
An XACML-Based Privacy-Centered
Access Control System

Claudio A. Ardagna
Università degli Studi di Milano

26013 Crema - Italy

claudio.ardagna@unimi.it

Sabrina De Capitani di Vimercati
Università degli Studi di Milano

26013 Crema - Italy

sabrina.decapitani@unimi.it

Stefano Paraboschi
Università di Bergamo
24044 Dalmine - Italy
parabosc@unibg.it

Eros Pedrini
Università degli Studi di Milano

26013 Crema - Italy
eros.pedrini@unimi.it

Pierangela Samarati
Università degli Studi di Milano

26013 Crema - Italy
pierangela.samarati@unimi.it

ABSTRACT

The widespread diffusion of the Internet as the platform for
accessing distributed services makes available a huge amount
of personal data, and a corresponding concern and demand
from users, as well as legislation, for solutions providing
users with form of control on their data. Responding to this
requirement raises the emerging need of solutions supporting
proper information security governance, allowing enterprises
managing user information to enforce restrictions on infor-
mation acquisition as well as its processing and secondary
use. While the research community has acknowledged this
emerging scenario, and research efforts are being devoted to
it, current technologies provide still limited solutions to the
problem.

In this paper, we illustrate our effort in pursuing the goal
of bringing information security governance restrictions de-
ployable in current organizational contexts. Considering
the large success and application of XACML, we extend
the XACML architecture and modules complementing them
with functionalities for effective credential-based manage-
ment and privacy support. Our proposal combines XACML
with PRIME, a novel solution supporting privacy-aware ac-
cess control, resulting in an infrastructure that provides the
flexible access functionality of XACML enriched with the
data governance and privacy features of PRIME.

Categories and Subject Descriptors

H.2.7 [Database Management]: Database Admin-
istration—Security, integrity, and protection; H.4
[Information Systems Applications]: Miscellaneous;
K.4.1 [Computer and Society]: Public Policy Issues—
Privacy, regulation

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
WISG’09, November 13, 2009, Chicago, Illinois, USA.
Copyright 2009 ACM 978-1-60558-787-5/09/11 ...$10.00.

General Terms

Design, Security

Keywords

Access Control, Data Governance, Privacy, XACML

1. INTRODUCTION
The huge success of the Web as a platform for the distribu-

tion of services and dissemination of information makes the
protection of users’ privacy a fundamental requirement. Pri-
vacy issues affect different aspects of today Internet transac-
tions, and controlling access to private information plays a
crucial role in providing privacy guarantees [13]. Although
considerable work has been performed in the field of access
control for distributed services [2, 3, 4, 15], available access
control mechanisms are at an early stage from a privacy pro-
tection point of view. This situation reflects the fact that
attention on security requirements has been mostly focused
on addressing server-side security concerns (e.g., communi-
cation confidentiality, unauthorized access to services, data
integrity). Here, we focus on the development of a privacy-
aware access control system that takes into consideration
both the client and the server sides. At the client side, we
provide to the users the ability to preserve their privacy
and to the enterprises the technical means to support the
governance of privacy-sensitive data. Our approach aims at
contributing to the development of a complete solution for
security governance focusing on the support of user privacy.

An environment aiming at providing users with a private
and secure way for using e-services should support at least
the following basic requirements.

• Privacy. A digital identity solution should be respect-
ful of the users’ rights to privacy and should not dis-
close and process personal information without explicit
consent.

• User-driven constraints. In addition to traditional
server-side access control rules, users should be able
to specify data handling constraints and restrictions
about possible secondary use of their information once
released to external parties.

• Credential support. Access control should support the

definition and enforcement of credential-based autho-
rization policies.

• Minimal disclosure. Service providers must require the
least set of credentials needed for service provision, and
users should be able to provide credentials selectively,
depending on the online services they wish to access.

• Interactive enforcement. A new way of enforcing the
access control process should be defined based on a
negotiation protocol aimed at establishing the least set
of information that a user has to disclose to access a
specific service.

• Anonymity support. As a special but notable case of
minimal disclosure, many services do not need to know
the real identity of a user. Pseudonyms, multiple dig-
ital identities, and even anonymous accesses must be
adopted when possible.

• Legislation support. Privacy-related legislation is be-
coming a powerful driver towards the adoption of dig-
ital identities. The exchange of identity data should
not violate government legislations, such as the Data
Protection Directive in the European Union, or the
Health Insurance Portability and Accountability Act
(HIPAA) or Gramm-Leach-Bliley Act (GLB) in the
USA.

Our reference scenario is a distributed infrastructure that
includes users who request access to online services provided
by servers. Servers may collect personal information of the
users for evaluating access control policies, and users may
pose restrictions on how this personal information should
be managed.

An access control system monitors access requests and im-
plements regulations (policies), which establish who can, or
cannot, execute which actions on which resources [11]. In
the scenario we are considering, traditional access control
solutions result limiting and do not satisfy all the require-
ments mentioned above. As a matter of fact, access control
systems allow the specification of policies with reference to
generic attributes/properties of the parties and the resources
involved [1, 4] and even if many access control proposals
support privacy and trust negotiation, current available so-
lutions do not provide support for privacy policies. XACML
(eXtensible Access Control Markup Language) [4], the re-
sult of an OASIS standardization effort, represents today the
most effective and accepted solution for controlling access in
distributed environments. XACML proposes an XML-based
language to express and interchange access control policies,
and defines both an architecture for the evaluation of poli-
cies and a communication protocol for message exchange.
Although XACML is largely adopted and is considered a
reference solution, it supports neither privacy features nor
the effective evaluation and specification of credential re-
strictions in the policies.1 Also, it imposes that the data of
the users be available at access request time, thus lacking
support for negotiation/dialog between users and servers.

1Version 3.0 of XACML, currently (July 2009) in the prelim-
inary “first draft” status, provides a privacy profile, which is
however limited, consisting only of a few requirements and
the explicitation of two attributes. Credential support is
limited to the evaluation of attributes issuer, time, and date
associated with certificates.

The consideration of privacy and data governance issues
introduces the need to rethinking authorization policies and
models, and the development of new paradigms for access
control and authorization specification and enforcement.
Two major issues need to be addressed. First, access con-
trol needs to operate even when interacting parties wish to
disclose limited or no information about themselves. Sec-
ond, data collected/released during access control, as well
as data stored by the different parties, may contain sensi-
tive information on which privacy policies need to be applied
(data handling) and should therefore be protected. These
issues have been investigated within PRIME (Privacy and
Identity Management for Europe) [10], a large-scale EU-
funded research project just arrived at its completion, which
aimed at developing a privacy-enhancing Identity Manage-
ment System that protects the personal information of the
users and provides a framework that could be smoothly in-
tegrated with current architectures and online services. The
goal of the PRIME project was to empower users, provid-
ing them with solutions to retain control over their personal
information in interactions with other parties, also impos-
ing constraints on subsequent data handling and secondary
use. In the PRIME vision, the user should have control of
personal information and negotiate its disclosure for access
to a service. The result of such a negotiation is an agree-
ment between the user and the service provider, whereby
the provider collects personal data for a stated, legitimate
purpose and under agreed conditions of use. The PRIME
project has developed a privacy-aware access control sys-
tem, which supports privacy requirements and extends tra-
ditional access control functionalities with support for data
handling [1]. Notwithstanding the significant benefits of
PRIME and of its access control implementation, PRIME
has shown limited appeal to those complex business scenar-
ios with stable legacy systems and database-centered archi-
tectures, with an already existing, well integrated, access
control solution. Nowadays, the same business scenarios
have shown some use of XACML for controlling access to
data/resources in distributed settings, but they are reluc-
tant to change their infrastructures to integrate the PRIME
solution and its privacy functionalities.

The work presented in this paper, within the PrimeLife
(Privacy and Identity Management in Europe for Life)
project [9] which is the successor of PRIME, aims at provid-
ing a solution to the above issues by integrating the XACML
and the PRIME architecture. The motivation is to build a
flexible framework that exploits the advantages of XACML
in terms of access control and scalability, and the advantages
of PRIME in terms of data governance and privacy. The in-
tegration of the XACML access control within the PRIME
architecture permits to put at use the PRIME features in
existing business scenarios. By reducing the amount of re-
quired changes to the business and technological infrastruc-
ture, our solution provides effective deployment of privacy-
support features in current information systems. Our solu-
tion also shows the flexibility of the XACML standard and
of its implementation, and can serve as a guideline for oth-
ers interested in extending XACML for capturing different
protection requirements.

The remainder of this paper is organized as follows. Sec-
tion 2 illustrates the XACML language and architecture.
Section 3 presents the PRIME access control system and
Section 4 describes its integration with XACML. Section 5

illustrates some aspects on the implementation. Section 6
discusses related work. Finally, Section 7 presents our con-
clusions.

2. EXTENSIBLE ACCESS CONTROL

MARKUP LANGUAGE (XACML)
XACML [4] is an XML-based language for expressing and

interchanging access control policies. The language offers
the functionalities of most security policy languages and has
standard extension points for defining new functions, data
types, policy combination logic, and so on. In addition to the
language, XACML defines both an architecture for the eval-
uation of policies and a communication protocol for message
interchange. The main functions offered by XACML can be
summarized as follows.

• Policy combination. XACML provides a method for
combining policies independently specified. Different
entities can then define their policies on the same re-
source. When an access request on that resource is
submitted, the system takes into consideration all the
applicable policies.

• Combining algorithms. Since XACML supports the
definition of positive and negative authorizations,
there is the need for a method for reconciling inde-
pendently specified policies when their evaluation is
contradictory. XACML supports different combining
algorithms, each representing a way of combining mul-
tiple decisions into a single decision.

• Attribute-based restrictions. XACML supports the
definition of policies based on generic properties (at-
tributes) associated with subjects (e.g., name, address,
occupation) and resources (e.g., creation date, type).
XACML includes some built-in operators for compar-
ing attribute values and provides a method for adding
nonstandard functions.

• Policy distribution. Policies can be defined by different
parties and enforced at different enforcement points.
Also, XACML allows one policy to contain, or refer
to, another.

• Implementation independence. XACML provides an
abstraction layer that isolates the policy-writer from
the implementation details. This guarantees that dif-
ferent implementations operate in a consistent way, re-
gardless of the specific implementation.

• Obligations. XACML provides a method for specify-
ing actions, called obligations, which must be fulfilled
in conjunction with the policy enforcement, after the
access decision has been taken.

Figure 1 illustrates the XACML working and the data
flow in the access control evaluation. Access control works
as follows. The requester sends an access request to the
Policy Enforcement Point (PEP) module (step 2) which in
turn send it to the Context Handler. The Context Handler
translates the original request into a canonical format, called
XACML request context (step 3) and send it to the Policy
Decision Point (PDP) (step 4). The PDP identifies the ap-
plicable policies among the ones stored at the Policy Admin-
istration Point (PAP) and retrieves the attributes required

Access

Requester
PEP

Obligations

Service

Context

Handler
PDP

PAP

PIP

Subjects Environment

Resource

1. Policy

2. Access Request

3. Request

4. Request Notification

5. Attribute Queries

10. Attributes

11 Response Context

6. Attribute Query

7.1. Subject

Attributes

7.2. Environment

Attributes

7.3. Resource

Attributes

8. Attributes

9. Resource Content

12. Response

13. Obligations

Figure 1: Overview of the XACML data flow [4]

for the evaluation through the Context Handler (steps 5-10).
If some attributes are missing, the context handler queries
the Policy Information Point (PIP) module for collecting
them. The PIP provides attribute values about the sub-
ject, resource, and environment. To this purpose, the PIP
interacts with the subjects, resource, and environment mod-
ules. The environment module provides a set of attributes
that are relevant to take an authorization decision and are
independent of a particular subject, resource, and action.
The PDP evaluates the policies against the retrieved at-
tributes, and returns the XACML response context to the
Context Handler (step 11). The Context Handler translates
the XACML response context to the native format of the
PEP and returns it to the PEP together with an optional
set of obligations (step 12). The PEP fulfills the obligations
(step 13), and grants or denies the request according to the
decision in the response context.

The XACML canonical form of the request/response man-
aged by the PDP allows the definition and analysis of poli-
cies without taking into account the details of the appli-
cation environment. Any implementation has to translate
the attribute representations in the application environment
(e.g., SAML, .NET, Corba [8]) into the XACML context.
For instance, an application can provide a SAML [7] mes-
sage that includes a set of attributes characterizing the sub-
ject of the access request. This message is translated in
the XACML canonical form and, analogously, the XACML
decision is translated in the SAML format.

3. PRIME ACCESS CONTROL SYSTEM
The PRIME privacy-aware access control system deals

with five main key aspects: i) resource representation, to
specify access control requirements on resources, in terms of
available metadata describing them; ii) subject identity, to
specify access control conditions on the subject requesting
access and its personal information; iii) secondary use, to al-
low users to define restrictions on how their information will
be used and processed by external parties after its release;
iv) context representation, to provide contextual information
in a standard format for the evaluation of policy conditions;

DB Mediator

Obligation
Manager

ACEF

Data Reader

Application

Decision
Wrapper

ACDF

PII
Request

Context

Credential

System

Policy
Manager

6. Credential

Evaluation

3. Retrieves

 Applicable

Policies

2. Computes

Access

Decision

9. Manages

PII

10. Access/Modifies

PII

5. Retrieves

Context

Data

8. Applies

Obligations

7. Forward

Access to PII

1. Request

Access to

PII
PII Mediator

Access Control

4. Retrieves

Context

Data

Figure 2: The PRIME Access Control Architecture

v) ontology integration, to exploit the Semantic Web and to
allow the definition of access control rules based on generic
assertions defined over concepts in the ontologies.

Figure 2 illustrates the architecture of PRIME and the
flow of an access control evaluation (steps 1-6) and enforce-
ment (steps 7-10). The architecture is composed of the fol-
lowing main components.

• Decision Wrapper : responsible for driving the access
control policy evaluation and enforcement.

• Access Control Decision Function (ACDF): responsi-
ble for taking access decisions for all access requests
directed to resources (personal identifiable information
(PII) or services). It is the core component of the
PRIME access control implementation.

• Policy Manager : responsible for managing the overall
policy life cycle by providing functions for administer-
ing policies. It also provides filtering functionality over
the responses to be returned to the counterpart (user
or service), to restrict the release of sensitive informa-
tion related to the policy itself.

• Request Context : responsible for managing all contex-
tual information; it stores all the data and credentials
released by a user in a given session.

• Data Reader : responsible for abstracting the commu-
nication between the ACDF and the Request Context.

• Credential System: responsible for credential verifica-
tion.

• Access Control Enforcement Function (ACEF): re-
sponsible for enforcing access control decisions by me-
diating all accesses to resources and allowing them only
if they are authorized by ACDF.

• Obligation Manager (OM): responsible for managing,
scheduling, enforcing, and monitoring privacy obliga-
tions. Obligations are actions that have to be per-
formed either after an access has been granted or in the

future, based on the occurrence of well defined events,
e.g., time-based events or context-based events.

• PII : database storing all personal identifiable informa-
tion.

• DB Mediator : responsible for abstracting the commu-
nication between the ACEF and the PII repository.

In the following, we concentrate our discussion on the
ACDF component. The ACDF component is responsible
for taking access decisions for all access requests directed to
resources, by retrieving and evaluating all access control and
data handling policies applicable to a request. Access con-
trol policies govern access to and release of resources man-
aged by a party [11]. Data handling policies define how data
(personal information) will be (or should be) dealt with at
the receiving parties [1, 15]. An access request is modeled
as a 4-uple of the form 〈subject, action, object, purpose〉,
where subject is the optional identifier/pseudonym of the
requester, action is the action that is being requested, ob-
ject is the resource on which the requester wishes to perform
the action, and purpose is the purpose (or a set of purposes)
for which the access is requested. The ACDF produces the
final response possibly combining the access decisions com-
ing from the evaluation of different policies. The ACDF can
then return three different decisions: i) Yes, the request can
be granted; ii) No, the request must be denied; iii) Un-
defined, current information is not sufficient to determine
whether the request can be granted or denied. In this case,
additional information is needed and the counterpart will be
asked to provide such an information.

As illustrated in Figure 2, the ACDF mainly interacts with
the Request Context component. This component keeps
track of all contextual information, combines information
from various context sources, and describes new contextual
information from this aggregation. Note that, the communi-
cation between ACDF and Request Context components is
mediated by a façade component, called Data Reader. The
Data Reader component abstracts the process of retriev-
ing the information needed by the ACDF for the evaluation.
This approach adds a level of isolation that guarantees a sim-
ple integration of the ACDF with different context formats
or modules. The Request Context component also interacts
with the Credential System, which is a credential verifica-
tion component, in charge of verifying (possibly anonymous)
credentials.

The evaluation flow of the ACDF is as follows. After re-
ceiving the access request, the ACDF: i) retrieves the access
control policies by querying the Policy Manager (PM), ii)
evaluates the access control policies, iii) collects the data
handling policies attached to the object of the request, iv)
evaluates the data handling policies, v) generate a single
access decision.

The ACDF supports conditions to be evaluated on both
certified data, issued and signed by authorities trusted for
making the statement (credentials), and uncertified data,
possibly signed by the data owner itself (declarations). Cre-
dentials and declarations relevant to an evaluation process
are retrieved from the Request Context component. In case
of credentials, the Request Context component retrieves the
information needed by the ACDF by using the Credential
System component.

Decision

Wrapper

DHDF
Engine

Request

Context

Credential

System

Policy
Manager

AC Manager

PrimeLife XACML
Engine

Data Reader

Request

Access to

Resource

Forward Access

Request + DHP

Forward Access

Request

Access

Attributes

Access

Attributes

Retrieves

Context

Data

Credential

Evaluation

Retrieves

 Applicable

Policies

ACDF

Figure 3: The PrimeLife access control architecture

4. THE PRIMELIFE ACCESS CONTROL

SYSTEM
The PrimeLife project aims at providing a full identity

management and data governance infrastructure allowing,
on one side, users to maintain control over their data and
to protect their privacy, and, on the other side, organiza-
tions to effectively provide their services respecting privacy
regulations when processing private data of the users.

PRIME and XACML represent starting points for
PrimeLife, and their careful integration provides important
functionalities that neither XACML nor PRIME alone can
provide. XACML, in fact, represents the most accepted
and flexible access control language, but it does not pro-
vide effective support for privacy. PRIME, instead, pro-
vides privacy functionalities, but its impact on real world is
limited by the fact that PRIME adoption in existing busi-
nesses would require important changes to legacy systems.
Taking into account this analysis, PrimeLife decided to in-
tegrate the XACML evaluation and enforcement with the
PRIME privacy functionalities. By integrating XACML into
the PRIME architecture, we have all the advantages of the
XACML-based solution (e.g., extendibility, flexibility), en-
riched with support for credentials, dialog between parties,
incremental release of data (e.g., interactive enforcement),
and data handling.

To enable coexistence of PRIME and XACML, the
PrimeLife architecture employs two independent modules
that have separate duties. For the sake of clarity, we use
PrimeLife XACML Engine to denote the enhanced XACML
Engine, and Data Handling Decision Function (DHDF) En-
gine to denote the modified version of the PRIME ACDF
(see Figure 2). Specifically, the PrimeLife XACML Engine is
devoted to the evaluation and enforcement of access control,
while DHDF provides privacy and data handling functional-
ities. Differently from ACDF in the PRIME solution, DHDF
does not implement a complete privacy-aware access control
system, but rather it is responsible for the management and
evaluation of data handling policies only.

The integration exploits a mechanism that the PrimeLife
XACML architecture can use to freely access any external
repository via a refined PIP component (see Section 2). The

AC Manager

PrimeLife

PEP

Context

Handler

PrimeLife

PDP

PrimeLife

PIP

2. Request

3. Request Notification

5. Attribute Queries

10. Attributes

11. Response Context

6. Attribute Query 9. Attributes

12. Response

Data Reader

Policy

Manager

PrimeLife XACML Engine

1. Access

Request

4. XACML

policies

7. Access Attributes

8. Attributes

13. Access

Response

Figure 4: The PrimeLife XACML Engine data flow

context information stored in the Request Context, and pro-
duced during the interaction with the requester, is an exam-
ple of such repositories. PrimeLife XACML can then access
the Request Context, to evaluate its policies, by means of a
standard PIP extension, and can use the PRIME architec-
ture to negotiate access and evaluate credentials.

Figure 3 depicts the resulting architecture. When an ac-
cess control decision needs to be taken, the Decision Wrap-
per component forwards the access request to the AC Man-
ager, together with the possible relevant data handling poli-
cies attached to the requested resources. The AC Man-
ager, in charge of taking the final decision by combining
the PrimeLife XACML access control and the DHDF data
handling evaluation results, forwards the request to both the
PrimeLife XACML Engine and the DHDF Engine. DHDF
receives the request with the associated data handling poli-
cies, while PrimeLife XACML accesses the Policy Manager
to retrieve the applicable access control policies. Finally,
both the DHDF and the PrimeLife XACML engines access
the Request Context via the Data Reader component and
retrieve the information (possibly certified by the Credential
System) needed for the evaluation.

Figure 4 shows a detailed representation of the data flow
of the PrimeLife XACML Engine, integrated within the
PrimeLife architecture. The structure presents a strong
correspondence with the standard XACML architecture,
and traditional XACML components can be easily mapped
onto the modules. The data flow is as follows. First,
the access request is forwarded by the AC Manager to the
PrimeLife PEP (step 1), which is an extended version of
the standard XACML PEP. The PrimeLife PEP is respon-
sible for managing the interaction with the AC Manager,
providing functionality for supporting negotiation (i.e., re-
quest for additional data). The PrimeLife PEP component
creates an XACML request and forwards it to the Con-
text Handler (step 2). The Context Handler, as in the
standard XACML architecture, invokes the PrimeLife PDP
(step 3). The PrimeLife PDP is responsible for evaluat-
ing traditional XACML policies and extends the standard
XACML PDP component to access the Policy Manager.
The PrimeLife PDP then accesses the Policy Manager to

retrieve the XACML policies applicable to the request (step
4). To this aim, the Policy Manager provides an external
interface compliant with a standard PAP component. Af-
ter collecting the applicable policies, the PrimeLife PDP
accesses the Context Handler to retrieve the data needed
for the evaluation (step 5). If some data necessary for tak-
ing a decision are missing, the Context Handler may access
different PIP extensions. These extensions include an en-
hanced PIP (PrimeLife PIP) that communicates with the
Data Reader to access the Request Context (step 6-9). Af-
ter receiving all data, the PrimeLife PDP (step 10) finally
evaluates the applicable policies and takes a decision. The
final decision is sent to the Context Handler (step 11) and
then forwarded to the PrimeLife PEP component (step 12).
Finally, the access decision is returned to the AC Manager
(step 13), which combines it with the answer coming from
the evaluation of data handling policies performed by the
DHDF.

Based on the requirements introduced in Section 1, we
present in the following the main advantages achieved by the
proposed architecture with respect to the standard XACML
implementation.

• Negotiation (minimal disclosure and interactive en-
forcement). The current XACML architecture does
not support negotiation between the parties. An
XACML access decision can assume four values (i.e.,
permit, deny, indeterminate, not applicable). Indeter-
minate is returned if no decision can be taken since
some information needed to evaluate the policy is miss-
ing. For instance, an access is restricted to users of a
certain country, but the nationality of the requester
is unknown. If the decision returns indeterminate, ac-
cording to a safe-default approach, XACML simply de-
nies the access. Our solution enhances XACML with
the ability of dialoguing with the user to communicate
the fact that certain information needed for evaluating
the access control policy is missing, allowing then the
user to provide it and, possibly, successfully acquire
access. The Decision Wrapper is responsible for the di-
alogue between the server and the user that consists in
communicating all the conditions that have to be satis-
fied. At each access control request, if the policy eval-
uation results indeterminate, the AC Manager returns
to the user the attributes that need to be evaluated for
taking the access decision. The user can then decide to
provide the requested attributes. Internally, the pro-
cessing of the response to the user works as follows.
When the PrimeLife PDP component generates an in-
determinate response, it returns such a response to the
PrimeLife PEP together with the information on which
attributes are needed for a decision to be taken. This
communication is enforced via a side channel provided
by the PrimeLife PIP, and accessible by the PrimeLife
PEP component. The use of a side channel is neces-
sary to be able to communicate attributes, since the
response format used by the standard XACML PDP
engine can assume only the allowed four values and
cannot represent that information. At evaluation time,
the PrimeLife PIP component has the responsibility of
identifying the attributes that are unknown and need
to be evaluated for taking the access control decision.
PrimeLife support for negotiation allows the client and
the server to incrementally exchange data and request

for data preserving, on one side, the principle of the
minimum disclosure and, on the other side, supporting
an incremental evaluation of the policies.

• Credential-based restrictions. While XACML acknowl-
edges that properties can be presented by means of cer-
tificates, it does not provide a real support for express-
ing and reasoning about digital credentials in the spec-
ification and evaluation of the authorization policies.
By contrast, PRIME supports requests for credentials
and certified attributes in the policies. Also, PRIME
can reason about credentials. For instance, PRIME
supports the definition of policies requesting informa-
tion (i.e., a set of attributes) to be certified by the
same credential. Credential information is stored in
the Request Context and is accessible by the PrimeLife
XACML Engine. The XACML architecture is then en-
hanced to support credential-based restrictions, called
evidences in the PRIME architecture, without requir-
ing changes to the language schema. Rather, the
XACML language is enhanced with credential speci-
fication by changing the semantics of the issuer at-
tribute, originally defining the issuer of a specific at-
tribute. In our solution, the issuer attribute is used as
a reference to a specific evidence, stored as a separate
XML file and containing the restrictions on credentials,
to be evaluated on credential metadata (e.g., issuer,
type). The PrimeLife XACML Engine (see Figure 4)
evaluates credential-based restrictions as follows: i)
the PrimeLife PDP component loads a policy, together
with information related to the evidences; ii) through
the PrimeLife PIP component, the PrimeLife PDP ac-
cesses information needed to evaluate the evidences of
the policies and stored in the Request Context; iii) the
PrimeLife PDP evaluates the policies and the evidence
conditions on the credential metadata.

• User-driven constraints. While XACML is designed to
manage access control only, and is focused on service
side restrictions, the system illustrated in this paper
takes a different approach and aims at providing the
users with a solution for protecting their privacy. The
PrimeLife solution, in fact, in addition to policies and
mechanism to manage and evaluate traditional access
control policies, provides a fully compatible and ex-
tensible solution that supports the definition, evalu-
ation, and enforcement of privacy policies defined by
the users themselves. These privacy policies (i.e., data
handling policies) are defined through an ad-hoc syn-
tax and are evaluated together with the XACML poli-
cies to provide a full-fledged privacy-aware access con-
trol system, that permits users to protect their own
data.

5. SOME NOTES ON IMPLEMENTATION
The PrimeLife framework is implemented in Java, and

extends and integrates the last version of the PRIME inte-
grated prototype [10] and the SUN implementation [14] of
the XACML engine, released under a BSD-like SUN license.

We focus the discussion on the mechanisms used to setup
the dialog between parties, to manage credential evaluation,
and to evaluate data handling policies. These functionalities
represent the most important paradigm shift with respect to

the current and available XACML implementations. First,
the XACML engine has been extended to support credential
and dialog management, and then has been integrated with
DHDF to support data handling policy evaluation.

With reference to credential and dialog management, we
identified three main points of extensions of the XACML
engine, producing the PrimeLife PEP, the PrimeLife PDP,
the PrimeLife PIP components, respectively as Java special-
izations of the PEP, PDP, and PIP classes. The PrimeLife
PEP supports requests for additional data (i.e., dialog), the
PrimeLife PDP provides integration with the Policy Man-
ager, and the PrimeLife PIP provides an interface with the
Data Reader to access the Request Context. In addition, the
Data Reader is a key component for credential management
and evaluation. It represents the bridge between the Request
Context and the PrimeLife PIP, and implements the func-
tionality to access data stored in the context (including in-
formation on the credential evidences) for the XACML pol-
icy evaluation. The Data Reader also allows the PrimeLife
PIP to collect and process missing attributes, thus enabling
dialog management and interactive enforcement.

Methods getSpecialFunctionResult and getDataWithEvi-
dence of class Data Reader are of particular interest. Fig-
ure 5 illustrates their codes, which for the sake of clarity has
been simplified by substituting less significant parts with
comments (in italics).

Method getSpecialFunctionResult is a recursive method
responsible for the evaluation of those attributes that are
derived from others (e.g., attribute age is derived from the
date of birth and the current date). To this aim, a specific
ontology of concepts (accessible by the Request Context) has
been created to map derived attributes to elementary ones,
and to identify the correct Java function to be applied for
their evaluation. In particular, getSpecialFunctionResult : i)
retrieves all the attributes needed for the evaluation (line 8),
ii) checks if some of these attributes are derived, and, if so,
recursively applies itself (lines 12-13), iii) identifies, via Java
reflection, the Java function to be invoked for the evaluation
of the derived attribute (lines 26-27).

Method getDataWithEvidence is responsible to access the
Request Context to retrieve a list of attributes values (i.e.,
a pair 〈URI, DataType〉, where: URI is the attribute name,
and DataType is the attribute value) that match the re-
quested evidence (i.e., the input argument EvidenceXML).
The method takes evidence restrictions in input and checks
if they are satisfied by the data released by the requester and
stored in the context. Specifically, getDataWithEvidence: i)
creates an Evidence instance from the requested evidence
EvidenceXML (line 7), ii) retrieves all the attributes and
related values associated with the evidence (lines 9-14), iii)
for each retrieved attribute checks whether it is a derived
attribute (line 25), and either applies getSpecialFunctionRe-
sult to it (line 26) or retrieves the values from the context
(line 33), iv) creates a DataType with the current attribute
values (lines 29-30 and lines 37-38). Note how the definition
of evidence restrictions and Request Context implementa-
tion enrich XACML with the possibility of specifying condi-
tions to be evaluated on certified data. The certified infor-
mation relevant to the evaluation process is retrieved from
the Request Context component by using the evidence asso-
ciated with the statement of the policy to be evaluated. The
link to the evidence document is realized by means of the
XACML issuer attribute. This permits to define conditions

1 public Pii getSpecialFunctionResult(
2 final URI U,
3 final Map<URI, List<Data>> DataRepository,
4 final int CurrentLevel) throws Exception {
5
6 // in case of infinite loop (watchgdog), throw an exception
7
8 List<URI> StartingArguments = MyRequestContext.getArgument(U);
9 List<Pii> ListOfArgument = new ArrayList<Pii>();

10
11 for (URI A : StartingArguments) {
12 if (MyRequestContext.isSpecial(A)) {
13 Pii Tmp = getSpecialFunctionResult(A, DataRepository, CurrentLevel + 1);
14 if (null != Tmp) {
15 ListOfArgument.add(new Pii(Tmp.getCategory(), Tmp.getValue()));
16 }
17 } else {
18 List<Data> ListOfData = DataRepository.get(A);
19 if (ListOfData.size() > 0) {
20 Data Atom = ListOfData.get(0);
21 ListOfArgument.add(new Pii(Atom.getCategory(), Atom.getValue()));
22 } // else store missing attribute for negotiation
23 }
24 }
25
26 Method Method2Call = MyRequestContext.getMethod(U);
27 Pii Result = (Pii)Method2Call.invoke(null, MyRequestContext, ListOfArgument);
28
29 return new Pii(U, Result.getValue());
30 }

(a)

1 public List<Map<URI, DataType>> getDataWithEvidence(
2 final String EvidenceXML,
3 final Collection<URI> Uris) {
4
5 List<Map<URI, DataType>> Result = new

ArrayList<Map<URI, DataType>>();
6
7 Evidence evidence = StringUtils.unmarshal(EvidenceXML, Evidence.class);
8
9 // retrieve all the attributes (URIs) releated with the evidence and mark

10 // the derived ones
11
12 // store the result in (List<URISpecialCouple>) EvidenceUris
13
14 Data[][] RCResult = MyRequestContext.getEvidenceGroups(
15 MyRequestContext.getSubject(),
16 evidence,
17 extractURIs(EvidenceUris));
18 for (int g = 0; g < RCResult.length; ++g) {
19 // collect attributes linked to the requested evidence and store
20 // them TmpURIValuesPair
21
22 Map<URI, DataType> URIValuesPair = new HashMap<URI, DataType>();
23
24 for (URI U : Uris) {
25 if (MyRequestContext.isSpecial(U)) {
26 Pii SFR = getSpecialFunctionResult(U, TmpURIValuesPair, 0);
27
28 if (null != SFR) {
29 // create an instance of the attribute and store it in
30 // URIValuesPair from SFR
31 }
32 } else {
33 List<Data> ListOfData = TmpURIValuesPair.get(U);
34
35 if (null != ListOfData) {
36 for(Data d : ListOfData) {
37 // create an instance of the attribute and store it in
38 // URIValuesPair from d
39 }
40 }
41 }
42 }
43 // if all attributes are contained within the solutions, therefore add
44 // solutions to Result
45 }
46 return Result;
47 }

(b)

Figure 5: Methods getSpecialFunctionResult (a)
and getDataWithEvidence (b)

to be satisfied by a specific evidence. The XML fragment in
Figure 6 shows an evidence restriction requiring an X.509
identity document released by the Italian Public Adminis-
tration.

Concerning data handling management, DHDF has been
designed to be thread-safe, to support multiple instance ex-
ecution. The mechanism used to evaluate the policies relies

<evidences>

<evidence>

<issuer>ItalianPublicAdministration</issuer>

<proofMethod>X.509</proofMethod>

<type>identity−document</type>

</evidence>

</evidences>

Figure 6: An example of evidence restriction

on a Reverse Polish Notation (RPN) stack. The RPN stack-
based evaluation has the main advantages of being very fast
and of making the evaluation process independent from pol-
icy syntax and semantics. The translation from the pol-
icy language to the RPN format is made by a specific Java
class, called DHPolicyLoader , that interprets the syntax of
the DHPs and fill in the RPN stack. In this way, it is possi-
ble to add new policy languages by specifying a new loading
class, with a minimal impact on the implementation.

To conclude, the results of the data handling policy evalu-
ation are combined and reconciled with the results produced
by the evaluation of the PrimeLife XACML access control
policies to produce a single decision that considers the pri-
vacy preferences of the users.

6. RELATED WORK
Previous work most directly related to ours is in the area

of access control and trust management. Recent proposals
have worked towards languages and models able to express
access control policies, where the access decision is taken on
the basis of some properties, possibly proven by presenting
one or more certificates that the requesting party may have
(e.g., [3, 5, 17, 18]). Winslett et al. [17] have been the first
to investigate the application of credential-based access con-
trol for regulating access to a server. In [17], access control
rules are expressed in a logic language and rules applica-
ble to an access can be communicated by the server to the
clients. Jajodia et al. [5] define the Flexible Authorization
Framework (FAF), a logic-based framework that balances
flexibility and expressiveness on one side, and easy manage-
ment and performance, on the other side. FAF is based on
an access control model that does not depend on any policy
but is able to represent different policies and protection re-
quirements. Bonatti and Samarati [3] provide a uniform
framework for attribute-based access control specification
and enforcement. Access rules are specified as logical rules,
with some predicates explicitly identified. Attribute certifi-
cates are modeled as credential expressions. Besides creden-
tials, this proposal also permits to reason about declarations
(i.e., unsigned statements) and profiles of the users that a
server can exploit to reach an access decision. The expres-
sive power and the formal foundation of all these logic-based
solutions permit to express complex protection requirements
in a simple yet effective way. However, such proposals are
not immediately suited to the Internet context considered
in PrimeLife, where simplicity and easy integration with ex-
isting technologies must be ensured. Also, they are focused
on access control, but do not take into account the problem
of secondary use of personal information.

In the literature, several trust negotiation strategies have
been also proposed (e.g., [6, 12, 18]). Trust negotiation
occurs whenever credentials themselves carry some sensi-
tive information. In such a situation, a procedure needs

to be applied to establish trust through negotiation, where
trust is established gradually by disclosing credentials and
requests for credentials. For instance, Winslett et al. [6]
present Traust, a third-party authorization service that is
based on the TrustBuilder framework for trust negotiation.
The Traust service provides a negotiation-based mechanism
that allows qualified users to obtain the credentials neces-
sary to access resources provided by the involved server.
Some research efforts have also directly tackled the issue
of supporting privacy-aware access control [2, 4, 13, 15, 16].
Notwithstanding the benefits of all these works (e.g., cre-
dential integration), none of them provides a complete and
full-fledged solution for providing access control, protecting
privacy of users, and regulating the use of their personal
information in secondary applications.

7. CONCLUSIONS
We presented the design of a privacy-aware access con-

trol system offering compatibility with the XACML stan-
dard and support for the rich management of privacy pref-
erences, that we have implemented within the PrimeLife
project. Our solution, integrating an enhanced XACML en-
gine with the PRIME Access Control system, can provide
benefits both in the mid-term and in the long-term perspec-
tives.

In the mid-term, the design presented in the paper will
be the basis of a working system satisfying client-side and
server-side privacy requirements of complex Web applica-
tions. The solution offers features that are only partially
supported by other systems, both from the industry and
from the academic world. Information on the design of the
solution can help the development of applications making
good use of the services offered by this platform.

In the long-term, it is natural to expect that XACML
will be extended in order to offer an extensive support for
the management of privacy requirements. The design of the
future XACML extension can receive a significant benefit
from the consideration of the system presented in this pa-
per, which identifies where it is necessary to operate in or-
der to introduce adequate support for privacy, at the same
time making clear how most of the XACML architecture
can be confirmed, reusing the support for extensions already
present in the current XACML standard.

8. ACKNOWLEDGMENTS
This work was supported in part by the EU within the

7th Framework Programme (FP7/2007-2013) under grant
agreement no. 216483 “PrimeLife”.

9. REFERENCES
[1] C.A. Ardagna, M. Cremonini, S. De Capitani di

Vimercati, and P. Samarati. A privacy-aware access
control system. Journal of Computer Security (JCS),
16(4):369–392, 2008.

[2] P. Ashley, S. Hada, G. Karjoth, and M. Schunter.
E-P3P privacy policies and privacy authorization. In
Proc. of the ACM Workshop on Privacy in the
Electronic Society (WPES 2002), Washington, DC,
USA, November 2002.

[3] P. Bonatti and P. Samarati. A unified framework for
regulating access and information release on the Web.
Journal of Computer Security, 10(3):241–272, 2002.

[4] eXtensible Access Control Markup Language
(XACML) Version 2.0, February 2005.
http://docs.oasis-open.org/xacml/2.0/access_

control-xacml-2.0-core-spec-os.pdf.

[5] S. Jajodia, P. Samarati, M.L. Sapino, and
V. Subrahmanian. Flexible support for multiple access
control policies. ACM Transactions on Database
Systems (TODS), 26(2):214–260, June 2001.

[6] A. Lee, M. Winslett, J. Basney, and V. Welch. The
Traust authorization service. ACM Transactions on
Information and System Security (TISSEC),
11(1):1–3, February 2008.

[7] OASIS. Security Assertion Markup Language (SAML)
V1.1, 2003.
http://www.oasis-open.org/committees/security/.

[8] Object Management Group. The CORBA Security
Service Specification. ftp://ftp.omg.org/pub/docs/ptc.

[9] PrimeLife - Privacy and Identity Management in
Europe for Life . http://www.primelife.eu/.

[10] Privacy and Identity Management for Europe
(PRIME). http://www.prime-project.eu.org/.

[11] P. Samarati and S. De Capitani di Vimercati. Access
control: Policies, models, and mechanisms. In
R. Focardi and R. Gorrieri, editors, Foundations of
Security Analysis and Design, LNCS 2171.
Springer-Verlag, 2001.

[12] K. Seamons, M. Winslett, and T. Yu. Limiting the

disclosure of access control policies during automated
trust negotiation. In Proc. of the Network and
Distributed System Security Symposium (NDSS 2001),
San Diego, CA, USA, April 2001.

[13] N. Seki and M. Kudo. Access control policy for XML.
In M. Gertz and S. Jajodia, editors, Handbook of
Database Security: Applications and Trends.
Springer-Verlag, 2007.

[14] Sun’s XACML Implementation.
http://sunxacml.sourceforge.net/.

[15] W3C. Platform for privacy preferences (P3P) project,
April 2002. http://www.w3.org/TR/P3P/.

[16] Web services policy framework.
http://www.ibm.com/developerworks/webservices/

library/specification/ws-polfram/?S_TACT=

105AGX04&S_CMP=LP, March 2006.

[17] M. Winslett, N. Ching, V. Jones, and I. Slepchin.
Assuring security and privacy for digital library
transactions on the web: Client and server security
policies. In Proc. of the 4th International Forum on
Research and Technology Advances in Digital Libraries
(ADL ’97), Washington, DC, USA, May 1997.

[18] T. Yu, M. Winslett, and K. Seamons. Supporting
structured credentials and sensitive policies trough
interoperable strategies for automated trust. ACM
Transactions on Information and System Security
(TISSEC), 6(1):1–42, February 2003.

