
Choosing Reputable Servents in a P2P Network

Fabrizio Cornelli
Dipartimento di Tecnologie

dell’Informazione
Università di Milano
26013 Crema - Italy

fcornelli@crema.unimi.it

Ernesto Damiani
Dipartimento di Tecnologie

dell’Informazione
Università di Milano
26013 Crema - Italy

damiani@dti.unimi.it

Sabrina De Capitani di
Vimercati

Dipartimento di Elettronica
Università di Brescia
25123 Brescia - Italy

decapita@ing.unibs.it

Stefano Paraboschi
Dipartimento di Elettronica e

Informazione
Politecnico di Milano
20133 Milano - Italy

parabosc@elet.polimi.it

Pierangela Samarati
Dipartimento di Tecnologie

dell’Informazione
Università di Milano
26013 Crema - Italy

samarati@dti.unimi.it

ABSTRACT
Peer-to-peer information sharing environments are increas-
ingly gaining acceptance on the Internet as they provide
an infrastructure in which the desired information can be
located and downloaded while preserving the anonymity
of both requestors and providers. As recent experience
with P2P environments such as Gnutella shows, anonymity
opens the door to possible misuses and abuses by resource
providers exploiting the network as a way to spread tam-
pered with resources, including malicious programs, such as
Trojan Horses and viruses.

In this paper we propose an approach to P2P security
where servents can keep track, and share with others, in-
formation about the reputation of their peers. Reputation
sharing is based on a distributed polling algorithm by which
resource requestors can assess the reliability of perspective
providers before initiating the download. The approach
nicely complements the existing P2P protocols and has a
limited impact on current implementations. Furthermore,
it keeps the current level of anonymity of requestors and
providers, as well as that of the parties sharing their view
on others’ reputations.

Categories and Subject Descriptors
C.2.0 [Computers-Communication Networks]: Gen-
eral—Security and protection; H.3.5 [Information Stor-
age and Retrieval]: Online Information Services—Data
sharing ; K.6.5 [Computers and Society]: Security and
Protection—Invasive software

General Terms
Security, Design

Keywords
P2P network, reputation, credibility, polling protocol

Copyright is held by the author/owner(s).
WWW2002, May 7–11, 2002, Honolulu, Hawaii, USA.
ACM 1-58113-449-5/02/0005.

1. INTRODUCTION
In the world of Internet technologies, peer-to-peer (P2P)

solutions are currently receiving considerable interest [6].
P2P communication software is increasingly being used to
allow individual hosts to anonymously share and distribute
various types of information over the Internet [15]. While
systems based on central indexes such as Napster [13] col-
lapsed due to litigations over potential copyright infringe-
ments, the success of ‘pure’ P2P products like Gnutella [20]
and Freenet [4] fostered interest in defining a global P2P in-
frastructure for information sharing and distribution. Sev-
eral academic and industrial researchers are currently in-
volved in attempts to develop a common platform for P2P
applications and protocols [5, 9, 14, 17]. Still, there are
several thorny issues surrounding research on P2P architec-
tures [3].

First of all, popular perception still sees P2P tools as a
way to trade all kinds of digital media, possibly without the
permission of copyright owners, and the legacy of early un-
derground use of P2P networks is preventing the full accep-
tance of P2P technologies in the corporate world. Indeed,
P2P systems are currently under attack by organizations
like the RIAA (Recording Industry Association of Amer-
ica) and MPAA (Motion Picture Association of America),
which intend to protect their intellectual property rights
that they see violated by the exchange of copyright materi-
als permitted by P2P systems. This opposition is testified
by the recent lawsuit filed against P2P software distributors
Grokster, KaZaA and MusicCity by the RIAA and MPAA,
and by the previous successful lawsuit against Napster filed
by the RIAA. Of course, with this work we do not intend to
support the abuse of intellectual property rights. Our inter-
est arises from the observation that P2P solutions are seeing
an extraordinary success, and we feel that a self-regulating
approach may be a way to make these architectures compli-
ant with the ethics of the user population and isolate from
the network the nodes offering resources that are deemed
inappropriate by the users.

Secondly, a widespread security concern is due to the com-
plete lack of peers’ accountability on shared content. Most
P2P systems protect peers’ anonymity allowing them to use



self-appointed opaque identifiers when advertising shared in-
formation (though they require peers to disclose their IP ad-
dress when downloading). Also, current P2P systems nei-
ther have a central server requiring registration nor keep
track of the peers’ network addresses. The result of this
approach is a kind of weak anonymity , that does not fully
avoid the risks of disclosing the peers’ IP addresses, pre-
vents the use of conventional web of trust techniques [11],
and allows malicious users to exploit the P2P infrastruc-
ture to freely distribute Trojan Horse and Virus programs.
Some pratictioners contend that P2P users are no more ex-
posed to viruses than when downloading files from the Inter-
net through conventional means such as FTP and the Web,
and that virus scanners can be used to prevent infection
from digital media downloaded from a P2P network. How-
ever, using P2P software undeniably increases the chances
of being exposed, especially for home users who cannot rely
on a security policy specifying which anti-virus program to
use and how often to update it; moreover, with FTP and
the Web, users most typically execute downloaded programs
only when they trust the site where the programs have been
downloaded from. We believe that the future development
of P2P systems will largely depend on the availability of
novel provisions for ensuring that peers obtain reliable in-
formation on the quality of the resources they are retrieving.
In the P2P scenario, such information can only be obtained
by means of peer review , that is, relying on the peers’ opin-
ions to establish a digital reputation for information sources
on the P2P network.

Our digital reputations can be seen as the P2P counter-
parts of client-server digital certificates [7, 8], but present
two major differences that require them to be maintained
and processed very differently. First of all, reputations must
be associated with self-appointed opaque identifiers rather
than with externally obtained identities. Therefore, keeping
a stable identifier (and its good reputation) through several
transactions must provide a considerable benefit for peers’
wishing to contribute information to the network, while con-
tinuously re-acquiring newcomer status must not be too
much of an advantage for malicious users changing their
identifier in order to avoid the effect of a bad reputation.
Secondly, while digital certificates have a long life-cycle, the
semantics of the digital reputation must allow for easily and
consistently updating them at each interaction; in our ap-
proach, reputations simply certify the experience accumu-
lated by other peers’ when interacting with an information
source, and smoothly evolve over time via a polling proce-
dure. As we shall see, our technique can be easily integrated
with existing P2P protocols.

2. ARCHITECTURES FOR
PEER-TO-PEER NETWORKS

The term peer-to-peer is a generic label assigned to net-
work architectures where all the nodes offer the same ser-
vices and follow the same behavior. In Internet jargon, the
P2P label represents a family of systems where the users of
the network overcome the passive role typical of Web naviga-
tion, and acquire an active role offering their own resources.
We focus on P2P networks for file exchange, where the P2P
label clarifies that nodes have flexible roles and may function
at the same time as clients and servers. Typically, P2P ap-
plications offer a default behavior: they immediately make

available as servers all the files they retrieved as clients. For
this dual nature of server and client, a node in a P2P net-
work is called a servent.

The use of a P2P network for information exchange in-
volves two phases. The first phase is the search of the ser-
vent where the requested information resides. The second
phase, which occurs when a servent has identified another
servent exporting a resource of interest, requires to estab-
lish a direct connection to transfer the resource from the
exporting servent to the searching servent.

While the exchange phase is rather direct and its behav-
ior is relatively constant across different architectures, the
first phase is implemented in many different ways and it
most characterizes the different solutions. We identify three
main alternatives: centralized indexes, pure P2P architec-
tures, and intermediate solutions.

The best representative of centralized solutions is Napster,
a system dedicated to the exchange of audio files. Napster
was the first P2P application to gain considerable success
and recognition. It used a centralized indexing service that
described what each servent of the network was offering to
the other nodes. Based on its indexes, Napster was able to
efficiently answer search queries originating from servents in
the network and direct them to the servent offering the re-
quested resource. Napster reached a peak of 1.5 million users
connected at the same time, before being forced to activate
filters on the content that users were offering, to eliminate
from the indexes copyrighted materials. Combined with the
introduction of a paid subscription mechanisms, this forced
a rapid decline in the number of Napster users and currently
the service is not operational. Other solutions were quick to
emerge, to fill the void left by Napster, avoiding the central-
ization that permitted Napster to offer good performance,
but also that forced it to take responsibility for the content
that users were exchanging.

The best known representatives of pure P2P architectures
are Gnutella and Freenet. Gnutella was originally designed
by Nullsoft, owned by America OnLine, but was immedi-
ately abandoned by AOL and is currently maintained by
a number of small software producers. Gnutella is a dis-
tributed architecture, where all the servents of the network
establish a connection with a variable number of servents,
creating a grid where each servent is responsible of trans-
ferring queries and their answers. Freenet is an open source
architecture explicitly designed for the robust anonymous
diffusion of information. Each resource is identified by a
key, and support for searches is strictly based on this key.
Freenet is designed to offer sophisticated services for the
protection of the integrity and the automatic distribution of
files near to the servents where requests are more frequent.
Freenet is currently offering a low degree of usability, which
limits its use to a relatively restricted number of adopters,
compared with the other solutions.

Intermediate architectures have recently emerged. The
best representative of this family is the product developed by
FastTrack(www.fasttrack.nu), a company originally based
in the Netherlands, and now owned by an Australian com-
pany. The FastTrack’s software has been licensed to com-
panies KaZaA, MusicCity, and Grokster. FastTrack distin-
guishes its servents in supernodes and nodes: supernodes
are servents which are responsible for indexing the network
content and in general have a major role in the organization
of the network. A node is eligible to become a supernode



p

s

p

s

servent looking for a resource

servents willing to offer the requested resource

Legend

...

...
...

...

Query

Qu
er
y

Qu
er
y

Q
u
e
r
y

Q
u
e
r
y

Quer
y

Qu
er
y

Query

Query

...

...

Qu
er
yH
it

Quer
yHit

Qu
er
yH
it

Q
u
e
r
y
H
i
t

...

...

s

...

Figure 1: Locating resources in a Gnutella-like P2P
environment

only if it is characterized by adequate resources, in terms of
bandwidth and computational power. Files shared on the
network are enriched with metadata, automatically gener-
ated or input by the user, that permit more precise searches.
This solution is particularly successful: at the time of writ-
ing, February 2002, there are reports of 80 million downloads
of the application, 1.5 million users connected on average at
any time, and almost 2 billion files expected to be exchanged
in the month.

We will use Gnutella throughout the paper as a reference,
because it is an open protocol and simple open source im-
plementations are available that permit to experiment with
our protocol variants.

2.1 Basic description of Gnutella
Gnutella offers a fully peer-to-peer decentralized infras-

tructure for information sharing. The topology of a Gnutella
network graph is meshed, and all servents act both as clients
and servers and as routers propagating incoming messages
to neighbors. While the total number of nodes of a network
is virtually unlimited, each node is linked dynamically to a
small number of neighbors, usually between 2 and 12. Mes-
sages, that can be broadcast or unicast, are labeled by a
unique identifier, used by the recipient to detect where the
message comes from. This feature allows replies to broad-
cast messages to be unicast when needed. To reduce net-
work congestion, all the packets exchanged on the network
are characterized by a given TTL (Time To Live) that cre-
ates a horizon of visibility for each node on the network.
The horizon is defined as the set of nodes residing on the
network graph at a path length equal to the TTL and re-
duces the scope of searches, which are forced to work on
only a portion of the resources globally offered.

To search for a particular file, a servent p sends a broad-
cast Query message to every node linked directly to it (see
Figure 1). The fact that the message is broadcast through
the P2P network, implies that the node not directly con-
nected with p will receive this message via intermediaries;
they do not know the origin of the request. Servents that
receive the query and have in their repository the file re-
quested, answer with a QueryHit unicast packet that con-
tains a ResultSet plus their IP address and the port number

of a server process from which the files can be downloaded
using the HTTP protocol. Although p is not known to the
responders, responses can reach p via the network by follow-
ing in reverse the same connection arcs used by the query.
Servents can gain a complete vision of the network within
the horizon by broadcasting Ping messages. Servents within
the horizon reply with a Pong message containing the num-
ber and size of the files they share. Finally, communication
with servents located behind firewalls is ensured by means
of Push messages. A Push message behaves more or less
like passive communication in traditional protocols such as
FTP, inasmuch it requires the “pushed” servent to initiate
the connection for downloading.

2.2 Security threats to Gnutella
Gnutella is a good testbed for our security provisions, as

it is widely acknowledged that its current architecture pro-
vides an almost ideal environment for the spread of self-
replicating malicious agents. This is due to two main fea-
tures of Gnutella’s design: anonymous peer-to-peer commu-
nication (searches are made by polling other Gnutella clients
in the community and clients are anonymous as they are
only identified by an opaque, self-appointed servent id), and
variety of the shared information (the files authorized to be
shared can include all media types, including executable and
binary files). The former feature involves a weakness due to
the combination of low accountability and trust of the indi-
vidual servents. In an ordinary Internet-based transaction, if
malicious content is discovered on a server the administrator
can be notified. On Napster, if a user was caught distribut-
ing malicious content, his account could be disabled. In
Gnutella, anyone can attach to the network and provide ma-
licious content tailored to specific search requests with rela-
tively small chance of detection; even blacklisting hostile IPs
is not a satisfactory countermeasure, as there are currently
no mechanisms to propagate this information to the network
servents (in a pure distributed architecture there is no cen-
tral authority to trust), and in many situations servents use
dynamically assigned IPs. Gnutella clients are then more
easily compromised than Napster clients and other file shar-
ing tools. For instance, the well-known VBS.Gnutella worm
(often mis-called the Gnutella virus) spreads by making a
copy of itself in the Gnutella program directory; then, it
modifies the Gnutella.ini file to allow sharing of .vbs files
in the Gnutella program folder. Other attacks that have
been observed rely on the anonymity of users: under the
shield of anonymity, malicious users can answer to virtu-
ally any query providing tampered with information. As we
shall see in Section 5, these attacks can be prevented or their
effects relieved, increasing the amount of accountability of
Gnutella servents.

3. SKETCH OF THE APPROACH
Each servent has associated a self-appointed servent id,

which can be communicated to others when interacting, as
established by the P2P communication protocol used. The
servent id of a party (intuitively a user connected at a ma-
chine) can change at any instantiation or remain persis-
tent. However, persistence of a servent id does not affect
anonymity of the party behind it, as the servent id works
only as an opaque identifier.1 Our approach encourages per-

1It must be noted that, while not compromising anonymity,



sistence as the only way to maintain history of a servent id
across transactions.

As illustrated in the previous section, in a Gnutella-like
environment, a servent p looking for a resource broadcasts
a query message, and selects, among the servents respond-
ing to it (which we call offerers), the one from which to
execute the download. This choice is usually based on the
offer quality (e.g., the number of hits and the declared con-
nection speed) or on preference criteria based on its past
experiences.

Our approach, called P2PRep, is to allow p, before decid-
ing from where to download the resource, to enquire about
the reputation of offerers by polling its peers. The basic idea
is as follows. After receiving the responses to its query, p
can select a servent (or a set of servents) based on the qual-
ity of the offer and its own past experience. Then, p polls
its peers by broadcasting a message requesting their opin-
ion about the selected servents. All peers can respond to
the poll with their opinions about the reputation of each of
such servents. The poller p can use the opinions expressed
by these voters to make its decision. We present two flavors
of our approach. In the first solution, which we call basic
polling , the servents responding to the poll do not provide
their servent id. In the second solution, which we call en-
hanced polling , voters also declare their servent id, which
can then be taken into account by p in weighting the votes
received (p can judge some voters as being more credible
than others).

The intuitive idea behind our approach is therefore very
simple. A little complication is introduced by the need to
prevent exposure of polling to security violations by mali-
cious peers. In particular, we need to ensure authenticity of
servents acting as offerers or voters (i.e., preventing imper-
sonation) and the quality of the poll. Ensuring the quality
of the poll means ensuring the integrity of each single vote
(e.g., detecting modifications to votes in transit) and rule
out the possibility of dummy votes expressed by servents
acting as a clique under the control of a single malicious
party. In the next section we describe how these issues are
addressed in our protocols.

4. REPUTATION-BASED SOURCE
SELECTION PROTOCOLS

Both our protocols assume the use of public key encryp-
tion to provide integrity and confidentiality of message ex-
changes. Whether permanent or fresh at each interaction,
we require each servent id to be a digest of a public key, ob-
tained using a secure hash function [2] and for which the ser-
vent knows the corresponding private key. This assumption
allows a peer talking to a servent id to ensure that its coun-
terpart knows the private key, whose corresponding public
key the servent id is a digest. A pair of keys is also gener-
ated on the fly for each poll. In the following we will use
(pki,ski) to denote a pair of public and private keys asso-
ciated with i, where i can be a servent or a poll request.
We will use {M}K and [M ]K to denote the encryption and
signature, respectively, of a message M under key K. Also,
in illustrating the protocols, we will use p to denote the pro-
tocol’s initiator, S to denote the set of servents connected to

persistent identifiers introduce linkability, meaning transac-
tions coming from a same servent can be related to each
other.

the P2P network at the time p sends the query, O to denote
the subset of S responding to the query (offerers), and V

to denote the subset of S responding to p’s polling (voters).
A message transmission from servent x to servent y via the
P2P network will be represented as x−→y, where “∗” ap-
pears instead of y in the case of a broadcast transmission.
A direct message transmission (outside the P2P network)

from servent x to servent y will be represented as x
D

−→y.

4.1 Basic polling
The basic polling solution, illustrated in Figure 2, works

as follows. Like in the conventional Gnutella protocol, the
servent p looking for a resource sends a Query indicating the
resource it is looking for. Every servent receiving the query
and willing to offer the requested resource for download,
sends back a QueryHit message stating how it satisfies the
query (i.e., number of query hits, the set of responses, and
the speed in Kb/second) and providing its servent id and
its pair 〈IP,port〉, which p can use for downloading. Then, p
selects its top list of servents T and polls its peers about the
reputations of these servents. In the poll request, p includes
the set T of servent ids about which it is enquiring and a
public key generated on the fly for the poll request, with
which responses to the poll will need to be encrypted.2 The
poll request is sent through the P2P network and therefore p
does not need to disclose its servent id or its IP to be able to
receive back the response. Peers receiving the poll request
and wishing to express an opinion on any of the servents
in the list, send back a PollReply expressing their votes
and declaring their 〈IP,port〉 pair (like when responding to
queries). The poll reply is encrypted with the public key
provided by p to ensure its confidentiality (of both the vote
and the voters) when in transit and to allow p to check its
integrity. Therefore, as a consequence of the poll, p receives
a set of votes, where, for each servent in T , some votes can
express a good opinion while some others can express a bad
opinion. To base its decision on the votes received, p needs
to trust the reliability of the votes. Thus, p first uses de-
cryption to detect tampered with votes and discards them.
Second, p detects votes that appear suspicious, for example
since they are coming from IPs suspected of representing a
clique (we will elaborate more on this in Section 4.4). Third,
p selects a set of voters that it directly contacts (by using
the 〈IP,port〉 pair they provided) to check whether they ac-
tually expressed that vote. For each selected voter vj , p

directly sends a TrueVote request reporting the votes it has
received from vj , and expects back a confirmation message
TrueVoteReply from vj confirming the validity of the vote.
This forces potential malicious servents to pay the cost of
using real IPs as false witnesses. Note that of course noth-
ing forbids malicious servents to completely throw away the
votes in transit (but if so, they could have done this blocking
on the QueryHit in the first place). Also note that servents
will not be able to selectively discard votes, as their recip-
ient is not known and their content, being encrypted with
p’s poll public key, is not visible to them. Upon assessing
correctness of the votes received, p can finally select the of-
ferer it judges as its best choice. Different criteria can be
adopted and any servent can use its own. For instance, p can
choose the offerer with the highest number of positive votes,

2In principle, p’s key could be used for this purpose, but
this choice would disclose the fact that the request is coming
from p.



Initiator p Servents S

p−→∗ -
Query(search string,min speed)

si−→p, (∀si ∈ O)
QueryHit(num hits,IP,port,speed,Result,servent idi)

�

Select top list T of offerers ◦

Generate a pair (pkpoll,skpoll) ◦

p−→∗ -
Poll(T,pkpoll)

�

PollReply({(IP , port ,Votes)}pkpoll
)

vi−→p, (∀vi ∈ V )

Remove suspicious voters from set V ◦

Select a random set V ′ from the elected voters ◦

p
D

−→vj, (∀vj ∈ V ′) -
TrueVote(Votesj)

vj
D

−→p, (∀vj ∈ V ′)�

TrueVoteReply(response)

If response is negative, discard Votesj ◦

Based on valid votes select servent s from which

download files

◦

(a)

Initiator p Servent s

Generate a random string r ◦

p
D

−→s -
challenge(r)

s
D

−→p
response([r]sks,pks)

�

If h(pks)=servent ids ∧ {[r]sks}pks = r : download ◦

Update experience repository ◦

(b)

Figure 2: Sequence of messages and operations in the basic polling protocol (a) and download of files from
the selected servent (b)

the one with the highest number of positive votes among
the ones for which no negative vote was received, the one
with the higher difference between the number of positive
and negative votes, and so on.

At this point, before actually initiating the download, p
challenges the selected offerer s to assess whether it corre-
sponds to the declared servent id. Servent s will need to re-
spond with a message containing its public key pks and the
challenge signed with its private key sks. If the challenge-
response exchange succeeds and the pks’s digest corresponds
to the servent id that s has declared, then p will know that
it is actually talking to s. Note that the challenge-response
exchange is done via direct communication, like the down-
load, in order to prevent impersonation by which servents
can offer resources using the servent id of other peers. With
the authenticity of the counterpart established, p can initi-
ate the download and, depending on its satisfaction for the
operation, update its reputation information for s.

4.2 Enhanced polling protocol
The enhanced polling protocol differs from the basic solu-

tion by requesting voters to provide their servent id. Intu-
itively, while in the previous approach a servent only main-
tains a local recording of its peers reputation, in the en-
hanced solution each servent also maintains track of the
credibility of its peers, which it will use to properly weight
the votes they express when responding to a polling request.
The approach, illustrated in Figure 3, works as follows. Like
for the basic case, after receiving the QueryHit responses
and selecting its top list T of choice, p broadcasts a poll
request enquiring its peers about the reputations of servents
in T . A servent receiving the poll request and wishing to
express an opinion on any of the servents in T can do so by
responding to the poll with a PollReply message in which,
unlike for the basic case, it also reports its servent id. More
precisely, PollReply reports, encrypted with the public key
pkpoll, the public key pki of the voter and its vote decla-
rations signed with the corresponding private key ski. The
vote declaration contains the pair 〈IP,port〉 and the set of
votes together with the servent id of the voter. Once more,
the fact that votes are encrypted with pkpoll protects their



Initiator p Servents SInitiator p

p−→∗ -
Query(search string,min speed)

si−→p, (∀si ∈ O)
QueryHit(num hits,IP,port,speed,Result,servent idi)

�

Select top list T of offerers ◦

Generate a pair (pkpoll,skpoll) ◦

p−→∗ -
Poll(T,pkpoll)

�

PollReply({[(IP, port, V otes, servent idi)]ski , pki)}pkpoll
)

vi−→p, (∀vi ∈ V )

Remove suspicious voters from set V ◦

Select a random set V ′ from the elected voters ◦

p
D

−→vj, (∀vj ∈ V ′) -
AreYou(servent idj)

vj
D

−→p, (∀vj ∈ V ′)�

AreYouReply(response)

If response is negative, discard voter vj ◦

Based on valid votes and on voters’reputation

select servent s from which download files

◦

(a)

Initiator p Servent s

Generate a random string r ◦

p
D

−→s -
challenge(r)

s
D

−→p
response([r]sks ,pks)

�

If h(pks)=servent ids ∧ {[r]sks}pks = r : download ◦

Update experience and credibility repositories ◦

(b)

Figure 3: Sequence of messages and operations in the enhanced polling protocol (a) and interactions with
the selected servent (b)

confidentiality and allows the detection of integrity viola-
tions. In addition, the fact that votes are signed with the
voter’s private key guarantees the authenticity of their ori-
gin: they could have been expressed only by a party know-
ing the servent id private key. Again, after collecting all the
replies to the poll, p carries out an analysis of the votes re-
ceived removing suspicious votes and then selects a set of
voters to be contacted directly to assess the correct origin
of votes. This time, the direct contact is needed to avoid
servent id to declare fake IPs (there is no need anymore to
check the integrity of the vote as the vote’s signature guar-
antees it). Selected voters are then directly contacted, via
the 〈IP,port〉 pair they provided with a message AreYou re-
porting the servent id that was associated with this pair
in the vote.3 Upon this direct contact, the voter responds
with a AreYouReply message confirming its servent id. Ser-
vent p can now evaluate the votes received in order to select,

3Note that it is not sufficient to determine that the 〈IP,port〉
is alive since any servent id could abuse of 〈IP,port〉 pairs
available but disconnected from the P2P network.

within its top list T , the server it judges best according to
the i) connection speed, ii) its own reputation about the
servents, and iii) the reputations expressed in the votes re-
ceived. While in the basic polling all votes were considered
equal (provided removal of suspicious votes or aggregation
of suspected cliques), the knowledge about the servent ids
of the voters allows p to weight the votes received based on
who expressed them. This distinction is based on credibility
information maintained by p and reporting, for each servent
s that p wishes to record, how much p trusts the opinions
expressed by s (see Subsection 4.3).

Like for the basic case, we assume that, before download-
ing, a challenge-response exchange is executed to assess the
fact that the contacted servent s knows the private key sks

whose public key pks’s digest corresponds to the declared
servent id. After the downloading, and depending on the
success of the download, p can update the reputation and
credibility information it maintains.

4.3 Maintaining servents’ reputations and
credibilities



When illustrating the protocols we simply assumed that
each servent maintains some information about how much
it trusts others with respect to the resources they offer (rep-
utation) and the votes they express (credibility). Different
approaches can be used to store, maintain, and express such
information, as well as to translate it in terms of votes and
vote evaluation. Here, we illustrate the approach we adopted
in our current implementation.

4.3.1 Representing Reputations
Each servent s maintains an experience repository as a

set of triples (servent id , num plus, num minus) associating
with each servent id the number of successful (num plus)
and unsuccessful (num minus) downloads s experienced.
Servent s can judge a download as unsuccessful, for example,
if the downloaded resource was unreadable, corrupted or in-
cluded malicious content. The experience repository will be
updated after each download by incrementing the suitable
counter, according to the download outcome. Keeping two
separate counters (for bad and good experiences) provides
the most complete information.

4.3.2 Translating Local Reputations into Votes
The simplest form of vote is a binary value by which a vote

can be either positive (1) or negative (0). Whether to ex-
press a positive or a negative opinion can be based on differ-
ent criteria that each voter can independently adopt. For in-
stance, a peer may decide to vote positively only for servents
with which it never had bad experiences (num minus=0),
while others can adopt a more liberal attitude balancing
bad and good experiences.

While we adopted simple binary votes, it is worth noting
that votes need not be binary and that servents need not
agree on the scale on which to express them. For instance,
votes could be expressed in an ordinal scale (e.g., from A to
D or from ∗∗∗∗∗ to ∗) or in a continuous one (e.g., a servent
can consider a peer reliable at 80%). The only constraint
for the approach to work properly is that the scale on which
one expresses votes should be communicated to the poller.

4.3.3 Representing Credibilities
Each servent x maintains a credibility repository as a set

of triples (servent id , num agree, num disagree) associating
with each servent id its accuracy in casting votes. Intu-
itively, num agree represents the number of times the ser-
vent id’s opinion on another peer s (within a transaction in
which s was then selected for downloading) matched the out-
come of the download. Conversely, num disagree represents
the number of times the servent id’s opinion on another peer
s (again, within a transaction in which s was then selected
for downloading) did not match the outcome of the down-
load. A simple approach to the credibility repository main-
tenance is as follows. At the end of a successful transaction,
the initiator p will increase by one the num agree counter
of all those servents that had voted in favor of the selected
servent s and will increase by one the num disagree counter
of all those servents that had voted against s. The vice versa
happens for unsuccessful transactions.

4.4 Removing suspects from the poll
PollReply messages need to be verified in order to pre-

vent malicious users from creating or forging a set of peers
with the sole purpose of sending in positive votes to enhance
their reputation. We base our verification on a suspects iden-
tification procedure, trying to reduce the impact of forged
voters. Our procedure relies on computing clusters of vot-
ers whose common characteristics suggest that they may
have been created by a single, possibly malicious, user. Of
course, nothing can prevent a malicious user aware of the
clustering technique from forging a set of voters all belong-
ing to different clusters; this is however discouraged by the
fact that some of the voting peers will be contacted in the
following check phase. In principle, voters clustering can be
done in a number of ways, based on application-level param-
eters, such as the branch of the Gnutella topology through
which the votes were received, as well as on network-level
parameters, such as IP addresses. At first sight, IP-address
clustering based on net id appears an attractive choice as it
is extremely fast and does not require to generate additional
network traffic. An alternative, more robust, approach cur-
rently used by many tools, such as IP2LL [10] and Net-
Geo [12], computes IP clustering by accessing a local Whois
database to obtain the IP address block that includes a given
IP address.4 We are well aware that, even neglecting the ef-
fects of IP spoofing, both IP clustering techniques are far
from perfect, especially when clients are behind proxies or
firewalls, so that the “client” IP address may actually cor-
respond to a proxy. For instance, the AOL network has
a centralized cluster of proxies at one location for serving
client hosts located all across the U.S., and the IP addresses
of such cluster all belong to a single address block [16]. In
other words, while a low number of clusters may suggest
that a voters’ set is suspicious, it does not provide conclu-
sive evidence of forgery. For this reason, we do not use
the number of clusters to conclude for or against voters’
forgery; rather, we compute an aggregation (e.g., the arith-
metic mean) of votes expressed by voters in the same clus-
ter. Then, we use resulting cluster votes to obtain the final
poll outcome, computed as a weighted average of the clus-
ter’s votes, where weights are inversely related to cluster
sizes. After the outcome has been computed, an explicit IP
checking phase starts: a randomized sample of voters are
contacted via direct connections, using their alleged IP ad-
dresses. If some voters are not found, the sample size is
enlarged. If no voter can be found, the whole procedure is
aborted.

5. P2PREP IMPACT ON GNUTELLA-LIKE
P2P SYSTEMS

The impact of P2PRep on a real world P2P system based
on Gnutella depends on several factors, some of them re-
lated to the original design of Gnutella itself. First of all,
in the original design there is no need for a servent to keep
a persistent servent identifier across transactions; indeed,
several Gnutella clients generate their identifiers randomly
each time they are activated. P2PRep encourages servents
keen on distributing information to preserve their identifiers,

4In our current prototype, a local Whois query is generated
for all the IP addresses in the voters’ set, and query results
are used for computing the distinct address blocks that in-
clude the voters’ IP addresses.



thus contributing to a cooperative increase of the P2P com-
munity’s ethics. Secondly, efficiency considerations brought
Gnutella designers to impose a constraint on the network
horizon, so that each servent only sees a small portion of
the network. This influences P2PRep impact, since in real
world scenarios a poller may be able to get a reasonable
number of votes only for servents that have a high rate of
activity. In other words, P2PRep will act as an adaptive se-
lection mechanism of reliable information providers within
a given horizon, while preserving the ‘pure’ P2P nature of a
Gnutella network. Another major impact factor for P2PRep
is related to performance, as Gnutella is already a verbose
protocol [18] and the amount of additional messages required
could discourage the use of P2PRep. However, the proto-
col operation can be easily tuned to the needs of congested
network environments. For instance, in Section 4 we have
assumed that peers express votes on others upon explicit
polling request by a servent. Intuitively, we can refer to this
polling approach as client-based , as peers keep track of good
and bad experiences they had with each peer s they used
as a source. In low-bandwidth networks, P2PRep message
exchanges can be reduced by providing a server-based func-
tionality whereby servents keep a record of (positive) votes
for them stated by others. We refer to these “reported”
votes as credentials, which the servent can provide in the
voting process. Obviously, credentials must be signed by
the voter that expressed them, otherwise a servent could
fake as many as it likes. Credentials can be coupled with
either of our polling processes: in the basic protocol case,
the servent ids of the direct voters remain anonymous while
the ones of those that voted indirectly are disclosed. Finally,
when a P2P system is used as a private infrastructure for in-
formation sharing (e.g., in corporate environments), P2PRep
votes semantics can easily be tuned adopting a rating sys-
tem for evaluating the quality of different information items
provided by a servent, rather than its reliability or malicious
attitude.

5.1 Security improvements
Of course, the major impact of a reputation based proto-

col should be on improving the global security level. P2PRep
has been designed in order to alleviate or resolve some of the
current security problems of P2P systems like Gnutella [3].
Also, P2PRep tries to minimize the effects of some well-
known weaknesses usually introduced by poll-based dis-
tributed algorithms. In this section, we discuss the behavior
of our protocol with respect to known attacks. Throughout
the section, we assume Alice to be a Gnutella user searching
for a file, Bob to be a user who has the file Alice wants. Carl
to be a user located behind a firewall who also has the file
Alice wants, and David to be a malicious user.

5.1.1 Distribution of Tampered with Information
The simplest version of this attack is based on the fact

that there is virtually no way to verify the source or contents
of a message. A particularly nasty attack is for David to sim-
ply respond providing a fake resource with the same name as
the real resource Alice is looking for. The actual file could be
a Trojan Horse program or a virus (like the Gnutella virus
mentioned in Section 2.2). Currently, this attack is par-
ticularly common as it requires virtually no hacking of the
software client. Both the simple and enhanced version of our
protocol are aimed at solving the problem of impersonation

attacks. When Alice discovers the potentially harmful con-
tent of the information she downloaded from David, she will
update David’s reputation, thus preventing further interac-
tion with him. Also, Alice will become a material witness
against David in all polling procedures called by others. Had
David previously spent an effort to acquire a good reputa-
tion, he will now be forced to drop his identifier, reverting to
newcomer status and dramatically reducing his probability
of being chosen for future interactions.

5.1.2 Man in the Middle
This kind of attacks takes advantage of the fact that the

malicious user David can be in the path between Alice and
Bob (or Carl). The basic version of the attack goes as fol-
lows:

1. Alice broadcasts a Query and Bob responds.

2. David intercepts the QueryHit from Bob and rewrites
it with his IP address and port instead of Bob’s.

3. Alice receives David’s reply.

4. Alice chooses to download the content from David.

5. David downloads the original content from Bob, infects
it and passes it on to Alice.

A variant of this attack relies on push-request interception:

1. Alice generates a Query and Carl responds.

2. Alice attempts to connect but Carl is firewalled, so she
generates a Push message.

3. David intercepts the push request and forwards it with
his IP address and port.

4. Carl connects to David and transfers his content.

5. David connects to Alice and provides the modified con-
tent.

While both flavors of this attack require substantial hack-
ing of the client software, they are very effective, especially
because they do not involve IP spoofing and therefore cannot
be prevented by network security measures. Our protocols
address these problems by including a challenge-response
phase just before downloading. In order to impersonate Bob
(or Carl) in this phase, David should know Bob’s private key
and be able to design a public key whose digest is Bob’s iden-
tifier. Therefore, both versions of this attack are successfully
prevented by our protocols.

6. IMPLEMENTING P2PREP IN THE
GNUTELLA ENVIRONMENT

We are nearing completion of an implementation of our
protocol as an extension to an existing Gnutella system. In
this section, we describe how the P2PRep protocol is im-
plemented and the modification it requires to a standard
Gnutella servent’s architecture.



Header

DescriptorID PayloadID TTL Hops Payload len Payload
1616 4 4 2 n

Query

QueryHit NumberOfHits Port IP Speed FileEntry \0 FileEntry ...\0 ServentID
1 2 4 2 n 16

MinimumSpeed SearchCriteria \0 SearchCriteria \0...

2 n

FileIndexFileSize FileName \0
4 4 n

Flags11111..1 EncodedPayload\0
4 4 n

Extended FileEntry

FileEntry

Poll MessagePK \0 ServentID \0 ServentID \0 ... \01111..1\0

Signature EncryptedPayload
16

PollReply
n

Figure 4: A description of P2PRep messages

6.1 P2PRep messages
To keep the impact of our proposed extension to a min-

imum, we use a piggyback technique: all P2PRep messages
are carried as payload inside ordinary Query and QueryHit

messages. P2PRep messages are summarized in Figure 4,
which also shows their structure. Specifically, P2PRep en-
capsulation relies on the field SearchCriteria (a set of
null-terminated strings) in the Query message and on the
FileEntry fields of QueryHit. By carefully choosing message
encoding, P2PRep broadcast messages (e.g., Poll) are stored
in the SearchCriteria field of a Query message and will be
understood by all P2PRep-compliant servents, while others
will consider them as requests of (unlikely) filenames and
simply ignore them. In turn, the QueryHit standard message
is composed of NumberOfHits elements of a FileEntry con-
taining a set of triples (FileSize, FileIndex, FileName).

We use these triples for encoding P2PRep unicast messages
(e.g., PollReply) sent as replies to previous broadcasts. In
order to ensure that our piggybacked messages are easily
distinguished from standard QueryHits and, at the same
time, that they are safely ignored by standard Gnutella ser-
vents, P2PRep unicasts are encoded into the Filename field,
while the FileIndex and FileSize fields specify the type
of the message and the encoding of the payload. The in-
ternal structure of P2PRep messages is very simple: Poll is
an anonymous broadcast message that contains a servent id
(or a set of them) and a session public key which is gen-
erated for each poll session. When a servent needs to poll
the net about a peer, it generates a temporary key pair,
and sends the poll public key with the Poll message it-
self. The PollReply message is encrypted and signed by
the sender, with a persistent servent key. In our current de-
sign, the actual structure of the PollReply message depends
on a parametric encoding function, stored in the FileIndex
field of the QueryHit carrier. However, all PollReply mes-
sages contain an EncryptedPayload composed of a set of en-
crypted strings. Each of these strings holds a 〈ServentID,
PollValue〉 pair.

6.2 The architecture
Although several implementations are available, most

Gnutella servents share a common architectural pattern,
that can be better understood looking at the information
flow represented in Figure 5. In a standard architecture,

Packet
Processor

Locator
Agent

Reputation
Manager

Http
Server/Client

Crypto
Agent

Shared
Resources

Experience &
Credibility
repositories

GRouter

any

Ping,Pong
Push

Query
QueryHit

Poll
PollReply

KeyGen
Sign

Verify
(De)Crypt

NET

Extended Types
QueryHit

Direct 
connections

Upload,Download

Figure 5: Gnutella’s Information Flow with protocol
extensions

two components are directly connected to the net: the
http server/client, used for uploads and downloads, and
the GRouter, a software component dedicated to message
routing. This component carries messages from the net to
the Packet Processor, a switch able to unpack messages,
identify their type and deliver them to the right manager
component. For instance, Query messages are delivered to a
Locator Agent that verifies the presence of the requested file
in the local repository of shared files (Shared Resources).
All the other messages are rerouted on the net. If the
Locator Agent finds a match in the Shared Resources, the
Gnutella servent sends a QueryHit message through the
GRouter specifying its location to the requestor. Our proto-
col requires complementing this architecture with three ad-
ditional components (enclosed by a dotted line in Figure 5).
The Reputation Manager is notified when query hits oc-
cur and receives all Query and QueryHit messages carrying
P2PRep extensions. Those messages are processed in order
to choose the best servent based on the reputation and credi-
bility data stored in the Experience and Credibility repos-
itories. In order to assess peers’ reputations, the Reputation
Manager sends and receives Poll and PollReply messages
via the GRouter, as well as service messages for key han-
dling (not shown in Figure 5). The Reputation Manager is
linked to a CryptoAgent component encapsulating the set
of encryption functions required by P2PRep. P2PRep re-
quires only standard encryption facilities: all is needed is
a public/private key pairs generation scheme, an encryption
function and a digital signature. For ease of implementation,
we have chosen to use the most popular schemes providing
the desired functionalities. Namely, RSA for keys and MD5

message digest of the payload for digital signatures.

7. COMMENTS AND DISCUSSION
We describe here a few additional aspects that may clarify

the potential of our solution and its possible integration with
current P2P technologies.

• Limited cost : The implementation of our polling ser-
vice requires a certain amount of resources, in terms of
both storage capacity and bandwidth, but this cost is
limited and justified in most situations. The amount
of storage capacity is proportional to the number of
servents with which the servent has interacted. For
the basic protocol, this will require to add at most a
few bytes to the experience repository, for an exchange
that may have required the local storage of a file with a



size of several millions of bytes. The enhanced version
is more expensive in terms of local storage, but nor-
mally, the limiting resource in P2P networks is network
bandwidth rather than storage. The most network
intensive phase of our protocol is the polling phase,
where a Poll request is broadcast to the network and
PollReply responses are transmitted back by nodes
participating in the poll. The checking phase may be
also quite heavy on network bandwidth when the check
has to analyze all the votes, but in normal situations,
when votes are not forged, the random selection of a
limited set of checks makes it a modest addition to the
network load. In conclusion, the most expensive oper-
ation is the polling phase, which operates in the same
way as a search. We can then assume that our service
would approximately double the traffic in a Gnutella
network.

• Concentration of servents: as we have already ob-
served, the Gnutella protocol limits the portion of the
network that each node can see. This means that ser-
vents will have a high probability of exhibiting a suf-
ficient number of votes supporting their reputation in
the portion of the network that a node in a particular
instant sees only if they have a considerably greater
number of votes globally. We do not consider this a
strong limitation of the approach. As some studies
have indicated [1, 19], current P2P solutions show a
clear distinction between participants to the network,
with a relatively small portion of servents offering a
great number of resources, and a great number of ser-
vents (free riders) which do not share resources but
only exploit what is offered by other participants. In
this situation, it should be possible to identify, even
in small portions of the network, servents that will ex-
hibit an adequate reputation.

• Overload avoidance: Even if polling does not intro-
duce an overload in the P2P network, our reputation
service presents a considerable risk of focusing transfer
requests on the servents that have a good reputation,
reducing the degree of network availability. A possible
solution to this problem is to consider reputable nodes
as the sources of file identifiers of correct resources.
The idea is to associate with every file an MD5 signa-
ture, which is returned with the resource description.
When a node identifies a resource it is interested in
downloading, it first has to verify the offerers’ reputa-
tion. As soon as a reputable offerer is identified, the
requestor can interact directly with the offerer only to
check the association between its servent id and the
MD5 signature. It can then request a download from
any of the nodes that are exporting the resource with
the same MD5 signature. Once the file transfer is com-
pleted, the signature is checked.

• Integration with intermediate P2P solutions: Interme-
diate P2P solutions (like FastTrack) identify nodes of
the network characterized by an adequate amount of
CPU power and network bandwidth, assigning to them
the role of indexing what is offered on the network.
The visible effect is a P2P network where response
time and network congestion are greatly reduced, and
users are not limited to searches on a portion of the

resources offered on the network. In this situation, as
in centralized solutions, when users connect to the net-
work they are required to immediately transfer to the
indexing nodes the description of the resources they
are sharing. For the implementation of our reputation
mechanism, the votes on servents that each node has
built and its experience should also be transferred to
the indexing node at the start of the session. A great
opportunity in this context derives from a possible pre-
processing, done on the indexing node, to associate a
reputation with each servent. In this way, the reputa-
tion could be returned immediately in the result of a
search. Since we have no access to a public description
of this architecture, we did not consider this solution
at the moment.

8. CONCLUSIONS
We described a reputation management protocol for

anonymous P2P environments that can be seen as an ex-
tension of generic services offered for the search of resources.
The protocol is able to reconcile two aspects, anonymity and
reputation, that are normally considered as conflicting. We
demonstrated our solution on top of an existing Gnutella
network. This paper represents a first step towards the de-
velopment of a self-regulating system for preventing mali-
cious behavior on P2P networks.

9. ACKNOWLEDGMENTS
The work reported in this paper was partially supported

by the Italian MURST DATA-X project and by the Eu-
ropean Community within the Fifth (EC) Framework Pro-
gramme under contract IST-1999-11791 – FASTER project.

10. REFERENCES
[1] E. Adar and B. Huberman. Free riding on gnutella.

Technical report, Xerox PARC, August 2000.

[2] P.C. van Oorschot A.J. Menezes and S.A. Vanstone.
Handbook of Applied Cryptography. CRC Press, 1996.

[3] S. Bellovin. Security aspects of Napster and Gnutella.
In Proc. of USENIX 2001, Boston, June 2001.

[4] I. Clarke, O. Sandberg, B. Wiley, and T. Hong.
Freenet: A distributed anonymous information storage
and retrieval system. In Proc. of the ICSI Workshop
on Design Issues in Anonymity and Unobservability,
Berkeley, CA, July 2000.

[5] R. Dingledine, M.J. Freedman, and D. Molnar. The
free haven project: Distributed anonymous storage
service. In Proc. of the Workshop on Design Issues in
Anonymity and Unobservability, Berkeley, California,
USA, July 2000.

[6] P. Druschel and A. Rowstron. Past: A large-scale
persistent peer-to-peer storage utility. In Proc. of the
Eighth IEEE Workshop on Hot Topics in Operating
Systems (HotOS-VIII), Schoss Elmau, Germany, May
2001.

[7] Carl Ellison. SPKI certificate documentation.
http://www.pobox.com/∼cme/html/spki.html.

[8] B. Gladman, C. Ellison, and N. Bohm. Digital
signatures, certificates and electronic commerce.
http://citeseer.nj.nec.com/277887.html.



[9] L. Gong. JXTA: A network programming
environment. IEEE Internet Computing, 5(3):88–95,
May/June 2001.

[10] IP to latitude/longitude server. University of Illinois.
http://cello.cs.uiuc.edu/cgi-bin/slamm/ip2ll.

[11] R. Khare, editor. Web Security – A Matter of Trust,
volume 2. The World Wide Web Journal (Special
Issue), summer 1997.

[12] D. Moore. Where in the world is netgeo.caida.org? In
Proc. of INET 2000, Stockholm, Sweden, June 2000.

[13] Napster. http://www.napster.com.

[14] Openprivacy. http://www.openprivacy.org.

[15] A. Oram, editor. Peer-to-Peer: Harnessing the Power
of Disruptive Technologies. O’Reilly & Associates,
March 2001.

[16] V. Padmanabhan and L. Subramanian. An
investigation of geographic mapping techniques for
internet hosts. In Proc. of ACM-SIGCOMM’01, San
Diego, CA, US, August 2001.

[17] M. Parameswaran, A. Susarla, and A.B. Whinston.
P2P networking: An information-sharing alternative.
IEEE Computer, 34(7):31–38, July 2001.

[18] M. Ripeanu. Peer-to-peer architecture case study:
Gnutella network. Technical Report TR-2001-26,
University of Chicago, Department of Computer
Science, July 2001.

[19] S. Saroiu, P.K. Gummadi, and S.D. Gribble. A
measurement study of peer-to-peer file sharing
systems. In Proc. of the Multimedia Computing and
Networking, San Jose, CA, January 2002.

[20] The Gnutella Protocol Specification v0.4 (Document
Revision 1.2), June 2001.
http://www.clip2.com/GnutellaProtocol04.pdf.


