
Supporting Periodic Authorizations and TemporalReasoning in Database Access ControlElisa Bertino Claudio Bettini Elena Ferrari Pierangela SamaratiDipartimento di Scienze dell'InformazioneUniversit�a di Milano, Italyfbertino,bettini,ferrarie,samaratig@dsi.unimi.it
AbstractSeveral formal models for database access con-trol have been proposed. However, little at-tention has been paid to temporal issues likeauthorizations with limited validity or ob-tained by deductive reasoning with tempo-ral constraints. We present an access controlmodel in which authorizations contain peri-odic temporal intervals of validity. An autho-rization is automatically granted in the timeintervals speci�ed by a periodic expression andrevoked when such intervals expire. Deductivetemporal rules with periodicity and order con-straints are provided to derive new authoriza-tions based on the presence or absence of otherauthorizations in speci�c periods of time. Weprove the uniqueness of the set of implicit au-thorizations derivable at a given instant fromthe explicit ones, and we propose an algorithmto compute the global set of valid authoriza-tions. The resulting model provides a highdegree of exibility and allows to express sev-eral protection requirements that cannot beexpressed in traditional access control models.1 IntroductionAs an increasing number of applications entrust theirdata to database systems, the need for access controlPermission to copy without fee all or part of this material isgranted provided that the copies are not made or distributed fordirect commercial advantage, the VLDB copyright notice andthe title of the publication and its date appear, and notice isgiven that copying is by permission of the Very Large Data BaseEndowment. To copy otherwise, or to republish, requires a feeand/or special permission from the Endowment.Proceedings of the 22nd VLDB ConferenceMumbai(Bombay), India, 1996

mechanisms increases. Most commercial DBMS pro-vide an authorization mechanism by using which usersare given access authorizations to objects under di�er-ent modes, such as read or write. Upon a data ac-cess request from a user, the authorization mechanismchecks whether the user is authorized for the access.Authorization mechanisms, such as the ones sup-ported by commercial DBMS, are not yet able to fullymeet many application needs. An important require-ment derives from the temporal dimension that per-missions have in many real-world situations. Permis-sions are usually limited in time or may hold only forspeci�c periods of time. Because a typical commercialDBMS does not provide any temporal authorizationmechanism, implementing authorization managementat application program level is the only solution forsupporting temporal authorizations. However, such asolution is largely inadequate because it makes autho-rization speci�cation and management very di�cult,if at all possible.Even more crucial is the need for periodic authoriza-tions. Indeed, in many organizations, authorizationsgiven to users must be tailored to the pattern of theiractivities within the organization. Therefore, usersmust have access authorizations only for the time pe-riods in which they are expected to need the data. Asan example of periodic authorization, consider part-time sta� that should be authorized to read a given�le only each working day between 9 a.m and 12 a.m.Periodic authorizations are also very important whendealing with execution authorizations for applicationprograms. Controlling the time periods during whichspeci�c application programs can be invoked is veryuseful for optimizing resource usage. Programs, whoseexecution is very resource-expensive, could be assignedspeci�c time periods in which other programs are notlikely to be executed. Periodic authorizations are,however, even more di�cult to handle than simple,non-periodic temporal authorizations. Therefore, alsoPage 1

for periodic authorizations, the solution of implement-ing them as part of application programs is not viable.When developing a temporal authorization modelseveral issues must be addressed, including the de�ni-tion of a formal semantics for the model, the develop-ment of strategies for e�cient access control, and toolsfor authorization administration. Some of those issueshave been addressed as part of the development of atemporal authorization model, presented in [2]. Underthat model, authorizations contain temporal intervalsof validity; an authorization is automatically revokedwhen the associated temporal interval expires. Themodel also provides rules for the automatic deriva-tion of new authorizations from those explicitly speci-�ed. A formal semantics has been de�ned for temporalauthorizations and derivation rules, based on the se-mantics of logic programs with negation. Moreover,strategies have been developed, based on view materi-alization approaches, to support e�cient authorizationchecking.However, our previous model does not provide pe-riodic authorizations, which are - we believe - an es-sential ingredient of a temporal access control mecha-nism. The current paper complements our previouswork with periodic access authorizations and rules.This is a major extension, both for the practical rele-vance of periodic expressions in specifying authoriza-tions and for the involved theoretical and performanceissues. In particular, the formal semantics used in thecurrent extended model is based on Datalog programswith negation and periodicity and order constraints.The materialization strategy, proposed for the previ-ous model, has been substantially extended to dealwith periodicity and order constraints. We have alsoadded new temporal operators (upon and upon-not)to cover interesting protection requirements that werenot expressible in [2].To the best of our knowledge, this authorizationmodel is the �rst one proposing features such astemporal derivation rules and periodic authorizations.Relevant related work has been carried out in theframework of the Kerberos system [6]. Kerberos, basedon client-server architecture, provides the notion ofticket, needed for requiring a service to the server, withan associated validity time. The validity time is usedto save the client from the need to acquire a ticket foreach interaction with the server. The ticket mechanismis not used to grant accesses to the resources managedby the system. Rather, it is only used to denote thata client has been authenticated by the authenticationserver. Thus, the scope of the temporal ticket mech-anism is very di�erent from our access control model.From the side of logical formalisms for security spec-i�cations, Woo and Lam in [9] have proposed a verygeneral formalism for expressing authorization rules.

Their language does not have explicit constraints todeal with temporal information, but has almost thesame expressive power of �rst order logic. We believethat for the sake of e�ciency, it is important to de-vise more restricted languages focusing only on rele-vant properties. The temporal authorization modelwe propose in this paper is a step in this direction.The remainder of this paper is organized as follows.Section 2 describes the formalisms we use to representperiodic time. Section 3 introduces periodic autho-rizations and derivation rules. Section 4 speci�es thesemantics of our model and proves its main formalproperties. In Section 5 an algorithm for deriving theset of implicit and explicit authorizations is presented.Section 6 concludes the paper. Finally, Appendix Aillustrates the Datalog extension that we use to repre-sent the semantics of our rules.2 Preliminaries: Representation of pe-riodic expressionsTo represent periodic authorizations we need a for-malism to denote periodic time. Our choice is to pro-vide a symbolic (user friendly) formalism for the userthat has to specify authorizations and an equivalent\mathematical" formalism to describe the semanticsof periodic authorizations and rules, to prove formalproperties of our model, and to perform deductive rea-soning.The symbolic formalism is essentially the one pro-posed by Niezette and Stevenne in [4], based on thenotions of calendars and periodic expressions.A calendar is de�ned as a set of consecutive inter-vals. Each interval of a calendar is numbered by anatural number, called index of the interval, in sucha way that successive intervals are numbered by suc-cessive natural numbers. Days, Months, and Yearsare example of calendars representing respectively theset of all the days, the months, and the years, start-ing from a given time instant. Calendars can also be�nite. For instance, the calendar Years-from-1980-to-1992 represents the set of all the years between 1980and 1992. We use symbol > to denote the special cal-endar having a single time interval (indexed by 1) andincluding the whole time line. Given two calendars C1and C2, we say that C1 is a subcalendar of C2, (writtenC1 v C2), if each interval of C2 is exactly covered bya �nite number of intervals of C1. New calendars canbe dynamically constructed from the existing ones.1In our model, we postulate the existence of a set ofprede�ned calendars containing Hours, Days, Weeks,Months, and Years.Calendars can be combined to represent more gen-eral sets of periodic intervals, not necessarily contigu-1We refer to [4] for details of the construction. Page 2

ous, as, for instance, the set of Mondays or the set ofThe third hours of the �rst day of each month. Com-plex sets of periodic intervals, like the ones above, arerepresented by means of periodic expressions, formallyde�ned as follows.De�nition 2.1 (Periodic expression) A periodicexpression is de�ned as P =Pni=1 Oi:Ci � r:Cd, whereO1 2 2IN [fallg, Oi 2 2IN i = 2; : : : ; n, Ci and Cdare calendars for i = 1; : : : ; n, Cd v Cn, and r 2 IN.In practice, O1 is omitted when its value is all, whereaswhen Oi is a singleton it is represented by its uniqueelement. r:Cd is omitted when it is equal to 1:Cn.Table 1 illustrates a set of periodic expressions andtheir meaning.Each periodic expression P is a symbolic represen-tation of a set of time intervals �(P).2 For example,if P is the last expression in Table 1, then �(P) is theset of time intervals starting with the tenth hour (9 to10a.m.) of the second, third, fourth, �fth, and sixthday of every week. Each interval has a duration of 3hours.Symbolic expressions, while convenient for the user,are not easy to manipulate in the deductive process.Hence, when an expression has been given by the user,we translate it into a di�erent formalism. This for-malism is based on sets of periodicity constraints overinteger numbers and it is inspired by the work in [7].Periodicity constraints denote in�nite periodic sets ofintegers.De�nition 2.2 (Simple Periodicity Constraint)Let K be a �nite set of natural numbers, x an integervariable, k an element of K , and c 2 f0; : : : ; k�1g. Asimple periodicity constraint is a formula of the form:x �k c.Periodicity constraint x �k c denotes the set ofintegers of the form c + nk, with n ranging from�1 to +1 in Z. In the following we use the no-tation x �k (y + c)8y = 0; : : : ; u as a compact rep-resentation for the disjunction of simple constraints:x �k c _ x �k c+ 1 _ : : : _ x �k c+ u.Conjunction of simple periodicity constraints canbe represented by means of periodicity graphs [7], inwhich each node represents a variable or the constant0, and an edge labeled (k; c) exists between 0 and x i�the constraint x �k c belongs to the conjunction.Another type of constraints will be useful to specifyperiodic authorizations.De�nition 2.3 (Gap-order Constraint)Let u; l be integers, c a non-negative integer, and x; yinteger variables. A gap-order constraint is a formulaof the form l < x, x < u, x = y, or x+ c < y.2We refer to [4] for the formal de�nition of �().

Conjunction of Gap-order constraints can be repre-sented by means of gap graphs [5], that is, by meansof graphs where the nodes represent the variables andthe lower and the upper bound of the constraints, andedges represent gaps. Equality constraints are repre-sented by undirected edges labeled by \=". For eachpair of nodes a single edge, either representing equal-ity or a gap, is allowed. The operations of conjunction(^) and complement (:) of gap graphs are de�ned in[5], while the operation of conjunction of periodicitygraphs is de�ned in [7]. For lack of space we do notreport these de�nitions in the paper. However, thecomplement of periodicity graphs has never been de-�ned and we do it here. Let G be a periodicity graphrepresenting n constraints. For each x �k c repre-sented by G, consider the constraints x �k r withr = 0; : : : ; c� 1; c+ 1; : : : ; k � 1. :G, the complementof G, is the disjunction of the n � (k � 1) periodicitygraphs representing these constraints. Operations ongap graphs are analogous.Example 2.1 Consider the sets of periodicity con-straints C1 = fx �7 1; y �10 1g and C2 = fx �14 1g.C1 can be represented by means of a periodicity graphG1 with nodes x; y; 0, and with two edges: (0; x), withlabel (7; 1), and (0; y), with label (10; 1). Similarly C2can be represented by a graph G2 with nodes x and0 and with a unique edge (0; x), with label (14; 1).G1 ^ G2 is the graph with nodes x; y; and 0, andthe edges: (0; x) with label (14; 1) and (0; y) with la-bel (10; 1). :G1 is the disjunction of the periodic-ity graphs corresponding to the constraints: x �7 0,x �7 2, : : :, x �7 6, y �10 0, y �10 2, : : :, y �10 9.It is easily shown [1] that any symbolic periodicexpression can be translated into a set of simple pe-riodicity constraints. Each constraint in that set willhave the form t �Periodicity(P) c, where Periodicity(P)is the number n of units of the basic granularity thatidenti�es the periodicity with which the time inter-vals in �(P) repeat themselves. For example, if Hoursis the basic granularity, the periodicity of the �rst,fourth, and �fth expressions in Table1 is 168 (a weekexpressed in hours). The constants c must be suchthat all possible solutions of the disjunction of the pe-riodicity constraints in the set are equivalent to theinstants in the time intervals of �(P). For example,the expression Weeks + 2.Days, identifying Mondays,is translated into t �168 (y+24) 8y = 0; : : : ; 23. 168 isthe number of hours in a week (the periodicity of Mon-days), 24 is the distance in hours of the �rst Mondayfrom the beginning of the period (the displacement ofMondays), and 0; : : : ; 23 are the 24 hours within eachMonday (the duration of each Monday).Symbolic periodic expressions together with simplegap-order constraints are used by users to specify peri-Page 3

periodic expression meaningWeeks + f2,6g.Days Mondays and FridaysMonths + 20.Days The twentieth day of every month (Pay-days)Years + 7.Months � 3.Months Summer-timeWeeks + f2,: : :,6g.Days Working-daysWeeks + f2,: : :,6g.Days + 10.Hours � 3.Hours Each Working day between 9 a.m. and 12 a.m.Table 1: Example of periodic expressionsodic access authorizations and rules, while their \fully"constraint counterpart is used to express the seman-tics of authorizations and rules, as well as for provingformal properties of the model and to perform accesscontrol. For simplicity, in the following periodicity andgap graphs will be denoted with the set of constraintsthey represent.3 Periodic authorizations and rulesOur model allows to express periodic authorizations,that is, authorizations for a user to access an objectin speci�c time intervals speci�ed by a periodic ex-pression. Moreover, a time interval is associated witheach authorization, imposing lower and upper boundsto the potentially in�nite set of instants denoted bythe periodic expression. We refer to an authorizationtogether with its time interval and periodic expressionas periodic authorization. In the following U denotesthe set of users, O the set of objects, and M the set ofaccess modes.We start by introducing the de�nition of authoriza-tion.De�nition 3.1 (Authorization) An authorizationis a 5-tuple (s,o,m,pn,g), with s, g2 U , o2 O,m2M , pn 2 f+;�g.Tuple (s,o,m,pn,g) states that user s has been au-thorized (if pn = `+') or denied (if pn = `�') for priv-ilege m on object o by user g.De�nition 3.2 (Periodic Authorization) A peri-odic authorization is a triple (time,period,auth),where time is a time interval [min,max], such thatmin and max denote respectively instants tb and te with0 �tb�te, period is a periodic expression, and authis an authorization.Triple ([min,max],P,(s,o,m,pn,g)), states thatuser g had granted an authorization to user s for ac-cess mode m on object o, that holds for each instantin �(P) limited by the interval [tb,te], where tb andte are the instants corresponding respectively to minand max. The beginning and ending points of the in-terval associated with an authorization can be speci-�ed in one of the basic calendars. We use the notation1/1/94:08 to represent 8a.m. on 1/1/94. When 1/1/94

is used as a minimum, it denotes the �rst instant ofthe �rst day of January 1994, while, as a maximum, itdenotes the last instant of 1/1/94. We use symbol 1for max to denote a periodic authorization that spansfrom the starting time of its interval to in�nity.For example, the periodic authorization([1/1/94,1],Mondays3,(Matt,o1,read,+,Bob)),speci�ed by Bob, states that Matt has the authoriza-tion to read o1 each Monday starting from 1/1/94.Note that a non periodic authorization, that is, an au-thorization that holds continuously for a speci�c setof time instants can be expressed by a periodic autho-rization using > as the period component.The model also allows to specify derivation rulesfrom which other authorizations can be derived. Thederivation is based on temporal propositions, used asrules, which allow new periodic authorizations to bederived on the basis of the presence or the absenceof other periodic authorizations. Like authorizations,derivation rules have an associated time interval anda periodicity, representing the set of instants in whichthe derivation rule can be applied.De�nition 3.3 (Derivation rule) A derivationrule is de�ned as (time, period, A1 hopi A2),where time=[min,max] is the time interval associatedwith the rule, such that min and max denote respec-tively instants tb and te with 0 �tb�te, period is aperiodic expression, A1 and A2 are authorizations, andhopi is one of the following operators: whenever,aslongas, upon, whenever-not, unless, upon-not.Rule ([min,max], P, (s1,o1,m1,pn1,g1) hopi(s2,o2,m2,pn2,g2)) states that for each instant in4�(P)\f[tb,te]g, user s1 is authorized (if pn1 = `+')or denied (if pn1 = `�') for access mode m1 on objecto1 according to the presence or absence (depending onthe hopi) of the authorization (s2,o2,m2,pn2,g2). Aderivation rule in which P=> represents a rule which3Here and in the following we use intuitive names for peri-odic expressions, assuming that they are de�ned with the syntaxshown above.4We use a set of disjoint intervals T = f[ti; tj]; : : : ; [tr; ts]gas a compact notation for the set of natural numbers includedin these intervals. Hence, the intersection operation (T1 \ T2)has the usual semantics de�ned for sets. Page 4

can be applied for each instant in [min,max]. Aderivation rule with max = 1 can be applied fromthe starting time of its time interval up to in�nity. Asimple extension to the above syntax allows to use aspecial symbol (�) instead of an authorization user,object or modi�er with the meaning that any value inthe corresponding domain can be used. This providesa compact form to express a set of derivation rules [2].For simplicity we do not consider this extension in therest of the paper.Figure 1 illustrates an example of periodic autho-rizations and derivation rules.We now give the intuitive semantics of the di�erentkinds of derivation rules allowed by our model. Theformal semantics will be given in the next section. Inthe following we assume all authorizations are grantedby the same user and we therefore do not consider thegrantor of authorizations in the discussion.� ([min,max], P, A1 whenever A2). We can de-rive A1 for each instant in �(P)\ f[tb,te]g forwhich A2 is given or derived.For instance, rule R1 in Figure 1 states thatsummer-staff can read document for every in-stant in Summer-time, from 1/1/1995, in whichstaff can do it.� ([min,max],P, A1 aslongas A2). We can deriveA1 for each instant t in �(P)\ f[tb,te]g such thatA2 is either given or derived for each time instantin �(P)\f[tb,te]g from the �rst one up to t.For instance, rule R3 in Figure 1 states that Jimcan read document in a working day starting from7/20/95 if summer-staff has been authorized forit for each working day from 7/20/95.� ([min,max],P, A1 upon A2). We can derive A1for each instant t in �(P)\f[tb,te]g if there ex-ists an instant t0 < t in �(P)\f[tb,te]g such thatA2 is either given or derived at time t0.For instance, rule R5 in Figure 1 states thattechnical-staff is forbidden to write reportfor every instant from the �rst time in [95,1]at which technical-staff is allowed to readreport-evaluation.� ([min,max], P, A1 whenever-not A2). Wecan derive A1 for each instant in �(P)\ f[tb,te]gfor which A2 is neither given nor derived.For instance, rule R6 in Figure 1 states that Anncan read pay-checks each working day in 1995and 1996 in which Tom is not allowed to writepay-checks.� ([min,max], P, A1 unless A2). We can deriveA1 for each instant t in �(P)\ f[tb,te]g such that

A2 is neither given nor can be derived for each in-stant in �(P)\f[tb,te]g from the �rst one up tot.For instance, rule R2 in Figure 1 states thattemporary-staff can read document each work-ing day starting from 1/1/95 until the �rst work-ing day summer-staffwill be authorized for that.� ([min,max],P, A1 upon-not A2). We can de-rive A1 for each instant t in �(P)\ f[tb,te]gsuch that there exists an instant t0 < t in�(P)\f[tb,te]g in which A2 is neither given norderived.For instance, rule R4 in Figure 1 states thattechnical-staff can write report each work-ing day from the �rst working day in [95,1] inwhich manager does not have the authorization towrite guidelines.Example 3.1 Consider the authorizations and rulesin Figure 1. Among the authorizations that can bederived are:� (temporary-staff,document,read,+,Sam) foreach working day in [1/1/95,6/30/95], fromrules R2 and R1, and authorization A1.� (Jim,document,read,+,Sam) for each workingday in [7/20/95,10/30/95], from rules R3 andR1, and authorization A1.4 Formal semanticsIn this section we formalize the semantics of peri-odic authorizations and derivation rules. First, itis necessary to point out that the possibility of ex-pressing negative authorizations introduces potentialconicts among authorizations. Indeed, a positiveauthorization states that an access must be grantedwhereas a negative authorization states that an ac-cess should be denied. A conict therefore exists ev-ery time both a positive and a negative authorizationexist for the same subject. We solve this conict ac-cording to the denials-take-precedence principle. Forinstance, consider the authorizations and rules in Fig-ure 1. From R4 and A2 we derive the authorization fortechnical-staff to write report for each workingday in [5/21/95,1]. From R5 and A4, we derive anegative authorization for the same access for all in-stants in [10/1/95,1]. Thus, technical-staff willbe allowed for the access only for the working days in[5/21/95,9/30/95].The formal semantics considers this fact.De�nition 4.1 (Temporal Authorization Base)A Temporal Authorization Base (TAB) is a set of pe-riodic authorizations and derivation rules. Page 5

(A1) ([95,97],Working-days,(staff,document,read,+,Sam))(A2) ([95,5/20/95], >,(manager,guidelines,write,+,Sam))(A3) ([95,1], Pay-days, (Tom,pay-checks,write,+,Sam))(A4) ([10/1/95,1], >,(technical-staff,report-evaluation,read,+,Sam))(R1) ([95,1], Summer-time, (summer-staff,document,read,+,Sam) whenever (staff,document,read,+,Sam))(R2) ([95,1], Working-days, (temporary-staff,document,read,+,Sam) unless(summer-staff,document,read,+,Sam))(R3) ([7/20/95,1], Working-days, (Jim,document,read,+,Sam) aslongas (summer-staff,document,read,+,Sam))(R4) ([95,1], Working-days, (technical-staff,report,write,+,Sam) upon-not(manager,guidelines,write,+,Sam))(R5) ([95,1], >, (technical-staff,report,write,-,Sam) upon(technical-staff,report-evaluation,read,+,Sam))(R6) ([95,96], Working-days, (Ann,pay-checks,read,+,Sam) whenever-not (Tom,pay-checks,write,+,Sam))Figure 1: An example of authorizations and derivation rulesThe semantics of a TAB is given as a set ofclauses in a Datalognot;�Z;<Z program correspondingto TAB. Datalognot;�Z;<Z is the extension of Datalogwith non-monotonic negation, periodicity, and gap-order constraints on the integers (see Appendix A).Programs corresponding to TABs will be actually avery restricted class of Datalognot;�Z;<Z programs:the only predicate symbols are F (); FN (); FP (); G();and cnstr(), a limited set of non-temporal constants(s1,o1,m1,+,-,P,...) is provided to denote users,objects, access modes, sign of authorizations, and pe-riodic expressions.5 Periodicity and order constraintsonly involve temporal variables and do not use the +function.We consider non-ground interpretations of our pro-grams de�ned as sets of constrained atoms of theform (B;�), where B is a predicate and � =f(G1; H1); : : : ; (Gm; Hm)g a set of constraints on thetemporal variables of B. EachGi is a periodicity graphand each Hi is a gap graph. � is a disjunction of thesepairs, i.e., it is satis�ed if there exists i such that bothGi and Hi are satis�ed. Each constrained interpre-tation has an equivalent (possibly in�nite) Herbrandinterpretation containing only ground atoms.Table 2 reports the clause/set of clauses inDatalognot;�Z;<Z corresponding to each type of autho-rization/rule allowed by our model.6 Intuitively, thepredicate F () is used to represent the authorizationsat speci�c instants. The fact that (F (t; A);�) belongsto an interpretation means that A is valid according tothat interpretation at all instants t satisfying �. The5Note that when P appears as a predicate argument it de-notes a non-temporal constant that we associate with a periodicexpression.6For brevity, we use the form tb � t �te as a shortcut for theconjunction of the two gap-order constraints c1 < t and t < c2with c1 =tb�1 and c2 =te+1. Similarly, constraint t00 � t0 < tis a shortcut for the disjunction (using two clauses) of t0 = t00and t00 < t0 < t.

predicatesG(); FN () and FP () are auxiliary predicates,used to avoid quanti�cation. Intuitively, G(t; s; o; m) istrue in an interpretation if there is at least one negativeauthorization, with the same s,o,m, valid at instant taccording to that interpretation. FN (t00; t; P;A) is truein an interpretation if there is at least an instant t0with t00 � t0 < t and t0 in the set denoted by P atwhich authorization A is not valid according to thatinterpretation. FP (t00; t; P;A) is true in an interpreta-tion if there is at least an instant t0 with t00 � t0 < tand t0 in the set denoted by P at which authorizationA is valid according to that interpretation.We denote the Datalognot;�Z;<Z program corre-sponding to a TAB with PTAB. We consider stablemodel semantics of logic programs with negation [3]to identify the models of PTAB. The notion of con-strained interpretation presented above naturally ex-tends to constrained (non-ground) stable models.De�nition 4.2 (Valid Authorization) Let M be amodel of PTAB. An authorization A is said to be validat time t with respect to M if (F (t; A);�) is containedin M with t satisfying �. If PTAB has a unique groundmodel and M is one of its non-ground representations,then we simply say that A is valid at time t.4.1 Restrictions on rulesAn important property that we require for our set ofperiodic authorizations and rules is that we must al-ways be able to derive a unique set of valid autho-rizations. This means, for example, that each set ofrules together with a �xed set of explicit authorizationsshould not derive di�erent authorizations dependingon the evaluation order.Example 4.1 Consider the following rules:(R1) ([min; max]; P; A1 whenever-not A2)(R2) ([min; max]; P; A2 whenever-not A1) Page 6

[min, max], P, (s,o,m,�,g) :F (t;s,o,m,�,g) tb � t �te, cnstr(P; t)[min, max],te],P, (s,o,m,+,g) :F (t;s,o,m,+,g) tb � t �te, cnstr(P; t), not(G(t;s,o,m))[min, max], P, (s1,o1,m1,�,g1) whenever (s2,o2,m2,pn,g2) :F (t;s1,o1,m1,�,g1) tb � t �te, cnstr(P; t), F (t,s2,o2,m2,pn,g2)[min, max], P, (s1,o1,m1,+,g1) whenever (s2,o2,m2,pn,g2) :F (t;s1,o1,m1,+,g1) tb � t �te, cnstr(P; t), F (t;s2,o2,m2,pn,g2), not(G(t;s1,o1,m1))[min, max], P, (s1,o1,m1,�,g1) aslongas (s2,o2,m2,pn,g2) :F (t;s1,o1,m1,�,g1) tb � t �te, cnstr(P; t), F (t;s2,o2,m2,pn,g2), not(FN (tb; t;P,s2,o2,m2, pn,g2))[min, max],P, (s1,o1,m1,+,g1) aslongas (s2,o2,m2,pn,g2) :F (t;s1,o1,m1,+,g1) tb � t �te, cnstr(P; t), F (t;s2,o2,m2,pn,g2); not(FN (tb; t;P,s2,o2,m2, pn,g2)),not(G(t;s1,o1,m1))[min, max], P, (s1,o1,m1,�,g1) upon (s2,o2,m2,pn,g2) :F (t;s1,o1,m1,�,g1) tb � t �te, cnstr(P; t), FP (tb; t;P,s2,o2,m2, pn,g2)[min, max],P, (s1,o1,m1,+,g1) upon (s2,o2,m2,pn,g2) :F (t;s1,o1,m1,+,g1) tb � t �te, cnstr(P; t), FP (tb; t;P,s2,o2,m2, pn,g2); not(G(t;s1,o1,m1))[min, max], P, (s1,o1,m1,�,g1) whenever-not (s2 ,o2,m2,pn,g2) :F (t;s1,o1,m1,�,g1) tb � t �te, cnstr(P; t), not(F (t;s2,o2,m2,pn,g2))[min, max], P, (s1,o1,m1,+,g1) whenever-not (s2 ,o2,m2,pn,g2) :F (t;s1,o1,m1,+,g1) tb � t �te, cnstr(P; t), not(F (t;s2,o2,m2,pn,g2)); not(G(t;s1,o1,m1))[min, max], P, (s1,o1,m1,�,g1) unless (s2,o2,m2,pn,g2) :F (t;s1,o1,m1,�,g1) tb � t �te, cnstr(P; t), not(F (t;s2,o2,m2,pn,g2)); not(FP (tb ; t;P, s2,o2,m2, pn,g2))[min, max], P, (s1,o1,m1,+,g1) unless (s2,o2,m2,pn,g2) :F (t;s1,o1,m1,+,g1) tb � t �te, cnstr(P; t) ; not(F (t;s2 ,o2,m2,pn,g2)); not(FP (tb; t;P,s2,o2,m2, pn,g2)) ;not(G(t;s1,o1,m1))[min, max], P, (s1,o1,m1,�,g1) upon-not (s2,o2,m2,pn,g2) :F (t;s1,o1,m1,�,g1) tb � t �te, cnstr(P; t), FN (tb; t;P,s2,o2,m2, pn,g2)[min, max],P, (s1,o1,m1,+,g1) upon-not (s2,o2,m2,pn,g2) :F (t;s1,o1,m1,+,g1) tb � t �te, cnstr(P; t), FN (tb; t;P,s2,o2,m2, pn,g2) ; not(G(t;s1,o1,m1))Auxiliary clauses:G(t; s; o;m) F (t; s; o;m;�; g)fcnstr(P; t) t �periodicity(P) yg8y such that t �periodicity(P) y) t 2 �(P)fFP (t00; t;P; s; o;m; pn; g) t00 � t0 < t, cnstr(P; t0), F (t0; s; o;m; pn; g)g8 distinct P appearing in an unless/upon rulefFN (t00; t;P; s; o;m; pn; g) t00 � t0 < t, cnstr(P; t0),not(F (t0; s; o;m; pn; g))g8 distinct P appearing in an aslongas/upon-not ruleTable 2: Semantics of periodic authorizations and rules
Page 7

Suppose that there are no explicit authorizations forA1 or A2 in the TAB and these are the only rules. Ifwe consider �rst R1 we derive authorization A1 for eachinstant in f[tb,te]g\�(P), and we cannot derive A2.If we consider �rst R2, we derive A2 for the same timeintervals and not A1. Hence, we have two di�erentsets of derived authorizations. In this case there is noreason to give preference to one set or the other.From the point of view of the semantics, the prop-erty of always having a unique set of valid authoriza-tions is guaranteed only if all the models of the pro-gram corresponding to the TAB identify the same setof valid authorizations at any instant (or equivalently,there exists a unique ground stable model equivalentto all the models of PTAB). In the rest of this sectionwe formally de�ne restrictions on sets of rules in orderto guarantee a unique ground model for PTAB. Wealso give an algorithm for checking the satisfaction ofthese restrictions.In the following, we use the term negative operatorto refer to whenever-not, unless, and past operator(pastop) to refer to unless, aslongas, upon-notand upon. Moreover, we use symbols Ai as a shortcutfor the 5-tuple (si; oi; mi; pni; gi), while A+i forces pni =+ and A�i forces pni = �.A binary relation ,! among the periodic authoriza-tions appearing in TAB is de�ned as follows:� if there is a rule ([min,max], P, Amhopi An) inTAB, where hopi is an arbitrary operator, thenAn[t] ,! Am[t] for each t 2 f[tb,te]g\�(P). The,! relation represents a dependency of Am at in-stant t from An at the same instant. When hopiis a negative operator we say that ,! represents astrict dependency.� if there is a rule ([min,max], P, Am hpastopiAn) in TAB, then An[t] ,! Am[t0] for each t; t0 2f[tb,te]g\�(P), t < t0. If pastop is equal to as-longas, unless or upon-not then ,! representsa strict dependency.Using this relation we can de�ne the more complexnotion of priority among periodic authorizations.De�nition 4.3 (Priority) An authorization An attime t has higher priority than an authorization Amat time t0 (written An[t] > Am[t0]) if one of the follow-ing conditions holds:� a sequence An[t]=A1[t] ,! : : : ,!Ak�1[t00] ,!Ak[t0]=Am[t0] exists such that at least one of the,! relationships is a strict dependency,� two sequences An[t]=A1[t] ,! : : : ,!A�l [t00]and A+l+1[t00] ,! : : : ,!Ak[t0]= Am[t0] exist

such that s(A�l)=s(A+l+1), o(A�l)=o(A+l+1), andm(A�l)=m(A+l+1),7� an authorization Al and an instant t00 exist suchthat An[t] > Al[t00] and Al[t00] > Am[t0].Note that the second condition in the above def-inition implies that each negative authorization hashigher priority than its positive counterpart at thesame instant.We are now ready to identify critical sets of deriva-tion rules.De�nition 4.4 (Critical set) A TAB contains acritical set of rules if and only if an authorization Amin TAB and an instant t exist such that Am at instantt has priority over itself (Am[t] > Am[t]).The CSD (Critical Set Detection) algorithm, de-scribed in the next subsection, can be used to recog-nize and reject a TAB containing a critical set.4.2 The CSD algorithmBefore illustrating the CSD algorithm we need to in-troduce some notions.Given a TAB, we introduce its graph version, de-noted as TAB0, as the set of pairs of the form hx;�i,where x is either an authorization or rule in TAB and� the set of pairs (G;H) representing the temporalconstraints associated with it in TAB. Essentially, atemporal authorization ([tb,te], P, Am) is mappedinto the pair hAm; f(H;G1); : : : ; (H;Gk)gi, where Hrepresents constraint ftb � t � teg and G1; : : : ; Gkrepresent the periodicity constraints corresponding toP. If Am is speci�ed more than once in TAB with di�er-ent temporal constraints the set � associated with Amin TAB0 is the union of the sets corresponding to thedi�erent constraints. Derivation rules are transformedin an analogous way. In the following, given an au-thorization Am in TAB, �m denotes the constraintsassociated with Am in TAB0. Analogously, �R denotesthe constraints associated with rule R in TAB0.We introduce the operations of conjunction (^�)and complement (:�) between sets of pairs (G;H).Let � = f(G1; H1); : : : ; (Gm; Hm)g and let �0 =f(G01; H 01); : : : ; (G0k ; H 0k)g. � ^� �0 is the disjunctivenormal form of the result obtained by the conjunc-tion of the formulas corresponding to � and �0. Forinstance f(G1; H1); (G2; H2)g ^� f(G01; H 01)g = f(G1 ^G01; H1 ^H 01); (G2 ^ G01; H2 ^H 01)g. The operation ofcomplement (:�) can be de�ned in a similar way.The algorithm for detecting critical sets receives asinput TAB0, i.e. the graph version of TAB. It returns7We use the notation s(A),o(A),m(A),pn(A) to denote respec-tively the subject, the object, the privilege and the sign in A.Page 8

FALSE if either a critical set exists or the number oflevels exceeds a �xed upper bound. Otherwise, it re-turns a sequence of levels hL1; : : : ; Lki representing a�nite partition of the set of pairs hA; ti for each autho-rization A in TAB0 and tmin � t � tmax, where tminand tmax are respectively the minimum and maximumconstant (included 1) appearing in TAB0. Each levelLi is a set of pairs hAj ;�j;ii, where �j;i denotes thetemporal constraints associated with Aj at level Li. In-tuitively, authorizations appearing at lower levels fora certain set of instants have higher priority for eval-uation than authorizations appearing at higher levels(for the same or for a di�erent set of instants).The algorithm starts by putting at level 1 all theauthorizations for all time instants between tmin andtmax. Then, it considers the dependencies caused bynegative authorizations and rules and possibly movesauthorizations up in levels. Moving authorization Amfrom a level h to a level k with constraints � means up-dating �m;h to be �m;h^�:�� and updating �m;k to be�m;k[�.8 The process is repeated until no changes tothe levels are necessary (i.e., all the priorities are sat-is�ed), or the number of levels becomes greater thanmax-level. max-level is an upper bound chosen asthe number of authorizations in TAB0 multiplied by(tmax - tmin + Pmax + 1), where tmax is the maxi-mum �nite constant appearing in TAB0 and Pmax isthe least common multiple (lcm) of all the periodicitiesappearing in TAB0 (excluding >).The algorithm guarantees that if a critical set exists,it will be detected. Intuitively, in case of a critical set,the algorithm cycles over some priority relationshipand soon it reaches the max-level upper bound.When the algorithm reaches a �x-point beforereaching max-level, it returns the levels that havebeen generated. These levels obey the priority rela-tionship: If a dependency An[t] ,! Am[t0] exists inTAB, then Am[t0] appears at a level higher than orequal to An[t]. The level is necessarily higher if thedependency is strict. Moreover, a positive authoriza-tion Am appears at level higher than any negative au-thorization An with same subject, object, and accessmode for the same time instant. The algorithm guar-antees also that for each authorization Am, each in-stant t, tmin � t �tmax satis�es the constraints �m;lof exactly one level l. A detailed description of thealgorithm can be found in [1].Example 4.2 Consider a TAB containing the follow-ing authorizations and rules:([95,1], >, A1)(R1) ([1/20/97,98], Mondays,A1uponA+2)8If Am does not appear at level k before the operation, it isinserted and �m;k initialized to �.

(R2) ([96,97],Working-days,A�2whenever-notA3)The corresponding TAB0 contains the following pairs.9hA1,f(ftrueg,f1=1=95� tg)gihA1uponA+2 ; f(ft �7 1g; f1=20=97� t � 12=31=98g)gihA�2 whenever-notA3; f(ft �7 (y + 1)8y = 0; : : : ; 4g;f1=1=96 � t � 12=31=97g)giAuthorizations A1, A+2 , A3, and A�2 are initially in-serted at level 1 with constraints f(ftrueg,f1=1=95 �tg)g.The algorithm then cycles moving authorizationsup in level as follows.1st iteration:For A�2 at level 1: move hA+2 ,f(ftrueg,f1=1=95� tg)gito level 2.For rule R1: move hA1,f(ft �7 1g; f1=20=97 � t �12=31=98g)gi to level 2.For rule R2: move hA�2 ,f(ft �7 (y + 1)8y = 0; : : : ; 4g;f1=1=96 � t � 12=31=97g)gi to level 2.2nd iteration:For A�2 at level 2: move hA+2 ,f(ft �7 (y + 1)8y =0; : : : ; 4g; f1=1=96� t � 12=31=97g)gi to level 3.For rule R1: move hA1,f(ft �7 1gf1=20=97 � t �12=31=98g)gi to level 3.3rd iteration:All dependencies are satis�ed. No further changes tothe levels are necessary and the algorithm terminatesreturning the levels illustrated in Figure 2.For the purpose of determining the authorizationstate of the system at a certain instant, the uniquenessof the PTAB ground model at that instant is required.The uniqueness of the model in absence of critical setsis guaranteed by the following theorem.Theorem 4.1 Given a TAB with no critical sets, thecorresponding logic program PTAB has a unique groundmodel.Note that more than one �nite constrained non-ground model of PTAB equivalent to the unique groundmodel can exist, since the same set of instants can berepresented by di�erent constraints.5 Access ControlIn our model, the control of whether an access requestcan be authorized may require the evaluation of sev-eral rules. For this reason we adopt a materializationapproach to enforce access control. Under such anapproach the system permanently maintains all thevalid authorizations, both explicit and derived. Uponan access request, the system can immediately check9For simplicity, here and in the following examples we assumeDays as our �nest granularity and Sunday 1/1/95 as our instantzero. Page 9

Level 1:hA1,f(ftrueg,f1=1=95 � t � 1=19=97g), (ft 6�7 1g; f1=20=97 � t � 12=31=98g), (ftrueg,f1=1=99 � tg)gihA�2 ,f(ftrueg,f1=1=95 � t � 1=31=95g), (ft 6�7 (y + 1); y = 0; : : : ; 4g; f1=1=96 � t � 12=31=97g), (ftrueg,f1=31=97 � tg)gihA3,f(ftrueg,f1=1=95 � tg)giLevel 2:hA�2 ,f(ft �7 (y + 1)8y = 0; : : : ; 4g; f1=1=96 � t � 12=31=97g)giLevel 3:hA1,f(ft �7 1gf1=20=97 � t � 12=31=98g)gi(A+2 ,fhft �7 (y + 1)8y = 0; : : : ; 4g; f1=1=96 � t � 12=31=97gig)Figure 2: An example of levels returned by the CSD algorithmwhether a valid corresponding positive authorizationexists.In the following we illustrate how to compute, givena TAB, the corresponding valid authorizations. Westart with the following de�nition.De�nition 5.1 (Temporal Authorization BaseExtent) The Temporal Authorization Base Extent(TABEXT) of TAB is the set of valid authorizationsderived from TAB.Authorizations are maintained in TABEXT using acompact representation similar to that of TAB0. EachAk is associated with a set of constraints
k; hAk;
ki isin TABEXT if authorization Ak is valid at each instantt satisfying
k.Given two sets of constraints � and �0, we say that� is shift-equivalent to �0 (written � !=� �0), if the in-stants denoted by � are a transposition of the instantsdenoted by �0 on the time axis. Formally:� !=� �0 if 9t0 2 IN such that t+t0 satis�es �0 whenevert satis�es �.Figure 3 presents an algorithm to computeTABEXT . The algorithm is based on the model com-putation for (locally) strati�ed Datalognot;�Z;<Z pro-grams given in Appendix A. This computation isrepresented in Algorithm 5.1 by an iteration of therepeat-until cycle. The termination of each iterationis guaranteed by using a �nite constant as an upperbound in constraints and computing TABEXT onlyup to that value. The periodicity of our rules andtheir semantics guarantee that a �nite constant canalways be found, such that the computed TABEXTcan be extended (Step 3 of Algorithm 5.1) to theactual TABEXT (possibly including 1). This �niteconstant cannot be easily determined before runningthe algorithm, and this is the reason for the repeat-until cycle. In particular, the algorithm considerstwo contiguous time intervals after tmax, of lengthequal to the maximum periodicity in TAB (Pmax) andchecks whether the constraints associated with the de-rived authorizations and restricted to these intervalsare shift-equivalent (Step 2.3). If not, it proceedswith another iteration of Step 2, generating a largerTABEXT using the constant of the previous iteration

incremented by Pmax (Step 2.1). We have proved thatfor any TAB the algorithm terminates.Theorem 5.1 i) Algorithm 5.1 terminates and ii) anauthorization A is valid at time t if and only if thereexists hA;
i in TABEXT such that t satis�es
.In practice, we expect the algorithm to terminateat the �rst iteration in most cases.Example 5.1 Consider the TAB in Example 4.2.The levels computed by the CSD algorithm are il-lustrated in Figure 2. We now apply the algorithmfor TABEXT generation. At the �rst iteration of therepeat-until cycle k = 2 and current time=1/14/99(12/31/98 + 2Weeks). Let TAB(i)EXT be the TABEXTresulting from the evaluation of level Li. We have:TAB(1)EXT = fhA1; f(ftrueg; f1=1=95� t � 1=19=97g),(ft 6�7 1g; f1=20=97� t � 12=31=98g),(ftrueg; f1=1=99� t � 1=14=99g)gigTAB(2)EXT = TAB(1)EXT [fhA�2 ; f(ft �7 (y + 1)8y = 0; : : : ; 4g; f1=1=96� t � 12=31=97g)gigTAB(3)EXT = TAB(2)EXT [fhA1; f(ft �7 1g;f1=20=97 � t � 12=31=98g)gigsuccess is set to true and the repeat-until cycle ter-minates.The last step of the algorithm substitutes 1 to eachvalue t such that 1/7/99< t �1/14/99. Hence:TABEXT = fhA1; f(ftrueg; f1=1=95� tg)gi,hA�2 ; f(ft �7 (y + 1)8y = 0; : : : ; 4g,f1=1=96 � t � 12=31=97g)gigOnce we have generated TABEXT , an access re-quest from user s1 to exercise access mode m1 on ob-ject o1 at time t will be allowed only if hA;
i existsin TABEXT such that s(A)=s1, o(A)=o1, m(A)=m1,pn(A)= `+', and t satis�es
.6 ConclusionsIn this paper we have presented an authorizationmodel where authorizations can be periodic and have alimited time of validity. The model also allows users toPage 10

Algorithm 5.1INPUT: The output hL1; : : : ; Lki of the CSD Algorithm and TAB0.OUTPUT: TABEXT=fhAi;
ii j Ai is a valid authorization for each instant satisfying
igMETHOD:1. k := 1; success := false2. Repeat2.1. k := k + 1; current max := tmax+k � Pmax2.2. For each level Li:Let Xi � TAB0 containing all hAm;�mi and hR;�Ri (R=Am hopi An) such that Am appears in LiRepeatFor each hx;�i 2 Xi:(a) Let � be the conjunction of �, �m;i and f(true; t � current max)g(b) If x = Am hopi An:If op = whenever: reassign to � the conjunction of �n and �If op = whenever-not: reassign to � the conjunction of :��n and �If op is a past operator:Let t be the unique variable appearing in �Case op of:upon: reassign to � the conjunction of f(true; t > t)g and �,where t is the �rst instant satisfying � and �nupon-not: reassign to � the conjunction of f(true; t > t)g and �,where t is the �rst instant satisfying � and :��naslongas: reassign to � the conjunction of f(true; t < t)g and �,where t is the �rst instant satisfying � and :��nunless: reassign to � the conjunction of f(true; t < t)g and �,where t is the �rst instant satisfying � and �n(c) If Am is a positive authorization: reassign to � the conjunction of � with the complementof each element in the set f�k j pn(Ak)=`�',s(Ak)=s(Am),o(Ak)=o(Am), m(Ak)=m(Am)g(d) Discard the inconsistent pairs from �(e) Add hAm;�i to TABEXTuntil TABEXT does not change2.3. If 8hA;
i in TABEXT
 ^� f(true; tmax+(k � 2) � Pmax < t � tmax+(k � 1) � Pmax)g !=�
 ^� f(true; tmax+(k � 1) � Pmax < t � tmax+k � Pmax)g:success := trueUntil success3. For each hA,
i in TABEXT : substitute with 1 each value t such that tmax+(k � 1) � Pmax < t � tmax+k � PmaxFigure 3: An algorithm for TABEXT generationspecify rules for the automatic derivation of new (peri-odic) authorizations. The model results therefore veryexible and powerful in terms of the kinds of protec-tion requirements that it can represent. Obviously, theexibility provided to the users requires a non trivialunderlying formal model where time constraints, peri-odicity constraints, and derivation rules can be repre-sented. We have de�ned such a model in this paper,and proved the main properties it satis�es. Moreover,we have given algorithms for controlling the consis-tency of an authorization base and for determining allauthorizations derivable from it. Administrative oper-ations to remove or add authorizations and derivationrules can be easily de�ned based on [2]. Further workincludes the development of materialization strategiesfor the incremental maintenance of TABEXT upon ex-ecution of administrative operations.References[1] E. Bertino, C. Bettini, E. Ferrari, and P. Sama-rati. Supporting periodic authorizations and tem-

poral reasoning in database access control. Tech-nical report, DSI - University of Milano, Italy,1996.[2] E. Bertino, C. Bettini, E. Ferrari, and P. Sama-rati. A temporal access control mechanism fordatabase systems. IEEE Trans. on Knowledgeand Data Engineering, 8(1), February 1996.[3] M. Gelfond and V. Lifschitz. The stable modelsemantics for logic programming. In Proc. 5thIntl. Conf. on Logic Programming, pages 1070{1080, Cambridge, Massachusetts, 1988.[4] M. Niezette and J. Stevenne. An e�cient sym-bolic representation of periodic time. In Proc. 1thIntl. Conf. on Information and Knowledge Man-agement, Baltimore, MD, November 1992.[5] P.Z. Revesz. A Closed Form Evaluationfor Datalog Queries with Integer (Gap)-OrderConstraints. Theoretical Computer Science,116(1):117{149, 1993. Page 11

[6] J. G. Steiner, C. Neuman, and J. I. Schiller. Ker-beros: An authentication service for open networksystems. In Proc. USENIX Conf., pages 191{202,Dallas, TX, 1988.[7] D. Toman, J. Chomicki, and D.S. Rogers. Data-log with Integer Periodicity Constraints. In Proc.Intl. Logic Programming Symposium, pages 189{203. MIT Press, 1994.[8] A. Van Gelder, K. Ross, and J. S. Schlipf.The well-founded semantics for general logic pro-grams. Journal of the ACM, 38(3):620{650, July1991.[9] T.Y.C. Woo and S.S. Lam. Authorizations in dis-tributed systems: A new approach. Journal ofComputer Security, 2(2 & 3):107{136, 1993.A Datalognot;�Z;<ZIn this paper we used Datalognot;�Z;<Z to specify the se-mantics of a set of periodic authorizations and rules, andthe algorithm to generate implicit authorizations mimics a�xpoint computation of the model of a Datalognot;�Z;<Zprogram. Datalognot;�Z;<Z is a simple extension ofDatalog�Z;<Z [7] with non monotonic negation [8], how-ever, to our knowledge, it was never considered in the liter-ature. Datalognot;�Z;<Z programs are de�ned as follows.De�nition A.1 (Datalognot;�Z;<Z Program) ADatalognot;�Z;<Z program P is a �nite set of (function-free) clauses of the formB D1; : : : ; Dm;notDm+1; : : : ;notDm+n; C1; C2where B;D1; : : : ; Dm+n are atoms, C1 is a satis�able peri-odicity constraint, C2 is a satis�able gap-order constraint,and not represents non monotonic negation.Bottom-up evaluation of Datalognot;�Z;<Z programs re-quires to perform operations on gap-graphs and periodicitygraphs. To this purpose we need the operations of conjunc-tion (^�) and complement (:�) on sets of graphs illustratedin Subsection 4.2. We also need the operations of subsump-tion and projection (�), for periodicity graphs combinedwith gap graphs de�ned in [7]. Intuitively, if x; y; and zare the nodes in both G and H, then �xy(G;H) returnsa set of pairs (Gi; Hi) obtained from (G;H) by droppingnode z and all the edges ending in z, after computing allthe constraints (edge's labels) implied by the edges to bedropped. The � operation also discards any resulting pairthat is inconsistent. The subsumption operation has its in-tuitive semantics: a pair (G1; H1) is subsumed by (G2; H2)(having the same set of variables) if any assignment satis-fying (G1; H1) satis�es also (G2; H2). Operations of sub-sumption and projection can be easily extended to sets ofpairs (G;H), similarly to ^� and :�.Periodicity and gap graphs serve as a basis to de�ne anon-ground interpretation for Datalognot;�Z;<Z programs.A (�;<) interpretation is any set of pairs of the form(B;�), where B is a predicate symbol, and � is a set of

pairs (G;H) denoting the disjunction of the correspondingconstraints.Given a Datalognot;�Z;<Z program P we can de�ne anoperator TPnot;�Z;<Z that maps (�;<) interpretations to(�; <) interpretations. In the following we denote with ��the projection operation on sets �.De�nition A.2 (TPnot;�Z;<Z operator) Let P be aDatalognot;�Z;<Z program and I a (�; <) interpretation.TPnot;<Z;�Z(I) = I [f (B;�) : B D1; : : : ; Dm,notDm+1; : : : ;notDm+n,C1; C2 2 P(Di;�i) 2 I, 8i = 1; : : : ;m� = �1^� : : : ^� �m^�^�:�(�m+1) ^� : : : ^� :�(�m+n)^�f(GC1 ; HC2)g� = ��V ar(B)(�)(B;�) is not subsumed by I gwhere GC1 is a periodicity graph corresponding to C1, HC2is a gap graph corresponding to C2 and V ar(B) denotes theset of variables in atom B. The nodes of the periodicityand gap graphs are renamed using the variable names inthe associated atoms of the clauses.If we restrict our attention to strati�ed (or locally strat-i�ed) [8] Datalognot;�Z;<Z programs the following proce-dure based on the �xpoint iteration method can be usedto evaluate programs.Algorithm A.1 (Naive Bottom-up evaluation ofstrati�ed Datalognot;�Z;<Z programs) Let P be aDatalognot;�Z;<Z program, let P1; : : : ; Pn be a strati�ca-tion of P .10I := ;For i := 1 to n dorepeatI := TPnot;�Z;<Zi (I)until I does not changeendforreturn ITermination of algorithm A.1 is not guaranteed for anystrati�ed Datalognot;�Z;<Z program, as Datalognot;�Z;<Zprograms can express any Turing computable function [5].However, it is easily shown [1] that if gap-order constraintsare on a �nite subset of the integers, Algorithm A.1 termi-nates returning a non-ground representation of the unique(ground) model of the program.
10Pi contains rules of strata i, i = 1; : : : ; n. Page 12

