
Supporting Privacy Preferences
in Credential-Based Interactions

Claudio A. Ardagna
Università degli Studi di Milano

26013 Crema - Italy
claudio.ardagna@unimi.it

Sabrina De Capitani di Vimercati
Università degli Studi di Milano

26013 Crema - Italy
sabrina.decapitani@unimi.it

Sara Foresti
Università degli Studi di Milano

26013 Crema - Italy
sara.foresti@unimi.it

Stefano Paraboschi
Università di Bergamo
24044 Dalmine - Italy
parabosc@unibg.it

Pierangela Samarati
Università degli Studi di Milano

26013 Crema - Italy
pierangela.samarati@unimi.it

ABSTRACT
Users can today enjoy the many benefits brought by the de-
velopment and widespread adoption of Internet and related
services conveniently accessing digital resources. Servers of-
fering such resources typically require users to release infor-
mation about them, which servers can then use for enforc-
ing possible access policies on the offered services. A major
problem in this context relates to providing users with the
ability of determining which information to release to satisfy
the server requests during their electronic interactions.
In this paper, we provide an approach for empowering the

user in the release of her digital portfolio based on simple
sensitivity labels expressing how much the user values differ-
ent properties, credentials or combinations thereof, as well
as on additional constraints that the user might impose on
information disclosure. We provide a generic modeling of the
problem and illustrate its translation in terms of a Weighted
MaxSat problem, which can be conveniently and efficiently
managed by off the shelf SAT solvers, thus resulting efficient
and scalable.

Categories and Subject Descriptors
K.4.1 [Computer and Society]: Public Policy Issues—
Privacy, Regulation; K.6.5 [Management of Computing
and Information Systems]: Security and Protection

General Terms
Security

Keywords
Privacy, user preferences, portfolio management, credentials

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
WPES’10, October 4, 2010, Chicago, Illinois, USA.
Copyright 2010 ACM 978-1-4503-0096-4/10/10 ...$10.00.

1. INTRODUCTION
The development of Web and Internet technologies have

produced an obvious great impact on society and in the life
of people. This success makes even more critical the resolu-
tion of important open problems that still plague the user
experience, such as, the need to manage a large number of
accounts and the limited control over her personal informa-
tion collected by servers. Effective and easy to use techno-
logical solutions should then be developed for enabling the
user to access Web services conveniently, while maintaining
control over her personal information. Digital certificates, or
credentials, are considered by many as the most promising
technique for responding to this need.

Credentials enable departing from traditional authentica-
tion means, avoiding the need for users to remember logins
and passwords, at the same time increasing the difficulty for
adversaries of impersonating users and improperly acquire
access privileges. Companies like IBM and Microsoft are in-
vesting in the development of anonymous credentials that
can offer robustness and ease of use of certificates at the
same time providing support for privacy better than cur-
rently used X.509 certificates (whose use entails disclosure
of the user identity). The continuing development of Idemix
technology by IBM, together with the acquisition of Creden-
tica in 2008 by Microsoft and the public release in 2010 of an
SDK for the use of U-Prove credentials, show the concrete
interest paid to credential technology and in particular to
anonymous credentials.

Effective use of such credential technologies requires the
development of approaches for enabling the user to organize
and manage all her credentials and regulate their release
when interacting with other parties over the Web. The re-
search and development communities have addressed this
requirement by investigating support of credential-based ac-
cess control. However, most attention has been devoted on
the server side of the problem, proposing a variety of models
and languages for expressing access control policies at the
server, as well as strategies for their evaluation and commu-
nication to the client. The client side aspect of the problem
has been typically handled assuming a symmetric approach
(based on access control rules) for regulating the release of
user private information, and possibly enabling the client
to engage in negotiation with the server. However, access
control-like specifications do not completely fit the possible

Sara
Line



protection requirements at the client side, where users need
approaches to express in an intuitive and easy to use way
their natural perception of the privacy value of their infor-
mation.
In this paper, we respond to this need and propose an

approach for empowering the user with the ability to spec-
ify privacy preferences on her private information. Our or-
ganization of the client portfolio accommodates emerging
credential technologies, supporting selective release of prop-
erties within certificates as allowed by novel anonymous cre-
dentials. Our model allows a user to assign sensitivity la-
bels to properties, credentials, or combinations thereof in her
portfolio. Basically, sensitivity labels provide a quantitative
estimation of the privacy value of the different elements of
the portfolio, as perceived by the user. Also, our model al-
lows the user to specify additional constraints that she may
want to impose on information disclosure when interacting
over the Web. Expressing sensitivity labels, our approach al-
lows for minimizing information release. We translate then
the problem of minimizing user private information disclosed
to the counterpart into a weighted satisfiability problem that
common SAT solvers are able to manage with a limited
amount of resources. This translation offers an efficient and
effective enforcement of the user-friendly specifications cap-
tured in our model. This way our approach provides both
usability for the user and efficiency in the enforcement.
The remainder of this paper is organized as follows. Sec-

tion 2 illustrates the organization of the client portfolio. Sec-
tion 3 defines server requests and client information disclo-
sure responding to them. Section 4 illustrates how users can
specify privacy preferences and requirements on the differ-
ent elements of their portfolio and introduces the problem
of minimizing information disclosure, satisfying all privacy
constraints. Section 5 describes the translation of the prob-
lem of computing a minimum disclosure to an instance of the
Weighted Max-SAT problem. Section 6 presents experimen-
tal results obtained by using a SAT solver on our problem
formulation, which confirm the efficiency and scalability of
our solution. Section 7 discusses related work. Finally, Sec-
tion 8 presents our conclusions.

2. CLIENT PORTFOLIO
The information that a client can provide to acquire ser-

vices from a server is collected within a portfolio. The
portfolio contains both certified and uncertified properties.
Certified properties are organized within credentials, signed
by third parties, while uncertified properties are self-signed
statements that form a declaration [2, 5]. We now describe
in more details the components of the client portfolio.

2.1 Credentials
Credentials are organized by types, where the type of a

credential identifies the properties that the credential certi-
fies. Abstractions can be defined over the credential types,
possibly introducing a hierarchy of types. Formally, a hier-
archy H of credential types is a pair (T ,≼isa), where T is the
set of all types, and ≼isa is a partial order relationship over
T . Given two types t i and tj in T , t i≼isatj if tj is an ab-
straction of t i. Hierarchy H has a unique root, denoted with
∗, such that t i≼isa∗, for each t i∈T . Our model allows refer-
ring to credentials at the granularity of instance or type. For
example, id is an abstraction of credential types id card and
driver license (i.e., id card≼isaid and driver license≼isaid).

∗

pppppppp
MMMMMMM

credential

yy
yy

y
NNNNNN declaration

id

��
�� EE

EE
E credit card

id card driver license

Figure 1: An example of hierarchy of credential
types

Credentials myId and myLicense are instances of id card
and driver license, respectively, and, consequently, also in-
stances of id . Each credential instance c is characterized by
a unique identifier, a set {p1,. . . ,pn} of certified properties,
a type, and an issuer. In the following, we will denote with
c , properties(c), and type(c) the credential identifier, the set
of properties certified by c , and the type of c , respectively.

We distinguish between two classes of credentials: atomic
and non-atomic [2]. Atomic credentials can only be released
as a whole, that is, their release entails the disclosure of all
the properties they certify. By contrast, non-atomic creden-
tials support the selective release of individual properties ex-
tracted from the credential. Atomic credentials (e.g., X.509
certificates) are the most common kind of credential used
today in distributed systems. By contrast, non-atomic cre-
dentials (e.g., U-Prove and Idemix [6, 7]) are based on mod-
ern technologies and permit also to certify the possession of
an instance of a given credential type, without disclosing the
properties within it.

All the certified properties in the client portfolio may also
be declared, that is, included in self-signed credential decl ,
which may also contain additional properties that are not in-
cluded in any credential. Credential type decl is represented
in the hierarchy of credential types as a direct descendant
of the root. Figure 1 illustrates an example of hierarchy of
credential types. Clearly, decl is non-atomic, but no proof
of existence can be released for it.

2.2 Properties
Each property p is characterized by a unique identifier,

a type (organized in a 1-level hierarchy), a name, and a
value. In the following, we will denote with p and type(p)
the property identifier and its type, respectively.

We distinguish between two classes of properties:
credential-independent and credential-dependent [2].
Credential-independent properties depend only on the
client, and not on the specific credential certifying their
value. For instance, date of birth is a property of the
client, and possible occurrences of the property in differ-
ent credentials refer all to the same data. By contrast,
credential-dependent properties are associated with the
client with reference to a specific credential. For instance,
credit card number is a property that depends on the
specific instance of credential type credit card . Different
instances of credit cards will all refer to their specific
credit card number, and therefore to a different property.
Credential-dependent properties might have different oc-
currences of the same type, depending on the existence
of different credentials including them, while credential-
independent properties have a single occurrence. Note that



Properties
Id Dep. Type Value

Name Name Bob
DoB DoB 1975/10/23
Address Address 3155, 5th Ave, New York, USA
Country Country USA
VISANum X CCNum 4353. . . 21
MCNum X CCNum 5643. . . 18
Phone Phone 789-231-044
eMail eMail bob@abc.com
NickName NickName bob75

Credentials
Id Atom. Type Properties

myId X id card Name,DoB,Address
myLicense driver license Name,DoB,Country
myVISA X credit card Name,VISANum
myMC X credit card Name,MCNum
decl declaration Name,DoB,Address

Country,VISANum,MCNum
Phone,eMail,NickName

Figure 2: An example of portfolio

each instance of a property (both credential dependent and
independent) has a different identifier p .

Example 2.1. Figure 2 illustrates an example of a port-
folio, including properties Name, DoB, Address, Coun-

try, Phone, eMail, and NickName, which are credential-
independent, and VISANum and MCNum, which are credential-
dependent and both of type CCNum. The portfolio con-
tains credentials myId (of type id card), myLicense (of
type driver license), myVISA and myMC (both of type
credit card), and a declaration decl including all the proper-
ties in the portfolio. The only non-atomic credential, besides
decl, is myLicense.

3. SERVER REQUEST AND CLIENT DIS-
CLOSURE

We consider an open Web-based scenario that consists of
remote communications between a client and a server. The
client starts the communication by requesting access to a
resource available on the server. In turn, the server sends a
request for a set of properties to the client, to evaluate and
enforce the policies protecting the resource.
We assume the server request R to be expressed as the

disjunction of simple requests R1 ∨ . . . ∨ Rn. Each simple
request R is a conjunction r1∧ . . .∧rm of terms r of the
form type.{pt1,. . . ,pt i}, where type is a credential type and
{pt1,. . . ,pt i} is a set of property types. In the following, we
use type(r ) to refer to element type of term r and proper-
ties(r ) to refer to the set {pt1,. . . ,pt i}. Each term r in the
request prescribes the disclosure of a set of properties from a
single credential c in the client portfolio, such that c repre-
sents an instance of abstraction type(r ) and, for each type in
properties(r ), a property of the same type in properties(c)
is released, as formally defined in the following.

Definition 3.1 (Term Satisfaction). Let C and P
be the set of credentials and properties, respectively, in the
client portfolio, and R be a request. Credential c∈C satisfies
a term r in R iff the following conditions hold:

• type(c)≼isatype(r );

• ∀pt∈properties(r ), ∃p∈properties(c): type(p)=pt .

Since the server does not know the client portfolio, terms
in the request can only correspond to types appearing in the
hierarchy of credential types, shared with the client. There-
fore, each term can be seen as a compact representation of a
set of alternative requests for credentials in the client port-
folio. As an example, consider three terms, r1=id .{Name},
r2=credential .{Name}, and r3=∗.{Name}. The first term re-
quires the release of property Name, certified by a credential
of type id , that is either id card or driver license. The sec-
ond term requires the release of property Name, certified by
any credential. The third term requires the release of prop-
erty Name that can be either certified by any credential or
declared by the client.

Given a request R formulated by the server, the client
must determine a disclosure D, that is, a subset of her
portfolio, to be communicated to the server for satisfying
R. Note that the disclosure of a set of properties in the
client portfolio also implies the release of a set of credentials
certifying them, and possibly of a set of additional proper-
ties (those certified by atomic credentials in D). Therefore,
while each disclosure D is a subset of properties and creden-
tials, not all subsets of properties and credentials represent
a proper disclosure, as formally defined in the following.

Definition 3.2 (Disclosure). Let C and P be the set
of credentials and properties, respectively, in the client port-
folio. A disclosure D of the portfolio is a set {d1,. . . ,dj} of
elements of the form d=c.{p1,. . . ,pi} such that the follow-
ing conditions hold:

1. ∀d∈D =⇒ {p1,. . . ,pi}⊆properties(c) (certifiability);

2. ∀d∈D s.t. c is atomic =⇒ {p1,. . . ,pi}=properties(c)
(atomicity).

The above definition states that a subset of the client port-
folio represents a disclosure if: 1) each disclosed property is
certified by (at least) a credential (certifiability); and 2) if a
property of an atomic credential is disclosed, all the proper-
ties in the credential are disclosed (atomicity).

4. PORTFOLIO SENSITIVITY
The motivation of our work is to provide the client with an

intuitive and easily manageable approach for regulating the
disclosure of her portfolio. As a matter of fact, when the
server offers choices on the properties or credentials to be
provided, the client may prefer to disclose some over others.
For instance, a user may prefer to release her email over her
address and either of the two instead of her phone number.
Intuitively and naturally, users perceive a value associated
with their information that reflects the sensitivity of this in-
formation. Different properties or different credentials enjoy
therefore different values in this respect.

We capture such intuitive approach in expressing infor-
mation privacy preferences as sensitivity labels that the user
can associate with the different components (or combina-
tions thereof) in her portfolio and therefore how much the
user values their disclosure. A user may also specify differ-
ent preferences for different servers, by assigning a different
label to each component in its portfolio, depending on the
server requesting the release. The request is then evaluated
on the instance of the labels determined by the server with
whom the user is interacting. For simplicity and without



loss of generality, in the following we will consider a user
specifying a unique set of labels for all servers.
In principle, for our modeling, the set Λ of sensitivity la-

bels could be any set of values, provided the existence of
a (partial) order relationship ≽ over them and a composi-
tion operator ⊕ that determines the label resulting from the
combination of two labels. In this paper, we assume the set
of labels Λ to be the set Z of (positive and negative) integer
values, the dominance relationship ≽ to be the ≥ total order
relationship, and the composition operator ⊕ to be the sum
+ of values.
We now illustrate how the user can specify the sensitiv-

ity of the elements of her portfolio via a labeling function
λ : 2C∪P → Z, associating a sensitivity label with individ-
ual elements (properties or credentials) as well as combina-
tions of them. Also, we model further constraints that the
user might want to specify on the disclosure of information
in her portfolio.

Sensitivity of properties and credentials. The first
step for the user to specify how much she values informa-
tion in her portfolio (to the goal of minimizing information
disclosure when interacting with others) is to associate a
sensitivity label λ with each property p and credential c .

• λ(p): defines the sensitivity of property p individu-
ally taken. It reflects how much the user considers the
property sensitive and therefore how much she values
its release. The more sensitive the information, the
greater the sensitivity value associated with it. For
instance, λ(eMail) > λ(Name).

• λ(c): defines the sensitivity of the existence of a cre-
dential. This is the additional information carried by
the credential itself, regardless of the information con-
tained in it. For instance, consider an FBI certificate
including properties Name and Address. The certifi-
cate sensitivity is greater than the composition of the
labels of the properties in it; in fact, the existence of
the certificate itself has a sensitivity that goes beyond
the demographic information of the user. Note that,
for non-atomic credentials, λ(c) reflects the sensitivity
assigned to the existence of the credential regardless of
the release of the properties within it.

Sensitivity of associations. The sensitivity label associ-
ated with each portfolio element defines how much the user
values the release of the specific element. Of course, in the
case of credentials, the value of the release of the complete
credential is the composition of the labels of all the elements
involved, that is, the credential existence and all the prop-
erties within the credential. In general, releasing a set of
elements entails a sensitivity corresponding to the combina-
tion of the sensitivity of all the elements involved. There are
however cases where merging some elements might produce
an information release that does not precisely correspond to
the composition of the labels of the individual elements. In
such cases, we allow the user to specify an additional (posi-
tive or negative) sensitivity label that should be considered
in computing the sensitivity of the set of elements jointly
released. Let a be any set of properties and/or credentials.
The user can specify λ(a ) as the additional , positive or neg-
ative, sensitivity to take into account in computing the sen-
sitivity label of an association among the portfolio elements
in a , with the following semantics.

• Sensitive views (λ(a ) > 0). They reflect the fact that
a set of portfolio elements jointly released carries more
information than the composition (i.e., the sum) of the
labels of the individual elements. For instance, the as-
sociation between a user Name, her Address, and one
of her credit cards (e.g., myVISA) can be considered
more sensitive than the composition of the sensitivity
labels of the three. In fact, not only it discloses the
three values, but also the fact that they are in asso-
ciation (i.e., the address and credit card of the user).
λ({Name, Address,myVISA}) expresses the additional
sensitivity of the information when joined.

• Dependencies (λ(a ) < 0). They reflect the fact that a
set of portfolio elements jointly released carries less in-
formation than the composition (i.e., the sum) of the
labels of the individual elements. For instance, the
association between a complete Address and Coun-

try can be considered less sensitive than the sum of
the sensitivity labels of the two. As a matter of fact,
the information carried by the address includes the
country where the user lives. Hence, releasing the ad-
dress together with the country does not release addi-
tional information. λ({Address, Country}) expresses
the sensitivity to be removed when the two pieces of
information are joined. In this specific example, there
is essentially a functional dependency between the
two elements and therefore λ({Address, Country}) =
−λ(Country). In general, λ(a ) can take any negative
value, provided that its absolute value be at most equal
to the composition of all the elements but the most
sensitive in a . In fact, an association has a sensitivity
that is at least the one of the most sensitive element.

As for the specification of the sensitivity label of an as-
sociation, we note that the user could explicitly define
it (specifying the additional sensitivity given by the joint
release of the involved properties), or could have it de-
rived based on the difference between the overall sensitiv-
ity she perceives for the association and the sensitivity of
the individual properties involved. For instance, with refer-
ence to the portfolio in Figure 2, assume that λ(Name)=1,
λ(Address)=5, and λ(myVISA)=3. If the sensitivity as-
sociated with the combined release of Name, Address, and
myVISA is equal to 14, the sensitivity label of the asso-
ciation λ({Name, Address,myVISA}) will be computed as
14−λ(Name)−λ(Address)−λ(myVISA) = 5.

Disclosure constraints. In addition to specifying the sen-
sitivity labels associated with credentials and properties in
the portfolio, or combinations thereof, the user may want
to specify additional constraints that cannot be simply ex-
pressed with a sensitivity label. We consider two kinds of
constraints.

• Forbidden views. Some associations of the portfolio el-
ements might be not only much more sensitive than the
combination of the labels of the elements, but should
be definitely prohibited by the user, meaning that the
user never wants to release some information in associ-
ation. We accommodate this requirement by allowing
the specification of forbidden views as a set of proper-
ties and/or credentials that should never be released
together. For instance, a user might have in its port-
folio both a real Name and a NickName, each one with



Properties
λ(Name) : 1 λ(MCNum) : 15
λ(DoB) : 5 λ(Phone) : 9
λ(Address) : 5 λ(eMail) : 3
λ(Country) : 2 λ(NickName) : 1
λ(VISANum) : 10

Credentials
λ(myId) : 1
λ(myLicense) : 5
λ(myVISA) : 3
λ(myMC ) : 8
λ(decl) : 0

Sensitive views
λ({Name, Address,myVISA}) : 5

Dependencies
λ({Address, Country}) : -2

Forbidden views
{Name,NickName}

Disclosure limitations
{Address,Phone,eMail}1

Figure 3: Portfolio sensitivity specification

a sensitivity label (to be considered when the element
is released), but their association should never be dis-
closed.

• Disclosure limitations. In some cases, the user might
wish to put a limitation of the kind at most n of these
elements on the release of properties and credentials.
Given a disclosure limitation a⊆ C∪P, we denote with
an the constraint limiting the disclosure to at most n
elements in a . For instance, a user may specify disclo-
sure limitation {Address,Phone,eMail}1, meaning that
at most one among its contacts (i.e., Address, Phone,
and eMail) can be released. Note that the forbidden
view constraints above can be seen as a specific kind of
disclosure limitation constraints, stating that at most
n−1 among n portfolio elements can be released. How-
ever, we prefer to maintain their modeling separate, as
we believe forbidden views to be a case deserving spe-
cial consideration.

Example 4.1. Figure 3 illustrates an example of a la-
beling function λ for the portfolio illustrated in Figure 2.
The figure also reports one sensitive view {Name, Address,
myVISA}, since the combined release of the specified ele-
ments could result in unsolicited advertisement; one depen-
dency {Address, Country}, since the knowledge of the com-
plete address also discloses the country; one forbidden view
{Name,NickName}, since the client does not want to release
both its name and its nickname; and one disclosure limita-
tion {Address,Phone,eMail}1, since the client wants to re-
lease at most one of its contacts.

The sensitivity label λ(D) of a disclosure D is computed
by composing the labels of the credentials and properties
in D, and of the exposed associations. An association a is
exposed by D if all properties and all credentials in a appear
in D. Also, a disclosure is valid if it does not violate any
disclosure constraint specified by the client. We note that
only valid disclosures can be released.
Given a server request R, the client is interested in de-

termining, if it exists, a valid disclosure D that satisfies R,
while minimizing the sensitivity label of the disclosure. A
disclosure D satisfies a request R if at least one of the simple
requests R in R is satisfied by D. A simple request R is sat-
isfied by D iff, for each term r in R, there exists an element
c .{p1,. . . ,pi}∈D that satisfies r (Definition 3.1). Formally,
the problem of computing a minimum valid disclosure is for-
mulated as follows.

Problem 4.1 (Min-Disclosure). Given a set C of
credentials and a set P of properties composing the client
portfolio, a set A of associations, a set V of forbidden views,
a set L of disclosure limitations, a labeling function λ, and a
server request R, find a minimum disclosure D of the port-
folio w.r.t. R that satisfies the following requirements:

• D is valid w.r.t. V and L;

• D satisfies R;

• @ a valid disclosure D′ s.t. D′ satisfies R and
λ(D′)<λ(D).

The Min-Disclosure problem is NP-hard, as stated by the
following theorem.

Theorem 4.1. The Min-Disclosure problem is NP-hard.

Proof. The proof is a reduction from the NP-hard prob-
lem of the Minimum Set Cover, formulated as follows: given
a collection S of subsets of a finite set U , determine a subset
S′ ⊆ S such that every element in U belongs to at least one
member of S′, and the cardinality of S′ is minimized.
Given the set P of properties and the set C of creden-
tials composing the client portfolio and a request R, the
correspondence between the Min-Disclosure problem and
the minimum set cover problem can be defined as follows.
Each element in the finite set U translates to a credential-
independent property p with sensitivity label λ(p)=0. Any
subset s ∈ S of U translates to an atomic credential c in
C with sensitivity label λ(c)=1 certifying all the properties
corresponding to the elements in s. Let us now consider re-
quest R=

∧
p∈U∗.type(p), where ∗ is the root of the creden-

tial type hierarchy. A minimum disclosure D corresponds to
a solution S′ for the corresponding minimum set cover prob-
lem. In particular, each disclosed credential corresponds to
a subset in S′. Hence, the Min-Disclosure problem is NP-
hard.

Example 4.2. Let us consider a request R= r1∧r2 =
id.{Name,Address} ∧ cc.{Name,CCNum}. The first term
r1 can be satisfied only by releasing atomic creden-
tial myId. In fact, credential myLicense, even if of
type id, does not certify property Address. The second
term r2 can be satisfied by releasing either myVISA or
myMC. The valid disclosure that satisfies R with min-
imum sensitivity label is D={myId.{Name,DoB,Address},
myVISA.{Name,VISANum}}. Note that D releases property
DoB that is not explicitly required by the server. Also, it
exposes sensitive view {Name,Address,myVISA}. The sen-
sitivity label of D is therefore λ(D)=λ(myId) + λ(Name)
+ λ(DoB) + λ(Address) + λ(myVISA) + λ(VISANum) +
λ({Name,Address,myVISA}) = 30.

In the following, we present an approach for solving the
Min-Disclosure problem.

5. COMPUTING A MINIMUM DISCLO-
SURE

Our approach to solve the Min-Disclosure problem (Prob-
lem 4.1) is based on its translation into an instance of the
Weighted Max-SAT problem and on the availability of SAT



solvers, known to be able to efficiently solve large prob-
lems. This translation interprets credentials and proper-
ties as Boolean variables, and associations, disclosure con-
straints, and the server request as clauses. The Weighted
Max-SAT problem can be formulated as follows: given a set
of clauses, find a truth assignment that maximizes the sum
of weights of satisfied clauses.
Any instance of the Weighted Max-SAT problem model-

ing an instance of our problem consists of two parts: i) a
set of clauses representing the client portfolio and its sensi-
tivity specifications (Section 5.1); and ii) a clause specifying
the server request (Section 5.2). Note that the first part is
generated only once at initialization time, and is updated if
credentials are inserted into or removed from the portfolio.
The second part is instead dynamically generated at each
request. In the remainder of this section, we describe how
these clauses are defined.

5.1 Client Portfolio
We define two sets of Boolean variables, representing cre-

dentials and properties in the client portfolio. A truth as-
signment to the variables of the problem represents a disclo-
sure D, where only credentials and properties represented
by true variables are released.
Since not all truth assignments correctly represent a dis-

closure, we define a set of clauses that implements the cer-
tifiability and atomicity properties in Definition 3.2.

• Certifiability : each disclosed property must be certi-
fied by (at least) a credential, that is, the credential
existence is also disclosed. We need a clause for
each property p∈P stating that if p=1 then there
exists at least a credential c such that c=1 and
p∈properties(c). Formally:

¬p ∨ (p ∧ (
∨

c∈C:p∈properties(c)

c))

• Atomicity : if an atomic credential is disclosed, all its
properties are disclosed. We need a clause for each
atomic credential c∈C stating that if c=1, then for all
p∈properties(c), p=1. Formally:

¬c ∨ (c ∧ (
∧

p∈properties(c)

p))

All the clauses describing the constraints on the portfolio
structure are mandatory (hard clauses), that is, any solution
must satisfy all of them to be considered a disclosure. As a
consequence, we assign them a special weight value ⊤ [10]
that can be interpreted as +∞: any truth assignment must
satisfy all of them.
The sensitivity label of each property, credential, and asso-

ciation in the portfolio is modeled through a weighted clause
(soft clauses). We note that the Weighted Max-SAT prob-
lem is aimed at maximizing the weight of satisfied clauses,
while our problem (Problem 4.1) minimizes the weight of
disclosed properties and credentials, and of exposed associ-
ations. We then define a negative clause for each property,
credential, and association as follows.

• Property : ∀p ∈ P: ¬p .

• Credential : ∀c ∈ C: ¬c .

• Association: ∀a = {pi, . . . , pj , ck, . . . , cl} ∈ A:
¬(pi ∧ . . . ∧ pj ∧ ck ∧ . . . ∧ cl).

The weight of each soft clause corresponds to the sen-
sitivity label of the property, credential, or association it
represents. The weight of a disclosure is then obtained as
the sum of the weights of violated soft clauses (i.e., released
credentials and properties, and exposed associations), which
is minimized.

Forbidden views and disclosure limitations are instead
modeled as hard clauses, since they cannot be violated by
any truth assignment. In particular, we define a clause for
each forbidden view and a clause for each disclosure limita-
tion, as follows.

• Forbidden view : ∀v = {pi, . . . , pj , ck, . . . , cl} ∈ V:
¬(pi ∧ . . . ∧ pj ∧ ck ∧ . . . ∧ cl).

• Disclosure limitation: ∀l = {pi, . . . , pj , ck, . . . , cl}n ∈
L:
S = {s ∈ 2l : |s| ≤ n},

∨
s∈S

(
∧
x∈s

x
∧

x∈(l\s)

¬x)

if we consider n = 1, the clause reduces as follows:∨
x∈l

(x
∧

xi∈(l\{x})

¬xi).

We note that the number of clauses modeling the client
portfolio is linear in the number of properties, credentials,
associations, and disclosure constraints composing it. In
fact, we need to define |P| certifiability clauses, at most |C|
atomicity clauses, |P|+|C|+|A| soft clauses representing sen-
sitivity labels, and |L|+ |V| hard clauses representing disclo-
sure constraints. Therefore, the number of clauses necessary
to describe the client portfolio is O(|P|+|C|+|A|+|L|+|V|).

Figure 4 illustrates the clauses modeling the portfolio in
Figure 2, considering the sensitivity specification in Figure 3.

5.2 Server Request
Given a server request R=R1∨ . . .∨Rn where each simple

request is of the form R=r1∧. . .∧rm, we first need to trans-
late each term r into an equivalent Boolean formula that
enforces Definition 3.1. Basically, the Boolean formula rep-
resenting term r is obtained as the disjunction of all creden-
tials c in the client portfolio such that type(c)≼isatype(r ),
in conjunction with all properties p in properties(c) such
that the type of p appears in properties(r ). Formally, the
Boolean expression translating term r is as follows.∨

c∈C:type(c)≼isatype(r )

c ∧ (
∧

p∈properties(c),
pt∈properties(r ):

type(p)=pt

p)

Note that a credential c , even if it represents an instance of
type(r ), is not included in the clause, if c does not certify at
least one property for each of the types specified in r . This
preliminary check is implemented during the translation of
our problem into a Weighted Max-SAT instance.

The clause representing the whole request is obtained by
adequately composing the translated terms, according to R.∨

R∈R

(
∧
r∈R

(
∨

c∈C:type(c)≼isatype(r )

c ∧ (
∧

p∈properties(c),
pt∈properties(r ):

type(p)=pt

p)))

This clause is hard and must then be satisfied by any truth
assignment. In fact, a truth assignment that does not satisfy
this clause represents a disclosure that does not satisfy the



Certifiability
Clauses Weight

(¬Name)∨(Name∧(myId∨myLicense∨myVISA∨myMC∨decl)) ⊤
(¬DoB)∨(DoB∧(myId∨myLicense∨decl)) ⊤
(¬Address)∨(Address∧(myId∨decl)) ⊤
(¬Country)∨(Country∧(myLicense∨decl)) ⊤
(¬VISANum)∨(VISANum∧(myVISA∨decl)) ⊤
(¬MCNum)∨(MCNum∧(myMC∨decl)) ⊤
(¬Phone)∨(Phone∧decl) ⊤
(¬eMail)∨(eMail∧decl) ⊤
(¬NickName)∨(NickName∧decl) ⊤

Atomicity
Clauses Weight

(¬myId)∨(myId∧Name∧DoB∧Address) ⊤
(¬myVISA)∨(myVISA∧Name∧VISANum) ⊤
(¬myMC)∨(myMC∧Name∧MCNum) ⊤

Properties
Clauses Weight

¬Name 1
¬DoB 5
¬Address 5
¬Country 2
¬VISANum 10
¬MCNum 15
¬Phone 9
¬eMail 3
¬NickName 1

Credentials
Clauses Weight

¬myId 1
¬myLicense 5
¬myVISA 3
¬myMC 8

Sensitive views
Clauses Weight

¬(Name∧Address∧myVISA) 5

Dependencies
Clauses Weight

¬(Address∧Country) -2

Forbidden views
Clauses Weight

¬(Name∧NickName) ⊤

Disclosure Limitations
Clauses Weight

(Address∧¬Phone∧¬eMail)∨(¬Address∧Phone∧¬eMail)∨ ⊤
(¬Address∧¬Phone∧eMail)

Figure 4: SAT clauses for the client portfolio

request and therefore does not grant access to the service.
The weight associated with this clause is then ⊤.

Example 5.1. Let us consider the request R in Exam-
ple 4.2, its translation into a clause for the Weighted Max-
SAT problem requires to previously reformulate r1 and r2,
as follows:

• r1=id.{Name,Address} is translated as:
myId∧Name∧Address;

• r2=cc.{Name,CCNum} is translated as:
(myVISA∧Name∧VISANum)∨(myMC∧Name∧MCNum).

It is important to note that the computation of the clause
modeling the server request should be efficient, to avoid de-
lays in the access to the service. In fact, this translation
must be executed any time the client needs to acquire a ser-
vice. We note however that this is the unique clause that
needs to be computed at request time.

5.3 Session Management
In the above discussion, we focused on minimizing the in-

formation released by the client in response to a request from
a server. However, Web-based information systems typically
support a navigational access to resources. For instance,
a client, guided by a Web interface, can browse a catalog
and then possibly buy an item within it. The client might
then be requested to release first some information (creden-
tials/properties) for accessing and browsing the catalog, and
then further information for completing the purchase. In
such a case, it is important for the client to maintain track
of the information already disclosed to the server and ensure
minimality of the information released overall, rather than
the specific information released at each server request (i.e.,
at each accessed functionality) within the session. At each
request, information released in previous requests within the
session needs to be considered, to ensure both minimal infor-
mation release to the server as well as the respect of disclo-
sure constraints (i.e., forbidden views and disclosure limita-
tions). For instance, with reference to Example 4.1, suppose
a client discloses its NickName to the server. By providing
stateful capability, the release of Name will be prohibited,
since otherwise the forbidden view would be violated. As
another example, consider a Web-based reservation system,
where the client first books a flight and then rents a car.
When completing the car reservation, the client might want
to take into consideration the information already released
to the server for the flight reservation, to minimize the infor-
mation released overall. For instance, if requested a credit
card or an id document, she might want to stick with the
ones just released. Consideration of information already re-
leased is of outmost importance, in particular for disclosure
constraints that should be evaluated with respect to the in-
formation communicated in the whole session (as opposed
to the specific individual interaction steps).

Our Weighted Max-SAT formulation of the problem al-
lows to address the issue above, providing the ability of
maintaining the communication state of the client with the
server. As a matter of fact, information already disclosed
to the server can be simply expressed by injecting in the in-
stance of Weighted Max-SAT problem to be evaluated with
respect to a request, a set of clauses of the form ⟨p,⊤⟩ (⟨c,⊤⟩,
resp.) for each property (credential, resp.) already disclosed.
In such a way, we capture properties and credentials previ-
ously disclosed and therefore they are taken into considera-
tion in the calculation of the weight of the truth assignment,
as well as in the evaluation of the disclosure constraints.

Example 5.2. Consider a Web-based reservation sys-
tem that permits, within a unique session, to book
a flight and rent a car. Given the server re-
quest R=r1∧r2=id.{Name,Address} ∧ cc.{Name,CCNum}, the
minimum valid disclosure D={myId.{Name,DoB,Address},
myVISA.{Name,VISANum}} in Example 4.2 permits the user
to book her flight. As soon as the user tries to rent a car,
the server issues request R′=driver license.{Name,Country}
∨ ∗.{NickName}, where the second term applies to regis-
tered users. This request can be satisfied by disclosing either
D1=myLicense.{Name,Country} or D2=decl.{NickName}. If
we do not consider the communication state, λ(D1)=8 and
λ(D2)=1, thus the client discloses D2. On the contrary, if
we consider the communication state including the disclosure
of D, λ(D1)=5, since credential independent property Name



has already been released by D and the disclosure of Country
activates dependency {Address,Country}. Disclosure D2,
combined with D, violates forbidden view {Name,NickName}
and therefore is not valid. The client then discloses D1.

Note that the stateful session approach described above
can also be used to support the consideration of a generic his-
tory of previous communications, providing the client with
the ability to remember previous releases to the server and
therefore minimizing the information released overall within
a generic time/operation window set by the client. The sim-
ple clauses above representing the information already re-
leased to each server would be injected in the formulation
of the Weighted Max-SAT problem. Note that the clauses
describing the user portfolio (certifiability, atomicity, sensi-
tivity, and disclosure constraints) do not have to change.

6. EXPERIMENTAL EVALUATION
To prove the effectiveness and evaluate the efficiency of the

solution proposed in the previous sections, we implemented
a prototype written in C/C++, realizing the translation of
any instance of our Min-Disclosure problem (Problem 4.1)
into an equivalent instance of the Weighted Max-SAT prob-
lem as described in Section 5. The algorithm receives as
input the set of credentials and properties in the client port-
folio, a set of associations, a set of disclosure constraints, a
labeling function λ, and a request R, and computes a set
of clauses that are given as input to the Yices SAT solver
(http://yices.csl.sri.com). If R can be satisfied, the Yices
SAT solver returns a valid disclosure D that satisfies R and
minimizes the sensitivity label of D.

6.1 Translation of the Problem
The Yices SAT solver tool does not support clauses with

negative weights and therefore we need an alternative for-
mulation to represent dependencies. To this purpose, we
take advantage of the fact that the sensitivity of a release
cannot be negative, since the sensitivity of the disclosure
of a set of properties and credentials cannot be lower than
the most sensitive element disclosed (see Section 4). Given
a dependency a={pi,. . . ,pj ,ck,. . . ,cl}, the sensitivity label
of each property/credential in a is not modified, provided
at least one property/credential in a is not disclosed. On
the contrary, the sensitivity of the disclosure of the whole
set of properties and credentials composing a needs to con-
sider also the negative label λ(a ). We therefore reformu-
late the clauses modeling the sensitivity label of each prop-
erty/credential in a and the clause modeling the sensitivity
label of the dependency itself as follows.

• Each clause ¬p such that p∈a is modified as:

¬(p ∧ (
∨

pi∈a :pi ̸=p

¬pi

∨
c∈a

¬c))

with weight λ(p);

• Each clause ¬c such that c∈a is modified as:

¬(c ∧ (
∨
p∈a

¬p
∨

ci∈a :ci ̸=c

¬ci))

with weight λ(c);

From To
Clauses Weight Clauses Weight

¬Address 5 ¬(Address∧¬Country) 5
¬Country 2 ¬(Country∧¬Address) 2
¬(Address∧Country) -2 ¬(Address∧Country) 5

Figure 5: Modified clauses

• Clause ¬(pi ∧ . . . ∧ pj ∧ ck ∧ . . . ∧ cl), with negative
weight λ(a ), is modified by assigning it a weight equal
to λ(a )+λ(pi)+. . . +λ(pj)+λ(ck)+. . . +λ(cl).

Note that, if the same property/credential is involved in
more than one dependency, the clause modeling the sensi-
tivity label of the property/credential must consider all the
dependencies in which it appears. Analogously, the clause
modeling the sensitivity label of each dependency must con-
sider the other ones.

It is possible to see that, if the dependencies of the consid-
ered instance are disjoint, the number of clauses of the corre-
sponding Weighted Max-SAT instance is not affected by the
transformation described above. In the case of non-disjoint
dependencies, this number increases with the number of de-
pendencies with at least a common property/credential.

Example 6.1. Let us consider the set of clauses modeling
the client portfolio illustrated in Figure 4 that includes clause
¬(Address∧Country) with negative weight. To adopt Yices
SAT-solver, it is necessary to reformulate the clauses that
model the sensitivity labels of properties Address and Coun-

try, and the clause modeling the dependency as illustrated
in Figure 5.

6.2 Experimental Results
Experiments have been run on a PC with two Intel Xeon

Quad 2.0GHz L3-4MB processors, 12GB RAM, four 1-Tbyte
disks, and a Linux Ubuntu 9.04 operating system. We con-
sidered four different portfolio configurations, where 50%,
25%, 10%, and 0% of the credentials are non-atomic. Fig-
ure 6(a) illustrates the average time necessary to generate
the clauses modeling the client portfolio, with a number of
credentials between 5 and 35. As clear from the figure, the
time necessary to generate the clauses representing the port-
folio ranges between 0ms and 3ms. From the computed re-
sults, we also note that the number of Boolean variables is
between 21 and 127 and that the number of (hard and soft)
clauses generated is between 34 and 251.

For each portfolio configuration, we randomly generated
10 requests, composed of 2 to 6 terms, where each term refers
to a credential type and may include multiple conditions.
Requests were expanded as described in Section 3, resulting
in considerably large clauses. We then measured the time
necessary for: i) the translation of the request into a hard
clause; ii) the computation of a truth assignment to Boolean
variables through the Max-SAT solver; and iii) the transla-
tion of the truth assignment into a disclosure. Figure 6(b)
illustrates the average time necessary for the evaluation of a
request. As expected, the time necessary for the evaluation
of a request increases with the portfolio size and does not
depend on the number of non-atomic credentials. In all the
experiments, the evaluation time remains below 5ms.

To assess the efficiency of our solution, we compared it
with a brute-force exhaustive algorithm for computing a



 0

 0.5

 1

 1.5

 2

 2.5

5 10 15 20 25 30 35

T
im

e 
(m

s)

Number of Total Credentials

Portfolio Generation
Interpolation line

(a)

 0

 1

 2

 3

 4

 5

5 10 15 20 25 30 35

T
im

e 
(m

s)

Number of Total Credentials

Non-Atomic Cred. 50%
Non-Atomic Cred. 50% - Interpolation line

Non-Atomic Cred. 30%
Non-Atomic Cred. 30% - Interpolation line

Non-Atomic Cred. 10%
Non-Atomic Cred. 10% - Interpolation line

Non-Atomic Cred. 0%
Non-Atomic Cred. 0% - Interpolation line

(b)

 0

 1

 2

 3

 4

 5

 6

 7

 8

5 10 15 20 25 30 35

T
im

e 
(m

s)

Number of Total Credentials

Portfolio Generation
Evaluation

Total

(c)

 10

 1000

 60000

 0  5  10  15  20  25  30  35

T
im

e 
(m

s)

Number of Total Credentials

Exhaustive 50%
Exhaustive 30%
Exhaustive 10%
Exhaustive 0%

Max-Sat

(d)

Figure 6: Experimental results

minimum disclosure. To this purpose, we calculate the total
time our algorithm needs to produce a solution, as the sum
of the time necessary to generate the clauses modeling the
client portfolio and the average time needed for the evalua-
tion of a request. Figure 6(c) shows the total time necessary
to compute a minimum disclosure in the worst case scenario.
Figure 6(d) compares the performance of our solution with
the brute-force algorithm. As expected, the brute-force algo-
rithm becomes quickly infeasible, with a strong dependence
on the number of non-atomic credentials. On the contrary,
the approach that uses the Max-SAT solver can compute,
for all the considered configurations, a solution in less than
10ms.

7. RELATED WORK
Research on credential-based access control (e.g., [3, 5,

11, 14, 16, 19]) primarily focused on server side issues and
proposed solutions for controlling access to resources, speci-
fying and enforcing policies, and enabling negotiation strate-
gies. These solutions typically assume to adopt a symmet-
ric approach at the client side, for regulating the release of
user private information and possibly manage negotiation
with the server. These approaches however do not allow
the client to exploit emerging technologies (e.g., SAML [1],
OpenID [9], and anonymous credentials [6, 7]) for determin-
ing which credentials and/or properties release to minimize
the sensitive information communicated to the server. In the
literature only few works have addressed this issue. In [15]

the authors describe a solution that limits the release of
personal data in trust negotiation. This approach takes ad-
vantage of the proposal in [4], which uses a Merkle hash tree
structure to selectively release properties within credentials
(or proofs over them). The work in [15] however permits
neither to assign sensitivity labels to elements in the port-
folio nor to define associations and disclosure constraints.
Chen et al. [8] propose a solution that associates costs with
credentials and policies to minimize the cost of a creden-
tial release within a trust-negotiation protocol. Kärger et
al. [12] describe a logic-based language for the specification
of privacy preferences dictating a partial order among the
client properties. Both solutions provide some treatment of
preferences or scores associated with either credentials or
properties, but do not address the problem of modeling the
client portfolio. Yao et al. [18] propose a point-based trust
management model, where the client labels each credential
in its portfolio with a quantitative privacy score, while the
server defines a credit for each credential released by the
client and a minimum threshold of credits to access a re-
source. The proposed solution finds an optimal set of client
credentials, such that the total privacy score of disclosed
credentials is minimal and the server access threshold is sat-
isfied. Differently from [18], our solution permits the client
to define its privacy preferences and to minimize the disclo-
sure of sensitive information, independently from the server
preferences. Also, our proposal provides a complete model-
ing of the client portfolio, including both sensitivity of as-
sociations and disclosure constraints. Sensitivity labels as a



means for expressing privacy of portfolio components have
been first proposed in [2]. This paper considerably extends
this previous work by supporting a richer approach for the
specification of sensitivity labels, allowing also for negative
sensitivity, capturing data dependencies and implications, as
well as for additional constraints. Also, it proposes a novel
modeling of the problem exploiting its translation in terms
of a Weighted Max-SAT problem and its resolution via ex-
isting SAT solvers. The approach results therefore more
expressive, as well as more efficient, than the graph-based
modeling and the heuristic approach in [2].

8. CONCLUSIONS
Credentials promise to play a crucial role in future Web

systems, for the enhanced user convenience and security they
offer. In this paper, we presented an approach for support-
ing user privacy preferences in a credential-based interaction
system, thus helping to manage what would otherwise be a
significant obstacle to the deployment of credential-based
solutions. Our approach can be easily integrated with the
client environment (e.g., within the browser) and can effi-
ciently identify, even for large portfolios, the set of creden-
tials and properties that minimizes the exposure of personal
information. Our proposal provides a simple and expressive
solution for expressing and enforcing users privacy prefer-
ences, and can therefore provide a foundation for the con-
struction of a user-centered privacy-conscious future Inter-
net experience.

9. ACKNOWLEDGMENTS
This work was supported in part by the EU within the

7FP project “PrimeLife” under grant agreement 216483 and
by the Italian Ministry of Research within the PRIN 2008
project “PEPPER” (2008SY2PH4).

10. REFERENCES
[1] A. Anderson and H. Lockhart. SAML 2.0 profile of

XACML. OASIS, September 2004.

[2] C.A. Ardagna, S. De Capitani di Vimercati, S. Foresti,
S. Paraboschi, and P. Samarati. Minimizing disclosure
of private information in credential-based interactions:
A graph-based approach. In Proc. of the 2nd IEEE
International Conference on Information Privacy,
Security, Risk and Trust (PASSAT 2010),
Minneapolis, MN, USA, August 2010.

[3] C.A. Ardagna, S. De Capitani di Vimercati,
S. Paraboschi, E. Pedrini, P. Samarati, and
M. Verdicchio. Expressive and deployable access
control in open Web service applications. IEEE
Transactions on Service Computing (TSC), 2010. (to
appear).

[4] D. Bauer, D. Blough, and D. Cash. Minimal
information disclosure with efficiently verifiable
credentials. In Proc. of the 4th ACM Workshop on
Digital Identity Management (DIM 2008), Alexandria,
Virginia, USA, October 2008.

[5] P. Bonatti and P. Samarati. A uniform framework for
regulating service access and information release on
the Web. Journal of Computer Security (JCS),
10(3):241–272, 2002.

[6] S. Brands. Rethinking public key infrastructure and
digital certificates – building in privacy. MIT Press,
2000.

[7] J. Camenisch and A. Lysyanskaya. An efficient system
for non-transferable anonymous credentials with
optional anonymity revocation. In Proc. of the
International Conference on the Theory and
Application of Cryptographic Techniques
(EUROCRYPT 2001), Innsbruck, Austria, May 2001.

[8] W. Chen, L. Clarke, J. Kurose, and D. Towsley.
Optimizing cost-sensitive trust-negotiation protocols.
In Proc. of the 24th Annual Joint Conference of the
IEEE Computer and Communications Societies
(INFOCOM 2005), Miami, FL, USA, March 2005.

[9] D. Hardt, J. Bufu, and J. Hoyt. OpenID attribute
exchange 1.0, 2007.
http://openid.net/developers/specs/.

[10] F. Heras, J. Larrosa, and A. Oliveras. MiniMaxSAT: a
new weighted Max-SAT solver. In Proc. of the 10th
International Conference on Theory and Applications
of Satisfiability Testing (SAT 2007), Lisbon, Portugal,
May 2007.

[11] K. Irwin and T. Yu. Preventing attribute information
leakage in automated trust negotiation. In Proc. of the
12th ACM Conference on Computer and
Communications Security (CCS 2005), Alexandria,
VA, USA, November 2005.

[12] P. Kärger, D. Olmedilla, and W.-T. Balke. Exploiting
preferences for minimal credential disclosure in
policy-driven trust negotiations. In Proc. of the 5th
VLDB Workshop on Secure Data Management (SDM
2008), Auckland, New Zealand, August 2008.

[13] A. Lee and M. Winslett. Towards an efficient and
language-agnostic compliance checker for trust
negotiation systems. In Proc. of the 2008 ACM
Symposium on InformAtion, Computer and
Communications Security (ASIACCS 2008), March.

[14] A. Lee, M. Winslett, J. Basney, and V. Welch. The
Traust authorization service. ACM Transactions on
Information and System Security (TISSEC),
11(1):1–33, February 2008.

[15] F. Paci, D. Bauer, E. Bertino, D. Blough,
A. Squicciarini, and A. Gupta. Minimal credential
disclosure in trust negotiations. Identity in the
Information Society, 2(3):221–239, December 2009.

[16] T. Ryutov, L. Zhou, C. Neuman, T. Leithead, and
K. Seamons. Adaptive trust negotiation and access
control. In Proc. of the 10th Symposium on Access
control Models and Technologies (SACMAT 2005),
Stockholm, Sweden, June 2005.

[17] B. Smith, K. Seamons, and M. Jones. Responding to
policies at runtime in trustbuilder. In Proc. of the 5th
IEEE International Workshop on Policies for
Distributed Systems and Networks (POLICY 2004),
Yorktown Heights, NY, USA, June 2004.

[18] D. Yao, K. Frikken, M. Atallah, and R. Tamassia.
Private information: To reveal or not to reveal. ACM
Transactions on Information and System Security
(TISSEC), 12(1):1–27, October 2008.

[19] T. Yu, M. Winslett, and K. Seamons. Supporting
structured credentials and sensitive policies trough
interoperable strategies for automated trust. ACM
Transactions on Information and System Security
(TISSEC), 6(1):1–42, February 2003.


	copyright: © ACM, (2010). This is the author's version of the work. It is posted here by permission of ACM for your personal use. Not for redistribution. The definitive version was published in Proceedings of the 9th ACM Workshop on Privacy in the Electronic Society , Chicago, Illinois, USA, October 4, 2010 http://dx.doi.org/10.1145/1866919.1866931


