
A

Integrating Trust Management and Access Control in
Data-Intensive Web Applications

SABRINA DE CAPITANI DI VIMERCATI, DTI - Università degli Studi di Milano

SARA FORESTI, DTI - Università degli Studi di Milano

SUSHIL JAJODIA, CSIS - George Mason University

STEFANO PARABOSCHI, DIIMM - Università degli Studi di Bergamo

GIUSEPPE PSAILA, DIIMM - Università degli Studi di Bergamo

PIERANGELA SAMARATI, DTI - Università degli Studi di Milano

The widespread diffusion of Web-based services provided by public and private organizations stresses the
need for a flexible solution for protecting the information accessible through Web applications. A promising
approach is represented by credential-based access control and trust management. However, although much
research has been done and several proposals exist, a clear obstacle in the realization of their benefits in
data-intensive Web applications is represented by the lack of adequate support in the DBMSs. As a matter
of fact, DBMSs are often responsible for the management of most of the information that is accessed using
a Web browser or a Web service invocation.

In this paper, we aim at eliminating this gap and present an approach integrating trust management with
the access control of the DBMS. We propose a trust model with a SQL syntax and illustrate an algorithm for
the efficient verification of a delegation path for certificates. Our solution nicely complements current trust
management proposals allowing the efficient realization of the services of an advanced trust management
model within current relational DBMSs. An important benefit of our approach lies in its potential for a
robust end-to-end design of security for personal data in the Web scenario, where vulnerabilities of the Web
applications cannot be used to violate the protection of the data residing on the database server. We also
illustrate the implementation of our approach within an open-source DBMS discussing design choices and
performance impact.

Categories and Subject Descriptors: H.2.4 [Database Management]: Systems—Relational databases;
H.2.7 [Database Management]: Database Administration—Security, integrity, and protection; H.3.5 [In-
formation Storage and Retrieval]: Online Information Services—Web-based services; K.6.5 [Manage-
ment of Computing and Information Systems]: Security and Protection

General Terms: Management, Security

Additional Key Words and Phrases: Trust management, relational databases, access control

1. INTRODUCTION
Governments, large companies, and many other organizations are required to offer
access to information contained within their information systems to a multitude of

Author’s address: Sabrina De Capitani di Vimercati, Sara Foresti, Pierangela Samarati, DTI - Università
degli Studi di Milano, 26013 Crema, Italy. Sushil Jajodia, CSIS - George Mason University, Fairfax, VA
22030-4444, USA. Stefano Paraboschi, Giuseppe Psaila, DIIMM - Università degli Studi di Bergamo, 24044
Dalmine, Italy. This paper extends the previous work by the authors appeared under the title “Trust man-
agement services in relational databases,” in Proc. of the 2nd ACM Symposium on Information, Computer
and Communications Security (ASIACCS 2007), March 2007, Singapore [De Capitani di Vimercati et al.
2007].
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights
for components of this work owned by others than ACM must be honored. Abstracting with credit is per-
mitted. To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component
of this work in other works requires prior specific permission and/or a fee. Permissions may be requested
from Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
c© YYYY ACM 1559-1131/YYYY/01-ARTA $10.00

DOI 10.1145/0000000.0000000 http://doi.acm.org/10.1145/0000000.0000000

ACM Transactions on the Web, Vol. V, No. N, Article A, Publication date: January YYYY.

Sara Foresti

Sara Foresti
© ACM, (2012). This is the author's version of the work. It is posted here by permission of ACM for your personal use. Not for redistribution. The definitive version was published in ACM Transactions on the Web (TWEB), Volume 6, Issue 2, May 2012,
http://doi.acm.org/10.1145/2180861.2180863

Sara Foresti

A:2 De Capitani di Vimercati, Foresti, Jajodia, Paraboschi, Psaila, Samarati

users. Users can be internal or external, and access the data from their clients con-
nected to a network. The size and dynamics of the user community in this scenario
impose requirements that cannot be easily solved by traditional authorization and ac-
cess control solutions. In particular, it is often impractical to assume the creation and
management of an account for each and every user on each system: it is complex both
on the provider’s side (each account has to be managed, privileges have to be explic-
itly assigned, and individual credentials have to be securely kept) and on the user’s
side (every one experiences problems in managing the accounts and passwords she
has) [Winslett et al. 1997]. The case for governments and public services is particu-
larly significant: there is a strong interest in allowing citizens to access in a simple
way the information on them maintained by public organizations, while guaranteeing
protection of this information from unauthorized accesses.

Several proposals have recently tried to provide an answer to the problem above,
at different levels. Single Sign On solutions represent an immediate approach for the
management of the client-side issues, but fall short in satisfying the requirements of
wide-scale open systems as they deal only with the sharing of authentication within a
single organization. More sophisticated solutions have considered credential/attribute-
based access control and “trust management”, a term with many facets and that we
characterize here as a label identifying access control systems where the access policy
refers to information that is provided by user certificates (e.g., [Bonatti and Samarati
2002; Irwin and Yu 2005; Li et al. 2005a; Li et al. 2005b; Wang et al. 2004; Warner
et al. 2005; Winslett et al. 1997; Yu and Winslett 2003]). Recent evolutions of these ap-
proaches have considered to limit the disclosure of the personal information provided
by the user to the server, thanks to a negotiation phase or to the services of an Identity
Provider [Lee et al. 2008; Lee and Winslett 2008b; Ryutov et al. 2005; Winsborough
and Li 2006; Winslett et al. 2002; Yu et al. 2000; Yu et al. 2001; 2003; Yu and Winslett
2003]. Most of these proposals have generated considerable interest in the research
community, but have found until now limited application in Web environments. One of
the obstacles in the realization of the benefits of trust management is represented by
the lack of adequate support in the DBMS.

The availability of a trust management service within the DBMS would considerably
increase the impact and applicability of credential/attribute-based access control. As a
matter of fact, DBMSs are not only the backbone of old-style business applications, but
are responsible for the management of most of the information that is accessed using a
Web browser or a Web service invocation. On the other hand, research on database ac-
cess control, in the academic and industrial communities, has recently shown a signifi-
cant interest for the definition of fine-granularity access control (FGAC) (e.g., [Agrawal
et al. 2005; Kabra et al. 2006; Murthy and Sedlar 2007]). Typically, fine-granularity ac-
cess control systems define authorizations that depend on information extracted from
the user profile. Some proposals assume that these data are stored within the DBMS,
while other proposals assume that they are provided, in an unspecified way, at session
startup. The approach presented in this paper supports flexible authorizations and
goes a step further thanks to the consideration of credentials, which permit a clear
management of user attributes, compliant with the architecture of future Internet ap-
plications.

1.1. Scenario
The architecture we consider for the use of the trust management services assumes a
typical three-layer structure, with a browser working as a front-end to a Web Server
accessing data stored on a DBMS. Current three-layer architectures assume that user
privileges on accessing the data are described in the Web application, which has con-
tinuous privileged access to the DBMS, with full control on all the data accessible by

ACM Transactions on the Web, Vol. V, No. N, Article A, Publication date: January YYYY.

Integrating Trust Management and Access Control in Data-Intensive Web Applications A:3

Browser

Web Server

DBMS
Cryptographic

Service

Tables
supporting TM

Data

private key

 Certificate

(1.5) challenge/response

(1.4) challenge/response

(1.3) challenge/response

 Certificate

 Certificate

 Certificate

(1.0)

(1.1)

(1.2)

Fig. 1. Architecture of the system

the user. If the client authenticates using certificates or the authentication process ex-
ploits trust management functions, the functionalities supporting certificates and/or
trust management are realized within the Web Server.

Figure 1 illustrates a high-level architecture of systems resulting from the integra-
tion of a DBMS with the trust management functionality. This architecture is different
from the typical three-layer architecture characterizing traditional systems described
above. In this architecture, the interaction among the components follows these steps.
The client makes available a set of certificates to the browser (step 1.0). The browser
forwards these certificates to the Web Server (step 1.1) that in turn forwards them to
the DBMS (step 1.2). The DBMS verifies, for each certificate in the set, that the owner
of the certificate corresponds to the access requestor, executing a challenge/response
verification (steps 1.3, 1.4, and 1.5). The challenge/response phase can rely on an im-
plementation of the Needham-Schroeder-Lowe protocol [Lowe 1996; Needham and
Schroeder 1978], which offers mutual authentication guarantees to each party. The
cryptographic module within the DBMS sends a random value as a challenge, the
client encrypts the challenge with her private key, and the cryptographic module ver-
ifies that encrypting the response with the public key in the certificate produces back
the challenge. All the exchanges between the client and the DBMS are routed through
the Web Server and the browser. After the challenge/response verification, the Cryp-
tographic Service will verify that the signing authority of each certificate is trusted.
This check is performed by analyzing the list of trusted certification authorities, which
is a part of the system configuration. Finally, the set of certificates presented by the
client and verified by the DBMS are used to establish the client’s access privileges to
the tables in the database.

ACM Transactions on the Web, Vol. V, No. N, Article A, Publication date: January YYYY.

A:4 De Capitani di Vimercati, Foresti, Jajodia, Paraboschi, Psaila, Samarati

The integration between trust management services and the DBMS allows the re-
alization of an end-to-end design in the management of access control, providing a
mechanism that exhibits a computational complexity compatible with a performance-
conscious environment as DBMSs and Web systems. Such a design enjoys the following
benefits.

— It is more robust from a security point of view, because it is not vulnerable to errors
in the application. For instance, SQL injection is today a common and critical vulner-
ability of many Web applications. Systems using a trust management solution within
the DBMSs would be immediately protected against this attack, because the portion
of data accessible to each user would only depend on the credentials presented by
the user and a manipulation of the Web application could not be used to exploit it.
In general, this design would satisfy a classical access control principle that imposes
to “keep the access control mechanism close to the resource” [Saltzer and Schroeder
1975].

— It makes it possible to define once for all applications and access paths the set of
privileges of every user. For environments where the Web system consists of several
Web applications, the advantage of having a strict integration between the access
policy and the data facilitates their management, providing an immediate guarantee
that the policy will be satisfied by every access.

— It facilitates the integration of all the data collections that are used by different
applications. Today, most systems that support distinct applications distribute the
information in different databases to introduce a protection layer against possible
misuses of data. The availability of an integrated trust management service would
facilitate the creation of a single database, with all the advantages in terms of re-
duced complexity of the system, better consistency checks, and easier support of all
the applications that have to access data belonging to separate domains.

We therefore propose a novel service integrated within the database architecture,
which has been developed with the following requirements in mind.

— Seamless integration with the DBMS. A trust management solution should not sub-
vert the control of the module of the DBMS that monitors access to resources, but
should complement it. Also, a trust management solution should be able to express
and represent trust information as part of the database schema, with an adequate
representation within the catalog of the DBMS.

— Abstractness and usability. A trust management solution should maintain both the
abstractness of the structure of the DBMS and the declarativeness of the languages
accessing it.

— Expressiveness. A trust management solution should be expressive to make it possi-
ble to specify in a flexible way different protection requirements that may need to be
imposed on different data.

— Scalability. A trust management solution should ensure scalability with respect to
the potentially high number of users, resources, and policies that may need to be
managed in the context of large distributed open systems.

The proposed solution is based on the assumption that a client presents all certifi-
cates needed for an access at the request time. This does not rule out compatibility
with the different proposals supporting trust negotiation (e.g., [Lee and Winslett 2006;
Lee et al. 2008; Winslett et al. 2002; Yu et al. 2000; Yu and Winslett 2003; Yu et al.
2001; 2003]). Our assumption is essentially that the identification of the certificates
that the client should provide is completed before our trust management service starts
the verification process.

ACM Transactions on the Web, Vol. V, No. N, Article A, Publication date: January YYYY.

Integrating Trust Management and Access Control in Data-Intensive Web Applications A:5

1.2. Contribution and structure of the paper
The contribution of this paper is threefold. First, we provide an expressive and flexible
model for defining and managing trust within DBMSs. The proposed model is based
on the definition of new SQL statements for integrating trust management in rela-
tional DBMSs. Second, we propose an algorithm that determines (if any) the delega-
tion chains for (a possible subset of) the attributes listed in a certificate. The algorithm
computes the delegation chains by taking into consideration the fact that the com-
putational effort required for the chain verification should be minimized. Third, we
empirically verify the soundness of the proposed technique by integrating our model
with a well known open-source DBMS, PostgreSQL, and evaluate the impact on system
performance.

The remainder of the paper is organized as follows. Section 2 introduces the base
elements of a trust management model for DBMSs and defines the framework within
which the model should operate. Section 3 proposes SQL statements for representing
the trust model, which allow a seamless integration with existing DBMSs. Section 4
presents an algorithm for retrieving a valid delegation chain in support of a set of cer-
tificates presented by a client. Section 5 discusses integration with current relational
database engines and specifically the implementation of our proposal in PostgreSQL.
Section 6 highlights the practical impact of our solution on current and future ICT
infrastructures for credential and identity management. Section 7 describes related
work. Finally, Section 8 presents our concluding remarks. The paper also includes an
Appendix that reports: an analysis of the complexity of the problem of computing min-
imum cost delegation chains (Appendix A.1), a detailed description of the functions
called by the algorithm introduced in Section 4 (Appendix A.2); and the proofs of the
theorems stated in the paper (Appendix A.3).

2. BASE ELEMENTS OF THE MODEL
The first step for introducing a model and related language for defining and managing
trust within the DBMS is the identification of the concepts that should be captured
for providing trust management. It is also necessary to define the framework within
which the model should operate.

2.1. Base concepts
By analyzing the needs of a trust management system, and considering the results of
previous work in the area, we identify the following concepts that need to be captured.

Identity. It corresponds to a public key. The trust management service is based on
the services of asymmetric cryptography. Every client interacting with the database
presents an identity and, as long as the client demonstrates knowledge of the private
key corresponding to the identity, the client owns the identity.

Authority. It represents an identity (i.e., a public key) responsible for producing and
signing certificates. The need for capturing this concept comes from the fact that a
party accepts certificates signed by identities that it trusts (or chains of certificates
leading to them).

Certificate. It involves two identities: the issuer producing the certificate, and the
subject receiving it. The integrity of the certificate is guaranteed by the presence of a
cryptographic signature created by the issuer. A certificate then includes: the issuer’s

ACM Transactions on the Web, Vol. V, No. N, Article A, Publication date: January YYYY.

A:6 De Capitani di Vimercati, Foresti, Jajodia, Paraboschi, Psaila, Samarati

public key, the subject’s public key, a validity period, and a signature. We distinguish
two types of certificates: attribute certificates and delegation certificates.1

— An attribute certificate binds attribute information (including identity) to the certifi-
cate subject. It contains a list of pairs 〈attribute name, attribute value〉.

— A delegation certificate issued by an authority asserts that it trusts another authority
(or authorities having certain attributes) for issuing certain attribute certificates.
Delegation has been an important topic in research on trust management. The model
presented in this paper considers a form of delegation where authorities can either
give unrestricted delegation to other authorities, or delegate other authorities only on
specified attributes (e.g., a health agency can issue a certificate delegating physicians
to certify a restricted set of properties of patients). A delegation certificate contains
a list (possibly empty) of attribute name terms, representing the attributes on which
the subject has been delegated.

Policy. It defines the rules regulating access to resources, based on the identities
owned by the client and on the information provided by the attribute and delegation
certificates. A major contribution of our solution is the capability to express powerful
rules that complement and nicely integrate the native access control solution of the
DBMS.

2.2. Framework assumptions
The goal of this work is to present an approach for allowing the DBMS to understand
and reason about trust and regulate access to its data accordingly. The crucial fea-
ture is a strict and smooth integration between the trust management services and
traditional database access control. The potential applications of this approach are
particularly significant for the Web scenario, but they can find application in most
environments where relational DBMSs are used (see Section 6.2).

We are not concerned with the low-level services (such as certificate formats, cryp-
tographic protocols) required to create, exchange, and verify certificates, or to delegate
authority; the model is built assuming the presence and correct behavior of traditional
solutions developed for that and already available. Specifically, issues like certificate
revocation, network retrieval of certificates, credential negotiation, and robust cryp-
tography, are all assumed to be managed by an underlying implementation of the cer-
tificate management service [Lee et al. 2008; Li et al. 2005a; Li et al. 2003]. Reuse
of existing implementations is particularly significant in this environment, where the
large number, variety, and distribution of the players, combined with the need for a
consensus on the used standards, give a strong “first-mover advantage”.

Our proposal represents a convenient strategy to realize the benefits of a richer trust
management model without the need to update the underlying infrastructure (see Sec-
tion 6.1). This is particularly significant considering that currently X.509 [Housley
et al. 2002] is the format typically used for certificates and it presents significant lim-
itations in its design (it allows a restricted form of delegation and it focuses on the
certification of real-world identities, an intrinsically hard problem that X.509 is not
able to solve completely). The integration with a richer model like the one proposed in
this work can significantly increase the flexibility in the use of X.509 certificates.

3. SQL MODEL FOR TRUST MANAGEMENT
Our solution builds on an analysis of previous proposals, most of which are not directly
applicable to the DBMS scenario. Although existing approaches are expressive, they

1Even if some certificate formats do not consider these two types of certificates as different, it is possible to
consider them separately.

ACM Transactions on the Web, Vol. V, No. N, Article A, Publication date: January YYYY.

Integrating Trust Management and Access Control in Data-Intensive Web Applications A:7

are unmanageable in practice. A major limitation is that most of them are based on
expressive logics that cannot be put to work in real DBMSs. Therefore, since all re-
lational DBMSs support SQL, our trust management model is based on SQL syntax.
In this way, we make trust management work in DBMSs, while enjoying a high ex-
pressiveness and flexibility thanks to the coupling with SQL and with existing DBMS
services.

We consider the concepts identified in the previous section and propose a possible
SQL syntax for defining them. The concept of identity corresponds to a public key
and we do not need to explicitly represent it in the model. Delegation certificates are
implicitly represented in our model through the definition of certified attributes for
which we can specify the authorities trusted for asserting such attributes and whether
delegated authorities can also be accepted (Section 3.2).

Each trust concept is represented by a SQL statement resulting in the construc-
tion of a corresponding schema object (see Section 5). Note that the introduction of
SQL statements for the representation of the model is a critical success factor for a
trust management solution in relational DBMSs, otherwise DBAs would be required
to express trust using either external or low-level SQL constructs. The introduction of
specific SQL constructs for the management of a novel security service is compatible
with both the typical DBMS approach, where new constructs are always used to rep-
resent novel functions (e.g., SQL:2003/Foundation has more than 200 constructs), and
the canonical security design approach, which imposes to keep the policy and its man-
agement clear and separated from the mechanism and from implementation details.

3.1. Authority
The concept of authority defines the identities that can issue certificates. Its definition
binds a name to the public key of the authority. Considering the features of current
X.509 certificates, which use a predefined schema to describe the Distinguished Name
of authorities, we consider the introduction of a predefined set of attributes in the
authority description. The syntax of the SQL statement is then as follows.2

create authority AuthorityName
[imported by FileName]|
[(public_key = AttrValue
{, AttrName = AttrValue})]

This statement permits to define an authority with name AuthorityName whose pub-
lic key is stored in attribute public key, which must always be specified. The attributes
describing the authority can be possibly imported from an existing certificate stored
in file FileName (clause imported by). In this case, the attributes follow the schema
specified by X.509 [Housley et al. 2002] and must include the authority’s public key.

Example 3.1. The following create authority statement defines authority Gov-
ernment, representing the governmental department of health, specifying its X.509
attributes, namely: common name (CN), organization (O), and country (C).

create authority Government
(public_key = ‘14:c9:ec....:4f:91:51’,
CN = ‘Department of Health’,
O = ‘Governmental’,
C = ‘IT’)

2Note that, since there is also the need to manage the evolution of the policy, the drop and alter statements
are required for the removal and update of authorities as well as for all the other components of the policy
schema that will be described next. We omit the description of these statements.

ACM Transactions on the Web, Vol. V, No. N, Article A, Publication date: January YYYY.

A:8 De Capitani di Vimercati, Foresti, Jajodia, Paraboschi, Psaila, Samarati

A critical aspect for scalability is represented by the ability of defining an authority
based on its certified attributes, instead of its identity. To this purpose, we propose the
concept of authority class and the following SQL statement.

create authorityclass AuthorityClassName
authoritative
AuthorityClassOrName [with [no] delegation]
{, AuthorityClassOrName [with [no] delegation]}
[except AuthorityName {, AuthorityName}]
(AttrName AttrDomain [check (Condition)]
{, AttrName AttrDomain [check (Condition)]}
[, check (Condition)])

This statement allows the definition of an authority class with name AuthorityClass-
Name. The syntax is rich and reuses many features that SQL offers for the definition
of tables. The description of the meaning and role of clauses authoritative, with [no]
delegation, except, and check appears in Section 3.2, since they are also used for
defining trust tables. The main difference in the management of authority classes,
compared with trust tables, is that trust tables represent attributes obtained by certifi-
cates where the subject is the identity interacting with the database, whereas author-
ity classes are defined based on attribute certificates where the subject is an authority.
The definition of an authority class is recursive, and an authority class can then be
defined starting from another authority class.

Example 3.2. The following create authorityclass statement defines the
ClassHospital class as any private or public institution holding a certificate issued
by the National Healthcare System (NationalHealthcare) proving that the institution
has the authorization to operate as a hospital in a given city.

create authorityclass ClassHospital
authoritative NationalHealthcare with delegation
(authorization varchar(30) check (authorization is not null),
city varchar(20))

3.2. Certified attributes (trust tables)
Traditional approaches to trust management (e.g., [Bonatti and Samarati 2002; Irwin
and Yu 2005; Li et al. 2005a; Yu et al. 2003]) usually do not assume a (pre)declaration
of the attributes that will be used in the policy, but directly use attributes in the policy.
However, since DBMS engines need a structured organization of the data, the consid-
eration of a DBMS context requires the explicit identification, in terms of names and
types, of all the attributes that will be used in the trust model. In our solution, the
concept of trust table responds to this need since queries can refer to the information
provided via certificates. The concept of trust table captures the following aspects.

— The certified attributes that characterize the identity making a request to the
database. The idea is that a client presents a set of certificates and the information
extracted from them is stored in a relational table that associates this information
with the session that manages the dialog with the client.

— The declaration of the authorities trusted for asserting those attributes.
— The declaration of whether possible delegated authorities are accepted (as well as a

possible list of excluded authorities).
— The specification of possible conditions on the value of attributes that can be accepted,

thus filtering certificates on the basis of the values of the attributes appearing in
them.

The proposed syntax for the definition of a trust table is as follows.

ACM Transactions on the Web, Vol. V, No. N, Article A, Publication date: January YYYY.

Integrating Trust Management and Access Control in Data-Intensive Web Applications A:9

create trusttable TrustTableName
[authoritative
AuthorityClassOrName [with [no] delegation]
{, AuthorityClassOrName [with [no] delegation]}]
[except AuthorityName {, AuthorityName}]
(AttrName AttrDomain [check (Condition)]
{, AttrName AttrDomain [check (Condition)]}
[, check (Condition)])

The interpretation of the options is as follows. The TrustTableName represents a
name associated with the set of attributes extracted from certificates signed by given
authorities.
The authoritative clause describes the authorities (or classes of authorities) that
are trusted as signers of certificates including the required set of attributes. If the
authoritative clause associated with a trust table contains a set of authority names
only, certificates provided by them will be analyzed to extract certified attributes. If
the authoritative clause contains the name of authority classes, the certificates con-
sidered for the corresponding trust table can also be those issued by authorities that
belong to the specified authority classes. An authority AuthorityName belongs to an
authority class if it has a certificate that satisfies the restrictions specified in the def-
inition of the authority class. Since, in turn, this certificate can be issued either by an
authority (different from AuthorityName) explicitly listed in the authoritative clause
of the create authorityclass statement or by an authority (different from Author-
ityName) belonging to an authority class listed in the same clause, the verification
process is recursive. If the authoritative clause is missing, no specific authority is
associated with the trust table, and every certificate is analyzed with respect to the
configuration of the underlying engine that verifies certificates’ validity.
If with (no) delegation is specified, the module responsible for verifying the integrity
of the certificates is (not) permitted to consider certificate chains.
The except clause allows the specification of exceptions. It can be used by the DBA to
exclude specific authorities that she does not want to consider for the given trust table
(even if they have received a delegation for it). The reason for exceptions can be that
the named authority is not trusted by the DBA or that a more specific trust table is
used to manage certificates issued from that authority.
The check clause is a powerful mechanism that SQL offers for the description of in-
tegrity constraints. The trust table statement uses the check clause to introduce con-
straints on the values of the certified attributes. The conditions that can be specified
in the check clause are the same conditions that can appear in the where clause of a
SQL query and can reference any attribute in the trust table.

Example 3.3. The following trust table Physician specifies the attributes charac-
terizing physicians working for a specific hospital. The authorities trusted to issue
certificates that include the attributes mentioned in the trust table are: authority
class ClassHospital of hospitals, authority Government representing the department of
health, authority Board representing the research board, and authority class ClassRe-
searchInstitute of research institutes. We assume that authority LocalHospital cannot
be considered for this trust table. The check clause imposes the non nullity of attribute
number, representing the registration number of the physician to the public register.

create trusttable Physician
authoritative ClassHospital with no delegation,

Government with delegation,
Board with delegation,
ClassResearchInstitute with delegation

ACM Transactions on the Web, Vol. V, No. N, Article A, Publication date: January YYYY.

A:10 De Capitani di Vimercati, Foresti, Jajodia, Paraboschi, Psaila, Samarati

except LocalHospital
(number char(10) check (number is not null),
project varchar(20),
specialty varchar(20))

3.3. Policy
A trust management policy regulates access to resources based on the attributes stated
by verified certificates. Supporting a trust management policy requires to provide the
DBMS with means to exploit certified attributes to regulate access. In this section,
we show how certified attributes can be used by the DBMS to enable roles and user
identifiers. This provides a dynamic component for managing subjects, whose access
is then regulated by classical authorizations (for roles and/or users) within the DBMS
itself. We also illustrate how trust management can be used to enrich access control
with context-based restrictions.

3.3.1. Trust policy.

The trust policy represents the mechanism by which data access privileges are as-
signed to clients, based on the information in the trust tables. The trust policy allows
the system to associate a given role with a client, subject to the satisfaction of a con-
dition that can refer to the trust table attributes. The condition is expressed in the
SQL syntax for query predicates, and uses the SQL dot notation to refer to trust ta-
ble attributes (preceding them with the name of the trust table). The following SQL
statement defines a trust policy.

create trustpolicy PolicyName
[for <Role [autoactivate] | UserId>]
where Condition

This statement allows the definition of a trust policy PolicyName, where Condition
is any predicate that can appear in the where clause of a SQL query and can refer to
the trust table using its name and specifying the attributes contained in it. The Role
is a previously defined SQL role, that is, a set of privileges that can be dynamically
activated by users granted the privilege to activate the role [Database language SQL
1999]. The semantics of the statement is that all users presenting certificates satisfy-
ing the condition are authorized to activate the specified role, or are associated with
the specified user identifier UserId. If the autoactivate option is indicated, the role
activation is automatic.3 If the for clause is omitted, the user satisfying the condition
is assigned the privileges of the predefined identifier PUBLIC, which every user within
the system is allowed to activate.

Since trust management systems are typically used to enforce attribute-based access
control (which departs from the classical mechanism based on user identifiers) this
statement would typically be used to establish role activation. The reason for consid-
ering trust policy statements referring to user identifiers is to support authentication
certificates, that is, certificates stating a correspondence between a trust management
identity and a user identifier internal to the database.

3When the client satisfies the conditions of many trust policies, she would receive a grant to activate multiple
roles, and if the trust policies specify the autoactivate option, they will be all activated at the same time.
The concurrent activation of multiple roles does not create a critical situation, thanks to the absence of
negative authorizations in SQL that permits an immediate combination of different authorization profiles
based on set union.

ACM Transactions on the Web, Vol. V, No. N, Article A, Publication date: January YYYY.

Integrating Trust Management and Access Control in Data-Intensive Web Applications A:11

Example 3.4. The following policy activates role Cardiologist for each user present-
ing a certificate (see Example 3.3) proving that she is a physician whose specialty is
cardiology.

create trustpolicy RoleCardiologist
for Cardiologist autoactivate
where Physician.specialty = ‘cardiology’

3.3.2. Support for context-based restrictions.

SQL provides some support for content-based access control, via the use of views,
but it does not provide support for context-based access control, where access to data
(or to views over them) may depend on properties of the user (or her session) such as
the time, or the machine from which the user connected, and so on. Our trust man-
agement solution can be used to provide such a functionality. Also, coupled with the
view mechanism, it can provide a means to specify accesses where each user has a
particular view over the data, depending on her certified attributes. This technique is
simple, yet effective, and powerful. The specification of context-based restrictions re-
lies on the traditional SQL syntax for the definition of views. When it is necessary to
define restrictions on the value of certified attributes, trust tables may appear in the
from clause of the SQL statement that defines a view. The specification of the certified
attributes in the definition of a view follows an approach similar to the one used for
the definition of trust policy conditions, thus referencing certified attributes using the
SQL dot notation (i.e., TrustTableName.AttName). A small difference is that trust ta-
bles are assumed to be directly available in the definition of the trust policy condition,
whereas they have to be explicitly listed in the from clause of the query defining the
view.

Example 3.5. The following view grants each physician access to the health exami-
nations data of her patients. In fact, each physician will be able to see all the patients
who have the physician’s number in the doctor code attribute.

create view PatientView as
select Examinations.*, Patients.*
from Examinations join Patients on Examinations.patient id=Patients.id

join Physician on Physician.number=Patients.doctor code

4. DELEGATION CHAIN VERIFICATION
One of the most critical components of every trust management proposal is the design
of the algorithm responsible for the identification of the delegation chains. Many mod-
els have been proposed for the management of this important step, both in centralized
and distributed contexts, considering several alternative models for the representation
of delegation (e.g., [Li et al. 2003]). Unfortunately, all the models that offer a flexible
delegation mechanism use algorithms for the verification of delegation chains that are
difficult to apply in the database context. The main reason for this difficulty is that
database implementors are reluctant to integrate a logic model checker within the
relational engine. We instead show that our model permits the application of an algo-
rithm that is able to identify if a given certificate (set thereof) produces a delegation
path for (a possible subset of) the attributes it certifies, without the need of integrating
a logic model checker. Also, with an approach similar to the one used by DBMS query
optimizers, our algorithm can apply a cost model that estimates the computational ef-
fort required for the verification of delegation chains. The experimental results show
that the complexity of our delegation mechanism remains manageable by a DBMS (see
Section 5.3).

ACM Transactions on the Web, Vol. V, No. N, Article A, Publication date: January YYYY.

A:12 De Capitani di Vimercati, Foresti, Jajodia, Paraboschi, Psaila, Samarati

We assume that the system has knowledge of all the delegation certificates De-
leg Certs, all the authority certificates Authority Certs that certify some attributes of
the authorities, and of the policy adopted by the system, composed of a set T T of trust
tables, a set Auth of authorities, and a set AC of authority classes. These data are
needed for the verification of a given set Cert of certificates presented by a client during
a session. We also assume that each certificate is associated with a cost representing an
estimate of the computational effort required for the certificate verification. The rea-
son for capturing cost information is that cryptographic functions are computationally
expensive and it is therefore important to minimize their use. The cost information can
be used to model the low cost of using certificates cached as valid in prior verification
as well as the high costs of retrieving certificates from remote directories. Finally, we
assume that the cryptographic check over certificates is carried out by invoking an ex-
ternal function, called VALID. Our goal is then to compute a minimum cost delegation
chain for all the certificates presented by a client. Since the problem of determining
a minimum cost delegation chain is NP-hard (see Theorem A.1 in Appendix A), we
propose the heuristic algorithm described in the remainder of this section.

4.1. Algorithm
Figure 2 illustrates our heuristic algorithm for the computation of the minimum cost
delegation chains for the certificates presented by a client. Appendix A.2 reports a de-
tailed description of the functions called by the algorithm along with their pseudocode.
The algorithm receives as input the set Cert of certificates presented by a client dur-
ing a session, the set T T of trust tables, authorities Auth, authority classes AC, del-
egation certificates Deleg Certs, and authority certificates Authority Certs. For each
certificate cert in Cert, the algorithm first calls function CHECKCORRECTNESS that
performs all the non-cryptographic controls (e.g., expiration time) on cert. If function
CHECKCORRECTNESS returns true, for each trust table TT in T T such that cert is
compatible with TT (i.e., cert contains all the attributes required by TT and cert sat-
isfies all the check conditions specified in the definition of TT) the algorithm calls
function Satisfy with parameters cert and TT. Function Satisfy returns a set ver list
of certificates forming the delegation chains (if any) supporting all the common at-
tributes in cert and TT. If all the certificates in ver list are valid, the algorithm inserts
a tuple in trust table TT whose attributes’ values are extracted from the corresponding
attributes in cert; the algorithm terminates returning an error message, otherwise. We
now describe how function Satisfy works.

Function Satisfy is the core component of our algorithm. The function takes as input
a certificate cert and an entity E, which may be either a trust table or an authority
class, compatible with cert. It returns a set of certificates that compose the delegation
chains supporting all the attributes in cert.attributes∩Attributes(TT), and rooted at an
authority (or authority class) that is trusted with respect to TT. If such delegation
chains do not exist, the function returns an empty set of certificates.

Function Satisfy first checks whether cert.issuer is a valid authority with respect to
entity E. Three cases may occur: 1) cert.issuer appears in the except clause of E (i.e.,
cert.issuer is in Except(E)), and the function terminates returning an empty set of cer-
tificates; 2) cert.issuer appears in the authoritative clause of E (i.e., cert.issuer is in
Authoritative(E)), and the function terminates returning cert as the unique certificate
composing the delegation chain; or 3) cert.issuer is a member of an authority class in
the authoritative clause of E, and the delegation chains proving this membership are
stored in variable cert.issuer.ac ver list(E). To verify whether cert.issuer is a member
of an authority class in the authoritative clause of E, function Satisfy calls function
CheckClasses (Figure 12 in Appendix A). For each authority class in Authoritative(E),
CheckClasses recursively calls function Satisfy and returns the delegation chains (if

ACM Transactions on the Web, Vol. V, No. N, Article A, Publication date: January YYYY.

Integrating Trust Management and Access Control in Data-Intensive Web Applications A:13

/* cert.id: identifier of certificate cert */
/* cert.issuer, cert.subject: issuer and subject of certificate cert */
/* cert.attributes: attributes in certificate cert */
/* cert.cost: cost for the verification of certificate cert */
/* E: trust table or authority class */
/* Except(E): authority names in the except clause of E */
/* Authoritative(E): authority names and classes in the authoritative clause of E */
/* Attributes(E): attributes in E */
/* auth.ac visited(E): flag set to true if the algorithm has already checked whether */
/* auth belongs to a class in Authoritative(E) */
/* auth.ac ver list(E): set of delegation chains proving that auth belongs to a class in Authoritative(E) */

Input: Cert: set of certificates presented by a client during a session
T T , Auth, AC: set of trust tables, authorities, and authority classes
Deleg Certs: set of delegation certificates
Authority Certs: set of certificates assigning attributes to authorities

Output: tuples in T T

MAIN
for each cert∈Cert do

if CHECKCORRECTNESS(cert) then /* makes non cryptographic controls */
for each TT∈{TT′| TT′∈T T ∧ COMPATIBLE(cert, TT′)} do

/* certificate cert can contribute to populate TT */
ver list := Satisfy(cert, TT)
/* check the validity of certificates */
if ver list$=∅ then

for each cert′∈ver list do
if ¬VALID(cert′ .id) then exit /* cryptographic controls fail */

Insert into TT a tuple with values of the attributes extracted from cert

Input: cert: certificate
E: trust table or authority class

Output: set ver list of certificates proving that cert matches with E

SATISFY(cert, E): ver list
/* Preliminary steps that verify whether cert.issuer is a valid authority w.r.t. E */
if cert.issuer∈Except(E) then return(∅)
if cert.issuer∈Authoritative(E) then return(cert)
for each authority name auth in Authoritative(E) do

auth.ac visited(E) := FALSE

/* check if cert.issuer belongs to an authority class in the authoritative clause of E */
cert.issuer.ac ver list(E) := CheckClasses(cert.issuer, E)
if ∀auth∈Authoritative(E) the delegation flag is set to false then

return(cert.issuer.ac ver list(E)) /* no delegation */
/* Phase 1: find supporting chains */
Candidates := FindChain(cert, E)
if Candidates=∅ then return(∅) /* no chain covering all attributes exists */
/* Phase 2: build the set of certificates to be validated */
ver list := BuildVerificationList(cert, E, Candidates)
return(ver list) /* return the list of certificates for validation */

Fig. 2. Certificate verification algorithm

any) with minimum cost proving that cert.issuer is a member of the authority class.
Such delegation chains are stored in variable cert.issuer.ac ver list(E). Furthermore,
CheckClasses inserts a virtual delegation certificate representing the computed del-
egation chains. Intuitively, this virtual delegation certificate represents the fact that
cert.issuer is trusted to produce certificates for attributes in Attributes(E), since it is a
member of an authority class listed in Authoritative(E).

After the analysis of cert.issuer, function Satisfy checks the delegation flag of all the
authorities and classes in the authoritative clause of E. If all such authorities and
authority classes have the delegation flag set to false, function Satisfy terminates by

ACM Transactions on the Web, Vol. V, No. N, Article A, Publication date: January YYYY.

A:14 De Capitani di Vimercati, Foresti, Jajodia, Paraboschi, Psaila, Samarati

returning the set cert.issuer.ac ver list(E) of certificates. In fact, if delegation chains
cannot be considered, cert is a valid certificate with respect to E only if it has been
directly issued by an authority that belongs to an authority class in the authoritative
clause of E. If at least an authority or a class in the authoritative clause of E has the
delegation flag set to true, function Satisfy searches a set of delegation chains that
reach an authority (or a class) in the authoritative clause of TT and that support
all the common attributes between cert and TT. To this purpose, the set Deleg Certs
of delegation certificates (also including virtual delegation certificates) is seen as a
delegation graph, where there is a node for each issuer and subject of the delegation
certificates, and there is an edge for each delegation certificate, going from the is-
suer of the certificate to its subject. Each edge is labeled with a pair 〈attributes,cost〉,
where attributes is the set of attributes asserted by the corresponding delegation cer-
tificate and cost is the cost for verifying the certificate. The process to find delegation
chains consists in: i) finding supporting chains for the considered attributes (function
FindChain), and ii) removing redundant supporting chains (function BuildVerifica-
tionList). We assume that the delegation graph is acyclic, and that the subgraphs
of Deleg Certs necessary for verifying different certificates do not have common edges
(i.e., common certificates). Function FindChain (Figure 13 in Appendix A) adopts a
Dijkstra-like approach to determine, for each attribute that appears both in cert and
in TT, the minimum cost path reaching cert from an authority (that belongs to an au-
thority class) in the authoritative clause of TT with the delegation flag set to true.
We note that function FindChain invokes function CheckClasses to verify whether
the authorities along the computed paths belong to a trusted authority class. Function
BuildVerificationList (Figure 14 in Appendix A) analyzes the paths computed by
function FindChain and removes possible redundancies.

The non-redundant delegation chains obtained by function Satisfy are finally re-
turned.

Example 4.1. Consider a certificate cert issued by authority Hospital (H), with sub-
ject Doctor (D), and certifying attributes number (n), project (p), and specialty (s). Fig-
ure 3(a) illustrates the set of authority certificates Authority Certs and the set of del-
egation certificates Deleg Certs available in the system and involved in the processing
of cert. It is easy to see that cert is compatible with trust table Physician (see Exam-
ple 3.3) and since the issuer of cert is not an authority listed directly in the except
or authoritative clause of Physician, we need to check the existence of delegation
chains supporting attributes {n, p, s}. Figure 3(b) illustrates the delegation graph cor-
responding to the set of certificates in Figure 3(a). Here, the authorities directly listed
in the authoritative clause of Physician are represented through a double circle. Dot-
ted edges and nodes represent the delegation certificates and authorities needed for
verifying whether an authority belongs to an authority class. The curly edge repre-
sents certificate cert.

Function Satisfy first calls procedure CheckClasses to verify whether H is a mem-
ber of the ClassHospital authority class directly listed in the authoritative clause of
Physician. Since the dotted path in Figure 3(b) starting from N and ending to H is a
delegation chain supporting such a membership (see also the definition of ClassHos-
pital in Example 3.2), function CheckClasses adds a virtual delegation certificate,
where the issuer is the virtual authority C, the subject is H, the attributes are those
mentioned in the Physician trust table, and the cost is the sum of the costs associated
with the dotted edges (see the dashed edge in Figure 4). Function Satisfy then calls
function FindChain that finds the paths with minimum cost that support attributes:
n, G → M → H ; p, C → R → H ; and s, G → S → H . We note that function FindChain,
while searching for the path supporting attribute p, adds another virtual delegation

ACM Transactions on the Web, Vol. V, No. N, Article A, Publication date: January YYYY.

Integrating Trust Management and Access Control in Data-Intensive Web Applications A:15

Issuer Subject Attributes Cost
EuropeanUnion (U) ResearchInst (R) founding (f) 3
NationalHealthcare (N) LocalHealthcare (L) authorization, city (a, c) 8
LocalHealthcare (L) Hospital (H) authorization, city (a, c) 2
Board (B) ResearchInst (R) project (p) 4
ResearchInst (R) Hospital (H) project (p) 2
Government (G) MedicalBoard (M) number, specialty (n, s) 1
Government (G) School (S) specialty (s) 1
MedicalBoard (M) Hospital (H) number, specialty (n, s) 4
School (S) Hospital (H) specialty (s) 2
Hospital (H) Doctor (D) number, project, specialty (n, p, s) 3

(a)

U

〈{f},3〉

!!

!"#$%&'()*+,-./0B

〈{p},4〉

""

!"#$%&'()*+,-./0G

〈{n,s},1〉
!
!
!
!
!
!

##!!
!
!
!
!

〈{s},1〉

""

N

〈{a,c},8〉

""

!"#$%&'(R

〈{p},2〉
"
"
"
"
"
"

$$"
"
"
"
"
"

12345678M

〈{n,s},4〉

""

!"#$%&'(S

〈{s},2〉
!!
!!
!!
!

##!!
!
!
!
!

L 〈{a,c},2〉 %% !"#$%&'(H

{n,p,s}

!"
!"

""
!"
!"

cert.issuer

D cert.subject

(b)

Fig. 3. An example of certificates (a) and corresponding delegation graph (b)

certificate where the issuer is again the virtual authority C, the subject is R, the at-
tributes are those mentioned in the Physician trust table, and the cost is the sum of
the costs associated with the dotted edge from U to R (see Figure 4). Function Satisfy
finally calls function BuildVerificationList, which removes the redundant delega-
tion chain G → S → H supporting attribute s. In fact, path G → M → H supports
both attributes n and s. The certificates that need to be verified are therefore the ones
along paths C → R → H and G → M → H , and the path represented by virtual cer-
tificate C → R (i.e., U → R). Example A.2 in Appendix A describes in more details the
execution, step by step, of functions FindChain and BuildVerificationList.

4.2. Correctness and complexity
We now state the correctness of our approach and discuss its complexity.

THEOREM 4.2 (TERMINATION AND CORRECTNESS). Given a finite set of delegation
certificates Deleg Certs, a finite set of authority certificates Authority Certs, and a cer-
tificate cert compatible with an entity E, function Satisfy terminates and determines a
correct set of delegation chains for cert, if such delegation chains exist.

PROOF. The proof is presented in Appendix A.3.

ACM Transactions on the Web, Vol. V, No. N, Article A, Publication date: January YYYY.

A:16 De Capitani di Vimercati, Foresti, Jajodia, Paraboschi, Psaila, Samarati

!"#$%&'()*+,-./0B

〈{p},4〉

""

!"#$%&'()*+,-./0G

〈{n,s},1〉
!
!
!
!
!
!

##!!
!
!
!
!

〈{s},1〉

""
!"#$%&'()*+,-./0C 〈{n,p,s},3〉### %%###

〈{n,p,s},10〉
$$$$$$$$

&&$
$$$$$$$

!"#$%&'(R

〈{p},2〉
"
"
"
"
"
"

$$"
"
"
"
"
"

12345678M

〈{n,s},4〉

""

!"#$%&'(S

〈{s},2〉
!!
!!
!!
!

##!!
!
!
!
!

!"#$%&'(H

{n,p,s}

!"
!"

""
!"
!"

cert.issuer

D cert.subject

Fig. 4. Delegation graph for Example 4.1 extended with virtual certificates

We adopt the following notational conventions with respect to a given set Deleg Certs
of delegation certificates, a set Authority Certs of authority certificates, a set AC of au-
thority classes, a set Auth of authorities, a certificate cert, and an entity (i.e., a trust ta-
ble or an authority class) E compatible with cert: Nd denotes the number of delegation
certificates (i.e., Nd = |Deleg Certs|); Nauth denotes the number of authority certificates
(i.e., Nauth = |Authority Certs|); NAC denotes the number of authority classes (i.e., NAC

= |AC|); NE denotes the number of attributes listed in the definition of E (i.e., NE =
|Attributes(E)|).

THEOREM 4.3 (COMPLEXITY). Function Satisfy finds delegation chains for a cer-
tificate cert compatible with an entity E in O(Nd ·NE ·NAC ·Nauth · log(Nd ·NE)).

PROOF. The proof is presented in Appendix A.3.

In terms of quality of the solution returned by the algorithm, we observe that the
heuristic algorithm computes a solution that offers guarantees in terms of distance
from the optimum. If we consider separately the evaluation of every trust table or
authority class, the solution returned exhibits the minimum possible cost for the at-
tribute with the highest cost, due to the fact that the algorithm applies a search strat-
egy that is similar to the Dijkstra algorithm for the identification of the path with
minimal cost. Indeed, if there are no restrictions on attribute delegations, the solution
identified for a trust table will be optimal; otherwise, the cost of the identified solution
cannot be greater than n − 1 times the cost of the optimal, where n is the number
of attributes. In general, we expect that in most scenarios the delegation graph will
have a simple structure and the proposed algorithm will be satisfactory in terms of the
quality of the solution, at the same time being able to manage complex situations.

5. INTEGRATION WITHIN A DBMS
There are few principles that have to be followed in the integration within a current
DBMS of our trust management service. First, the implementation in real systems
of this service can be successful only if it is focused on a few components, otherwise,
it could introduce many side effects, in terms of functionality or performance, which
would create problems in current database applications. Second, the implementation

ACM Transactions on the Web, Vol. V, No. N, Article A, Publication date: January YYYY.

Integrating Trust Management and Access Control in Data-Intensive Web Applications A:17

has to require a modest coding effort; apart from the increase in costs that can make
this extension too expensive in the eye of the DBMS producer, it would be consider-
ably more difficult to have a guarantee on the robustness in terms of security. Third,
there is a need for a good integration with current SQL constructs, to minimize the
effort required to the database designer in the modeling of application requirements
for access control. Our proposal has been designed taking into account all these prin-
ciples, building our extensions on existing functionalities and catalogs, and ensuring
seamless integration with existing DBMSs.

One key aspect in the implementation of our solution deserving mention concerns
role activation. In fact, our approach is not directly enforceable within current DBMSs
for two main reasons. First, our trust policies require support for role activation (i.e.,
granting privileges) on the basis of certified attributes (see Section 3.3.1), while the
SQL standard binds roles to user identities only. Second, our model requires that a
client satisfying the conditions of different trust policies to activate multiple roles
within a session, while SQL supports the activation of one role per session for each
client. Section 5.2 shows how to overcome these limitations of the SQL standard with
minimal changes to the DBMS code.

Since trust tables and trust policies extend the schema of the database, the imple-
mentation of the trust management service requires to extend the database catalog. In
particular, it is necessary to introduce catalog tables (and their schemas) for authori-
ties as well as for trust tables and trust policies.

A trust table behaves as a global temporary table. Global temporary tables are de-
scribed in the SQL standard [Database language SQL 1999] and represent tables that
are part of the database schema, but that differ from base tables because their content
cannot be shared among different sessions. A session can then use a global temporary
table to store information that is needed within the same session and that must be
protected from access by other sessions. The advantage of global temporary tables is
typically greater performance, due to the fact that locks, and in general concurrency
control mechanisms, are not used to access the table. An additional benefit is that
a rigid separation of the information pertaining to distinct sessions is automatically
supported, with automatic removal of the information at the closure of the session.

However, since several DBMSs do not support global temporary tables, it may be
necessary to simulate their services defining an additional attribute, the session iden-
tifier, in the schema of classical relational tables that implement trust tables. The goal
of this attribute is to associate each tuple with the session on which it has been pre-
sented. We discuss this issue in Section 5.2.

The effectiveness of our approach and the impact on performance have been evalu-
ated by implementing a prototype. We now present the technical details characterizing
the implementation, and then we present the set of experiments we conducted to eval-
uate the impact of our trust management service on performance.

5.1. Design choices
PostgreSQL is a well-known open-source DBMS, the current incarnation of Postgres, a
system initially developed at Berkeley under the supervision of Michael Stonebraker
[1987]. PostgreSQL has been chosen for our prototype since it is commonly considered
the most advanced and interesting of the current open source database servers.

The availability of the component responsible for the cryptographic functions used
for the verification of certificates is fundamental. One of the most used implementa-
tions of the SSL protocol is the OpenSSL system, already included in recent distri-
butions of PostgreSQL. In fact, PostgreSQL offers the possibility to realize a dialog
between clients and the PostgreSQL server using an SSL connection.

ACM Transactions on the Web, Vol. V, No. N, Article A, Publication date: January YYYY.

A:18 De Capitani di Vimercati, Foresti, Jajodia, Paraboschi, Psaila, Samarati

The development of the prototype has been performed by taking into account the
following major requirements that have to be satisfied by every implementation of our
trust management service.

— Minimal impact on the DBMS engine. The prototype has been developed to verify
that the approach can be realized with a small impact on a current DBMS engine.

— Behavior of trust tables equivalent to global temporary tables, as defined in the recent
SQL standard. We have previously introduced the notion of trust table as a global
temporary table, where the logged user can find tuples describing all the certificates
provided at login time. In the SQL standard definition, global temporary tables are
visible across sessions, but a session can see only tuples created by itself. Since Post-
greSQL does not support global temporary tables (temporary tables in PostgreSQL
correspond to local temporary tables, that is, they have to be created with a create
table statement within a session, and are dropped at the end of the session), a mech-
anism to create an equivalent concept within the prototype must be developed.

— Isolation of sessions. The implementation of the trust management service within the
prototype has to offer a strong guarantee on isolation of sessions, as far as grant of
privileges is concerned. This is a crucial feature of the proposed model that would po-
tentially require a significant rewriting of all the code dealing with the assignment of
privileges. Due to the requirement on the minimization of the impact on the database
server, we excluded to fully revise the architecture of the access control component.
Instead, we devised to introduce for each session a novel generic user identifier as
a reference for the assignment of privileges. This user identifier initially has no role
or privilege, and it acquires them when trust policies are fired, based on properties
extracted from certificates. The critical aspect in this design is to decide if user identi-
fiers have to be reused from an existing pool or have to be created from scratch at the
start of each session. The advantage of having a pool of pre-defined user identifiers
is that the cost of creating user identifiers is only paid at system initialization time.
The pool must have a size adequate to support the maximum expected number of
concurrent sessions. The major disadvantage of this solution is the need to carefully
remove every privilege from the user identifier at session closure, with an explicit
revoke statement, otherwise privileges would be transferred from one session to the
next one using the same user identifier. We chose the second option and create, at
the start of each session, a new user identifier. The motivation is that this solution
offers a robust and automatic guarantee of isolation among sessions. A performance
evaluation showed that the cost for creating user identifiers is small and is compen-
sated by the automatic revoke of all the privileges that follow the deletion of the user
identifier, without the need to pay the cost of execution of explicit SQL statements in
the alternative approach.

5.2. Prototype features
The prototype has been built starting from the PostgreSQL 8.3.0 release. The imple-
mentation was mostly focused on the revision of the login and logout processes, and
on the extension of the catalog to manage the information describing trust tables and
trust policies. The additional relations in the catalog and their configuration at the
time a new session is created permit to reuse the existing services of the DBMS for the
enforcement of the access control policy. The implementation required to adapt C mod-
ules and the Lex/Yacc sources in the PostregSQL distribution, modifying and adding
in total around 6,000 lines of code.

Login Manager. The Login Manager was modified to extract information from cer-
tificates and insert it into trust tables. The properties that are defined in trust tables
appear in the standard properties or extensions of X.509 certificates sent by clients. An

ACM Transactions on the Web, Vol. V, No. N, Article A, Publication date: January YYYY.

Integrating Trust Management and Access Control in Data-Intensive Web Applications A:19

PHYSICIAN TTABLE

session id number project specialty
001 025 allergies dermatologist
001 025 stress diseases dermatologist
002 048 pediatric diseases cardiologist

(a)

PHYSICIAN

number project specialty
048 pediatric diseases cardiologist

(b)

Fig. 5. An example of trust table (a) and corresponding view for session 002 (b)

X.509 v3 [Housley et al. 2002] extension is an application specific property reported in
X.509 certificates that is assigned a unique numeric code defined as a sequence of 4
numbers, each of them with a value up to 255. Furthermore, X.509 v3 allows the as-
sociation of a name with the numerical identifiers. For each extension, the certificate
describes both the numerical identifier and the associated name (if any).

The extraction of named extensions occurs checking them against the available trust
table schemas. The extracted property values are then available for user identification
and role assignment. This function is realized by the Policy Evaluation Mechanism,
which fires policies activated by tuples inserted into trust tables.

Management of trust tables. To make trust tables really part of the SQL environ-
ment, their definition must be part of the database schema. For this reason, we ex-
tended the standard Database Catalog with a number of tables; the names of the ta-
bles follow the style of PostgreSQL, which uses a “pg ” prefix (e.g., the catalog table
describing the defined trust tables is called pg trust table).

The realization of trust tables in the prototype had to overcome the limitation of
PostgreSQL that does not support global temporary tables as defined in the SQL
standard. In our prototype, we build, for each trust table named trust table name, a
new regular table with name trust table name followed by the suffix “ ttable”. The
schema of the new table presents all the attributes declared in the trust table def-
inition, extended with attribute session id, containing the session identifier. For in-
stance, from the definition of trust table Physician the system will create a table Physi-
cian ttable(session id, number, project, specialty). Figure 5(a) illustrates an example
of trust table, Physician ttable, with three tuples referred to two different sessions,
namely session 001 and session 002.

Tuples are inserted into this table when a connection request succeeds and a new
session is created. For each provided certificate matching the corresponding trust ta-
ble, a tuple is inserted into the new table, with the session identifier and the trust
table attribute values extracted from the certificate. Note that this table does not use
the session identifier as a primary key, since several tuples with the same session iden-
tifier might be inserted into the trust table. This is the case when multiple certificates
are sent by the client, and several of them match the same trust table: in this case, for
each matched certificate, a tuple is inserted into the trust table, with the same session
identifier.

The management of trust tables is then completed by the definition of views over
the supporting tables storing certificates, named as the trust tables. For instance, for
Physician we can introduce a view with the following SQL statement:

create view Physician as
(select number, project, specialty
from Physician ttable
where session id = pg backend pid())

In this way, the user can only see the tuples concerning the current session, since
the PostgreSQL function pg backend pid() returns the identifier of the current ses-
sion issuing the query. Access is provided only to properties extracted from the session

ACM Transactions on the Web, Vol. V, No. N, Article A, Publication date: January YYYY.

A:20 De Capitani di Vimercati, Foresti, Jajodia, Paraboschi, Psaila, Samarati

certificates. Of course, the user is allowed by standard authorizations to access the
view but not the underlying table. As an example, Figure 5(b) illustrates the Physi-
cian view resulting from selecting tuples with session id=002 from the trust table in
Figure 5(a).

Management of trust policies. Trust policies assign roles to sessions considering the
information appearing in the trust tables. Trust policies are managed creating, for
each policy, a stored procedure (a PL/pgSQL function, in the terminology used by
PostgreSQL), which evaluates the policy condition and, if it is successful, grants the
roles specified in the policy to the user generated for the session, activating them if the
autoactivate option is specified in the trust policy definition.

The support for trust policies within the catalog is realized by two ta-
bles, pg trust policy(tpolicy id, tpolicy name, condition, role, function id) and
pg tpolicy and ttable(tpolicy id, ttable id). For each trust policy, a row appears in table
pg trust policy. Each trust policy is internally identified by a unique numerical identi-
fier (attribute tpolicy id). Attribute tpolicy name is the policy name (this is unique as
well, thus it is a secondary key of the table), attribute condition describes the trust pol-
icy condition (defined in the create trustpolicy statement), attribute role denotes the
role to assign to users if the trust policy is fired, and attribute function id denotes the
internal identifier of the PL/pgSQL function that evaluates the trust policy condition.
Table pg tpolicy and ttable denotes the trust tables involved in trust policy conditions;
a distinct table is used, because trust policy conditions can refer to more than one trust
table.

The PL/pgSQL function applies the trust policy condition to the join of all the trust
tables that appear in it. At trust policy definition time, the PL/pgSQL function code is
translated into a C function, which is compiled and whose executable version is stored
into the database. Furthermore, the execution plan for the query corresponding to the
trust policy is also prepared and stored into the database, obtaining high performance
when the function is executed.

Login process. The login process performs the following steps in the activation of a
session where certificates are presented by the client.

(1) Certified login. This is the login based on SSL certificates. When a login request
comes from a client, the Login Manager checks the presented certificates and iden-
tifies those that contain properties of the client (i.e., attribute certificates); the
client may also present delegation certificates and certificates declaring properties
of certification authorities.
(a) Trust table identification. For each attribute certificate, the properties are ex-

tracted from the certificates and checked, accessing the catalog, against the
schema of identified trust tables. The current implementation supports proper-
ties with the use of X.509 v3 extensions. Future systems will use more flexible
certificate formats, like the one provided by SAML [Lockhart et al. 2007]. The
login process identifies the set of trust tables that are compatible with the cer-
tificate content.

(b) Certification authority verification. For each pair of attribute certificate and
compatible trust table, the Certification Authority that issued the certificate is
searched in table pg trust ca (i.e., the catalog table that describes registered
certification authorities identified by an internal numerical identifier ca id,
having the unique name ca name given in the create authority statement,
and a unique public key ca publickey that identifies certificates issued by the
authority): if not present, the process verifies the presence of a correct delega-
tion chain, with an approach that follows the algorithm presented in Section 4.

ACM Transactions on the Web, Vol. V, No. N, Article A, Publication date: January YYYY.

Integrating Trust Management and Access Control in Data-Intensive Web Applications A:21

Another option for the implementation of the authority verification process
could be to rely on the integration of a logic-based reasoner. This alternative
would offer a different and potentially more compact description of the verifi-
cation algorithm, but it would also require to strictly combine such a tool with
the relational engine, greatly increasing the implementation effort.

(c) Property extraction from certificates. If the above check is successful, a new
tuple with the values of the involved attributes in the verified certificate and
with the current session identifier is inserted into the matched trust table.

(2) Temporary user creation. To guarantee isolation among different sessions, after the
completion of a successful authentication, the Login Manager creates a new user
identifier with no connection rights (only the current session can exploit this user
id). The name of this user, called temporary session user, is obtained by adding a
fixed textual prefix to a string that contains the session identifier. At this point, the
new session is activated. Since a temporary session user is created for each session,
the same client can open distinct sessions with the database server, presenting
different certificates; privileges will be assigned to each session depending only on
the certificates that have been presented.

(3) Granting access to trust table views. For each trust table, the temporary session
user is granted the privilege to access the view with the same name (with the
restriction on the session id hidden in the view definition). In this way, the user
can query the content of trust tables.

(4) Trust policy activation. For each trust table, the Login Manager analyzes the cata-
log and selects the trust policies that refer to trust tables in which at least a certifi-
cate has been inserted. For each selected trust policy, the corresponding PL/pgSQL
function is executed. The previously compiled function evaluates the trust policy
condition against the current state of the trust tables. If the query result is not
empty, the role associated with the policy is granted to the user and possibly acti-
vated.

Logout process. When the users logs out, it is necessary to revoke roles granted in
the login phase. The process performs the following steps.

(1) Revoke of access to trust table views. For each trust table, the authorization to query
the corresponding view is revoked.

(2) Deletion of session tuples. For each trust table, tuples presenting the session iden-
tifier are deleted.

(3) Deletion of temporary session user. All roles granted to the temporary session user
are revoked, the temporary session user is dropped, and the session is closed.

Comparison between triggers and stored procedures. An important issue in the re-
alization of the model proposed in this paper is the construction of the mechanism
guaranteeing that, as soon as a certificate is presented within a session that satisfies
the condition of a trust policy, the privileges specified by the trust policy must be as-
signed to the session. There are two alternative approaches that can be adopted. The
first approach uses triggers, which have to monitor insertion events on trust tables
and react to such insertions evaluating the trust policy condition on the corresponding
session. The approach adopted in the prototype instead introduces a set of stored pro-
cedures into the database, which are responsible for the evaluation of the trust policy
condition and the corresponding activation of privileges for the session within which
the procedure has been activated.

In terms of software design, the use of triggers presents the benefit that it assigns
the responsibility for the activation of trust policy privileges to a separate component,
reducing the effort needed for the revision of the Login Manager (a separate policy-

ACM Transactions on the Web, Vol. V, No. N, Article A, Publication date: January YYYY.

A:22 De Capitani di Vimercati, Foresti, Jajodia, Paraboschi, Psaila, Samarati

definition-time module will be responsible for the creation of a correct set of triggers).
The design advantage of procedures lies in their scalability; complex trust policies (i.e.,
policies that refer in their condition to a number of trust tables) require the definition
of a single stored procedure that evaluates the policy condition and verifies if the col-
lection of information in the trust tables assigned to the session satisfies the predicate;
the rule is then invoked by the Login Manager when it has finished inserting informa-
tion into the trust tables. The management of a complex policy by triggers instead
requires the definition of a collection of triggers, at least one for every trust table re-
ferred to in the trust policy, and particular attention has to be paid to produce a set
of triggers that correctly considers every situation that may produce an assignment of
privileges to users (the triggers have to be written considering traditional approaches
to the automatic generation of sets of triggers [Ceri et al. 1994]).

Overall, the above design considerations give a preference to the solution using
stored procedures. In the construction of the prototype both approaches have been
initially implemented, to get some concrete support for the choice of one alternative
over the other. The result of this effort confirms the observations presented above. In
terms of performance, experiments showed that for simple policies (a single trust table
appearing in the trust policy condition) triggers were able to offer better results. The
explanation of this difference lies in the way in which triggers are managed by the
database, which optimizes the execution of triggers in several ways. For instance, the
keyword new, used in trigger conditions to refer to newly inserted tuples in the trust
tables, is managed by the DBMS with a direct access to its memory representation
within the working memory of the relational engine; stored procedures instead re-
quire to access the content of tables, using traditional SQL mechanisms. Experiments
also confirm that, as the number of trust tables in the trust policy condition grows, the
time required for the management of sessions correspondingly increases; when trust
policies are defined over 3 trust tables the execution times with stored procedures be-
come less than the execution times for triggers. In light of these results and the above
considerations, we opted to continue the development of the prototype using the ap-
proach based on stored procedures, which guarantees a better software design and a
more robust behavior in terms of performance, immune from the presence of complex
conditions in the access control policy.

5.3. Experiments
To concretely evaluate the impact of our approach on a traditional DBMS, we mea-
sured the performance of the login and logout processes, which are the only crucial
phases requiring a performance evaluation since our solution adapts the traditional
access control model of SQL to the presence of certificates. We therefore run a set of
experiments that open a connection to the database, execute a query in memory, and
close the connection. Each run of our experiments opens and closes 1000 sessions. The
results illustrated in the following are computed as the average of the values obtained
in 10 runs.

The experiments were performed on a PC with: two Intel Xeon Quad 2.0GHz L3-
4MB, 12GB RAM, four 1-Tbyte disks, and a Linux Ubuntu 9.04 operating system.
The database used for the experiments contains 100 tables, with 200,000 tuples each.
We initially designed a generic application supporting the access requirements of a
small group of users and manually created the trust tables and trust policies. Config-
urations with a large number of trust tables and trust policies have been then pro-
duced by writing synthetic definitions. The conditions in the trust policy include a
conjunction of predicates each of which compares one attribute of the trust policy with
a constant value. The synthetic data appear adequate to test the performance of our
approach since the structure, the number and size of attributes, and the number of

ACM Transactions on the Web, Vol. V, No. N, Article A, Publication date: January YYYY.

Integrating Trust Management and Access Control in Data-Intensive Web Applications A:23

 0

 10

 20

 30

 40

 50

 0 5 10 15 20

Ti
m

e
(m

s)

Number of trust tables

Fig. 6. Time necessary to open a connection to the database, execute a query in memory, and close the
connection, varying the number of trust tables

tuples composing both trust tables and trust policies have negligible impact on system
performance (as we experimentally verified before proceeding with our evaluation).
The number of trust tables and of trust policies in the system are instead two impor-
tant parameters that have an impact on the time required for the completion of the
login and logout processes.

The experiments investigated several aspects of the system behavior, focusing on
the performance of the system when the number of trust tables, trust policies, en-
abled roles, and concurrent sessions increase. To validate the efficiency of the proposed
model, we considered configurations representing systems with a size that exceeds the
size expected for systems relying on a trust management service integrated within
DBMSs. In particular, we considered configurations where the number of trust tables,
trust policies, and concurrent sessions vary in the ranges 0 to 20, 1 to 100, and 1 to
600, respectively. Note that the number of trust tables is lower than the number of
trust policies since in real world applications the number of certificate formats (mod-
eled through trust tables) is usually limited with respect to the rules regulating access
to the data (expressed through trust policies). Also, 100 trust policies appear adequate
even for modeling configurations with sophisticated access control regulations. In the
following, we discuss the experimental results obtained with the configurations above
described, to test the scalability of the system. All the experiments evaluate the time
necessary to open a connection to the database, execute a query in memory, and close
the connection. A breakdown of the components shows that the time required to exe-
cute the query in memory and the time required for the logout remain stable in the
different configurations, with an average of less than 3ms and limited variance. The
trends shown in the experiments are due only to the management of the login. We also
run a few experiments, which we do not discuss in the paper, where we compared the
performance for the execution of queries in two configurations, one where the user had
only a single TM-free privilege active, and another with multiple privileges assigned
by the trust management component, and no difference in performance was observed.
The configurations with zero trust tables and zero trust policies show execution times
identical to those observed for the TM-free system.

Figures 6 and 7 show how the time increases with the number of trust tables and of
trust policies in the system, respectively. In particular, Figure 6 shows how the time
varies when the number of trust tables varies from 0 to 20. The configuration with

ACM Transactions on the Web, Vol. V, No. N, Article A, Publication date: January YYYY.

A:24 De Capitani di Vimercati, Foresti, Jajodia, Paraboschi, Psaila, Samarati

 0

 20

 40

 60

 80

 100

 120

 0 20 40 60 80 100

Ti
m

e
(m

s)

Number of trust policies

20 trust tables
15 trust tables
10 trust tables

5 trust tables

Fig. 7. Time necessary to open a connection to the database, execute a query in memory, and close the
connection, varying the number of trust tables and trust policies

 0

 50

 100

 150

 200

 250

 300

 350

 0 20 40 60 80 100

Ti
m

e
(m

s.
)

Number of trust policies

n roles
10 roles

1 role

Fig. 8. Time necessary to open a connection to the database, execute a query in memory, and close the
connection in a system with 20 trust tables, varying the number of trust policies and enacted roles

no trust tables models a situation where certificates are used for authentication, even
if not stored in a trust table (i.e., they are not subsequently used for access control
enforcement). Figure 7 compares the times in a system characterized by 5, 10, 15, and
20 trust tables, when the number of trust policies varies from 0 to 100. As the two
graphs in Figures 6 and 7 show, the time grows linearly both with the number of trust
tables (Figure 6) and with the number of trust policies (Figure 7). From these results,
we also observed that for a fixed number of trust policies (or trust tables, resp.), the
execution time increases less than 1ms for every trust table (or trust policy, resp.)
added to the system.

Figure 8 illustrates how the time increases with the number of enabled roles. The
graph illustrates the times obtained with a system characterized by 20 trust tables, a
number of trust policies that varies from 0 to 100, and a number of enacted roles that
varies according to three different scenarios, depending on how many different roles
are enabled by the trust policies in the system. In the first scenario, each trust policy
enables a single PostgreSQL role. In the second scenario, the first 10 trust policies en-

ACM Transactions on the Web, Vol. V, No. N, Article A, Publication date: January YYYY.

Integrating Trust Management and Access Control in Data-Intensive Web Applications A:25

 0

 5

 10

 15

 20

 25

 30

 35

 0 100 200 300 400 500 600

Ti
m

e
(m

s)

Number of concurrent sessions

20 trust tables
10 trust tables

0 trust tables

Fig. 9. Time necessary to open a connection to the database, execute a query in memory, and close the
connection in a system with 20 trust tables, varying the number of concurrent sessions

able 10 different roles; each of the following trust policy enables one of the first 10 roles.
In the third scenario, each trust policy enables a different role. As the graph shows,
the number of enacted roles has a significant impact on system performance. When
the number of enacted roles grows with the number of trust policies, the execution
times double. This is due to the time necessary for the execution of the PostgreSQL
statement responsible for role enabling, which is characterized by a relatively heavy
processing. However, the scalability of the system is not compromised, since the linear-
ity in the time is not affected by role activation, as clearly visible from the graph. Also,
we expect that, in real systems, even configurations characterized by a large number of
trust tables and trust policies will typically require the activation of a limited number
of roles at each session.

Figure 9 compares the times in a system without trust policies, with a number of
trust tables varying from 0 to 20, and with a number of concurrently active sessions
that varies from 0 to 600. As expected, the time grows with the number of concurrent
active sessions, since the data structures necessary to support the activation, deacti-
vation, and management of sessions (i.e., operating systems structures, internal Post-
greSQL structures, and the temporary tables for credentials management) increase.
The time however grows linearly with the number of concurrent sessions, thus con-
firming the scalability of the system even with respect to concurrent accesses to the
system.

Finally, we tested the effectiveness and efficiency of the chain verification algorithm
described in Section 4. In particular, we considered two scenarios that differ from each
other in how the client provides all the credentials needed for the verification process.
In the first case, the client provides the credentials at session startup. The experiments
performed in this case prove that the execution time of the chain verification algorithm
is negligible compared to the time necessary to populate the relational structures used
to keep track of the credentials provided at login time, even if the number of certificate
authorities in the system grows. In the second case, the credentials are stored in a table
and the algorithm explores the delegation graph by retrieving one-by-one at each step
the credentials necessary for the verification process. Figure 10 reports the execution
time of the chain verification algorithm, varying the number of certificate authorities
from 1 to 100, with the certificates forming a linear chain (the worst case in terms of
performance). As the graph shows, the execution time grows linearly with the number

ACM Transactions on the Web, Vol. V, No. N, Article A, Publication date: January YYYY.

A:26 De Capitani di Vimercati, Foresti, Jajodia, Paraboschi, Psaila, Samarati

 0

 10

 20

 30

 40

 50

 0 20 40 60 80 100

Ti
m

e
(m

s)

Number of delegation certificates

Fig. 10. Execution time of the chain verification algorithm, varying the number of certificate authorities

of certificates retrieved, thus confirming the scalability of the system even in scenarios
characterized by complex delegations.

In conclusion, the experiments have shown that the system is able to manage, with a
limited overhead, configurations characterized by a significant number of trust tables,
trust policies, concurrent sessions, and elements of the certificate chains. The impact
on the performance from the increase of these parameters always proves to be modest.
This confirms that our approach is scalable and does not introduce limitations on the
performance of the system.

6. DEPLOYMENT IN CURRENT CREDENTIAL MANAGEMENT INFRASTRUCTURES
The architecture used as a reference for the design presented in the paper is the one
described in Figure 1. Figure 11(a) illustrates in more details the interactions between
browser, Web Server, and DBMS in such a context, assuming also mutual authentica-
tion between the browser and the Web Server. The Web Server represents the platform
where both the HTTP server and the Web application are executed, typically separated
from the DBMS environment. The architecture in Figure 11(a) is the credential man-
agement architecture that is expected to characterize future information systems, with
the availability of rich identity management architectures. They will support the flexi-
ble transfer among the parties of certified assertions. Relational servers enriched with
trust management components will allow Web application designers to easily build
robust and flexible access control over the data the Web applications are interested to
access. Future credential management architectures will rely on flexible certificate for-
mats like SAML, or technologies like anonymous credentials, and the design presented
in the paper is ready to support these novel features. SAML [Lockhart et al. 2007] is an
OASIS initiative for the definition of a Security Assertion Markup Language, an XML
format for the representation of secure assertions. Given an assertion format, classical
approaches for the mapping to relational data can be used to define the format of the
corresponding trust tables. Anonymous credentials allow the user to expose only a sub-
set of the information contained in the credential (Idemix and U-Prove [Brands 2000;
Camenisch and Lysyanskaya 2001] represent the most significant proposals). Anony-
mous credentials can be well integrated with the design we proposed: it is sufficient to
allow attributes in the trust tables to assume null values (for information that may be
missing in the certificate).

ACM Transactions on the Web, Vol. V, No. N, Article A, Publication date: January YYYY.

Integrating Trust Management and Access Control in Data-Intensive Web Applications A:27

Browser

Web Server

DBMS

(2.1) HTTP
 request

(1.1) certificates (2.4) HTML
 page

(2.2) query (2.3) data (1.2) certificates

(1.4) challenge/
 response

(1.3) challenge/
 response

 Browser

 Web Server

DBMS

(2.1) HTTP
 request

(1.1) SSL
 handshake

(2.4) HTML
 page

(2.2) query (2.3) data

SSL

SSL Browser

 Web Server

 DBMS

(2.1) HTTP
 request

(1.1) SSL
 handshake

(2.4) HTML
 page

(2.2) query (2.3) data (1.2) SSL
 handshake

SSL
forward

SSL

SSL

(1.3) acquire
 nonce

(a) (b) (c)

SSL channel SSL channel

Fig. 11. Interactions between browser, Web Server, and DBMS in our design (a), in current SSL-based
architectures (b), and in the implementation of our approach over SSL (c)

When considering the current scenario, some restrictions emerge that limit the re-
alization of the architecture in Figure 11(a). Current client-side Web tools, where
SSL/TLS is commonly used to support the verification of certificates, require in fact
a small adaptation for the integration with the proposed database trust management
services. We discuss how to implement our approach with current client-side Web tools
in the next section.

6.1. Adaptation to the current technological landscape
Proprietary systems and Web applications targeting a restricted user community may
be able to apply today ad-hoc solutions and anticipate the evolution of technology. In-
stead, Web systems that need to reach a large external user community, have to con-
sider as a hard constraint the kind of support available in the client environment. Web
browsers today permit to access Web applications in a secure way using HTTPS, that
is, HTTP over an SSL [Freier et al. 1996] (or TLS4 [Dierks and Rescorla 2008]) com-
munication channel. Support is offered for mutual authentication based on the use of
client-side and server-side certificates.

Let us consider how the mutual authentication is realized for a Web application
using certificates and SSL. Figure 11(b) illustrates the use of SSL in a 3-layer ar-
chitecture. The user connects with the browser specifying the url of the resource she
wants to access, for instance, https://example.com/resource. The browser opens an
SSL channel to the Web Server at the example.com address. If the server is config-
ured for mutual authentication (e.g., in Apache it is sufficient to insert the option
SSLVerifyClient require into the configuration file), the SSL server will ask for a
user certificate. The browser asks the user to select it within the set of user certificates
(the choice can be made automatic). The SSL handshake protocol is then executed, in
which each party, after the verification of the correctness of the exchanged certificates,
sends to the other party a selected nonce encrypted with the public key appearing
in the certificate (step 1.1). The handshake protocol terminates with the computation
of a shared master secret that derives from the values of the nonces chosen by each
party and that is the basis for the symmetric key used for encrypting the communi-
cation channel. The browser then sends its HTTP request to the Web Server on the

4It is common to use the term SSL/TLS to refer to the almost identical SSL and TLS protocols; to simplify
the presentation, we only refer to SSL, but what is said can be fully applied to TLS.

ACM Transactions on the Web, Vol. V, No. N, Article A, Publication date: January YYYY.

A:28 De Capitani di Vimercati, Foresti, Jajodia, Paraboschi, Psaila, Samarati

SSL channel (step 2.1), which forwards the query to the DBMS (step 2.2). The DBMS
returns the data in the query result to the Web Server (step 2.3), which forwards the
HTML page to the browser on the SSL channel (step 2.4). We note that the handshake
has been designed to be robust against man-in-the-middle attacks: even the knowledge
of the private key of one party does not allow another party to compute the master se-
cret, because the nonces required for the computation of the master secret leave each
party only encrypted with the public key of the other party. This choice improves se-
curity, but it also introduces a rigidity in SSL, which is acknowledged as one of its
weaknesses for its use in advanced applications.

The security of the trust management system presented in the paper depends on the
ability of the DBMS to be able to evaluate that the entity having access to the private
key corresponding to the public key in the certificate is actually online at the startup
of the session. This requirement creates the need for the DBMS to be able to realize
the SSL handshake directly with the client. There are two obstacles to manage. The
first obstacle is that the browser only interacts with the HTTPS server; the DBMS is
hidden from the client behind the Web Server and it is not remotely accessible (the
configuration of networks according to best practices makes DBMSs not accessible
from external networks). The second and harder obstacle is that database queries are
produced by the Web application, not by the client. The client accesses Web pages
that present data extracted from the database by SQL queries produced by the Web
application.

The solution we designed and implemented is illustrated in Figure 11(c) and relies
on the forwarding of the SSL handshake.5 We implemented the forwarding service in
the SSL management component of the application server (we modified the Java im-
plementation of SSL used by Tomcat6). The browser interacts with the Web Server
(step 1.1), and for the setup of the SSL connection, the Web Server forwards the pack-
ets to the DBMS server, monitoring their content (step 1.2). When the handshake ends,
we let the Web application have access to the nonce stored within the SSL implemen-
tation on the DBMS (step 1.3). To this purpose, we introduced a simple and protected
interface to access the server-side nonce in the C implementation offered by OpenSSL.
From the knowledge of the nonce, the Web Server can derive the master secret and
obtain the encryption key, which will be used both to communicate with the client
and with the DBMS server. On the DBMS side, at the end of the SSL handshake, the
certificate presented by the client is used to establish the client’s access privileges to
the tables in the database. The certificate is matched with the trust tables, and the
information within the certificate creates a new tuple in every trust table for which
there is a match. Trust policies make use of trust tables for the definition of the ac-
cess privileges of the connected client. After the handshake protocol terminates, the
browser can send its HTTP request to the Web Server (step 2.1), which forwards it
to the DBMS (step 2.2). The DBMS returns the data in the query result to the Web
Server (step 2.3), which forwards the HTML page to the browser (step 2.4). We note
that all these communications exploit the encrypted channel established by the SSL
handshake.

6.2. Advantages for the Personal Medical Portfolio application
To illustrate the advantages of our approach, we consider as a reference application the
access to the personal medical portfolio, an application currently offered by the public

5There are solutions for SSL proxying, also known as SSL tunneling, but they solve the problem of providing
SSL protection where the existing application does not natively support SSL. They cannot be used in our
scenario.
6http://tomcat.apache.org/

ACM Transactions on the Web, Vol. V, No. N, Article A, Publication date: January YYYY.

Integrating Trust Management and Access Control in Data-Intensive Web Applications A:29

health management services in Lombardy (the Italian administrative region where
most of the authors reside). This application already requires for the access the use of a
smart-card issued by the regional administration, distributed to each of the more than
9 million Lombardy residents. Each smart card contains a certificate associated with
the citizen identifier; the smart card can execute computations using the private key,
when the correct PIN is input by the user. PCs with smart card readers are available in
government offices for public use. USB smart card readers are also sold at a subsidized
price, to facilitate the use of the smart card and let citizens access their records from
their homes. The sensitive data contained in the tables are always associated with the
citizen identifier.

A crucial requirement of this application is to offer strong security guarantees, in
a scenario where the Web application is large, it presents many components, and the
collection of sensitive data is used by many of its modules. Also, there is the involve-
ment of external auditors that want to have a guarantee of protection without having
to analyze a large volume of code. The Italian Privacy Directive enriches the European
Directive and forces organizations managing private medical data to pass examina-
tions by certified auditors, who have to verify that protection measures adequately
protect the data.

These requirements are difficult to support using current SSL-based architectures.
If a single account on the database is used by the Web application to access the data
(as it is commonly the case), then vulnerabilities within the Web application can be
exploited to get access to the complete collection of protected data. If a DBMS account
for each citizen is used to segregate the sensitive data, a significant overhead is im-
posed in the management of the DBMS, while not increasing the assurance on the
fact that the client who owns the sensitive data is really behind the Web application
requesting such data. Vulnerability analysis is a very long and expensive process that
can only limit the risks, but that cannot provide guarantee that applications are com-
pletely free from vulnerabilities. If there is more than one module, the analysis has to
be repeated for each module, and vulnerabilities arising from the interaction among
the separate modules have to be checked. Finally, the security policy used by the Web
application, even if defined in an explicit way, will typically be supported by functions
within the application that offer weaker guarantees than what is expected from an
internal DBMS component.

Compared to this, both the architectures in Figure 11(a) and in Figure 11(c) permit
the realization of an end-to-end design, with strong isolation of the protected data from
vulnerabilities in the Web Server and in the Web application. Also, considering that
there are multiple applications and modules accessing the same collection of sensi-
tive data, a centralized definition of the access policy offers more robust guarantees
that there will be no way to bypass the protections due to their interaction or to the
incomplete representation of security requirements within any of the applications or
modules. Auditors will also be able to certify compliance in a more effective and ef-
ficient way. An additional benefit of the approach for the application is that a single
repository can become the collection point for all medical information, facilitating the
construction of applications operating over it. Without robust security guarantees, the
integration of a large amount of sensitive data would create a significant risk.

7. RELATED WORK
The two research areas that have a strong relationship with the approach presented in
this paper are the work on fine granularity access control for databases, and the work
on trust management.

ACM Transactions on the Web, Vol. V, No. N, Article A, Publication date: January YYYY.

A:30 De Capitani di Vimercati, Foresti, Jajodia, Paraboschi, Psaila, Samarati

7.1. Fine granularity access control for relational databases
The need of extending and enriching the SQL access control model for supporting fine-
grained and expressive access control authorizations has been well recognized. This
topic has been considered both in the research and in the industrial communities, as
testified by several research proposals and by recent releases of major commercial
database engines.

The motivation of this interest lies in the perceived need for a more flexible and
high-level approach, satisfying the requirements of many important applications, with
a specific impact to the Web scenario often considered the one most requiring improved
support. The overall goal is to obtain access control services characterized by improved
i) flexibility, ii) performance, and iii) robustness.

We synthetically present the most important recent proposals. Then, we will detail
the similarities and the differences with the trust management solution discussed in
the paper.

Agrawal et al. [2005] propose a fine grained access control model on a relational
database to support privacy policies. Fine granularity is realized by the use of “restric-
tions”, identifying columns, rows, and cells where access limitations have to be applied.
Additionally, as it is typical for the privacy context, the concept of “purpose” is defined
to qualify the access to the personal data. However, the definition of the restrictions
is not fully integrated with the SQL syntax. The restrictions are realized with the use
of query rewriting and the paper presents the mapping between a P3P privacy policy,
typically used in the Web to express privacy preferences, and a set of internal tables
supporting the application of the restrictions.

Kabra et al. [2006] present a fine granularity access control model, focusing on re-
dundancy and information leakage and showing that when query rewriting is used to
support restrictions, information leakage can occur. They present a several techniques
that can be applied to avoid the leakage, taking into account the impact that a restric-
tion can have on the query processing.

On a related line of work, Olson et al. [2008] propose a solution to improve the
expressiveness of database access control rules, which allows the formulation of privi-
leges as queries on the data themselves. To this purpose, the authors propose a formal
framework (based on Transaction Datalog [Bonner 1997]) to represent reflective poli-
cies, that is, policies possibly depending on the data included in the database they
regulate.

Like our proposal, Chaudhuri et al. [2007] present an extension of the SQL access
control model within Microsoft SQL Server environment. The grant statement is en-
riched with a where clause that can be used to restrict (horizontally) the tuples acces-
sible to a user (e.g., a function like userid() in the where clause can be used to specify
that a user is granted access to her own tuples). Although this proposal represents an
important step towards the improvement of the flexibility and expressivity of the SQL
access control model, it does not support credential-based access control. Our approach
goes one step further illustrating how a trust management service can be integrated
with the traditional SQL access control model having a minimal impact on relational
DBMSs.

Recently, the major DBMS companies have recognized the importance of incorpo-
rating into DBMSs support for certificate-based authentication. For instance, Oracle
Server, since release 10, and Microsoft SQL Server 2005 emphasize in their documen-
tation the possibility to use certificates and to allow users to establish database con-
nections using SSL/TLS or other PKI-based solutions. However, the information ap-
pearing in certificates can at most be used to assign a specific user or role identifier to
the session activated with the connection; no support is offered within the system to

ACM Transactions on the Web, Vol. V, No. N, Article A, Publication date: January YYYY.

Integrating Trust Management and Access Control in Data-Intensive Web Applications A:31

use certified attributes to specify flexible authorizations. Analogously, PostgreSQL can
be combined with OpenSSL to introduce a robust and flexible authentication service,
but this mechanism is not integrated with DBMS authorizations.

A few commercial systems have made some steps toward the increase in flexibility
of the access control model. Oracle Virtual Private Database (VPD) is the approach
that received the greatest attention. Steps in this direction have also been taken by
the Sybase server and by the Microsoft SQL Server 2005 Analysis Services, which
supports the definition of access privileges on the results of aggregate queries.

Murthy and Sedlar [2007] present a fine-granularity access control solution for Or-
acle Server VPD, using as specific application the definition of privileges for access to
XML data. The authors illustrate their implementation of the VPD solution in Ora-
cle, discussing several detailed technical aspects that characterize this approach and
improve its efficiency. In terms of design, the implementation adopts various low-level
technical solutions that depend on specific aspects of the Oracle platform. For instance,
it uses string rewriting to retrieve the user parameters driving the access control re-
strictions, and the description of how this service is integrated with the optimizer is
difficult to extend to other systems. On the other hand, some design aspects have
larger application. For instance, it separates the user parameters from the session,
using “light-weight sessions”. In this way, the system is able to keep a pool of sessions
continuously open, reusing them on subsequent independent user requests. The paper
also considers the problem of protecting the data in the Application Server cache. The
approach proposed consists in transferring access restrictions together with the data.

All the motivations justifying the above investigations apply also to our proposal.
In general, the solution presented here takes into account the additional requirement
of a stricter integration with user authentication based on certificates, which most
relational engines already support, but which are kept separate from the specification
of the access control policy.

An interesting comparison can be made between our model and the other approaches
at a deeper technical level. First, all the above proposals do not discuss the integra-
tion with robust authentication services like those offered by credentials. Second, the
approach we present uses tables for the storage of user credentials, whereas all the
other approaches store the profiles of the users in contextual information available
within the session, typically in a flat record. The use of a relational table to store the
credentials may cause a performance overhead with respect to store the profiles of the
users in contextual information, due to the need to insert all the data characterizing
the user (derived from credentials in our system) into a relational structure. However,
the experimental results illustrated in Section 5.3 confirm that, even for complex poli-
cies and sessions presenting a variety of credentials, the execution times required for
the processing of the SQL statements responsible for the insertion of the data into the
tables produce an acceptable increase in the time required to open a session. Also, the
use of relational tables to store credentials offers the following significant benefits.

— The model is able to manage configurations where a user presents several creden-
tials, whereas in other FGAC solutions, a single collection of scalar parameters is
used to characterize the client. The use of a single access profile may satisfy scenar-
ios where the certificates are used as a surrogate of classical user identification, but
it is cumbersome to use when the scenario may allow a client to present separate
credentials.

— When the information derived from credentials is stored into tables, the definition
of authorizations fully benefits from the power and declarativeness of SQL, with
the potential to represent complex access restrictions in a compact and clear form,

ACM Transactions on the Web, Vol. V, No. N, Article A, Publication date: January YYYY.

A:32 De Capitani di Vimercati, Foresti, Jajodia, Paraboschi, Psaila, Samarati

presenting a natural integration with the sophisticated SQL processing architecture
of modern relational engines.

— The increase on the time required to open a session directly depends on the number
of certificates with different schemas and the number of trust policies. When there
is a limited number of trust tables or trust policies, the execution time in our proto-
type shows a limited impact (see Section 5.3). On the other hand, when the number
of trust tables and the number of trust policies increase, the execution time of our
prototype also increases. However, in this case the solutions that store user profiles
in contextual information would need to be adapted to be able to store all the cer-
tificates within a single record in the context session. This modification is however
difficult to realize.

7.2. Trust management
Trust management has received considerable interest in the research community.
Much of this research focuses on two main aspects: i) the development of trust manage-
ment systems that allow possibly unknown parties to establish trust based on certified
information, and ii) the management of credentials. Early trust management systems
(e.g., PolicyMaker [Blaze et al. 1996], Keynote [Blaze et al. 1999], and REFEREE [Chu
et al. 1997]) associate authorizations with keys rather than with users’ identities.
These systems therefore use credentials to describe specific delegation of trust among
keys and to bind public keys to authorizations. Alternative solutions exploit digital
certificates to establish properties of their holders (e.g., [Bonatti and Samarati 2002;
Irwin and Yu 2005; Li et al. 2005a; Li et al. 2005b; Wang et al. 2004; Warner et al. 2005;
Winslett et al. 1997; Yu and Winslett 2003]). In these approaches, the access decision
of whether or not a party may execute an access depends on properties that the party
may have, and can be proven by presenting one or more certificates. Since parties may
be unknown a-priori, they undertake a trust negotiation process, gradually releasing
to each other credentials and policies (e.g., [Lee et al. 2008; Lee and Winslett 2008b;
Ryutov et al. 2005; Winsborough and Li 2006; Winslett et al. 2002; Yu et al. 2000; Yu
et al. 2001; 2003; Yu and Winslett 2003]). With respect to the credential management,
different proposals have addressed the problem of establishing a Public Key Infras-
tructure, which is at the basis of credential management, and of discovering credential
chains. Li et al. [2003] focus on the presentation of algorithms for discovering creden-
tial chains expressed using a role-based trust management language, called RT0. The
proposed algorithms have the goal of considering only credentials that are relevant
for the discovery of a credential chain, thus minimizing the computational time. The
Simple Public Key Infrastructure (SPKI) 2.0 [Ellison 1999; Ellison et al. 1999] is a
digital-certificate schema based on public key encryption that allows the integration
of certificates in access control models. SPKI is usually adopted in combination with
the Simple Distributed Security Infrastructure (SDSI) [Rivest and Lampson 1996],
which is a public-key infrastructure used for defining groups and certificates for their
membership. SDSI has been designed for distributed systems, exploiting local name
spaces instead of hierarchical structures. Deciding whether or not a given principal
(or set of principals) is authorized to access a resource may require determining a del-
egation chain proving that the principal is authorized to access the resource [Clarke
et al. 2001]. Li and Mitchell [2006] present a first-order logic semantics for SPKI/SDSI
that has been used to analyze the design of SPKI/SDSI. Other complementary works
have proposed solutions for verifying the consistency affecting distributed trust-based
systems (e.g., [Lee and Winslett 2008a; Lee et al. 2007]) and for verifying security
properties (e.g., [Reith et al. 2007]).

While providing advancements and interesting solutions for dealing with certificates
and managing trust, all the proposals above do not address the problem of enforcement

ACM Transactions on the Web, Vol. V, No. N, Article A, Publication date: January YYYY.

Integrating Trust Management and Access Control in Data-Intensive Web Applications A:33

within the underlying data management system. Their solutions are therefore comple-
mentary to our approach, which aims at bringing the access control management down
at the DBMS level to guarantee flexibility and protection to data accessed via Web ser-
vices and applications, maintaining the computational effort limited.

8. CONCLUSIONS
Even if trust management mechanisms have been proposed a few years ago, their
adoption has until now been limited. This is mostly due to the obstacles arising in
the implementation of a working infrastructure for the management and exchange
of certificates, as testified by the time and effort spent for the realization of the cur-
rent infrastructure based on X.509 certificates. Part of the responsibility can also be
assigned to the absence of a clear strategy for the integration of these services with
database servers, which today manage most of the information for which it is impor-
tant to define a rich and flexible access control model. Many trust management pro-
posals present mechanisms that are quite powerful, but that are difficult to integrate
with current DBMSs. Indeed, most previous proposals had, as main aim, the increase
in expressive power, to represent evermore complex and sophisticated scenarios.

Our approach has set as the primary requirement its compatibility with consolidated
DBMS practices. The strict integration with the full set of current DBMS services pro-
vides to our model a considerable expressive power. Exploiting the integration of the
policy with the active components (triggers, procedures, constraints, roles, transac-
tions) and rich storage services offered by SQL, we were able to adequately represent
all the scenarios that we analyzed. The solution presented in this paper is designed
to be immediately implemented by DBMS producers and used by DBAs. We believe
that our solution presents a good balance between functionality and applicability. In-
deed, while not enjoying all the functionality of some logic-based trust management
approaches, it captures the features and functions that are needed to enable the use of
trust management concepts in practice.

APPENDIX
A. ALGORITHM
A.1. NP-hardness
The problem of computing minimum cost delegation chains supporting all the at-
tributes in certificate cert is NP-hard, even for configurations with no authority classes.
In fact, the minimum set cover problem reduces to it in polynomial time, as formally
stated by the following theorem.

THEOREM A.1 (NP-HARDNESS). The problem of computing minimum cost delega-
tion chains supporting all the attributes in a certificate is NP-hard.

PROOF. The proof is a reduction from the NP-hard problem of Minimum Set Cover,
which can be formulated as follows: given a collection S of subsets of a finite set U ,
determine a subset S′ ⊆ S such that every element in U belongs to at least one set in S′

and the cardinality of S′ is minimized.
Given a finite set U and a collection S of subsets of U , the problem of computing a

minimum set cover for U can be translated into an equivalent instance of the problem
of computing a minimum cost supporting chain as follows. Each element in the finite
set U translates to an attribute certified by cert and that belongs to TT. Any subset
s in S translates to a delegation certificate in Deleg Certs, issued by an authority in
the authoritative clause of TT, supporting the attributes in s, and with cost equal
to 1. The minimum cost supporting chain for cert corresponds to a subset S′ of S that
completely covers U and with minimum cardinality.

ACM Transactions on the Web, Vol. V, No. N, Article A, Publication date: January YYYY.

A:34 De Capitani di Vimercati, Foresti, Jajodia, Paraboschi, Psaila, Samarati

/* min ac ver list: minimum cost chain proving that auth belongs to a class in E */
/* ver chain[auth, AC]: minimum cost chain proving that auth belongs to AC */

Input: auth: authority
E: trust table or authority class

Output: min ac ver list: set of certificates proving that auth is an authority trusted for E

CHECKCLASSES(auth, E): min ac ver list
let AuthoritativeClass be the set of authority classes in Authoritative(E) with the delegation flag set to true
min ac ver list := NULL

min := ∞
for each AC∈AuthoritativeClass do

if ver chain[auth, AC]=NULL then /* auth has never been checked for AC */
min chain := NULL

for each authority cert∈{authority cert′ | authority cert′∈Authority Certs ∧
authority cert′ .subject=auth ∧
COMPATIBLE(authority cert′ , AC)} do

ac ver list := Satisfy(authority cert, AC)
if ac ver list$=∅ then

if (COST(ac ver list)<COST(min chain)) ∨ (min chain=NULL) then
min chain := ac ver list

if min chain $=NULL then
/* minimum cost paths for verifying that auth is a member of AC */
ver chain[auth, AC] := min chain

else
ver chain[auth, AC] := ∅ /* auth does not belong to AC */

if ver chain[auth, AC]$=∅ then /* auth belongs to AC */
if COST(ver chain[auth, AC])<min then

min ac ver list := ver chain[auth, AC]
min := COST(ver chain[auth, AC])

if min ac ver list$=∅ then
c.cost := COST(min ac ver list)
c.issuer := C /* virtual authority */
c.subject := auth
c.attributes := Attributes(E)
Deleg Certs := Deleg Certs ∪ {c} /* fictitious edge added to the delegation graph */

auth.ac visited(E) := TRUE

return (min ac ver list)

Fig. 12. Function checking if auth belongs to a class in Authoritative(E)

A.2. Functions invoked by function Satisfy

We discuss in details the functions invoked by function Satisfy, briefly described in
Section 4, and provide an example of their execution.

CheckClasses. Function CheckClasses (see Figure 12) receives as input the au-
thority auth to be checked, a trust table or authority class E, and verifies whether auth
is a member of an authority class in the authoritative clause of E (i.e., if auth has an
authority certificate that directly or indirectly proves that it belongs to a class trusted
for E). If this is the case, CheckClasses returns the delegation chains proving such a
membership; an empty set, otherwise. Variable min ac ver list contains the delegation
chains with minimum cost proving that auth is a member of a class trusted for E, vari-
able min corresponds to the cost of min ac ver list, and variable ver chain[auth, AC]
contains the delegation chains proving that auth is a member of class AC. Initially,
variables min ac ver list and min are set to NULL and ∞, respectively.

Let AuthoritativeClass be the set of authority classes in Authoritative(E) with dele-
gation option. For each authority class AC in AuthoritativeClass, if ver chain[auth, AC]
is NULL, CheckClasses checks whether auth is a member of AC. Variable min chain
is set to NULL and is used to store the chains with minimum cost supporting the mem-
bership of auth to AC. For each authority certificate authority cert issued for auth and

ACM Transactions on the Web, Vol. V, No. N, Article A, Publication date: January YYYY.

Integrating Trust Management and Access Control in Data-Intensive Web Applications A:35

compatible with AC, CheckClasses recursively calls function Satisfy. At the end of
the recursive call, variable ac ver list contains a set (possibly empty) of certificates
forming the delegation chains for auth. If ac ver list is not empty, auth is a member of
class AC and therefore if the cost of ac ver list is less than the cost of the current best
solution (min chain) ac ver list becomes the new best solution and min chain is set
to ac ver list. When all authority certificates compatible with AC have been verified,
if min chain is different from NULL, variable ver chain[auth, AC] is set to min chain;
otherwise, auth is not a member of AC and therefore ver chain[auth, AC] is set to ∅.
If auth is a member of AC (i.e., ver chain[auth, AC] is not NULL), CheckClasses com-
pares the cost of the delegation chain in ver chain[auth, AC] with the cost (variable
min) of the delegation chain that is currently the chain with minimum cost proving
that auth is a member of an authority class in the authoritative clause of E. If the
cost of the delegation chain in ver chain[auth, AC] is less than min, ver chain[auth, AC]
becomes the new best solution. Therefore, min ac ver list is set to ver chain[auth, AC]
and min is set to the cost of ver chain[auth, AC].

When all classes in AuthoritativeClass have been processed, if min ac ver list is not
NULL, CheckClasses adds a virtual delegation certificate c to Deleg Certs, where
the issuer is a virtual authority C, the subject is auth, the cost of the certificate is
COST(min ac ver list), and the set of certified attributes is Attributes(E). Finally, flag
auth.ac visited(E) is set to true, meaning that it has been already analyzed whether
auth is a member of an authority class listed in Authoritative(E). The function then
returns the verification chain min ac ver list.

FindChain. Function FindChain (see Figure 13) receives as input a certifi-
cate cert, and a trust table or an authority class E. It returns a (possibly empty)
set of supporting chains for the attributes in variable ToCheck, initially set to
cert.attributes∩Attributes(E). Finding a supporting chain for an attribute a means find-
ing a path in the delegation graph ending in cert.issuer and starting at one of the au-
thorities in Authoritative(E) or at an authority that belongs to one of the authority
classes listed in Authoritative(E), such that the labels of all edges in the path include
attribute a. The process for finding supporting chains is performed via a Dijkstra-
like visit of the delegation graph, possibly extended with the virtual certificates. The
while loop iterates until either a chain has been retrieved for all attributes (ToCheck
is empty) or there are no more edges to examine (Queue is empty). When a path (chain)
ends in C or in an authority in the authoritative clause of E, an element of the form
[from, A, p cost] is added to the Candidates queue, where from represents the author-
ity from which there is a path reaching cert.issuer, A is the set of supported attributes,
and p cost is the cost of the path. Otherwise, if the authority from reached by the path
is not a valid authority for E and flag from.ac visited(E) is false, function FindChain
calls function CheckClasses on authority from to check if it belongs to an authority
class in the authoritative clause of E.

At the end of the while loop, if ToCheck is not empty (i.e., no chain has been found
for some attributes), FindChain returns an empty set (and consequently function Sat-
isfy terminates returning an empty verification list); it returns priority queue Candi-
dates, representing the delegation chains for the attributes of interest, otherwise.

BuildVerificationList. Function BuildVerificationList (see Figure 14) receives
as input a certificate cert, a trust table or an authority class E, and a priority queue
Candidates of delegation chains, and returns the list of certificates that need to be vali-
dated, by removing redundant chains from Candidates. Variable ToCheck is initialized
to the set of attributes to be verified (i.e., cert.attributes∩Attributes(E)). To minimize
the number of chains to be evaluated, function BuildVerificationList processes the
chains in Candidates in decreasing order of cost. Indeed, since the starting authorities

ACM Transactions on the Web, Vol. V, No. N, Article A, Publication date: January YYYY.

A:36 De Capitani di Vimercati, Foresti, Jajodia, Paraboschi, Psaila, Samarati

/* Queue: priority queue of edges to be examined */
/* [from, to, p attrs, p cost] in Queue: last edge of a path from from to cert.issuer */
/* supporting p attrs with cost p cost */
/* predecessor[auth, a]: predecessor in the shortest path from auth to cert.issuer, supporting a */
/* cost[auth, a]: cost of the shortest path from auth to cert.issuer, supporting a */

Input: cert: certificate
E: trust table or authority class

Output: Candidates: priority queue of the first edges in delegation chains
[from, A, p cost] in Candidates: delegation path from a valid authority from to cert.issuer

supporting A with cost p cost

FINDCHAIN(cert, E): Candidates
ToCheck := cert.attributes∩Attributes(E) /* attributes to be checked for supporting chains */
MAKENULL(Queue)
MAKENULL(Candidates)
for each del cert∈{c | c∈Deleg Certs∧ c.subject=cert.issuer} do

if del cert.issuer$∈Except(E) then
/* add to Queue all edges outgoing from cert.issuer */
INSERT([del cert.issuer, del cert.subject, del cert.attributes∩ToCheck, del cert.cost], Queue)

/* Dijkstra-like visit of the dynamically built delegation graph */
while ToCheck $=∅ ∧ Queue$=∅ do

[from, to, p attrs, p cost] := EXTRACTMIN(Queue)
A:= ∅
for each a∈(p attrs∩ToCheck) do /* for each attribute still to be verified that belongs */

if cost[from, a]=NULL then /* to the extracted edge keep the path with lower cost */
cost[from, a] := p cost
predecessor[from, a] := to
A := A∪{a}

if A $=∅ then
if (from∈Authoritative(E) and has delegation flag set to true) ∨ (from=C) then

ToCheck := ToCheck − A
INSERT([from, A, p cost], Candidates)

else /* check if from belongs to an authority class in Authoritative(E) */
if from.ac visited(E)=FALSE then

from.ac visited(E) := CheckClasses(from,E)
for each del cert∈{c | c∈Deleg Certs ∧ del cert.subject=from} do

p attrs := del cert.attributes∩A
if p attrs$=∅ then

p cost := p cost + del cert.cost
if del cert.issuer$∈Except(E) then

/* add to Queue edges outgoing from from */
INSERT([del cert.issuer,del cert.subject,p attrs,p cost], Queue)

if ToCheck $=∅ then return(∅) /* no chain covering all attributes in ToCheck is found */
else return(Candidates)

Fig. 13. Function determining supporting chains

of the chains in Candidates are inserted in increasing order of cost, the chain with the
maximum cost is necessary to support at least one attribute a that is not covered by
the other chains whose starting point is already in Candidates. Therefore, if the most
expensive chain extracted from Candidates supports also an additional attribute a′,
the chain associated with a′ and whose starting point is in Candidates will not need
to be considered. For each chain, the corresponding certificates are added to the set
ver list of certificates that need validation. For edges starting at the virtual author-
ity C and ending in an authority auth, the certificates listed in auth.ac ver list(E) are
added to ver list. The attributes certified by a chain of certificates are then removed
from ToCheck. The process (controlled by the while loop) continues until there are no
more attributes to be verified (ToCheck is empty) or there are no more chains to be
processed (Candidates is empty). The function then returns the set ver list of certifi-

ACM Transactions on the Web, Vol. V, No. N, Article A, Publication date: January YYYY.

Integrating Trust Management and Access Control in Data-Intensive Web Applications A:37

/* predecessor[auth, a]: predecessor in the shortest path from auth to cert.issuer, supporting a */

Input: cert: certificate
E: trust table or authority class
Candidates: priority queue of the first edges in delegation chains

Output: ver list: set of certificates proving that cert matches with E

BUILDVERIFICATIONLIST(cert, E, Candidates): ver list
ToCheck := cert.attributes∩Attributes(E) /* initialize attributes to check for verification */
ver list := cert /* set of certificates that need validation */
while ToCheck $=∅ ∧ Candidates$=∅ do

A := ToCheck /* initialize attributes covered by a verified path */
/* extract the maximum cost verification path */
[auth, p attrs, p cost] := EXTRACTMAX(Candidates)
if (p attrs∩ToCheck)$=∅ then

Let a be any attribute in p attrs∩ToCheck
if auth=C then

ver list := predecessor[auth, a].ac ver list(E)
repeat

next := predecessor[auth, a] /* starting from the root and going down to cert */
del cert := EXTRACT(Deleg Certs|issuer=auth ∧ subject=next ∧ a∈attributes)
ver list := ver list∪del cert /* add the edge to the path */
A := A∩del cert.attributes
auth := del cert.subject

until auth=cert.issuer /* stop when reaching cert */
ToCheck := ToCheck − A

if ToCheck $=∅ then return(∅)
else return(ver list) /* return the list of certificates for validation */

Fig. 14. Function building the set of certificates to be validated

cates, which is in turn returned by function Satisfy as the result of the evaluation of
certificate cert.

Example A.2. With reference to Example 4.1, we illustrate the execution step by
step of functions FindChain and BuildVerificationList. Figure 15 illustrates how
the content of ToCheck, Queue, predecessor[], cost[], and Candidates is modified by
function FindChain. Initially, the set of attributes to be checked is {n, p, s} and Queue
is empty, as indicated in the first line of the table in Figure 15. The effect of the first
for loop in function FindChain is the insertion, into Queue, of all edges entering H,
as indicated in the second line of the table. The effect of the while loop in function
FindChain is represented by the other lines of the table that show the elements with
minimum cost in the order in which they are extracted from Queue, and show how the
content of ToCheck, Queue, predecessor[], cost[], and Candidates changes as each ele-
ment is processed. Note that a ∗ near an element in Queue and Candidates indicates
that the element has been inserted during the processing of the current extracted
element. Furthermore, during the processing of element [R,H,{p},2], function Find-
Chain calls procedure CheckClasses that adds another virtual delegation certificate
where the issuer is again the virtual authority C, the subject is R, the attributes are
those mentioned in the Physician trust table, and the cost is the sum of the costs asso-
ciated with the dotted edge from U to R. Figure 16 lists the elements with maximum
cost in the order in which they are extracted from Candidates by function BuildVeri-
ficationList, and shows how the content of ToCheck, Candidates, and ver list changes
as each element is processed. It is important to note here that the path represented
by [G,{s},3], which is an element inserted into Candidates by function FindChain, is
not visited since attribute s is already supported by another path that is needed for
supporting attribute n.

ACM Transactions on the Web, Vol. V, No. N, Article A, Publication date: January YYYY.

A:38 De Capitani di Vimercati, Foresti, Jajodia, Paraboschi, Psaila, Samarati

ToCheck Queue Assignments Candidates
{n,p,s} ∅

cert {n,p,s} [R,H,{p},2]∗
[S,H,{s},2]∗
[M ,H,{n,s},4]∗
[C,H,{n,p,s},10]∗

[R,H,{p},2] {n,p,s} [S,H,{s},2] predecessor[R,p]:=H
[M ,H,{n,s},4] cost[R,p]:=2
[C,R,{p},5]∗
[B,R,{p},6]∗
[C,H,{n,p,s},10]

[S,H,{s},2] {n,p,s} [G,S,{s},3]∗ predecessor[S,s]:=H
[M ,H,{n,s},4] cost[S,s]:=2
[C,R,{p},5]
[B,R,{p},6]
[C,H,{n,p,s},10]

[G,S,{s},3] {n,p} [M ,H,{n,s},4] predecessor[G,s]:=S [G,{s},3]∗
[C,R,{p},5] cost[G,s]:=3
[B,R,{p},6]
[C,H,{n,p,s},10]

[M ,H,{n,s},4] {n,p} [C,R,{p},5] predecessor[M ,n]:=H [G,{s},3]
[G,M ,{n},5]∗ cost[M ,n]:=4
[B,R,{p},6] predecessor[M ,s]:=H
[C,H,{n,p,s},10] cost[M ,s]:=4

[C,R,{p},5] {n} [G,M ,{n},5] predecessor[C,p]:=R [C,{p},5]∗
[B,R,{p},6] cost[C,p]:=5 [G,{s},3]
[C,H,{n,p,s},10]

[G,M ,{n},5] {} [B,R,{p},6] predecessor[G,n]:=M [G,{n},5]∗
[C,H,{n,p,s},10] cost[G,n]:=5 [C,{p},5]

[G,{s},3]

Fig. 15. Execution of function FindChain for Example 4.1

ToCheck Candidates Verification List
{n,p,s} [G,{n},5] ∅

[C,{p},5]
[G,{s},3]

[G,{n},5] {p} [C,{p},5] [G,M ,{n,s},1]∗
[G,{s},3] [M ,H,{n,s},4]∗

[C,{p},5] {} [G,{s},3] [G,M ,{n,s},1]
[M ,H,{n,s},4]
[U ,R,{f},3]∗
[R,H,{p},2]∗

Fig. 16. Execution of function BuildVerificationList for Example 4.1

A.3. Proof of correctness and complexity theorems
We introduce three lemmas used in the proof of Theorem 4.6 about the termination
and correctness of our delegation chain verification algorithm.

LEMMA A.3. Given a finite set of delegation certificates Deleg Certs, a finite set of
authority certificates Authority Certs, and a certificate cert compatible with an entity
E, each element [from, to, p attrs, p cost] in the Queue used by function FindChain
represents a path starting from from, ending to cert.issuer, and supporting attributes
p attrs ⊆ {cert.attributes∩Attributes(E)} with cost p cost.

PROOF. We prove this property by induction.

Base case. This property is satisfied before entering the while loop, since
Queue contains all edges (delegation certificates) entering cert.issuer and sup-

ACM Transactions on the Web, Vol. V, No. N, Article A, Publication date: January YYYY.

Integrating Trust Management and Access Control in Data-Intensive Web Applications A:39

porting attributes in del cert.attributes∩ToCheck, where ToCheck is initialized to
cert.attributes∩Attributes(E).

Recursive case. Suppose that this property is valid for all elements in Queue. We
now prove that the new elements added to Queue always satisfy the above prop-
erty. Let [from, to, p attrs, p cost] be the extracted element from Queue. By induc-
tion, we know that it represents a path from from to cert.issuer with cost p cost
and supporting a set of attributes p attrs ⊆ {cert.attributes∩Attributes(E)}. If there
is at least one attribute in {p attrs∩ToCheck} for which the extracted path is the
current supporting path with minimum cost (i.e., cost[from, a]=NULL), and from is
neither an authority directly listed in the authoritative clause of E nor the virtual
authority C, the attribute is added to A, where A ⊆p attrs, and the edges entering
from (i.e., the delegation certificates del cert with subject from) are added to Queue.
For each edge, function FindChain then adds to Queue an element of the form
[del cert.issuer, from, A∩del cert.attributes, p cost+del cert.cost] that therefore repre-
sents a path from del cert.issuer to cert.issuer supporting a set of attributes included
in cert.attributes∩Attributes(E).

LEMMA A.4. Given a finite set of delegation certificates Deleg Certs, a finite set of
authority certificates Authority Certs, and a certificate cert compatible with an entity
E, function FindChain terminates and determines correct delegation chains.

PROOF. We prove the termination of function FindChain by induction.

Base case. Function FindChain includes a for each loop followed by a while loop.
The for each loop iterates on the delegation certificates in Deleg Certs with subject
cert.issuer. Since Deleg Certs is finite, the for each loop terminates. The while loop
terminates when either ToCheck becomes empty or Queue becomes empty. Initially,
ToCheck contains all attributes in cert.attributes∩Attributes(E) and Queue contains
all edges (delegation certificates) entering cert.issuer. At each iteration, the number
of attributes in ToCheck may only decrease, one element is extracted from Queue, and
new elements may be added to Queue. In particular, since the attributes in ToCheck are
removed when FindChain has found a supporting path for them, two cases may occur.
In the first case, FindChain finds a supporting path for all attributes in ToCheck and
therefore it becomes empty. In the second case there is at least one attribute such that
the supporting path does not exist. The while loop therefore terminates only if Queue
becomes empty and we then need to prove that the number of elements inserted into
Queue is finite.

At each iteration of the while loop, an element [from, to, p attrs, p cost] with min-
imum cost is extracted from Queue. If for all attributes p attrs, function FindChain
has already found a delegation chain (i.e., p attrs∩ToCheck is empty) no element is
added to Queue. Otherwise, p attrs∩ToCheck is not empty. Let now a be an attribute in
{p attrs∩ToCheck}. If the extracted element represents an edge in the first path sup-
porting a and passing through from (Lemma A.3), attribute a is added to A and the
predecessor of from becomes authority to (i.e., predecessor[from, a] := to), thus correctly
building the delegation path. Otherwise, if function FindChain has already analyzed
another path supporting a and passing through from, p cost must be greater than or
equal to the cost of the other path since, at each iteration of the while loop, the path
with minimum cost is extracted. The edges entering from are possibly added to Queue
only if A is not empty (in the worst case this may happen as many times as the number
of attributes in cert) and from is neither an authority directly listed in the authorita-
tive clause of E nor the virtual authority C. If A is not empty and from is an authority
directly listed in the authoritative clause of E or corresponds to C, the set ToCheck is
modified by removing the set of attributes A and no element is added to Queue. Since

ACM Transactions on the Web, Vol. V, No. N, Article A, Publication date: January YYYY.

A:40 De Capitani di Vimercati, Foresti, Jajodia, Paraboschi, Psaila, Samarati

however a finite number of elements are inserted into Queue and at each iteration of
the while loop an element is extracted from Queue, the while loop terminates. If after
the termination of the while loop ToCheck is not empty, function FindChain returns
an empty set.

Recursive case. We first note that function FindChain terminates if CheckClasses
terminates. Function CheckClasses is composed of two nested for each loops, which
iterate on a finite number of authority classes and authority certificates and there-
fore the operations inside these two loops are executed a finite number of times. In
particular, we are interested in the number of calls to function Satisfy. Given an au-
thority auth, and an authority class AC, the membership of auth to AC is checked only
if ver chain[auth, AC] is NULL and there exists at least one authority certificate issued
for auth and compatible with AC. In particular, the number of times that function Sat-
isfy is called for checking whether auth is a member of AC is equal to the number
of authority certificates issued for auth and compatible with AC. Since the delegation
graph is acyclic, the recursive call to Satisfy cannot reach again auth. Furthermore,
since the number of authority classes and delegation certificates is finite and since each
call to function Satisfy visits a different portion of such a graph, the recursive call to
Satisfy terminates (provided function Satisfy terminates, as proved by Theorem 4.6).
When also the inner for each loop terminates, ver chain[auth, AC] becomes different
from NULL and therefore the membership of auth to AC will be no more checked.

LEMMA A.5. Given a finite set of delegation certificates Deleg Certs, a finite set of
authority certificates Authority Certs, and a certificate cert compatible with an entity
E, function BuildVerificationList terminates.

PROOF. Function BuildVerificationList is composed of a while loop and an in-
nermost repeat-until loop. The while loop terminates when either ToCheck becomes
empty or Candidates becomes empty. Initially, ToCheck contains all attributes in
cert.attributes∩Attributes(E) and Candidates contains a finite set of elements of the
form [auth, p attrs, p cost] that represents a path staring from auth and ending to
cert.issuer, with cost p cost, and supporting attributes p attrs (Lemma A.4). Since at
each iteration of the while loop, an element [auth, p attrs, p cost] with maximum cost
is extracted from Candidates and no element is added, Candidates will become empty.
The innermost repeat-until loop is executed whenever the extracted element repre-
sents a path supporting at least one attribute a for which the corresponding delegation
chain has not been visited yet, that is, a ∈ p attrs∩ToCheck. The repeat-until loop
follows the corresponding path by exploiting the predecessor global variable and the
corresponding delegation certificates are added to ver list. Since function FindChain
correctly builds the delegation chains through variable predecessor (Lemma A.4) and
the graph is acyclic, at each iteration the repeat-until loop visits an edge of the del-
egation chain until cert.issuer will be reached. Consequently, the repeat-until loop
terminates and, if ToCheck is empty, the function returns the set ver list of certificates
supporting attributes in cert.attributes∩Attributes(E).

THEOREM 4.6 (TERMINATION AND CORRECTNESS). Given a finite set of delegation
certificates Deleg Certs, a finite set of authority certificates Authority Certs, and a cer-
tificate cert compatible with an entity E, function Satisfy terminates and determines a
correct set of delegation chains for cert, if such delegation chains exist.

PROOF. We first prove that the function terminates and then that if it returns a
non empty set of certificates, they correspond to delegation chains that support all
attributes in cert.attributes∩Attributes(E).

ACM Transactions on the Web, Vol. V, No. N, Article A, Publication date: January YYYY.

Integrating Trust Management and Access Control in Data-Intensive Web Applications A:41

The preliminary operations of function Satisfy check whether or not cert.issuer ap-
pears in Except(E) and Authoritative(E). Since such sets are finite, the preliminary op-
erations terminate. Analogously, since both function FindChain and function Build-
VerificationList terminate (Lemma A.4 and Lemma A.5), also both Phase 1 and
Phase 2 of function Satisfy terminate.

We now prove by contradiction that if there are delegation chains supporting all at-
tributes in cert.attributes∩Attributes(E), function Satisfy returns them. Suppose that
all attributes in cert.attributes∩Attributes(E) are supported by a unique delegation
chain and let s be the set of delegation certificates forming the delegation chains for
such attributes. Suppose also that function Satisfy returns an empty set. In this case,
solution s cannot coincide with cert, since Satisfy checks if cert represents a solution
to the problem. Set s has then to include more than one certificate. Since function Sat-
isfy returns the empty set, function FindChain returned an empty Candidates list.
Therefore, the while loop in function FindChain terminates because Queue becomes
empty while ToCheck includes at least one attribute a. By assumption, we know that
there is a supporting path p also for attribute a, going from a valid authority for E to
cert.issuer. By Lemma A.3, the edge in p entering cert.issuer and represented by ele-
ment [from, cert.issuer, p attrs, p cost] is inserted into Queue before the while loop.
Since at the end of the while loop Queue is empty, within an iteration of the while
loop this edge is extracted from Queue and therefore any edge entering from, including
the edge in path p, is inserted into Queue. By recursively applying this observation, we
can conclude that all edges in p are evaluated and added to Queue until the function
reaches an authority directly listed in the authoritative clause of E or the virtual au-
thority C. Attribute a is then removed from ToCheck thus contradicting our assumption
that a remains in ToCheck.

Function Satisfy can also return an empty set if function BuildVerificationList
returns an empty ver list, that is, if the function cannot reconstruct a delegation
chain for all the attributes in cert.attributes∩Attributes(E). Suppose that a is the
attribute for which it cannot reconstruct the delegation chain. Since a belongs to
cert.attributes∩Attributes(E), function FindChain has removed a from ToCheck and
added an element to Candidates containing a. Therefore, such an element is extracted
from Candidates by function BuildVerificationList because, by assumption, there is
only a unique path supporting a and this path is reconstructed, since at each itera-
tion of the repeat-until loop, variable next is assigned to the predecessor associated
with auth for a. For Lemma A.3, cert.issuer is reached by the repeat-until loop and
ToCheck is updated removing a.

THEOREM 4.7 (COMPLEXITY). Function Satisfy finds delegation chains for a cer-
tificate cert compatible with an entity E in O(Nd ·NE ·NAC ·Nauth · log(Nd ·NE)).

PROOF. The complexity of function Satisfy is obtained by evaluating the complex-
ity of the preliminary checks and of the two phases composing it. We first evaluate the
complexity of Satisfy in the base case, thus assuming that function CheckClasses is
never called.

Preliminary checks. The preliminary checks in Satisfy require (in total) time pro-
portional to |Authoritative(E)| + |Except(E)|.

Phase 1. The cost of this phase is the cost of function FindChain. The for each
loop of the function requires time proportional to Nd, and the cost of the while loop
of the function requires time proportional to the number of iterations of such a loop.
In the worst case, the while loop terminates when Queue is empty. As already noted,
any certificate (edge) in Deleg Certs is inserted into Queue at most as many times as
the number of attributes NE . This implies that the maximum number of elements in

ACM Transactions on the Web, Vol. V, No. N, Article A, Publication date: January YYYY.

A:42 De Capitani di Vimercati, Foresti, Jajodia, Paraboschi, Psaila, Samarati

Queue is Nd ·NE . All operations performed within the while loop have a constant cost
but the INSERT operation on priority queue Queue whose cost is O(log(Nd · NE)). We
can then conclude that the cost of this first phase is proportional to Nd ·NE ·log(Nd ·NE).

Phase 2. The cost of this phase is the cost of function BuildVerificationList that
visits (a subset of) the paths found in the previous phase. The cost of this second phase
is then proportional to Nd.

Overall, the time complexity is proportional to |Authoritative(E)|+ |Except(E)| +Nd ·
NE · log(Nd ·NE)+Nd. If we assume that all operations performed by function Satisfy
have a constant cost and cmax is the maximum cost, the time complexity is in O(cmax ·
Nd ·NE · log(Nd ·NE)) = O(Nd ·NE · log(Nd ·NE)).

Consider now the recursive execution of function Satisfy. As already noted, in the
worst case, the function is recursively called NAC · Nauth times. Since the time com-
plexity of each call is O(Nd ·NE ·log(Nd ·NE)) and in the worst case the whole delegation
graph is visited, the overall time complexity is then O(Nd · NE · NAC · Nauth · log(Nd ·
NE)).

ACKNOWLEDGMENTS
This work was partially supported by the EC within the 7FP, under grant agreement 257129 (PoSecCo), by
the Italian Ministry of Research within project “PEPPER” (2008SY2PH4), and by the Università degli Studi
di Milano within project “PREVIOUS”. The work of Sushil Jajodia was partially supported by the National
Science Foundation under grants CT-20013A and CCF-1037987, by the Air Force Office of Scientific Research
under grant FA9550-09-1-0421, and by the Army Research Office under DURIP grant W911NF-11-1-0340.

REFERENCES
AGRAWAL, R., BIRD, P., GRANDISON, T., KIERNAN, J., LOGAN, S., AND RJAIBI, W. 2005. Extending re-

lational database systems to automatically enforce privacy policies. In Proc. of the 21st International
Conference on Data Engineering. Tokyo, Japan.

BLAZE, M., FEIGENBAUM, J., IOANNIDIS, J., AND KEROMYTIS, A. 1999. The KeyNote trust management
system (version 2). Internet RFC 2704. http://www.crypto.com/papers/rfc2704.txt.

BLAZE, M., FEIGENBAUM, J., AND LACY, J. 1996. Decentralized trust management. In Proc. of the 1996
IEEE Symposium on Security and Privacy. Oakland, CA, USA.

BONATTI, P. AND SAMARATI, P. 2002. A unified framework for regulating access and information release
on the Web. Journal of Computer Security 10, 3, 241–272.

BONNER, A. 1997. Transaction Datalog: A compositional language for transaction programming. In Proc. of
the 6th International Workshop on Database Programming Languages. Estes Park, CO, USA.

BRANDS, S. 2000. Rethinking public key infrastructure and digital certificates. MIT Press

CAMENISCH, J. AND LYSYANSKAYA, A. 2001. An efficient system for non-transferable anonymous creden-
tials with optional anonymity revocation. In Proc. of the 20th Annual International Conference on the
Theory and Applications of Cryptographic Techniques. Innsbruck, Austria.

CERI, S., FRATERNALI, P., PARABOSCHI, S., AND TANCA, L. 1994. Automatic generation of production rules
for integrity maintenance. ACM Transaction on Database Systems 19, 3, 367–422.

CHAUDHURI, S., DUTTA, T., AND SUDARSHAN, S. 2007. Fine grained authorization through predicated
grants. In Proc. of the 23rd IEEE International Conference on Data Engineering. Istanbul, Turkey.

CHU, Y., FEIGENBAUM, J., LAMACCHIA, B., RESNICK, P., AND STRAUSS, M. 1997. REFEREE: Trust man-
agement for Web applications. The World Wide Web Journal 2, 3, 127–139.

CLARKE, D., ELIEN, J., ELLISON, C., FREDETTE, M., MORCOS, A., AND RIVEST, R. 2001. Certificate chain
discovery in SPKI/SDSI. Journal of Computer Security 9, 4, 285–322.

Database language SQL – part 2: Foundation (SQL/foundation) 1999. ISO International Standard, ISO/IEC
9075:1999 ed.

DE CAPITANI DI VIMERCATI, S., JAJODIA, S., PARABOSCHI, S., AND SAMARATI, P. 2007. Trust manage-
ment services in relational databases. In Proc. of the 2nd ACM Symposium on Information, Computer
and Communications Security. Singapore.

DIERKS, T. AND RESCORLA, E. 2008. The Transport Layer Security (TLS) protocol (version 1.2). Internet
RFC 5246. http://tools.ietf.org/rfc/rfc5246.txt.

ACM Transactions on the Web, Vol. V, No. N, Article A, Publication date: January YYYY.

Integrating Trust Management and Access Control in Data-Intensive Web Applications A:43

ELLISON, C. 1999. SPKI requirements. Internet RFC 2692. http://www.ietf.org/rfc/rfc2692.txt.

ELLISON, C., FRANTZ, B., LAMPSON, B., RIVEST, R., THOMAS, B., AND LONEN, T. 1999. SPKI certificate
theory. Internet RFC 2693. http://www.ietf.org/rfc/rfc2693.txt.

FREIER, A.O., KARLTON, P., AND KOCHER, P.C. 1996. The SSL protocol (version 3.0). Netscape’s final SSL
3.0 draft. http://www.mozilla.org/projects/security/pki/nss/ssl/draft302.txt.

HOUSLEY, R., POLK, W., FORD, W., AND SOLO, D. 2002. Internet X.509 public key infrastructure certificate
and CRL profile. Internet RFC 3280. http://www.ietf.org/rfc/rfc3280.txt.

IRWIN, K. AND YU, T. 2005. Preventing attribute information leakage in automated trust negotiation. In
Proc. of the 12th ACM Conference on Computer and Communications Security. Alexandria, VA, USA.

KABRA, G., RAMAMURTHY, R., AND S. SUDARSHAN, S. 2006. Redundancy and information leakage in fine-
grained access control. In Proc. of the 2006 ACM SIGMOD International Conference on Management of
Data. Chicago, IL, USA.

LEE, A., MINAMI, K., AND WINSLETT, M. 2007. Lightweight consistency enforcement schemes for dis-
tributed proofs with hidden subtrees. In Proc. of the 12th ACM Symposium on Access Control Models
and Technologies. Sophia Antipolis, France.

LEE, A. AND WINSLETT, M. 2006. Safety and consistency in policy-based authorization systems. In Proc. of
the 13th ACM Conference on Computer and Communications Security. Alexandria, VA, USA.

LEE, A. AND WINSLETT, M. 2008a. Enforcing safety and consistency constraints in policy-based authoriza-
tion systems. ACM Transactions on Information and System Security 12, 2, 1–33.

LEE, A. AND WINSLETT, M. 2008b. Towards an efficient and language-agnostic compliance checker for trust
negotiation systems. In Proc. of the 3rd ACM Symposium on Information, Computer and Communica-
tions Security. Tokyo, Japan.

LEE, A., WINSLETT, M., BASNEY, J., AND WELCH, V. 2008. The traust authorization service. ACM Trans-
actions on Information and System Security 11, 1, 1–33.

LI, J., LI, N., AND WINSBOROUGH, W. 2005a. Automated trust negotiation using cryptographic credentials.
In Proc. of the 12th ACM Conference on Computer and Communications Security. Alexandria, VA, USA.

LI, N. AND MITCHELL, J. 2006. Understanding SPKI/SDSI using first-order logic. International Journal of
Information Security 5, 1, 48–64.

LI, N., MITCHELL, J., AND WINSBOROUGH, W. 2005b. Beyond proof-of-compliance: Security analysis in
trust management. Journal of the ACM 52, 3, 474–514.

LI, N., WINSBOROUGH, W., AND MITCHELL, J. 2003. Distributed credential chain discovery in trust man-
agement. Journal of Computer Security 11, 1, 35–86.

LOCKHART, H., WISNIEWSKI, T., CANTOR, S., MISHRA, P., AND LIEN, J. 2007. Security Asser-
tion Markup Language (SAML) V2.0 Technical Overview, OASIS Working Draft. http://www.oasis-
open.org/committees/download.php/22553/sstc-saml-tech-overview-2200-draft-13.pdf.

LOWE, G. 1996. Breaking and fixing the Needham-Schroeder public-key protocol using FDR. In Proc. of the
2nd International Workshop on Tools and Algorithms for Construction and Analysis of Systems. Passau,
Germany.

MURTHY, R. AND SEDLAR, E. 2007. Flexible and efficient access control in Oracle. In Proc. of the 2007 ACM
SIGMOD International Conference on Management of Data. Beijing, China.

NEEDHAM, R.M. AND SCHROEDER, M.D. 1978. Using encryption for authentication in large networks of
computers. Communications of the ACM 21, 12, 993–999.

OLSON, E., GUNTER, C., AND MADHUSUDAN, P. 2008. A formal framework for reflective database ac-
cess control policies. In Proc. of the 15th ACM Conference on Computer and Communications Security.
Alexandria, VA, USA.

REITH, M., NIU, J., AND WINSBOROUGH, W. 2007. Apply model checking to security analysis in trust
management. In Proc. of the 23rd International Workshop on Data Engineering. Istambul, Turkey.

RIVEST, R. AND LAMPSON, B. 1996. SDSI - A Simple Distributed Security Infrastructure.
http://people.csail.mit.edu/rivest/sdsi10.html.

RYUTOV, T., ZHOU, L., NEUMAN, C., LEITHEAD, T., AND SEAMONS, K. 2005. Adaptive trust negotiation
and access control. In Proc. of the 10th ACM Symposium on Access Control Models and Technologies.
Stockholm, Sweden.

SALTZER, J. AND SCHROEDER, M. 1975. The protection of information in computer systems. Proceedings of
the IEEE 63, 9, 1278–1308.

STONEBRAKER, M. 1987. The design of the POSTGRES storage system. In Proc. of 13th International Con-
ference on Very Large Data Bases. Brighton, England.

ACM Transactions on the Web, Vol. V, No. N, Article A, Publication date: January YYYY.

A:44 De Capitani di Vimercati, Foresti, Jajodia, Paraboschi, Psaila, Samarati

WANG, L., WIJESEKERA, D., AND JAJODIA, S. 2004. A logic-based framework for attribute based access
control. In Proc. of the 2004 ACM Workshop on Formal Methods in Security Engineering. Washington
DC, USA.

WARNER, J., ATLURI, V., AND MUKKAMALA, R. 2005. An attribute graph based approach to map local
access control policies to credential based access control policies. In Proc. of the 1st International Con-
ference on Information Systems Security. Kolkata, India.

WINSBOROUGH, W. AND LI, N. 2006. Safety in automated trust negotiation. ACM Transactions on Infor-
mation and System Security 9, 3, 352–390.

WINSLETT, M., CHING, N., JONES, V., AND SLEPCHIN, I. 1997. Using digital credentials on the World Wide
Web. Journal of Computer Security 5, 3, 255–267.

WINSLETT, M., YU, T., SEAMONS, K., HESS, A., JACOBSON, J., JARVIS, R., SMITH, B., AND YU, L. 2002.
Negotiating trust on the Web. IEEE Internet Computing 6, 6, 30–37.

YU, T., MA, X., AND WINSLETT, M. 2000. PRUNES: An efficient and complete strategy for automated trust
negotiation over the internet. In Proc. of the 7th ACM Conference on Computer and Communications
Security. Athens, Greece.

YU, T. AND WINSLETT, M. 2003. A unified scheme for resource protection in automated trust negotiation.
In Proc. of the 2003 IEEE Symposium on Security and Privacy. Oakland, CA, USA.

YU, T., WINSLETT, M., AND SEAMONS, K. 2001. Interoperable strategies in automated trust negotiation. In
Proc. of the 8th ACM Conference on Computer and Communications Security. Philadelphia, PA, USA.

YU, T., WINSLETT, M., AND SEAMONS, K. 2003. Supporting structured credentials and sensitive policies
through interoperable strategies for automated trust negotiation. ACM Transactions on Information
and System Security 6, 1, 1–42.

Received ; revised ; accepted

ACM Transactions on the Web, Vol. V, No. N, Article A, Publication date: January YYYY.

