
Database Security�

Sabrina De Capitani di Vimercati, Dip. Elettronica, Universit�a di Brescia, 25123 Brescia, Italy

Pierangela Samarati, Dip. di Tecnologie dell'Informazione, Universit�a di Milano, 26013 Crema, Italy

Sushil Jajodia, Dept. of Information & Software Engineering, George Mason University, Fairfax, VA 22030-4444

1 Introduction

All organizations|public, governmental or private, small or large|depend on computerized infor-

mation systems for carrying out their daily activity. At the heart of each such information system,

there is a database. At a very general level, we can de�ne a database as a persistent collection

of related data, where data are facts that have an implicit meaning. For instance, an employee's

name, social security number, or date of birth are all facts that can be recorded in a database.

Typically, a database is built to store logically interrelated data representing some aspects of the

real world, which must be collected, processed, and made accessible to a given user population.

The database is constructed according to a data model which de�nes the way in which data and

interrelationships between them can be represented. The collection of software programs that pro-

vide the functionalities for de�ning, maintaining, and accessing data stored in a database is called

a database management system (DBMS).

A database can be seen at di�erent abstraction levels. Typically a three-level view is adopted

(see Figure 1) containing an internal level , describing the physical storage of the database; a

conceptual (or logical level) providing the users with a high level description of the real world

that the database represents; and an external level describing the views that di�erent users or

applications have on the stored data. The internal level maps the logical objects supported by the

data model to the physical objects (�les) of the underlying operating system (see Figure 2).

Beside access and processing functionalities, each DBMS must also provide security functionali-

ties to ensure the secrecy , integrity , and availability of the stored data [3]. Providing secrecy means

�The work of Sabrina De Capitani di Vimercati and Pierangela Samarati was supported in part by the European

Community within the FASTER Project in the Fifth (EC) Framework Programme under contract IST-1999-11791.

1



ensuring that data will not be disclosed to unauthorized users. Providing integrity means ensuring

that data will not be modi�ed in an unauthorized or improper way. In particular, integrity ensures

that the stored data correctly re
ect the real world. Providing availability means ensuring that the

database will always be accessible by legitimate users for the accesses they are authorized for.

Since ultimately a database is mapped to (i.e., stored as) �les of the underlying operating

system, one may think that a DBMS does not need to deal with security as security functionalities

of the operating system would su�ce. This is not true, however, since at the operating system level

the data interrelationships and their semantics are lost and therefore security restrictions exploiting

concepts of the data model cannot be enforced. Some of the di�erences between databases and

operating systems that make it necessary for a DBMS to support security features are as follows.

� Protection level A DBMS usually needs to protect data at a �ne granularity level (e.g., a

record of a �le), while an operating system protects data at the �le level.

� Object di�erences There is a greater variety of object types in a DBMS than in an operating

system. The typical object type in an operating system is a �le; in a DBMS there can be

relations (tables), tuples (rows within a table), attributes (columns within a table), indexes,

metadata, and others.

� Data interrelationships A database may include many logical objects with complex semantic

interrelationships that must be protected. By contrast, the number of physical objects that

the operating system protects is less and no semantic interrelationships are supported.

� Dynamic versus static objects Data objects in a DBMS can be obtained by dynamically

aggregating data from di�erent physical objects in an operating system. By contrast, �les

tend to be more static making their protection easier.

� Lifetime of data The lifetime and frequency of access of data in a DBMS is quite di�erent

than the lifetime of data stored as �les in an operating system.

� User views of data While in an operating system, users are either granted or denied access

to data (�les), in a DBMS it is possible to give access to a portion of an object by de�ning

di�erent views for di�erent users.

Because of these di�erences, it is clear that some security requirements must be supported

by the DBMS itself. Of course, the DBMS can rely on basic security services provided by the

2



underlying operating system. Typical security services provided by the operating system that can

be exploited by the DBMS are physical security controls, authentication and auditing . Physical

security protects againsts intentional or accidental threats, like �re or natural disasters. Physical

security measures also control the physical access to the computer system on which the database

is hosted. Examples of physical measures are the use of locks, security guards, badges, and alarms.

Authentication is a means of verifying the identity of a party to another, and is a prerequisite for

DBMS security controls to ensure that the correct identity of users is being considered (i.e., users

are who they claim to be). The simplest form of authentication is based on the use of passwords:

users state their identity with a login identi�er and provide a secret password. Finally, auditing is

the post facto evaluation of a system's activities, which must therefore be properly logged. Auditing

services can be used to perform o�-line analysis to determine possible security violations and to

recover the correct state of the database in the case integrity has been compromised.

The overall DBMS/OS architecture is depicted in Figure 3. In this chapter, we mainly concen-

trate on basic security services that are available to users in commercial DBMSs for access control

and integrity constraints enforcement. Since these controls cannot cope with Trojan horse attacks,

we include a brief description of the multilevel secure DBMSs. We conclude this chapter with a

short discussion of the inference problem.

2 Access control policies

Access control policies de�ne the rules according to which access to the database objects is regulated.

The most popular class of access control policies is represented by discretionary access control

(DAC) policies, where the word discretionary characterizes the fact that users can be given the

ability of passing their privileges to others. Discretionary access control policies are based on

authorizations rules. An authorization rule states that a subject has the privilege to exercise a

given action on a given object. The kind (and granularity) of subjects, objects, and actions that

can be referenced in authorizations may be di�erent in di�erent systems.

Subjects Subjects are the entities to which authorizations can be granted. Typically, subjects are

users (i.e., identi�ers corresponding to human entities). User groups can also be de�ned to which

authorizations can be granted; authorizations granted to a group can be enjoyed by all its members.

Discretionary access control can be extended with role-based capabilities allowing the de�nition of

roles to which privileges can be granted. Roles are granted to users, and users can dynamically

3



activate and deactivate the roles received, thereby turning on and o� the corresponding privileges.

Intuitively, a role identi�es a task, and corresponding privileges, that users need to execute to

perform organizational activities. While groups are set of users, roles are set of privileges. Note

the di�erence between groups and roles. Groups are static: users cannot enable and disable group

memberships (and corresponding privileges) at their will. By contrast, roles are dynamic and can

be activated and deactivated upon explicit request by users.

Objects Objects are the entities to be protected. Typically, objects correspond to information

container (tables or portion of it) or procedures. In DBMS systems, di�erent granularity levels can

be supported spanning from the whole database to the single element (e.g., a speci�c employee's

salary) in it.

Actions Actions de�ne the speci�c operations that subjects can execute on objects. Actions to be

supported include the operations corresponding to the basic read, write, delete, create, and execute,

which can take on di�erent names in relational database systems (for instance, read operations

correspond to SELECT actions).

Authorizations Authorizations de�ne which accesses are to be allowed. The simplest form

of authorization is a triple (subject,object,action) specifying that subject is authorized to

exercise action on object.

3 Relational databases and SQL

Since DBMS security constraints can be speci�ed at the logical level (authorizations refer to objects

of the data model), we need �rst to de�ne a reference data model. Although di�erent models have

been proposed in the literature, the relational model is in fact the dominant model and is used in

most commercial DBMSs. We therefore limit our discussion to relational DBMSs and the related

SQL language.

3.1 Relational databases

In the relational model, data are organized as a collection of relations [4]. Intuitively, a relation

can be seen as a table; the columns of the table are called attributes and the rows are called tu-

ples. Figure 4 illustrates an example of a relational database composed of two relations, Employee

4



and Department, containing information about the employees and the departments of an orga-

nization. The corresponding relation schemes, which show the structure of the database, are

Employee(name,office,salary,dept) and Department(dept,location,phone,budget). Each rela-

tion must have a primary key, that is, a minimal set of attributes such that the relation may

not have two distinct tuples with the same values for the key. For instance, with respect to the

Employee relation just described, if we expect hat duplicate names can never occur, attribute name

can be designated as the primary key. A primary key can also be used to link relations together.

As an example, consider the relations in Figure 4. The dept attribute of the Employee relation is

said to be a foreign key from the Employee relation to the Department relation, and its values must

match those of the primary key dept in the Department relation. Note that the relation containing

the primary key and the relation containing the foreign key may be the same. For instance, relation

Employee could be extended to include attribute supervisor referencing the relation's primary key

name.

Primary and foreign keys must satisfy the following integrity constraints.

� Entity integrity : A primary key can never have null (i.e., unde�ned) value.

� Referential integrity : If a foreign key of a relation R1 is the primary key of another relation

R2, then, for each tuple in R1, the value of the foreign key must be either null or equal to the

value of the primary key of a tuple in R2.

Entity integrity guarantees that the value of the primary key can uniquely identify each tuple.

Referential integrity guarantees that attributes assume only legitimate values, existing in the real

world. For instance, with reference to foreign key dept discussed above, the referential integrity

constraint avoids employees from being assigned to a non existent department.

4 SQL privileges

An SQL privilege states that a given authorization identi�er is authorized for a set of actions on a

given SQL object. The actions that can be executed on SQL objects are summarized in Figure 5.

The speci�c set of actions applicable to an object depend on the type of the object. For instance,

the UPDATE action is applicable to tables, while the EXECUTE action is applicable to routines.

Each privilege, which corresponds to the classical notion of an authorization tuple, is represented

by a privilege descriptor that includes the following elements:

5



� the object on which the privilege is granted;

� the authorization identi�er of the grantor of the privilege (it is special value SYSTEM for

privileges automatically granted to the creator of an object);

� the authorization identi�er of the grantee of the privilege;

� the action that the privilege allows;

� an indication of whether or not the privilege is grantable to others;

� an indication of whether or not the privilege has the WITH HIERARCHY OPTION speci�ed (see

Section 4.1).

An authorization identi�er can execute all actions allowed by the set of applicable privileges for

it. In particular, the set of user privileges for a user identi�er consists of all privileges de�ned by

the privilege descriptors whose grantee is either that user identi�er or PUBLIC. Analogously, the set

of role privileges for a role name consists of all privileges de�ned by the privilege descriptors whose

grantee is either that role name, PUBLIC, or one of the applicable roles of that role name.

4.1 Privilege management

The creator of an object in a database is its owner and can perform any action on the object (the

particular cases where the object is a view or a routine are treated in Section 5). Also, it can grant

and revoke to others the privileges on the object as well as delegate to others the capability of

granting and revoking the privilege (and its administration).

Privilege granting Privileges are granted by using the GRANT statement, whose syntax is illus-

trated in Figure 6. Value ALL PRIVILEGES can be used in place of a speci�c action to denote all of

the actions on <object name> for which the grantor has grantable privilege. If the WITH HIERARCHY

OPTION clause is present, then the action must be SELECT and the object must be a table. This

clause provides the grantee with SELECT privileges on all subtables (either already existing or that

may be de�ned at a later time) of the table on which the privilege is granted. With the WITH GRANT

OPTION clause the grantee receives, beside the privileges, the authority to grant the privilege (with

or without grant option) to others.

6



As an example, suppose that Alice is the owner of the tables in Figure 4. She can grant any

action on these tables to any authorization identi�er in the SQL environment. A possible sequence

of GRANT statements is as follows:

By Alice: GRANT UPDATE (salary) ON TABLE Employee TO Bob

By Alice: GRANT SELECT ON TABLE Department TO Eve WITH GRANT OPTION

By Eve: GRANT SELECT ON TABLE Department TO Dave WITH GRANT OPTION

By Eve: GRANT SELECT ON TABLE Department TO Peggy

According to these statements, Alice grants the authorization to modify the salary column of

the Employee table to Bob. Alice also grants the authorization to retrieve rows of the Department

table with the grant option to Eve. Since Eve holds the grant option, she can grant the privilege to

others. She grants the SELECT privilege on Department to Dave and to Peggy. The grant option

associated with the grant statement for Dave allows him to further propagate the privilege.

Privileges granted through grant statements are represented by privilege descriptors as discussed

in Section 4. The fact that a privilege descriptor is used to allow the granting of another descrip-

tor (as in the case where Eve grants the privilege to Dave and Peggy) introduces a dependency

relationship between descriptors. A privilege descriptor p2 is said to directly depend on a privilege

descriptor p1 if all the following conditions hold: i) the privilege represented by p1 is grantable;

ii) p1 and p2 have the same action and object; and iii) the grantee of p1 is either the same as

the grantor of p2 or is PUBLIC, or, if the grantor of p2 is a role name, the grantee of p1 belongs

to the set of applicable roles of the grantor of p2. Depending on the type of the involved objects,

SQL:1999 de�nes also other notions of dependency; the in-depth discussion of these notions is far

beyond the scope of this chapter (we refer the reader to [1] for a more comprehensive treatment).

Privilege descriptors, and dependencies between them, can be represented as a graph called priv-

ilege dependency graph. The privilege dependency graph is a directed graph such that each node

represent a privilege descriptor and each arc from node p1 to node p2 represents the fact that p2

directly depends on p1. Figure 7(a) illustrates an example of privilege dependency graph for the

SELECT privilege on table Department, where, for the sake of clarity, nodes are labeled with the

grantee identi�er.

Privilege revocation The REVOKE statement allows authorization identi�ers to revoke privileges

they previously granted (note that an authorization identi�er can revoke only privileges granted by

itself). The SQL syntax for the REVOKE statement is illustrated in Figure 6. A REVOKE statement

7



identi�es the set of all privilege descriptors where the action and object are equal to those speci�ed

(explicitly or implicitly) in <action> and <object name>, respectively, the grantor is <grantor>,

if speci�ed, or coincides with the non-null element in the current pair huid , ridi, and the grantee

is <grantee>. For instance, the REVOKE statement

REVOKE SELECT ON Department

FROM Mallory, Walter

CASCADE

executed by Dave identi�es the privilege descriptors corresponding to the nodes labeled Mallory

and Walter in Figure 7(a). The privilege dependency graph after revocation is as illustrated in

Figure 7(b).

5 Views and routines

In addition to using the privileges described above to provide speci�c types of access to entire

objects, there is also a mechanism within SQL to provide content-based access restrictions. This

mechanism is represented by views, which de�ne a convenient way to refer to speci�c portions of

tables. A view is a virtual table derived from base tables and/or other views. A view is speci�ed by

a view de�nition that is written in SQL. The database stores the view de�nitions and materializes

the views as needed.

A view can contain a subset of the data (columns and/or rows) in the tables on which the view

is de�ned. A view can also contain data derived from them or representing an aggregation of them,

using the aggregate functions supported by SQL (e.g., SUM, MIN, MAX). Examples of view creation

statements are as follows:

CREATE VIEW R&D(name,salary) AS

SELECT name, salary

FROM Employee

WHERE dept = `Research & Development'

CREATE VIEW MaxSalary(dept,salary) AS

SELECT dept,MAX(salary)

FROM Employee

GROUP BY dept

View R&D is de�ned to represent name and office attributes of the tuples in the Employee

table that satisfy dept = \Research & Development" predicate. By assuming table Employee as in

Figure 4, the view will contain the single tuple (Alice,15). View MaxSalary uses data aggregation

functions to report the list of departments having employees and the maximum salary paid by each

department.

8



A user/role can create a view only if it has permission to access all the tables (views or base

tables) directly referenced by the view (i.e., appearing in its de�nition). The creator receives on

the view the privileges that it holds on all the tables directly refenced. Also, it receives the grant

option for a privilege only if it has the grant option for the privilege on all the tables directly

referenced by the view. If it holds a privilege on the view with the grant option, the creator can

grant the privilege (and the grant option) to others. The grantees of such privileges need not hold

the privileges on the underlying tables to access the view; access to the view only requires the

existence of privileges for the view. Views provide therefore a convenient way to enforce selective

access on tables not accessible directly.

For retrieving purposes, there is no distinction between views and base tables. Therefore, views

provide a powerful mechanism for controlling what information can be retrieved. When updates

are considered, views and base tables must be treated di�erently. In general, users cannot directly

update views, particularly when they are created from the combination (join) of two or more base

tables. The updatable views can instead appear as targets of statements that change SQL data.

The results of changes expressed in this way are de�ned in terms of corresponding changes to base

tables.

Like views, routines also provide an e�ective way to enforce access restrictions. The creator of

a routine is granted the EXECUTE privilege on the routine only if it holds all the privileges necessary

for the routine to run successfully. The EXECUTE privilege is granted with the grant option if the

creator has the grant option for all the privileges necessary for the routine to run. If the creator of a

routine holds the EXECUTE privilege with the grant option, it can grant to others the privilege (and

the grant option on it). Like for views, the grantees need not hold the privileges necessary for the

routine to run in order to execute it (intuitively these accesses are checked against the privileges of

the routine creator).

6 Integrity constraints

Providing integrity means ensuring that the data stored in the database correctly re
ect the real

world, that is, they have not been modi�ed by unauthorized users or in an improper way. Integrity

requires the enforcement of di�erent controls and principles, including treatment of transactions.

A transaction is a sequence of database actions for which the following ACID properties must be

ensured:

9



� Atomicity: a transaction is either performed in its entirety or not performed at all;

� Consistency: a transaction must preserve the consistency of the database;

� Isolation: a transaction should not make its updates visible to other transactions until it is

committed;

� Durability: changes made by a transaction that has committed must never be lost because of

subsequent failures.

Satisfaction of the properties above requires application of speci�c controls (e.g., concurrency

control) in transaction processing by the DBMS.

In this section we focus of integrity constraints that de�ne what it means for a database to

be consistent and that can be speci�ed through the DBMS manipulation language. Integrity

constraints, generally referred to simply as constraints, de�ne the valid states of data in the database

by constraining the values in the base tables. The checking of constraints can be performed at the

end of an SQL statement or deferred until the end of transaction. If a constraint is not satis�ed,

an exception is raised and the SQL statement that caused the constraint to be checked has no

e�ect. SQL:1999 de�nes di�erent types of constraints: table constraints, domain constraints, and

assertions. Figure 8 illustrates the general syntax of the SQL statements used to de�ne constraints.

Table constraints A table constraint is either a unique constraint , a referential constraint or a

table check constraint which may be speci�ed for tables.

� A unique constraint speci�es one or more columns of the table as unique columns, that is,

no two rows in a table have the same non-null values in the unique columns. To illustrate,

consider the following table de�nition

CREATE TABLE Employee

(name CHAR(20)

o�ce SMALLINT

salary DECIMAL(9,2)

dept CHAR(20))

UNIQUE (o�ce)

PRIMARY KEY (name))

10



The unique constraint associated with attribute office states that no value can be present

more than once in the office column (intuitively, o�ces cannot be shared). Note that, as

discussed in Section 3.1 the primary key de�nition implicitely imposes a unicity constraint

on the primary key attribute.

� A referential constraint speci�es one or more columns (called foreign key) in a table T as

referencing columns and corresponding referenced columns in some (not necessarily distinct)

base table S. For instance, the SQL statement:

ALTER TABLE Employee

ADD FOREIGN KEY (dept)

REFERENCES Department(dept))

modi�es the de�nition of the Employee table given above by adding a referential constraint

stating that the dept column in the Employee table is a foreign key referencing the dept

column in the Department table.

As already discussed in Section 3.1, if the foreign key for a row of T is non null, then a row

in S must exist such that all the corresponding columns match. If null values are present,

satisfaction of the referential constraint depends on the treatment speci�ed for nulls (known

as the match type).

� A table check constraint speci�es a search condition which all rows in the table must satisfy.

For instance, attribute o�ce in the Employee table above could be de�ned with associated

constraint

CHECK (o�ce BETWEEN 10 AND 100)

restricting to the range 10 to 100 the possible values for attribute o�ce.

A table check constraint is considered violated if the result of the search condition is false for

any row of the table. Note that the constraint is violated if the result is unknown.

Domain constraints A domain constraint is a constraint that is speci�ed for a domain. It is

similar to table check constraint above but is de�ned on a domain instead of a speci�c column.

The constraint is then enforced on all the columns de�ned on the domains, and to all values cast

to that domain.

11



Assertions An assertion is a named constraint that may relate to the content of individual rows

of a table, to the entire contents of a table, or to a state required to exist among a number of tables.

Examples of assertions are as follows.

CREATE ASSERTION max employee

CHECK ((SELECT COUNT(*)

FROM Employee ) < 10000)

CREATE ASSERTION max salary employee

CHECK ((SELECT SUM(salary)

FROM Employee) < 0.8*(SELECT SUM(budget)

FROM Department))

The �rst assertion states that the total number of employees must be less that 10000 while the

second one states that the total sum of employees' salary must be less that 80% of the budget.

In every SQL-session, every constraint has a constraint mode that is a property of that SQL-

session. Any type of constraint can be declared to be DEFERRABLE or NOT DEFERRABLE; if it is

DEFERRABLE, it can further be declared to be INITIALLY DEFERRED or INITIALLY IMMEDIATE, which

de�ned its state at the beginning of transactions (<constraint characteristics>). The constraint

state can be set by the SQL statement \SET CONSTRAINTS <constraint name list> f DEFERRED j

IMMEDIATE g", provided the constraint is deferrable. When a transaction is initiated, the constraint

mode of each constraint is set to its default. On completion of execution of every SQL-statement,

every constraint is checked whose constraint mode is immediate.

7 Multilevel Secure Databases

Discretionary access controls have the limitation that they can be easily circumvented by malicious

users. TO illustrate, if the user Alice has been granted the SELECT privilege without the grant

option on a particular relation, then she should not be able to grant this privilege to other users.

She can easily subvert this intent by making a copy of the relation in question, and as owner can

give SELECT privilege on the copy to others.

Even if users are trusted not to violate the security in this way, a malicious user can imbed

Trojan horses that can do so [3]. Multilevel secure databases enforce mandatory access controls to

help eliminate these problems.

In a multilevel system, access controls are based on the security labels associated with each user

and each data item. Security labels have two components: a hierarchical component (such as TOP

SECRET, SECRET, CONFIDENTIAL, and UNCLASSIFIED, listed in decreasing order of sensi-

tivity) and a set of categories or compartments (such as NUCLEAR, NATO, CONVENTIONAL)

12



which could be empty. The security labels are partially ordered as follows: A label X dominates

label Y if the hiearchical component of X is greater than or equal to that of Y and if the categories

of X contain the categories of Y.

The security policy requires that a user may have access to a data item if the security label of

the user dominates that of the data item. Thus, a user with a SECRET clearance can have access

to a relation with CONFIDENTIAL data, but not a relation with TOP SECRET data.

There are multitudes of problems that must be addressed to make multilevel secure DBMSs

commercially viable. One of the major di�culties is that in a mulilevel secure system, data values

may be polyinstantiated, allowing users with di�erent clearance levels to have di�erent views of the

same object. Refer to Abrams et al. [2] for additional details.

8 Inference Problems

An inference problem arises when users can derive some unauthorized information from the infor-

mation they legally obtain from the database. Many of the inference problems that arise are due

to combining data retrieved from the database with external knowledge of the users.

The US Census Bureau is particularly concerned about the inference problem since by law it

must release to the public aggregate statistics on groups of individuals without releasing information

about particular individuals [5]. Another commonly cited example is the US Department of Defense

phone book; the entire phone book is considered sensitive but individual numbers are not.

References

[1] Database Language SQL { Part 2: Foundation (SQL/Foundation). ISO International Standard,

ISO/IEC 9075:1999, 1999.

[2] Marshall D. Abrams, Sushil Jajodia, and Harold J. Podell, eds. Information Security: An

Integrated Collection of Essays. IEEE Computer Society Press, Los Alamitos, CA, 1995.

[3] S. Castano, M.G. Fugini, G. Martella, and P. Samarati. Database Security. Addison Wesley

Publishing Company, 1995.

[4] E.F. Codd. A Relational Model for Large Shared Data Banks. Communications of the ACM,

13(6):377{387, June 1970.

13



[5] Dorothy E. Denning. Cryptography and Data Security. Addison-Wesley, Reading, MA, 1982.

14



external viewexternal view

conceptual schema

Users

.....

.....

internal schema

Conceptual level

External level

Internal level

Figure 1: Three-level architecture

Hardware

OS

DBMS

Users

Figure 2: DBMS/OS high-level architecture

15



User
profiles

identification/authentication

integrity

database

user

log

auditor

security administrator

integrity rules

access control

authorizations

Figure 3: Security mechanisms

16



Employee

name o�ce salary dept

Alice 15 $70,000 Research & Development

Eve 5 $50,000 Computer Science

Dave 22 $65,000 Electrical Engineering

Department

dept location phone budget

Research & Development South Street 555-789-123 $555,000

Computer Science Main Street 555-456-789 $1,500,000

Electrical Engineering Park Street 555-908-345 $350,000

Figure 4: A simple example of a relational database

17



Privilege Object Description

SELECT table column name list, or privilege

method list

retrieve values from the speci�ed object

INSERT table or column name list insert rows in the speci�ed object

UPDATE table or column name list modify the data within the speci�ed object

DELETE table delete rows from the speci�ed object

TRIGGER table de�ne a trigger for the speci�ed object

REFERENCES table or column name list specify a foreign key reference from the speci�ed

object schema to the foreign key of another object

USAGE domain, user-de�ned type, character

set, collation, or translation

allow the usage of the speci�ed object

UNDER structured type de�ne a subtype of the speci�ed object

EXECUTE SQL-invoked routine execute the speci�ed object

Figure 5: SQL privileges

18



GRANT ALL PRIVILEGES j <action>

ON [ TABLE ] j DOMAIN j COLLATION j CHARACTER SET j TRANSLATION j TYPE <object name>

TO <grantee> [f<comma> <grantee>g: : : ]

[ WITH HIERARCHY OPTION ]

[ WITH GRANT OPTION ]

[ GRANTED BY <grantor>]

REVOKE [ GRANT OPTION FOR j HIERARCHY OPTION FOR ] <action>

ON [ TABLE ] j DOMAIN j COLLATION j CHARACTER SET j TRANSLATION j TYPE <object name>

FROM <grantee> [ f <comma> <grantee> g: : : ]

[ GRANTED BY <grantor> ]

CASCADE j RESTRICT

Figure 6: Syntax of the SQL statements for assigning privileges

19



Alice Eve

Dave

Mallory

Walter

Peggy

Alice Eve

Dave

Peggy

Privilege: SELECT ON Department

(a) (b)

Figure 7: An example of privilege dependency graph (a) and the graph after a REVOKE statement

20



Table

Unique

[ CONSTRAINT <constraint name> ]

UNIQUE j PRIMARY KEY (<unique column list>)

j UNIQUE ( VALUE )

[ <constraint characteristics> ]

Referential

[ CONSTRAINT <constraint name> ]

FOREIGN KEY (<referencing columns>)

REFERENCES <referenced table and columns>

[ MATCH <match type> ]

[ <referential triggered action> ]

[ <constraint characteristics> ]

Table check

[ CONSTRAINT <constraint name> ]

CHECK (<search condition>)

[ <constraint characteristics> ]

Domain

[ CONSTRAINT <constraint name> ]

CHECK (<search condition>)

[ <constraint characteristics> ]

Assertion

CREATE ASSERTION <constraint name>

CHECK (<search condition>)

[ <constraint characteristics> ]

Figure 8: Syntax of the SQL statements for de�ning constraints

21


