
output is equal to two (|A|=2) and the number of states is at least equal to
three (|S|≥3).

Intuitively, each mwsdl∈Mwsdl always includes three states modeling the
operation interface as follows: i) s1∈S is the initial state when no input has
been received by the service operation, ii) s2∈S is the intermediate state when
the input is received while the output is not yet generated (i.e., when the
operation is being performed), and iii) s3∈S is the final state when the output
has been generated and correctly returned to the client. The set S of states in
mwsdl can be extended to represent the stateful implementation of the service
operation when its source code is available. In this case, the intermediate state
s2 consists of a number of sub-states as described in Example 1 at the end of
this section. Guards g at state transitions model the functional correctness of
the service and the specific configuration of dependability mechanisms.

3.2 WSCL-based Model

The WSCL document defines the service conversation as the communication
protocol between the clients and the service, and the interactions/ordering
between various operations within the service. Given a service conversation,
we aim to define the WSCL-based model of the service in the form of an STS.
To this aim, we consider connected components mwsdl∈Mwsdl as our building
blocks, and define a set of modeling operators op:M×M→M that take as
input two service models and return as output their combination. According
to the operators typically defining the WSCL conversation, we first define the
set O={�,⊗} of modeling operators op, where � is the sequence operator
and ⊗ is the alternative operator. We then recursively apply the modeling
operators on the WSCL-based model, using the connected components mwsdl

as basic elements, to derive Mwscl as follows (see Example 1).

Mwscl = mwsdl | Mwscl �Mwscl | Mwscl ⊗Mwscl

The WSCL-based model can be defined as follows.

Definition 3 (WSCL-based model) Let M be the set of service models,
a WSCL-based model Mwscl∈M of a service ws is an STS 〈S, s1,V, I,A,→〉
(see Definition 1), where S is the union of all the states of component WSDL-
based models integrated using the operators in O={�,⊗}, and A represents
the set of service operations involved in the conversation.

Given two WSCL-based models M1 and M2 combined using ⊗, the initial
states of the two models can be unified and represented using a single state
(e.g., State s4 in Figure 2(b) is the common state between operations read

and write combined by operator alternative). Similarly, when the two WSCL-
based models are combined using �, the final state of the first model M1 and

8 Claudio A. Ardagna et al.

s1

s2

s3

[query6=null, token=t]
?read<query, token>

!read<result>

s1

s2 s2a

s2b

s3d

s3c s2e

s3

[data 6=null, token=t]
?write<data, token>

[result=success]
!write<result>

s1

s2

s3 s4

⊗

s5

s6

[(usr, pswd) 6=null]
?login<usr, pswd>

[result=success], t:=token
!login<result, token>

[result=failure]
!login<result>

[query6=null, token=t]
?read<query, token>

!read<result>

s7 s7a

s7b

s7d

s7c s7e

s8

[data 6=null, token=t]
?write<data, token>

[result=success]
!write<result>

s9

?logout<token>?logout<token>

s10

!logout<result>

(a) WSDL-based model (b) WSCL-based model

Fig. 2 An example showing the STS-based service models of the storage service. The input
actions are denoted as ?operation<parameters>, while the corresponding output actions
are denoted as !operation<results>. The interface states are represented as circles and
stateful implementation states as rectangles

the initial state of the second model M2 can be represented using a single
common state (e.g., State s4 in Figure 2(b) is the combination of the final state
of operation login and the initial state of the choice between the operations
read and write). We note that the WSCL-based model resulting from the
application of these modeling operators can be further refined to derive a
more clear while equivalent representation. For example, the final state of
operation login in Figure 2(b) can be represented with two branches, where
state s3 is reached as a result of an internal trigger on login failure, and state s4
represents the final correct state of operation login. Similarly to the WSDL-
based model, the set S of states in Mwscl can be extended when the source
code of the service operations is available. The implementation states of Mwsdl

are included in Mwscl when corresponding interface states are involved in the
conversation.

Example 1 Figure 2(a) shows two connected components of the WSDL-based
model of the storage service modeling operation read with no implementa-
tion states (i.e., |S|=3) and operation write with implementation states (i.e.,
|S|>3). We note that, while not shown in Figure 2(a), the model also in-
cludes connected components corresponding to operations login and logout.
Let us now consider property p2 in Figure 1 as the property to be certified
for operation write. Operation write starts at state s1 waiting for an input.
When the input is received and verified to be valid using the guard data 6=null

Dependability Certification of Services: A Model-Based Approach 9

and token=t, a transition to state s2 happens (functional correctness is ver-
ified). State s2 contains five sub-states representing stateful implementation
of the dependability mechanism, where data, metadata, and index are stored
across three redundant storage servers. In particular, state s2a denotes the
state when input is provided to servers, states s2b, s2c and s2d represent the
state in which data are stored in three different servers, and state s2e performs
the output check. A transition from s2a to si∈{s2b, s2c, s2d} is observed when
the i-th server is up and running (i.e., guard [status(serveri)=ok] is verified),
and a transition from si to s2e when the i-th server returns success (i.e., guard
[result(serveri)=success] is verified). For the sake of clarity, guards validating
dependability mechanisms in transitions between states s2a and s2e are not
shown in Figure 2. Transition from state s2 to the final state s3 happens when
success is returned by all storage servers.

Figure 2(b) illustrates the WSCL-based model of the conversation that
allows the client to access service operation read or write, after it has been
authenticated using operation login, and then disconnect using operation
logout. Mwscl is generated by applying modeling operators in O={�,⊗} on
the connected components in Mwsdl. The components representing operations
read and write (see Figure 2(a)) are combined using ⊗, and then connected to
operation login using �. Finally, operation logout is appended to operations
read and write. The service starts in state s1 where it receives the login
credentials; if the authentication is successful, it transits to state s4 and the
update mapping assigns the login token to the internal variable t∈V. In state
s4, the client can call either operation read or write with relevant parameters,
and perform its task. The client can request to logout from the service in state
s6 or s8 to reach the final state s10. Set I={usr, pswd, result, token, query,
data} comprises the state interaction variables.

A service model represents the functional and dependability properties of
a service in the form of an STS, and serves as a building block to depend-
ability certification for two reasons. First, it is at the basis of the certification
model used to validate a dependability property with a given assurance level.
Second, it is used, together with the threats specified in property p to be cer-
tified, to generate a set of test cases [35] (service requests) that are used to
evaluate dependability behavior of the service and to award a certificate. We
note that the more detailed the service model, the more complete and effective
the generated test cases, and in turn the higher the certification quality.

4 Certification Model

We define the certification model as a Markov model representation of the ser-
vice, enabling the certification authority to quantitatively measure the compli-
ance of the service to a property p, and accordingly to award a dependability
certificate to the service. Section 4.1 presents the process that receives as in-
put a service model and produces as output a certification model. Section 4.2
defines the concept of assurance level and an approach to calculate it.

10 Claudio A. Ardagna et al.

1

01

=⇒
1

1

0

01

=⇒
0

1

0 =⇒ 0

Fig. 3 Pruning rules for interface and implementation states of Mλ. Each three-state com-
ponent of the service model is denoted with a circle; implementation states with a rectangle

4.1 Markov-based Representation of the Service

The Markov model representation of the service is generated by performing
three activities: i) prune, ii) join states, map policy, and integrate absorbing
states, and iii) add probabilities.

Prune. The prune activity applies a projection π on the service model, over
dependability property p, to generate a projected modelMπ that i) contains all
Most Important Operations (MIOs) with respect to p, that is, operations that
are needed to certify p, and ii) ensures that the projection is consistent with
the specifications in the WSDL interface and WSCL document. To obtain the
projected model, we introduce a labeling function λ:SI→{0, 1}, where SI⊆S
is the set of states in the interface part of the service model, that marks each
state s∈SI with a binary value {0, 1}. The application of such labeling function
results in a labeled service model Mλ, which extends the service model M by
annotating each state s∈SI corresponding to a MIO with 1 and all other states
with 0. A state s shared by two or more operations (e.g., State s4 in Figure 4)
is labeled 1 if at least one of these operations is a MIO.

Using labeled service model Mλ, we define a set of pruning rules that are
used to generate projected model Mπ as follows (see Figure 3).

– Pruning rule for interface states: It operates recursively on the leaf states
in the interface part of the labeled service model and removes those states
for which λ(s)=0. To maintain consistency, if a state si has a descendant
state sj for which λ(sj)=1, state si is not removed even if λ(si)=0.

– Pruning rule for implementation states: It removes all implementation
states associated with an interface state s for which λ(s)=0.

We note that, when a WSDL-based model is considered, the pruning rules
are applied on each connected component mwsdl∈Mwsdl independently, and
the component is either removed or taken as it is. The pruning activity can
then be viewed as a function π that takes a labeled service model Mλ as input,
applies the pruning rules, and generates the projected model Mπ∈M of the
service as output. We note that Mπ=〈Sπ, sπ1 ,Vπ, Iπ,Aπ,→π〉 is a sub-model
of M=〈S, s1,V, I,A,→〉, such that S⊆Sπ, V⊆Vπ, I⊆Iπ, A⊆Aπ, →⊆→π.

Example 2 Let p=(reliability, {mechanism=redundancy,
no of server instances=3,fault type=server crashes,recovery time≤15ms}) be
the property to be certified for the storage service and M in Figure 2(b) the
WSCL-based model of the service. We first apply the labeling function λ on
M to obtain the labeled service model Mλ illustrated in Figure 4(a). We note

Dependability Certification of Services: A Model-Based Approach 11

s1

s2

s3 s4

⊗

s5

s6

[(usr, pswd) 6=null]
?login<usr, pswd>

[result=success], t:=token
!login<result, token>

[result=failure]
!login<result>

[query6=null, token=t]
?read<query, token>

!read<result>

s7 s7a

s7b

s7d

s7c s7e

s8

[data6=null, token=t]
?write<data, token>

[result=success]
!write<result>

s9

?logout<token>?logout<token>

s10

!logout<result>

0

0

0

1

1

1

1

1

0

0

s1

s2

s4

⊗

s5

s6

[(usr, pswd) 6=null]
?login<usr, pswd>

[result=success], t:=token
!login<result, token>

[query6=null, token=t]
?read<query, token>

!read<result>

s7 s7a

s7b

s7d

s7c s7e

s8

[data6=null, token=t]
?write<data, token>

[result=success]
!write<result>

(a) Labeled service model Mλ (b) Projected model Mπ

Fig. 4 An example of pruning activity applied on the model in Figure 2(b)

that the states corresponding to operations login and logout are marked 0,
since they are not MIOs for the certification of p. Then, following our pruning
rules, we obtain the projected service model Mπ in Figure 4(b), where op-
eration logout has been removed, while a part of operation login has been
maintained since it has at least a descendant state s such that λ(s)=1.

Join states, map policy, and integrate absorbing states. This activity
applies a transformation on on the projected service model Mπ, over depend-
ability property p, to generate a new model Mon. It is composed of two steps,
i) join states and map policy, and ii) integrate absorbing states, as follows.

The join states and map policy step is a manual process that depends on
property p, policy Pol(p), service model M , and implemented dependability
mechanisms. It first joins the implementation states representing the depend-
ability mechanisms of each service operation in Mπ, to model the successful
execution flow of service operations. It then uses guards and update map-
ping on transitions in Mπ involving the joined states and, according to policy
Pol(p), produces the conditions that regulate transitions in Mon. It finally
modifies the interface part of Mπ by specifying, for each state transition, a set
of conditions derived from g and u. In the following, we denote state transitions

as
cij→, with cij the conditions on transitions.
The integrate absorbing states step inserts two absorbing states C and F ,

representing the state of correct output and failure, respectively, and connects
them to each leaf in the interface part of the model. From the certification point
of view, state C is reached when the service satisfies the policy conditions in
Pol(p), while state F is reached in case of a policy violation.

The two steps of this activity, together, can be viewed as a function on
that i) takes the projected service model Mπ as input, ii) applies join states

12 Claudio A. Ardagna et al.

s1

s2

s4

⊗
s5

s6

s7 s7A

s7B

s7C

s7D

s8

[c1]

[c6]

write

[c2] [c4]

[c3] [c5]

read

login

C F

[c1]: data 6=null ∧ token=t

[c2]: status(server1)=ok ∧ status(server2)=ok ∧
∧ status(server3)=ok

[c3]: !c2

[c4]: result(server1)=success ∧ result(server2)=success ∧
∧ result(server3)=success

[c5]: recovery time≤15ms ∧ c4

Fig. 5 An example of model Mon of the storage service, obtained after applying join states,
map policy, and integrate absorbing states to operation write of model Mπ in Figure 4(b)

and map policy, and integrate absorbing states steps, and iii) generates a new

model of the service Mon=〈Son, son1 , C, F,
cij→

on
〉.

Example 3 Let Mπ in Figure 4(b) be the projected model and p=(reliability,
{mechanism=redundancy,no of server instances=3,fault type=server crashes,
recovery time≤15ms}) the dependability property. For simplicity, in this ex-
ample, we consider operation write (states s4, s7, s8) only. The portion of
model Mon in Figure 5 referring to operation write (black lines) is generated
as follows. We apply the join states and map policy step on Mπ over p, to
embed Pol(p) within the model. To this aim, we first modify Mπ using the
implementation states of the dependability mechanism redundancy with three
server instances (states s7a − s7e) and generate the new model states as fol-
lows: i) state s7a of Mπ corresponds to state s7A in Mon, ii) states s7b,s7c,s7d
are represented with states s7B and s7C , and iii) state s7e is mapped to state
s7D. We then integrate the policy conditions in Pol(p) with guards and up-
date mappings in Mπ to produce conditions [c2]–[c6]. Here, when the service
reaches state s7, first an implicit transition to the sub-state s7A happens, where
it sends the request to three replicated storage servers. The service then moves
to state s7B when all servers are fail-free (following condition [c2]); otherwise,
when one or more server crashes are detected, it transits to state s7C ([c3]).
In s7C , the service starts the recovery process and moves to state s7D if re-
covery is performed in less than 15ms and all servers return success ([c5]). A
transition from s7B to s7D is observed if success is returned by all the storage
servers ([c4]). The service moves to the output state s8 following condition [c6]
in Mon, which is an aggregate of conditions applied at each sub-state of state
s7 ([c2] to [c5]). We finally integrate the absorbing states C and F and connect
them to the final states in the interface part of the model. We note that there
is an implicit transition between each state si and F (denoted as (si, F)) if
some unexpected errors or policy violation happen. We also note that if C is
reached, a fail-free operation/conversation have been executed.

Dependability Certification of Services: A Model-Based Approach 13

Add probabilities. The last activity extends Mon=〈Son, son1 , C, F,
cij→

on
〉 with

probability values to generate the Markov chain used in this paper as our
certification model Mcert. Mcert specifies probabilities Prij to satisfy the con-

ditions corresponding to each state transition
cij→, and probability Ri to remain

fail-free corresponding to each state si. In this context, similar to [10], RiPrij
represents the probability that execution of a service in state si will produce
the correct results, and transfer the control to state sj . The transition from
the final state sk to the correct state C, having probability Rk, is observed if
the service satisfies relevant conditions in Pol(p) (with no failures). We note

that there is an implicit transition of probability 1−
k∑
j=1

RiPrij from each state

si 6=sk to F representing a failure or violation of the condition in that state.
The transition from sk to F has probability 1−Rk. We also note that there
can be multiple final states sk in a WSCL conversation (e.g., s6 and s8 in
Figure 5). In this case, our Markov model converges all final states to a sin-
gle node that is then connected to C and F . The transition from one state
to another is assumed to follow the Markov property, regardless of the point
at which the transition occurs. Our certification model Mcert then consists of
a state-based, discrete-time Markov chain that combines the failure behavior
and system architecture of the service to validate and certify a given set of
dependability properties. Mcert can be defined as follows.

Definition 4 (Certification model) The certification model Mcert of a

service is a 6-tuple 〈S, s1, C, F,
cij→, RiPrij〉, where: S=Son is the set of all states

in the model, s1=son1 is the initial state; C is the final correct state; F is the

final failure state;
cij→=

cij→
on

represents a transition relation between pairs of
states (si, sj) labeled with a condition cij derived from Pol(p), g, and u; and
RiPrij is the probability that the service execution provides the correct results,
satisfies the conditions in state si, and moves to state sj .

In case a WSDL-based model is used, Mcert is produced for each MIO in the
service, while a single Mcert is generated for a WSCL-based model.

4.2 Assurance Level

We present our interpretation of the Markov model of the service as the as-
surance level used to quantitatively validate a dependability property p. The
certification model can be represented by a transition matrix Q′ as follows.

Q′ =



C F s1 s2 . . . sk
C 1 0 0 0 . . . 0
F 0 1 0 0 . . . 0

s1 0 1−
k∑
j=1

R1Pr1j R1Pr11 R1Pr12 . . . R1Pr1k

s2 0 1−
k∑
j=1

R2Pr2j R2Pr21 R2Pr22 . . . R2Pr2k

...
...

...
...

...
...

...
sk Rk 1−Rk 0 0 . . . 0



14 Claudio A. Ardagna et al.

s4

s7 s7A

s7B

s7C

s7D

s8

FC

[c1]

[c6]

[c2] [c4]

[c3] [c5]

Fig. 6 An example of a certification model for operation write in Figure 2(a)

We note that, for the sake of clarity, conditions on transitions are not reported
in Q′. The certification authority can use the matrix Q′ to estimate the ex-
tent to which the service satisfies dependability property p by following the
approach presented in [10]. Let Q be a matrix obtained from Q′ by deleting
rows and columns corresponding to C and F ; µ is a matrix such that

µ = I +Q+Q2 +Q3 · · · =
∞∑
x=0

Qx = (I −Q)
−1

where I is the identity matrix with same dimension as Q. Here, the assurance
level of the service is defined as follows.

Definition 5 (Assurance level) Assurance level L of a service deployed in
a specific environment is the probability that it satisfies a policy Pol(p) and
holds a dependability property p∈P for a given rate of service executions.

We note that the assurance level characterizes the extent to which a service
communication that starts from the initial state s1 will reach the final exe-
cution state sk, and transit from sk to the final correct state C. Assurance
level L of a service can be estimated using L=µ1,k∗Rk, where µ1,k represents
the probability value at 1st row and kth column of the matrix µ, and Rk is
the probability of the final execution state to be fail-free. µ1,k can also be
computed using

µ1,k = (−1)
k+1 |Q|
|I −Q|

where |Q| and |I −Q| represent the determinant of Q and I −Q, respectively.
When the certification model is generated using the WSDL-based model,

assurance level L is calculated for each operation individually. Instead, when
the certification model is generated using the WSCL-based model, assurance
level of the overall conversation is calculated as a single value.

Example 4 Figure 6 illustrates the certification model corresponding to oper-
ation write of the storage service in Figure 2(a). This model is obtained after
applying prune, join states, map policy, integrate absorbing states and add
probabilities to the service model. We note that conditions [c1]−[c6] are the
ones discussed in Example 3. Let the fail-free probabilities of states s4, s7, s8

Dependability Certification of Services: A Model-Based Approach 15

computed by the certification authority be R4=0.99, R7=0.94, and R8=0.97,
and transition probabilities between nodes be Pr47=0.93 and Pr78=0.95. An
approach to derive the probability values is discussed in Section 5. For sim-
plicity, in this example, we do not specify the probabilities of internal states
s7A−s7D, while we use them to deduce probability R7Pr78. The corresponding
transition matrix Q′ and matrix µ=(I −Q)−1 are:

Q′=



C F s4 s7 s8
C 1 0 0 0 0
F 0 1 0 0 0
s4 0 0.0793 0 0.9207 0
s7 0 0.1070 0 0 0.893
s8 0.9700 0.0300 0 0 0

 µ=


s4 s7 s8

s4 1 0.9207 0.8222
s7 0 1 0.8930
s8 0 0 1


Here, µ4,8=0.8222. The probability that operation write of the storage service
satisfies a property p is L=0.8222∗0.97=0.7975.

5 Dependability Certification Process

We design our certification scheme as a two-phase process due to the highly
dynamic nature of the SOA environment [17, 20]. The first phase validates
the dependability properties of the service before it is actually deployed in
a system, and issues a certificate to the service provider based on the initial
validation results (offline phase in Section 5.1). The second phase monitors
the certified properties of the service at run-time, and updates the certificate
based on real validation results (online phase in Section 5.2). Our certification
process results in a dependability certificate life-cycle, which represents the
possible states of certificates (Section 5.3). For simplicity, in the following, we
assume a certification process that proves and awards certificates with a single
dependability property.

5.1 Offline Phase

The offline phase starts when a service provider requests the certification au-
thority to issue a certificate to its service for dependability property p. The
certification authority first generates the service model based on p and the
specifications released by the service provider. After verifying that the service
model conforms to the real service implementation, the certification authority
derives the certification model Mcert as discussed in Section 4. In our solution,
the service model is used to generate service executions (test cases) that are
used with Mcert to perform property validation. We define a validation func-
tion f to verify that the service satisfies policy Pol(p) using Mcert, assuming
that each condition ci in Mcert is specified as a boolean valued predicate. The
service proves to hold p when the conditions in Pol(p) are satisfied with a
given level of assurance. The validation function is defined as follows.

16 Claudio A. Ardagna et al.

Definition 6 (Validation function) The validation function
f :(ws, p,Mcert, k)→{true, false} takes service ws under evaluation, depend-
ability property p to be validated, certification model Mcert integrating Pol(p),
and an index k referring to the service execution that triggers policy verifica-
tion as input, and returns true when relevant conditions in Pol(p) are satisfied
with respect to Mcert, false otherwise, as output.

In other words, the validation function verifies if a given service execu-
tion reaches state C (success) or state F (failure) of our certification model
in Definition 4. We note that the certification model of the service and the
dependability property remain constant, while the index k may change over
time. We also note that the service is static, while its context changes. In par-
ticular, k is an index referring to the service executions (i.e., the validation
tests) used by the certification authority to verify the dependability property
of the service under different contexts (e.g., using fault injection).

Example 5 Consider the certification model for operation write in Figure 6.
The certification authority validates property p=(reliability, {mechanism=red-
undancy, no of server instances=3, fault type=server crashes,
recovery time≤15ms}) by performing a sequence of tests driven by the service
model of operation write in Figure 2(a). For each test iteration, the validation
function f returns true if all conditions in the execution path are satisfied and
the service reaches state C; it returns false and moves to state F from any of
its states, otherwise.

The results of the validation function are used by the certification authority
to estimate the values of RiPrij in Definition 4, and L in Definition 5. To this
aim, we introduce a frequency log that maintains f ’s results. A frequency
log is a list of triplets (k, {vk}, si), where: k is the index of the test request
in Definition 6; {vk} represents the attribute value(s) causing a transition
to F ; and si is the state of the certification model in which a transition to
F is observed. We note that {vk} and si are empty if f returns true. We
also note that state si is identified by observing the fault returned by the
service under certification and by accessing the state of the service model in
which the execution is currently blocked, since a guard that is linked to one or
more policy conditions in the certification model is violated. Each probability
RiPrij can then be calculated, using the frequency log, as the number of
successful transitions (si,sj) over the total number of test requests reaching
si. The total number of requests is such that each path in the model is tested
for a given number of times. As an example, let us consider the certification
model in Figure 6 and property p in Example 5, and suppose that the service
fails to recover from a server crash in state s7C ; the frequency log registers
(k,{no of server instances=2,recovery time>15ms},s7C). On the basis of the
values of RiPrij estimated using the validation function, assurance level L in
Definition 5 is quantified by performing the matrix operations described in
Section 4, and used to characterize the dependability property of a service.

When Mwsdl is used, each most important operation (MIO) is validated
individually, and assurance level is calculated for each MIO independently.

Dependability Certification of Services: A Model-Based Approach 17

Let oi be a MIO and Loi be its assurance level. A dependability certificate is
issued to the service if the assurance level of each operation Loi is greater than
or equal to a predefined threshold T ∈[0, 1]. When Mwscl is used, the overall
conversation is validated, and a certificate is issued to the service if assurance
level L of the conversation is greater than or equal to T . The dependability
certificate is then of the form C(p,M, {(oi, Loi)}), where: i) p represents the
dependability property supported by the service; ii) M∈{Mwsdl,Mwscl} is the
service model; iii) {(oi, Loi)} includes assurance level Loi with which each oi
supports p when a WSDL-based model is used; it contains a single pair (–,L)
when a WSCL-based model is used. We note that a service certified using
Mwscl is first certified using Mwsdl.

5.2 Online Phase

The online phase starts immediately after the service provider deploys its cer-
tified service. In this phase, the certification authority continuously verifies
the validity of the certificate issued to the service, since, in complex digital
ecosystems, dependability properties may change over time, resulting in out-
dated certificates. For example, certified reliability and availability properties
of the service may change if a replica failure or network congestion happens.
To this aim, we introduce Evaluation Body, a component that is owned by
the certification authority and placed in the system where the certified ser-
vice is deployed, to monitor its dependability property. In particular, when
the WSCL-based model is available, overall conversation is monitored using
Mwscl; otherwise, each MIO is monitored individually using connected compo-
nents mwsdl∈Mwsdl. The results obtained by monitoring are then reflected on
the corresponding certification model(s) Mcert to verify Pol(p), and to update
the assurance level(s) in the certificate at run-time.

Since the certification model generates all possible states of the service,
the number of states can be extremely large. However, to monitor and verify
dependability properties of a service, we do not need the complete Markov
model. Therefore we derive a lightweight Markov model by reducing the origi-
nal one while maintaining its accuracy. We note that this reduction is applied
on the certification model to improve the performance of the monitoring pro-
cess, and reduce requirements on the platform deploying the service. A reduced
certification model M̃cert is formally defined as follows.

Definition 7 (Reduced certification model) Let Mcert be a certification
model, a reduced certification model M̃cert is of the form

M̃cert=〈S, s1, C, F,
cij→, RiPrij〉, such that, |M̃cert(S)|<|Mcert(S)|. For all vali-

dation tests, i) f(ws, p, M̃cert, k)=f(ws, p,Mcert, k) and ii) the frequency logs
for M̃cert and Mcert are consistent.

The frequency logs are consistent if, for each entry (k, {vk}, si) generated
using Mcert, there exists (k̃, {ṽk}, s̃i) generated using M̃cert, such that k=k̃,

18 Claudio A. Ardagna et al.

{vk}={ṽk}, and si=s̃i or s̃i is a combination of states including si. For exam-
ple, states s7B and s7C of Mcert in Figure 6 can be combined to a single state
s̃7BC to obtain a reduced Markov model M̃cert. In M̃cert, service moves from
s7A to s̃7BC following a combination of [c2] and [c3], and from s̃7BC to s7D
following a combination of [c4] and [c5]. Transition (s̃7BC , F) is a combination
of transitions (s7B , F) and (s7C , F) in Mcert. The results of f using M̃cert are
then the same as the ones obtained using Mcert.

At run-time, the evaluation body monitors service executions by obtaining
real-attribute values using the service model, and maps them to M̃cert. A
dependability certificate issued to a service remains valid if its real-attribute
values satisfy the conditions in the policy with a given level of assurance. For
each service execution verified using f(ws, p, M̃cert, k), the probability values
in the original model Mcert (and matrix Q′) must be updated using the results
of f , and the assurance level of the service must be recomputed in order to
verify if Loi≥T for each service operation oi in case of WSDL-based model
and L≥T in case of WSCL-based model. To this aim, as in the offline phase,
we use a frequency log, storing f ’s results, within the evaluation body. We note
that the source of failure or policy violation in Mcert can be precisely located
using the service model, the frequency log, and M̃cert. We also note that the
update of matrix Q′ is done periodically to preserve system performance.

We extend the notion of assurance level to support the validation process
of the certification authority, and define a random variable Lt to characterize
the dependability property of a service at run-time. For simplicity, in the
remaining of this section, we use Lt to refer to the assurance level at time t
for certification processes that rely on both WSDL-based and WSCL-based
models. Given the time instant t at which the evaluation body starts the
matrix update, Lt represents the assurance level of the service quantified by
matrix Q′, updated using the reduced Markov model M̃cert and the frequency
log. Assurance level Lt observed by the evaluation body leads to the following
conditions: i) Lt≥L0, where L0 is the assurance level when the certificate was
issued to the service in the offline phase. This implies that Lt≥T , that is, the
assurance value of the service at run-time is still greater than the predefined
threshold value T , and the dependability certificate of the service remains
valid; ii) Lt<L0, in this case, the evaluation body first checks whether Lt≥T . If
true, the certificate remains valid; otherwise, the certification authority either
updates the dependability certificate or revokes it. We extend the definition
of dependability certificate as C(p,M, {(oi, Ltoi)}) to comply with dynamic
changes in service dependability.

5.3 Dependability Certificate Life-cycle

The certificate life-cycle starts in the offline phase when the certification au-
thority issues a certificate C to a service and marks it as valid. C is associated
with a validity period te, where e is the expiration date of the certificate.
During the online phase, the evaluation body monitors the service executions,

Dependability Certification of Services: A Model-Based Approach 19

checks the certificate validity, and updates the assurance level in the certifi-
cate using real-attribute values. As long as Lt≥T and t<te, for property p and
model M , certificate C remains valid. The following situations can occur when
Lt<T and t<te.

– The certification authority builds a new certification model for a new prop-
erty pi�P p, by relaxing some policy conditions. For example, if the original
policy condition is no of server instances≥3, the new certification model
may relax the condition as no of server instances≥2, and consider a new
property with two replicas. Based on the new certification model, validation
tests are performed on the service by monitoring real service executions; if
Lt≥T , a downgraded certificate with property pi is issued to the service.

– When a downgraded certificate cannot be generated, C is revoked.

At a given point in time, if the service with a downgraded certificate re-
sumes (part of) correct functionality and satisfies dependability property p
with Lt≥T , using the original certification model (e.g., the model integrating
policy condition no of server instances≥3), an upgraded certificate is issued to
the service. We note that, while the assurance level in the upgraded certifi-
cate can be higher than the one in the original certificate, the property can
be at most the one in the original certificate. Finally, based on the validity
time te, certificate C can be renewed as follows. The certification authority
starts a renewal process at time ti<te, where the exact time ti depends on the
considered scenario, to re-validate dependability property p, and in turn the
certificate, for the service. If Lti≥T holds, a renewed valid certificate is offered
to the service, with a new initial assurance level L0 and a new validity time
te. Otherwise, if Lti<T or te expires, the certificate becomes invalid. We note
that, at any point in time, a certificate can be either valid, invalid, upgraded,
downgraded, or revoked. In the following, when clear from the context, we refer
to valid, downgraded, and upgraded certificates as simply valid certificates.

6 Dependability Certificate-Based Service Selection

We aim to provide a solution where services can be searched and selected at
run-time based on their dependability certificate and client’s dependability
requirements. To this aim, our service discovery component extends standard
service registries i) to incorporate the dependability metadata in the form
of certificates and ii) to support the matching and comparison processes de-
scribed in the following of this section.

Let us consider a service registry that contains a set of services wsj , each
one having a dependability certificate Cj(p,M, {(oi, Ltoi)}). A client can define
its dependability requirements Req(p,M, {(oi, Loi)}) in terms of preferences
on i) dependability property Req.p, ii) granularity of the service model used
to validate and certify the service Req.M∈{Mwsdl,Mwscl}, and iii) assurance
level Req.{(oi, Loi)} for Mwsdl or Req.(−, L) for Mwscl.

20 Claudio A. Ardagna et al.

The matching process performs an automatic matching of client’s require-
ments Req against valid dependability certificates Cj of services in the reg-
istry, and returns the set of services satisfying the specified requirements. The
matching process implements a three-step process as follows [3].

– Property match: it selects services such that Req.p�PCj .p, using the hier-
archy of dependability properties defined in Section 2.

– Model match: it selects services such that Req.M�MCj .M , that is, either
Req.M=Cj .M , or Req.M=Mwsdl and Cj .M=Mwscl. The latter condition
holds since a service certified for Mwscl is first certified for Mwsdl.

– Assurance level match: it selects services on the basis of the assurance level
in the certificate. In case of WSDL-based model, a service is selected iff
Req.Loi≤Cj .Ltoi for each operation oi. In case of WSCL-based model, a
service is selected iff Req.L≤Cj .Lt.
The matching process returns a set WS of services compatible with client’s

preferences, according to property, model, and assurance level matches. The
comparison process takes WS as input and transparently generates an order-
ing of services. The goal of this phase is to rank the shortlisted set of services
in WS based on their certificates so as to facilitate the client in selecting
the most appropriate service among the compatible ones. Given two services
wsj ,wsk∈WS with certificates Cj and Ck, respectively, the ordering of services
is performed based on the hierarchical relationship among dependability prop-
erties, the model granularities, and the assurance level values. We note that, in
some cases, there can be inconsistencies in the comparison (e.g., Cj .p�PCk.p
and Cj .M�MCk.M , but Cj .Lt 6≤Ck.Lt). In this context, we assume a default
precedence rule in which the property is more important than the model, and
the model is more important than the assurance level. We note that different
precedence rules can also be used based on client’s preferences [3]. A (partially)
ordered set WS of services in WS is returned to the client as the output of the
comparison phase.

Example 6 Let us consider a client searching for a storage service at time t,
and a service discovery with four storage services st1, st2, st3, st4, each one
having a valid dependability certificate Cst1 , Cst2 , Cst3 , Cst4 . Table 2 presents
the client’s requirements Req and the four dependability certificates.

Upon receiving request Req from the client, the service discovery starts
the three-step matching process. First, it matches the client’s requirement
on dependability property Req.p against the dependability property in the
certificates. Here, service st4 is filtered out because Req.p6�PC4.p. The service
discovery then performs a match on the model used to certify services. In this
step, st2 is not selected since Req.M 6�MC2.M . Finally, the matching process
considers the assurance level and returns WS={st1, st3}, since Req.L≤C1.Lt
and Req.L≤C3.Lt. The result of the matching process is the set of compatible
services WS that is given as input to the comparison process. The comparison
process then compares certificates Cst1 and Cst3 , and produces an ordered
list WS={st3, st1} since Cst1 .p�PCst3 .p. Service st3 is finally returned to the
client as the most appropriate service that satisfies its preferences.

Dependability Certification of Services: A Model-Based Approach 21

Table 2 Dependability certificates of the services in the registry, and client’s requirements

Dependability certificates
p̂ A M Lt

Cst1 Reliability mechanism=redundancy Mwscl Lt=0.98
no of server instances=3
fault type=server crashes

Cst2 Reliability mechanism=redundancy Mwsdl Ltread =0.96
no of server instances=4 Ltwrite=0.95
fault type=server crashes
recovery time≤15ms

Cst3 Reliability mechanism=redundancy Mwscl Lt=0.90
no of server instances=4
fault type=server crashes
recovery time≤15ms

Cst4 Availability mechanism=redundancy Mwscl Lt=0.92
recovery time≤15ms

Client’s requirements
p̂ A M L

Req Reliability mechanism=redundancy Mwscl L≥0.85
no of server instances≥3
fault type=server crashes

We extend matching and comparison processes to complement our certifi-
cation scheme and, provide a two-phase service selection solution. In the first
phase, a static service selection is performed when the client sends a request
to the service discovery. The second phase starts when the client selects a ser-
vice wsj∈WS. In this phase, service discovery performs constant monitoring of
the certificate status for wsj . If a certificate is downgraded, revoked, or moves
to invalid state, the service discovery triggers the matching and comparison
processes and replaces the originally selected service with a new, compatible,
service wsk∈WS. The second phase is transparent to the client and allows our
solution to ensure clients requirements also during run-time.

7 Certifying Business Processes

A service provider can implement its business process as a composition of
different services, provided by different suppliers. To this aim, it defines a
template specifying the order in which service operations must be called, the
data to be exchanged in each phase of the composite service workflow, and
the conditions under which a given service instance must be integrated within
the business process. In this paper we consider Business Process Execution
Language (BPEL), a de-facto standard for web service composition [1]. BPEL
templates define executable processes using XML and mainly consider func-
tionality requirements in the selection of component services to be integrated
in a business process. Our goal is to extend the modeling approach and the
certification scheme in this paper to give a first solution to the run-time cer-
tification of dependability properties for composite services.

22 Claudio A. Ardagna et al.

7.1 Modeling a Service Composition

Given the BPEL template and the WSDL-based model of partner services, we
define the BPEL-based model Mbpel of the composition, which is then used
to certify the dependability property of the business process. To this aim,
we extend the set O of operators in Section 3.2 with the parallel operator
⊕, that is, O={�,⊗,⊕}. The parallel operator is used to model processes
involving the simultaneous invocation of different operations; for instance, in
eShop, operation browseItems of three vendor services are invoked in parallel.
Operators in O are recursively applied on the connected components mwsdl of
partner services to incrementally derive Mbpel as follows.

Mbpel = mwsdl | Mbpel �Mbpel | Mbpel ⊗Mbpel | Mbpel ⊕Mbpel

The BPEL-based model can be formally defined as follows.

Definition 8 (BPEL-based model) Let M be the set of service models,
BPEL-based model Mbpel∈M of a service is an STS 〈S, s1,V, I,A,→〉 (see
Definition 1), where S is the union of all the states of the WSDL-based models
of partner services integrated using the operators in O={�,⊗,⊕}, and A
represents the set of service operations selected and integrated in the business
process.

We note that given two BPEL-based models M1 and M2 composed using
the parallel operator ⊕, the initial states of the two models are represented as
a single state where the input is distributed to the two parallel flows; similarly,
the final states of the two models are represented as a single state where the
results of the two parallel executions are combined. For sequence � and alter-
native ⊗ operators, the STS-based model is built as discussed in Section 3.2 for
Mwscl. The conceptual difference between the WSCL-based and BPEL-based
models is that the former considers operations of a single service, while the
latter of different services. As for the WSCL-based model, the set S of states
in Mbpel can also be extended when the source code of the service operations
is available, and there is an implicit transformation from Mwsdl to Mbpel on
the basis of the WSDL-based model of partner services and O.

7.2 Certification Scheme for Business Processes

The dimension of failures in business processes is significantly different from
monolithic services, since business process dependability is affected by the
composition protocol and partner services. This implies that business process
owner (the client in our framework) must utilize those partner services that
not only satisfy its functional requirements, but also its requirements on de-
pendability properties. We therefore require the client to: i) define the business
process in the form of a BPEL template, ii) select dependability property p
to be certified for its business process, iii) extend the BPEL template with a
set of requirements Reqj on the dependability of each partner service wsj to

Dependability Certification of Services: A Model-Based Approach 23

be integrated. In the following, for the sake of clarity, we assume Reqj to only
include requirements on property Reqj .p.

When requirementsReqj .p are defined in the BPEL template, the client can
use the certificate-based matching and comparison processes in Section 6 to
select appropriate partner services. The chosen services can then be integrated
and orchestrated to realize the business process (which we call BPEL instance).
We note that the BPEL instance produced in this manner will hold property
p, or a stronger property, since our matching and comparison processes select
services wsj considering Reqj .p as the lower bound. To this aim, we assume
a common ontology specifying rules for property composition. This ontology
can drive the client in the specification of BPEL templates annotated with
suitable requirements for the certification of specific properties of composite
services.

The certification process starts when a client releases its BPEL instance,
and requests the certification authority to certify property p for the business
process. Differently from the certification of single services, the certification
authority cannot determine assurance level and certify a composite service a
priori during the offline phase, because the integration of component services
is performed at run-time. However, to avoid downtimes in service certification,
we first estimate assurance level Lbpel of a composition at run-time, according
to the following rules.

– When two operations oi and oj are composed in a sequence, the assurance
level of the sequence is Lij=L

t
oi∗L

t
oj , and oi and oj are considered as a

single operation oij . This rule is based on the assumption that partner
services perform their operations independently of each other. For example,
suppose operation shipItems of shipping service sh and operation write

of storage service st are invoked in a sequence, the assurance level of their
composition is Ltsh∗Ltst.

– When two operations oi and oj are composed in a parallel or alternative, the
assurance level is Lij=min(Ltoi , L

t
oj), and oi and oj are considered as a sin-

gle operation oij . For example, when eShop invokes operation browseItems

from three independent vendors v1, v2 and v3 in parallel, it can perform its
correct functionality (e.g., it generates a table of items returned from all
three vendors) only if all three vendors behave correctly. If either vendors
fail, the dependability of eShop is affected. Therefore, the assurance level
of the composition is min(Ltv1 , L

t
v2 , L

t
v3).

The above rules are recursively applied by the certification authority to a
BPEL instance as follows: i) all pairs in a sequence are considered; ii) when
no sequences are left, an alternative or parallel is considered; iii) points i) and
ii) are repeated until a single operation o is left. The certification authority
then estimates assurance level Lbpel of the composition and awards a tempo-
rary dependability certificate C(p,Mbpel, Lbpel), if Lbpel≥T . We note that, since
dependability requirements Reqj .p given as input to the matching and com-
parison processes represent lower bounds for service selection, the certification
authority could include a stronger property pj (i.e., Reqj .p�P pj) in the certifi-

24 Claudio A. Ardagna et al.

cate. As an example, consider a client specifying its requirements for two part-
ner services in a sequence as Reqj .p=(reliability, {mechanism=redundancy,
no of server instances=2, fault type=server crashes}); then, suppose that the
matching and comparison processes return two services with property
pj=(reliability,{mechanism=redundancy, no of server instances=4,
fault type=server crashes}), with Reqj .p�P pj . Clearly, if Lbpel≥T , the com-
position is certified for property pj .

After releasing the temporary certificate, the certification authority first
produces the Markov-based certification model as discussed in Section 4.1. It
then monitors the business process by observing executions of the BPEL in-
stance, maintains the results in the frequency log, and updates the Q′ matrix
as discussed in Section 5.2. When a given (set of) quality metric has been sat-
isfied by service executions (e.g., all the execution paths in the BPEL instance
have been invoked a sufficient number of times or a given coverage of the ser-
vice model has been achieved), the certification authority calculates the new
assurance level Ltbpel at time t using the approach in Section 5.2. If Ltbpel≥T ,

the temporary certificate becomes a valid certificate with assurance level Ltbpel,
otherwise it is revoked. It is important to note that in case a service wsj in a
composition becomes unavailable or its certificate violates Reqj .p, the selection
process in Section 6 is executed to substitute wsj with another candidate wsk
on the basis of the dependability requirement Reqj .p in the BPEL template.
As soon as wsk has been selected and integrated, the process restarts with the
generation of a temporary certificate.

Example 7 Let us consider our reference scenario in which eShop composes
three vendor services (v1, v2, v3), two shipment services (sh1, sh2), and a sin-
gle storage service (st). eShop defines a BPEL template and requires property
Req.p=(reliability, {mechanism=redundancy, no of server instances≥3,
fault type=server crashes}) for all services to be composed. It then uses the
matching and comparison processes in Section 6 to select them. Figure 7 illus-
trates the BPEL instance addressing the above requirements. Here, for sim-
plicity, we assume that each selected service (v1, v2, v3, sh1, sh2, st) has been
certified for Req.p, with Mwsdl, and with the same assurance level Lt for all
its operations. We consider the following values for Lt: Ltv1=0.95, Ltv2=0.98,
Ltv3=0.92, Ltsh1

=1, Ltsh2
=0.95, and Ltst=0.96.

The certification of the BPEL instance starts with the generation of a tem-
porary certificate. Since there are no sequences, the certification authority first
considers operation browseItems from vendor services that are executed in
parallel, and estimates the assurance level as Lv123=min(0.95, 0.98, 0.92)=0.92.
The same process applies to operation buyGoods of vendor services com-
posed in an alternative, where Lv′123=min(0.95, 0.98, 0.92)=0.92. The opera-
tions browseItems and buyGoods are further composed in a sequence, and
the overall assurance level is Lv123,v′123=0.92∗0.92=0.8464. The shipment ser-
vices are then invoked in an alternative, and the assurance level estimated as
Lsh12

=min(1, 0.95)=0.95. Finally, eShop composes the vendor, shipment, and
storage services in a sequence. The assurance level of eShop is estimated as

Dependability Certification of Services: A Model-Based Approach 25

invoke
=⇒

v1Vendor.browseItems, ⊕ parallel v2 v3

Integrate Vendor.browseItems results

v1Vendor.buyGoods, ⊗ alternative v2 v3

Vendor.buyGoods results

sh1Shipping.shipItems, ⊗ alternative sh2

Shipping.shipItems results

Storage.write st return
=⇒

Fig. 7 An example of a composition in the eShop business process

Lbpel=(Lv123,v′123∗Lsh12
)∗Lst=(0.8464∗0.95)∗0.96=0.772, where the assurance

level of the sequence between vendor and shipment services is first estimated,
and the overall assurance level calculated as the sequence between the sequence
of vendor and shipment services and the storage service. The certification au-
thority generates a temporary certificate and issues it to eShop, if Lbpel≥T .

After the release of a temporary certificate, eShop is continuously moni-
tored by the certification authority and a valid certificate C(p,Mbpel, L

t
bpel) at

time t is awarded to it, if it satisfies property p with assurance level Ltbpel≥T .
When one or more among v1, v2, v3, sh1, sh2, st become unavailable or their
certificates violate client’s requirements, the certificate for the composition is
revoked and the validation process resumes.

8 Related Work

The proposed certification solution has multi-disciplinary roots involving areas
of SOA, system modeling, testing, and certification. In this section, we discuss
some related work corresponding to these areas.

An important line of research concerns definition of modeling approaches
for automatic generation of test cases and, validation of functional and QoS
parameters for services and service compositions. Salva and Rabhi [30] propose
an approach to test the robustness of a service by automatically generating
test cases from its WSDL interface. Frantzen et al. [14] define an approach to
model service coordination using an STS and automatically generate run-time
test cases. Salva et al. [29] propose a testing method based on STSs and secu-
rity rules for stateful web services. Ding et al. [13] model failure behavior using
nonhomogeneous poisson process and compute the overall system reliability
through the reliability of partner link, port type, and operation. Riccobene

26 Claudio A. Ardagna et al.

et al. [28] use architecture- and path-based reliability models to predict the
reliability of an SCA-ASM component model, and of the SCA assembly mod-
eling a service orchestration, by considering failures specific to the nature of
ASMs. Bentakouk et al. [8] propose a testing solution that uses an SMT solver
to check the conformance of a composite service against its specifications. In
contrast to the above works, we use formal modeling to validate and certify
dependability properties of services. Mateescu and Rampacek [23] define an
approach for modeling business processes and web services described in BPEL
using process algebraic rules. Betakauk et al. [7] propose a framework for test-
ing service orchestrations. The orchestration specification is translated into an
STS, and then, a Symbolic Execution Tree (SET) is computed. SET supports
retrieval of STS execution semantics and, for a given coverage criterion, gen-
eration of a set of execution paths which are run by a test oracle against the
orchestration implementation. Pathak et al. [27] define a framework that mod-
els service compositions as STSs starting from UML state machines. Similarly
to the above approaches, we model services as state automata (using STSs)
and apply a derivative approach to generate the models for service compo-
sitions. However, our solution generates dependability certificates for service
compositions using certificates of individual services.

Definition of service certification schemes is the most relevant aspect to our
work. Kourtesis et al. [22] present a solution using Stream X-machines to im-
prove the reliability of SOA environments; they evaluate if the service is func-
tionally equivalent to its specifications, and award a certificate to it. Anisetti
et al. [2, 4] proposes a model-driven test-based security certification scheme
for (composite) services. This solution allows clients to select services on the
basis of their security preferences [3]. The work in [9] presents a test-based
reliability certification scheme for services that provides an a priori validation
of services based on reliability patterns, and a posteriori testing using a set of
metrics. Our work, instead, quantitatively evaluates dependability properties
of (composite) services and supports run-time validation of certificates.

The approach of probabilistically estimating the reliability of a software
using Markov chains has been studied in the past. Mustafiz et al. [25] propose
an approach to identify reliable ways of designing the interactions in a system
and assigning probability values to each interaction measuring its success.
Cheung [10] claims that reliability of a software depends on the reliability
of its components and the probabilistic distribution of their utilization. A
Markov model is then used to measure the reliability and effects of failures on
the system with respect to a user environment. Other Markovian model-based
approaches to evaluate system reliability have been proposed (e.g., [16, 24]).

9 Conclusions

We presented a dependability certification scheme in which a machine-readable
certificate is issued to the service after validating its dependability properties
using Markov chains. The service is then continuously monitored at run-time

Dependability Certification of Services: A Model-Based Approach 27

to verify the validity of the issued certificate. The proposed solution can be
integrated within existing service-oriented architectures: it allows clients to
search and select services with a given set of dependability properties and
ensures that client’s requirements are addressed at run-time. Finally, building
on our certificate-driven selection solution for monolithic services, we presented
a modeling and certification solution for business processes.

Acknowledgments

This work was partly funded by the European Commission under the project
ASSERT4SOA (contract n. FP7-257351), the Italian Ministry of Research
within PRIN project “GenData 2020” (2010RTFWBH), and by Google, under
the Google Research Award program.

References

1. Alves, A., et al.: Web Services Business Process Execution Language Version 2.0. OASIS
(2007). http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html

2. Anisetti, M., Ardagna, C., Damiani, E.: Security certification of composite services: A
test-based approach. In: Proc. of 20th IEEE Int’l Conference on Web Services (2013)

3. Anisetti, M., Ardagna, C., Damiani, E., Maggesi, J.: Security certification-aware service
discovery and selection. In: Proc. of 5th Int’l Conference on Service-Oriented Computing
and Applications (2012)

4. Anisetti, M., Ardagna, C., Damiani, E., Saonara, F.: A test-based security certification
scheme for web services. ACM Transactions on the Web 7(2), 5 (2013)

5. Ardagna, C., Damiani, E., Jhawar, R., Piuri, V.: A model-based approach to relia-
bility certification of services. In: Proc. of 6th Int’l Conference on Digital Ecosystem
Technologies - Complex Environment Engineering (2012)

6. Avizienis, A., Laprie, J.C., Randell, B., Landwehr, C.: Basic concepts and taxonomy
of dependable and secure computing. IEEE Transactions on Dependable and Secure
Computing 1(1), 11–33 (2004)

7. Bentakouk, L., Poizat, P., Zäıdi, F.: A formal framework for service orchestration testing
based on symbolic transition systems. In: Proc. of the 21st IFIP WG 6.1 Int’l Conference
on Testing of Software and Communication Systems (2009)

8. Bentakouk, L., Poizat, P., Zäıdi, F.: Checking the behavioral conformance of web services
with symbolic testing and an SMT solver. In: Proc. of 5th Int’l Conference on Tests
and Proofs (2011)

9. Buckley, I., et al.: Towards pattern-based reliability certification of services. In: Proc.
of 1st Int’l Symposium on Secure Virtual Infrastructures (2011)

10. Cheung, R.C.: A user-oriented software reliability model. IEEE Transactions on Soft-
ware Engineering 6, 118–125 (1980)

11. Damiani, E., Ardagna, C., El Ioini, N. (eds.): Open source systems security certification.
Springer, New York, NY, USA (2009)

12. Damiani, E., De Capitani di Vimercati, S., Paraboschi, S., Samarati, P.: Securing SOAP
e-services. Int’l Journal of Information Security 1(2), 100–115 (2002)

13. Ding, Z., Jiang, M., Kandel, A.: Port-based reliability computing for service composi-
tion. IEEE Transactions on Services Computing 5(3), 422–436 (2012)

14. Frantzen, L., Tretmans, J., de Vries, R.: Towards model-based testing of web services.
In: Proc. of the Int’l Workshop on Web Services - Modeling and Testing (2006)

15. Herrmann, D.: Using the common criteria for IT security evaluation. Auerbach Publi-
cations (2002)

28 Claudio A. Ardagna et al.

16. Iyer, S., Nakayama, M., Gerbessiotis, A.: A markovian dependability model with cas-
cading failures. IEEE Transactions on Computers 58, 1238–1249 (2009)

17. Jhawar, R., Piuri, V.: Adaptive resource management for balancing availability and
performance in cloud computing. In: Proc. of 10th Int’l Conference on Security and
Cryptography (2013)

18. Jhawar, R., Piuri, V.: Fault tolerance and resilience in cloud computing environments.
In: Computer and Information Security Handbook, 2nd Edition. Morgan Kaufmann
(2013)

19. Jhawar, R., Piuri, V., Samarati, P.: Supporting security requirements for resource man-
agement in cloud computing. In: Proc. of 15th IEEE Int’l Conference on Computational
Science and Engineering (2012)

20. Jhawar, R., Piuri, V., Santambrogio, M.: Fault tolerance management in cloud comput-
ing: A system-level perspective. IEEE Systems Journal 7(2), 288–297 (2013)

21. Keum, C., Kang, S., Ko, I.Y., Baik, J., Choi, Y.I.: Generating test cases for web services
using extended finite state machine. In: Proc. of 18th IFIP Int’l Conference on Testing
Communicating Systems (2006)

22. Kourtesis, D., Ramollari, E., Dranidis, D., Paraskakis, I.: Increased reliability in SOA
environments through registry-based conformance testing of web services. Production
Planning & Control 21(2), 130–144 (2010)

23. Mateescu, R., Rampacek, S.: Formal modeling and discrete-time analysis of BPEL web
services. In: Advances in Enterprise Engineering I, Lecture Notes in Business Informa-
tion Processing, vol. 10, pp. 179–193. Springer Berlin Heidelberg (2008)

24. Muppala, J., Malhotra, M., Trivedi, K.: Markov dependability models of complex sys-
tems: Analysis techniques. Reliability and Maintenance of Complex Systems, NATO
ASI Series F: Computer and Systems Sciences 154, 442–486 (1996)

25. Mustafiz, S., Sun, X., Kienzle, J., Vangheluwe, H.: Model-driven assessment of system
dependability. Software and System Modeling 7(4), 487–502 (2008)

26. Papazoglou, M.: Web services and business transactions. World Wide Web 6, 49–91
(2003)

27. Pathak, J., Basu, S., Honavar, V.: Modeling web service composition using symbolic
transition systems. In: Proc. of AAAI Workshop on AI-Driven Technologies for Service-
Oriented Computing (2006)

28. Riccobene, E., Potena, P., Scandurra, P.: Reliability prediction for service component
architectures with the SCA-ASM component model. In: Proc. of 38th EUROMICRO
Conference on Software Engineering and Advanced Applications (2012)

29. Salva, S., Laurencot, P., Rabhi, I.: An approach dedicated for web service security
testing. In: Proc. of 5th Int’l Conference on Software Engineering Advances (2010)

30. Salva, S., Rabhi, I.: Automatic web service robustness testing from WSDL descriptions.
In: Proc. of 12th European Workshop on Dependable Computing (2009)

31. Samarati, P., De Capitani di Vimercati, S.: Data protection in outsourcing scenarios:
Issues and directions. In: Proc. of 5th ACM Symposium on Information, Computer and
Communications Security. Beijing, China (2010)

32. Tretmans, J.: Model-based testing and some steps towards test-based modelling. In:
Proc. of 11th Int’l School on Formal Methods for Eternal Networked Software Systems
(2011)

33. Trivedi, K., et al.: Dependability and security models. In: Proc. of 7th Int’l Workshop
on Design of Reliable Communication Networks (2009)

34. USA Department of Defence: Department Of Defense Trusted Computer System Eval-
uation Criteria (1985). http://csrc.nist.gov/publications/secpubs/rainbow/std001.txt

35. van Veenendaal, E.: Standard glossary of terms used in Software Test-
ing Version 2.2. International Software Testing Qualifications Board (2012).
http://www.astqb.org/documents/ISTQB glossary of testing terms 2.2.pdf, Accessed
in August 2013

