
1

Expressive and Deployable Access Control in
Open Web Service Applications

C.A. Ardagna, S. De Capitani di Vimercati, S. Paraboschi, E. Pedrini, P. Samarati, M. Verdicchio

Abstract—Traditional access control solutions, based on preliminary identification and authentication of the access requester, are not

adequate for the context of open Web service systems, where servers generally do not have prior knowledge of the requesters. The

research community has acknowledged such a paradigm shift and several investigations have been carried out for new approaches to

regulate access control in open dynamic settings. Typically based on logic, such approaches, while appealing for their expressiveness,

result not applicable in practice, where simplicity, efficiency, and consistency with consolidated technology are crucial. The eXtensible

Access Control Markup Language (XACML) has established itself as the emerging technological solution for controlling access in

an interoperable and flexible way. Although supporting the most common policy representation mechanisms and having acquired a

significant spread in the research community and the industry, XACML still suffers from some limitations which impact its ability to

support actual requirements of open Web-based systems. In this paper, we provide a simple and effective formalization of novel

concepts that have to be supported for enforcing the new access control paradigm needed in open scenarios, toward the aim

of providing an expressive solution actually deployable with today’s technology. We illustrate how the concepts of our model can

be deployed in the XACML standard by exploiting its extension points for the definition of new functions, and introducing a dialog

management framework to enable access control interactions between Web service clients and servers.

Index Terms—Deployable Access Control, Web Services, Credentials, Security Policy Communication, XACML.

F

1 INTRODUCTION

A CCESS control is the component of security systems
responsible to evaluate if a subject can be allowed

to operate in a given way on a specific resource. In
traditional centralized environments, the focus has been
usually directed to the design of solutions able to pro-
vide efficient decisions on whether an access request,
usually represented as a triple (subject,object,action),
should be permitted or refused. Security requirements
impose that the control has to be realized for every
access to a resource and even a modest increase in the
evaluation time can have a great impact on general
system performance. As a consequence, low-level access
control models with limited flexibility have been used.
Another aspect characterizing most traditional applica-
tions is the limited variety of users. Users could be
adequately classified by their identifiers, assigned by the
system and presented by the users at every access, and
by the group (or role) characterizing them.

Web service-based systems, in which servers receive
and process requests from remote parties, are character-
ized by features that force a complete revision of the
solutions adopted so far. First of all, these systems are
designed to be open, which implies that the servers
may not have preliminary knowledge of the requester.
Such a circumstance makes traditional access control

• C.A. Ardagna, S. De Capitani di Vimercati, E. Pedrini, P. Samarati are
with Department of Information Technology, Università degli Studi di
Milano, 26013 Crema, Italy. E-mail: {claudio.ardagna, sabrina.decapitani,
eros.pedrini, pierangela.samarati}@unimi.it − S. Paraboschi and M.
Verdicchio are with Dipartimento di Ingegneria dellInformazione e Metodi
Matematici of the Università degli Studi di Bergamo, 24044 Dalmine,
Italy. E-mail: {parabosc, mario.verdicchio}@unibg.it

inapplicable, as it is based first on preliminary identi-
fication and authentication of the requester, and then
on checks against applicable authorizations. Rather, the
Web server needs to determine the conditions under
which access can be granted, and to communicate them
to the requester. Moreover, Web services are supposed
to be platform-independent, which triggers the need
for the system behavior to be specified by means of a
general description language (typically, XML-based) that
does not rely on any assumption on what language the
services are implemented with, nor on what protocol
is used for message exchange over the communication
channels.

The paradigm shift from requester identification to
access condition communication and the need for a
general system behavior description have already been
acknowledged by the research community. Many works
and progresses in credential-based and attribute-based
access control rely on the idea that the server commu-
nicates to the requester the credentials that she must
possess, or the properties that she needs to satisfy, to
acquire access. Several works have also investigated the
different aspects of credential-based access control, and
presented different models and languages. Typically, a
logic-based language is proposed, allowing for compact
and expressive specifications of the access control policy
as well as its communication to the requester. Further-
more, when privacy is an issue, these works assume that
the requester can enforce her own policy and initiate a
negotiation with the server, during which access policies,
credentials, and attributes are exchanged, until access is
eventually granted or denied. Nevertheless, many logic-
based proposals, while appealing for their expressive-

0000–0000/00$00.00 c© 2010 IEEE

 © 2011 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of
any copyrighted component of this work in other works. DOI: 10.1109/TSC.2010.29

2

ness, turn out to be not applicable in practice, where
simplicity, efficiency, and consistency with consolidated
technology are crucial.

Effectively tackling these issues is probably the key
to the success of the eXtensible Access Control Markup
Language (XACML) [1]. XACML is an OASIS standard
that proposes an XML-based language for specifying and
exchanging access control policies over the Web. The
language can support the most common security policy
representation mechanisms and has already found sig-
nificant support by many players. Moreover, it includes
standard extension points for the definition of new
functions, data types, and policy combination methods,
which provide a great potential for the management of
access control requirements in future environments.

We aim at realizing such a potential, especially with
respect to those aspects of open world scenarios that
are not supported by the current XACML standard.
In particular, while providing a flexible and extensible
attribute-based access control, XACML does not include
features to deal with and reason about credentials. It also
assumes the requester to be known, or to provide all her
attributes at request time, thus enforcing access control
with a traditional closed world setting. In this paper, we
propose an extension to XACML that enables clients and
servers to rely also on credentials to request access and
specify policies, respectively. The additional reasoning
capabilities needed by the architecture components to
take credentials into account will be designed in a way
that does not clash with the efficiency restrictions met
by the original XACML.

The contribution of this paper is threefold. First, start-
ing from an analysis of the shortcomings of XACML, we
provide a simple formalization of concepts that should
be expressed to effectively support real world applica-
tions. Our formalization includes a novel proposal for
expressing the different ways a server can present its
access control policy to a requester. These different ways,
characterized as disclosure policies, are specified at the
fine grain of conditions appearing in a policy specifi-
cation, thus allowing flexibility in dialog management.
Second, we illustrate how such concepts can be deployed
in XACML, exploiting XACML extensibility, introducing
new elements, attributes, or XACML profiles. Third, we
pinpoint the specific changes needed in the XACML
architecture and implementation to incorporate our ex-
tensions. Although explicitly referring to XACML, our
proposal must not be considered simply as an improve-
ment of XACML. Instead, the approach we present can
be viewed as a proposal for the definition of a general
policy language able to support important requirements
of novel Web service applications. The basic principles
guiding our effort are first illustrated on a standard-
independent, abstract level. Then, to demonstrate that
our ideas can find a direct application within current
systems, we focus our attention on how XACML can be
adapted and extended to support these new features.

The remainder of this paper is organized as follows.

Section 2 illustrates the novel features that should be
supported by a practical access control in open Web ser-
vice applications. Section 3 presents the formal modeling
of the novel features that we have identified. Section 4
illustrates how such formal concepts can be effectively
deployed in XACML. Section 5 presents enhancements
to be made to the standard XACML architecture to sup-
port the extended XACML language. Section 6 discusses
related work. Finally, Section 7 gives our concluding
remarks.

2 FEATURES TO BE SUPPORTED FOR PRACTI-
CAL ACCESS CONTROL

Our analysis aims at identifying the novel concepts that
access control in open Web service applications should
support. The analysis takes as a reference XACML,
which is well recognized as the standard access control
language for Web applications, and identifies a few
limitations in using XACML in this scenario.

• Certified information. The XACML policies allow the
definition of generic boolean conditions for referring
to the different elements (e.g., subject, object, action)
of a policy. It is possible to define a generic subject
expression that allows referring to a set of subjects
satisfying the specified conditions. XACML there-
fore enforces attribute-based access control, since the
authorizations applicable to a requester depend on
the properties the requester presents (and the con-
ditions that the requester satisfies). The properties
are assumed to be known during the evaluation
time and stored in the XACML evaluation context,
or presented by the requester together with the
request. XACML also permits expressing the fact
that some properties should be certified; this is lim-
ited however to conditions on attributes issuer, time,
and date that can be associated with the property.
While XACML acknowledges that properties can be
presented by means of certificates, and as a matter
of fact, it has been designed to be integrated with the
Security Assertion Markup Language (SAML) [2]
for exchanging various types of security assertions
and for providing protocol mechanisms, it does not
provide a real support for expressing and reasoning
about digital certificates in the specification of the
authorization policies. Intuitively, XACML supports
attribute-based access control but does not really
support credential-based access control. While the
two concepts are often used in an indistinguishable
way in the literature, the difference is noticeable
in XACML. Credential-based access control needs
support for expressing that some properties should
be presented by means of given certificates, possi-
bly imposing conditions, besides on values of the
properties, also on the certificates themselves (e.g.,
their type or issuer).

• Abstractions. Abstractions have been considered in
several novel logic-based proposals (typically re-

3

ferred to as abbreviations, macros, or ontological
reasoning) and allow the derivation of new concepts
based on others. Intuitively, abstractions represent a
shorthand for expressing, with a single concept, a
more complex definition (e.g., a set, a disjunction,
or a conjunction of concepts). Use of abstractions in
the policy specification provides therefore a com-
pact and easy way to refer to complex concepts.
For instance, id document can be defined as an
abstraction for any element in the set of creden-
tials {identity card, driver license, passport}. An
authorization specifying that the requester needs to
provide an id document for accessing a specific Web
service can then be satisfied by the requester pre-
senting any of the three credentials above. XACML
does not provide explicit support for abstractions.

• Recursion. While recursive reasoning on data can
be captured by the application, recursive reasoning
on credentials or their properties needs to be cap-
tured by the authorization specification language.
Recursive reasoning is in fact needed for expressing
policies based on chains of credentials and for sup-
porting delegation. XACML does not provide any
support for recursive reasoning.

• Dialog Management. XACML implicitly assumes that
the engine enforcing access control has available all
information needed to evaluate whether an autho-
rization policy is satisfied, without the need of an
infrastructure to manage the dialog between parties.
The evaluation of a policy can result therefore in
four possibilities: permit, deny, not applicable (if the
policy does not apply to the request), or indeter-
minate (if the server does not have the informa-
tion necessary to evaluate the policy). In an open
world scenario, the approach above would require
the requester to reveal all the necessary credentials
together with the service request. Assuming that the
requester can hand over all her credentials is simply
inconceivable: the requester will want the ability to
send to the counterpart only just what is needed
to acquire access. On the other hand, the requester
cannot be assumed to know the credentials that are
needed for an access. The server should therefore
support a new way of enforcing the access control
process, which cannot be assumed anymore to op-
erate with a given prior knowledge and return a
definite access decision. Rather, the access control
process should be able to operate without a-priori
knowledge of the requester and should return the
conditions that it requires be satisfied for the access
to be allowed [3]. Extending XACML with dialog
management would then avoid the simple evalua-
tion to indeterminate of all those cases for which the
server is missing information, providing instead the
possibility to communicate to the requester which
information is required and therefore enabling the
requester to provide it and acquire access to the web
service.

3 MODELING NOVEL CONCEPTS

We present a formal description of the novel concepts
discussed in the previous section. Our goal is not the
definition of a complete authorization model, but the for-
mal representation of the basic building blocks needed
for referring to credentials and reasoning about them,
and for supporting abstractions, recursion, and dialog.

3.1 Credentials

Credential support requires the possibility of explicitly
referring to digital certificates and relevant conditions
about them in the policy specifications. We formally
model a credential as follows.

Definition 3.1 (Credential): A credential is represented by
a symbol c and is modeled as a pair (Mc ,Ac), where:

• Mc is a list of metadata name-value pairs
(〈M1,m1〉, . . . , 〈Mk,mk〉) that represent properties
on the credential (e.g., 〈type,id card〉 is a metadata
describing a credential of type id card);

• Ac is a list of attribute name-value pairs
(〈A1, a1〉, . . . , 〈An, an〉) that represent the content
of the credential (e.g., 〈last name,Smith〉 represents
attribute last name whose value is Smith).

The schema of a credential c, denoted c, is the set of
its metadata and attribute names alone, without the
specific instances of values. Formally, c = (Mc,Ac),
where Mc = (M1, . . . ,Mk), and Ac = (A1, . . . , An). Our
notation relies on the triangle (⊲) symbol and the dot (.)
symbol to create credential terms that refer to metadata
and attribute names, respectively, in a credential schema.
For instance, terms c ⊲ M and c.A refer to metadata
name M and to attribute name A in credential c, respec-
tively.

Credential terms can then be used to specify credential
conditions on certified properties and on the certificates
themselves, which can be used like any other condition
within a subject expression (i.e., the attribute-based ex-
pression identifying subjects to which the authorization
applies).

Definition 3.2 (Simple credential condition): A simple
credential condition is either:

• a credential term t, where t is c ⊲ M or c.A, with
c=(Mc ,Ac), M ∈Mc , and A ∈ Ac ;

• an expression of the form t π v, where t is credential
term, π is a symbol representing a standard predicate
(e.g., ‘=’, ‘ 6=’, ‘>’, ‘∈’), and v is a metadata value, an
attribute value, or another credential term.

Conditions of the first type (credential terms) have the
semantics of requiring the requester to hold a creden-
tial with the specified term. If no further condition is
specified on the corresponding metadata/attribute in the
subject expression, the semantics is simply that the meta-
data/attribute needs to be presented, although its value
does not impact the access control decision. For instance,
a subject expression can include a term c.last name as
a condition, without any further restriction on attribute

4

last name; while the value of the attribute is not taken
into consideration in the access control decision process,
it might be needed for logging purposes (as the name of
those who have accessed a service is logged).

Conditions of the second type are satisfied if the
requester holds a credential with a term that satisfies
the stated restriction. For instance, c.last name = Smith
is satisfied by a credential including attribute last name
whose value is Smith. Simple credential conditions can
be combined by using the AND and OR boolean operators
to create more complex conditions, as formally defined
as follows.

Definition 3.3 (Credential condition): A credential con-
dition is inductively defined as:

• a simple credential condition, or
• s1 ∧ s2, or
• s1 ∨ s2,

where s1 and s2 are credential conditions.

A credential condition represents the basic construct
to be used in the definition of a subject expression
in a policy that permits referring to a set of subjects
satisfying certain conditions. Note that a credential con-
dition may include multiple occurrences of credential
symbols. If the same symbol is used, the correspond-
ing simple conditions refer to (and must therefore be
satisfied by) the same credential; if a different symbol
is used, the corresponding simple conditions can be
satisfied by different credentials or must be satisfied
by different credentials, if an inequality between the
credential symbols is explicitly specified in the credential
condition. For instance, condition “c1 ⊲ type = passport ∧
c1.last name = Smith ∧ c1.nationality = US” can be satis-
fied by presenting a credential of type passport contain-
ing attributes last name and nationality with values Smith
and US, respectively. Condition “c1 ⊲ type = passport ∧
c1.last name = Smith ∧ c1.nationality = US ∧ c2 ⊲ type
= credit card ∧ c2.last name = Smith ∧ c2.cc number”
can be satisfied by two different credentials, the first
one of type passport, containing attributes last name and
nationality with values Smith and US, respectively, and
the second one of type credit card containing attribute
last name with value Smith and reporting the credit card
number (note that the expression is satisfied by the
presence of attribute cc number, regardless of its value).

Dealing with credentials requires distinguishing, in the
language, between certified and uncertified properties,
that is, properties that can be uttered by the requester
but do not need to be certified. Requests for uncertified
properties can be expressed by using simple uncertified
conditions of the form ‘A’ or ‘A π v’, where A is an
attribute, π a standard predicate, and v a value or an-
other attribute. As for credential conditions, also simple
uncertified conditions can be combined by using the
AND and OR boolean operators. For instance, “last name
= Smith ∧ nationality = US” is satisfied if the requester
declares (without any certification) that the last name is
Smith and the nationality is US.

3.2 Abstractions

An abstraction defines a shorthand for new concepts
that can be expressed in terms of conditions on other
concepts. Such abstractions simplify the specification
of conditional expressions and provide a support for
ontological reasoning. Formally, an abstraction is defined
as follows.

Definition 3.4 (Abstraction): An abstraction is a rule of the
form simple cond ← cond, where simple cond is simple
credential or uncertified condition, and cond is a boolean
expression of a credentials or uncertified conditions.

For instance, abstractions:

• c ⊲ type = id document ← c ⊲ type = identity card
∨ c ⊲ type = passport ∨ c ⊲ type = driver license;

• c ⊲ type = emoney ← c ⊲ type = credit card
∨ c ⊲ type = debit card ∨ c ⊲ type = paypal

define id document and emoney as two abstract creden-
tial types corresponding to any element in the sets of
credentials {identity card, passport, driver license} and
{credit card, debit card, paypal}, respectively. Hence, a
request for an identifying document (credential of type
id document) can be satisfied by providing either an
identity card, a passport, or a driver license. Abstractions
can be exploited for defining and organizing concepts
and taxonomies without the need for hierarchical data
structures like in traditional ontologies.

3.3 Relation conditions and recursive conditions

One of the most interesting features offered by logic-
based policy languages is represented by the support
for recursive conditions. Recursion has a crucial role in
the representation of restrictions on how authorities and,
more in general, trusted parties delegate the ability to is-
sue credentials. The delegation consists of a certification
of the ability of another party to produce credentials on
behalf of the delegator. In large scale distributed systems
with a complex architecture, delegation increases flexi-
bility and permits the inexpensive creation of credentials,
particularly in an open environment. Such systems are
characterized by application requirements calling for the
specification of restrictions in delegation. The support
for recursion in the policy language can be applied to
the expression of conditions on data with a recursive
structure.

Let us introduce the support for delegation. Let U be
the set of all users that can take part in an access control
process. Let ρ ⊆ U × U be a relation between elements
in U . As an example to illustrate our ideas, let us
focus on particular elements in U , namely, certification
authorities, and let ρ be a relation that holds between
two certification authorities u and v if and only if u has
signed v’s public key on a certificate, delegating to v
the authority to produce credentials, certified by v, that
are to be considered as certified by u. In turn, v has the
possibility to delegate her power to another certification
authority, so that a chain of delegation is created, whose
description must be maintained in some data structure

5

accessible by all the users that rely on the relevant
certification authorities. Θρ carries this information that
exhaustively describes ρ, which we call the context of
ρ, in the form of a sequence of credential-like entries
corresponding to all the pairs that ρ induces in U : Θρ

= {θ = (Mθ,Aθ) : Mθ = (rel), θ ⊲ rel = rho, Aθ = (user1,
user2), (θ.user1, θ.user2) ∈ ρ}.

When ρ holds between u and v, that is, (u, v) ∈ ρ,
we assume that there exists a θ ∈ Θρ such that θ ⊲
rel=rho, θ.user1 = u, and θ.user2 = v. Conditions on data
with a recursive structure like the one mentioned above
can be requested in an access control policy. In our
example, in which ρ is a relation of delegation between
certification authorities, a requester trying to access a
particular resource may be required by the server to
show that the certification authority car signing her
credentials has been delegated by a particular authority
cas preferred by the server. The policy will then include
the relevant relation condition, θ ⊲ rel=rho ∧ θ.user1 = cas

∧ θ.user2 = car, which, in general, can be rewritten
according to the following abbreviation:

θ.rho=〈u, v〉 ← θ ⊲rel=rho ∧ θ.user1 = u ∧ θ.user2 = v.

In this scenario, the need often arises to deal with the
transitive closure of the delegation chain. Instead of set-
ting conditions on the authority that directly delegated
the one signing the requester’s certificate, a server may
be interested in ensuring that the root authority caroot,
the one at the very beginning of the delegation chain, is
among her preferred ones. The requester can prove that
her car is in the relation ρ∗ (i.e., the transitive closure of
ρ) with caroot either by showing that (caroot, cac) ∈ ρ, or
by providing a chain of context entries θ1, . . . , θn ∈ Θρ,
where caroot is user1 in θ1, cac is user2 in θn, and for all
1 ≤ i < n, θi.user2 = θi+1.user1, which can be abbreviated
in what we define as a recursive condition:

θ.rho*=〈u, v〉 ← θ.rho=〈u, v〉 ∨
(θ.rho=〈u, θ′.user1〉 ∧ θ′.rho*=〈θ′.user2, v〉).

3.4 Dialog management

The ability to truly support an open world scenario im-
plies enabling the servers to process requests for services
coming from parties unknown a-priori. As noted, the
way access control is enforced needs then to change.
We can no longer assume that the server has available
(either in its own state or released by the requester
together with the request) all the information needed
for evaluating access, and returns a definite decision.
Rather, the server should be able to evaluate the policy
with respect to unknown or partially known requesters,
and communicate to them the conditions that need to
be satisfied to access the service. XACML does not have
these capabilities and returns indeterminate whenever
the evaluation of the access control policy cannot be
reduced to a definite state (permit or deny) and there are
conditions whose truth value cannot be evaluated. Our
goal is to depart from the indeterminate status allowing

the server to inform the requester of the conditions that
it needs to satisfy instead of communicating it that there
are conditions that cannot be evaluated.

An important issue is how the server should com-
municate its access control policy to the requester. For
instance, suppose that an authorization imposes that
attribute nationality should be equal to US. Should the
server communicate such a condition to the requester?
Or should it just inform the requester that it has to
state the nationality? Clearly there is no unique response
to whether one option is better than the other, and
which one is to be preferred depends on the specific
context and information involved. We can notice that
communicating the complete policy (i.e., the fact that the
policy will grant access if the nationality is US) favors
the privacy of the requester. In fact, a requester can
know, before releasing credentials or information to the
server, whether the release will be sufficient to acquire
access to the service. In particular, a client associated
with a non-US user can avoid disclosing the nationality
of the user. By contrast, communicating only part of the
policy favors the privacy of the server. As a matter of
fact, the access control policy, and the information on
which it evaluates, can be considered sensitive too and
as such needs to be protected. For instance, while the
server might not mind disclosing the fact that access
to a service is restricted to US citizens, it might not
want to disclose other conditions (or values against
which properties are evaluated) as they are considered
sensitive. As an example, consider an authorization al-
lowing access to a service to those users who work for
an organization that does not appear in a Secret Black
List (SBL) kept by the server. The corresponding subject
expression is: c ⊲ type = employment ∧ c.employer /∈ SBL.
Communicating the complete policy to the requester
(and allowing its evaluation by the requester) would
imply releasing the subject expression, together with the
state of black list SBL. Also, assuming the context of
SBL is not released, the requester will know, in case it
will not be granted access, that its employer is black
listed. This is clearly an information the server does
not wish to disclose; rather the server will want to
maintain confidential the condition and simply state that
the employment certificate is required. Between the two
extremes of simply returning indeterminate (the XACML
approach), on one side, and of completely disclosing
the policy, on the other side, there are therefore other
options offering different degrees of protection to the
server policy and of information communicated to the
requester. Each condition appearing in the policy can
then be subject to a different disclosure policy, regulating
the way the presence of such a condition should be
communicated to the requester. We can distinguish five
different disclosure policies, with each one potentially
used independently in any condition appearing in an ex-
pression. In terms of our formal notation, we denote the
disclosure policy by including the portion of a condition
to not be disclosed in square brackets. For concreteness

6

TABLE 1

Disclosure policies and their effect on conditions

Disclosure Condition in Communication

policy expression to the client

none [c ⊲ M π m] []

[c.A π v] []

credential c ⊲ [M π m] c ⊲ []

c. [A π v] c. []

property c ⊲ M [π m] c ⊲ M []

c.A [π v] c.A []

predicate c ⊲ M π [m] c ⊲ M π []

c.A π [v] c.A π []

condition c ⊲ M π m c ⊲ M π m

c.A π v c.A π v

of the discussion, we assume a condition c ⊲ M π m;
the case of a condition on an attribute (i.e., of the form
c.A π v or A π v) is analogous. The following disclosure
policies can be associated with the condition.

• None. Nothing can be disclosed about the condi-
tion. It corresponds to the XACML approach as
only the information that the outcome of the policy
is indeterminate is communicated, since there are
conditions that cannot be evaluated. Formally, the
condition will appear in the expression completely
included in square brackets, that is, [c ⊲ M π m].

• Credential. Only the information that there is a con-
dition imposed on some metadata about a credential
(or on some attributes of the credential) can be
disclosed. The metadata (or attributes) on which the
conditions are evaluated are not released. Formally,
the condition will appear in the expression as c⊲ [M
π m].

• Property. Only the information that a property
(metadata or attributes of a credential, or uncertified
statements) needs to be evaluated can be released;
no information can be released on the control that
will be enforced on the property. Formally, the con-
dition will appear in the expression as c ⊲ M [π m].

• Predicate. Only the information that a property
(metadata or attributes of a credential, or uncertified
statements) needs to be evaluated and the predicate
with which it is evaluated can be released; no infor-
mation can be released on the values against which
the evaluation is performed. Formally, the condition
will appear in the expression as c ⊲ M π [m].

• Condition. The condition can be fully disclosed as
it is. Formally, the condition will appear in the
expression with no square brackets, signaling that
no component is subject to disclosure restriction,
that is, c ⊲ M π m.

Table 1 summarizes the different disclosure policies
reporting the formal notation with which they appear
in the expression and the consequent communication to
the client in the dialog.

Note that the disclosure policies of the server, affect-

ing the information released to the requester about the
conditions appearing in the policy, also impact the way
the requester can satisfy the conditions. In particular,
the credential policy implies that the requester will not
know which information in the credential is needed and
therefore will have to release the credential in its entirety
(assuming that the credential to which the condition
refers is known by other conditions in the policy, else
the requester will have to disclose all its credentials). The
property policy implies that the requester can selectively
disclose the property in the credential (or utter it, in
case of a condition on uncertified properties). The same
for the predicate policy, where the requester however
knows also against what predicate the property will be
evaluated. Finally, in the case of the condition policy,
the requester can provide either the property (but it can
assess, before submitting, whether such a release will
satisfy the condition) or a proof that the property is
satisfied [4].

Example 3.1: Consider a policy stating that “a user can
access a service if her nationality is Italian, her city of birth
is Milan, and her year of birth is earlier than 1981”. Suppose
that all attributes mentioned in the policy must be certified by
an X.509 identity card or by a SAML passport both released
by IT Gov. The policy is formally stated as:

((c1 ⊲ type = identity card ∧ c1 ⊲ method = X.509) ∨
(c1 ⊲ type = passport ∧ c1 ⊲ method = SAML)) ∧
c1 ⊲ issuer [= IT Gov] ∧ c1.nationality [= Italian] ∧
c1.city of birth = Milan ∧ c1.year of birth < [1981]

Here, the square brackets representing the disclosure policies
implicitly state that: i) conditions on metadata type and
method, and attribute city of birth can be eventually disclosed
as they are; conditions on metadata issuer and attribute na-
tionality need to be protected by hiding the control that will be
enforced on them; and iii) condition on attribute year of birth
needs to be protected by hiding the value against which the
evaluation will be performed. If the above policy applies to a
request submitted by a requester for which the server has no
information, the following conditions are communicated to the
requester.

((c1 ⊲ type = identity card ∧ c1 ⊲ method = X.509) ∨
(c1 ⊲ type = passport ∧ c1 ⊲ method = SAML)) ∧
c1 ⊲ issuer [] ∧ c1.nationality [] ∧
c1.city of birth = Milan ∧ c1.year of birth < [].

The requester can satisfy such conditions by releasing either an
identity card or a passport containing the requested attributes.

4 DEPLOYMENT IN XACML

We illustrate how the concepts introduced and formal-
ized in the previous section can be concretely deployed
within XACML. Our solution consists in defining new
components or in using, in a different way, existing
components of the language. An important characteristic
of our deployment is that it has a limited impact on the
original XACML specification.

7

4.1 Basic XACML concepts

XACML relies on a model that provides a formal rep-
resentation of access control policies and on mecha-
nisms for their evaluation. A XACML policy contains
one Policy or PolicySet root element, which is a
container for other Policy or PolicySet elements. El-
ement Policy consists of a Target, a set of Rule, an
optional set of Obligation, and a rule combining al-
gorithm. A Target element includes simple conditions
on Subject, Resource, Action, and Environment. If a
request satisfies the conditions specified in the Target,
the corresponding policy applies to the request. A Rule

corresponds to a positive (permit) or a negative (deny)
authorization, depending on its effect, and may in-
clude an element Target, and an element Condition

specifying further restrictions on subject, resource, and
action. Each condition can be defined through element
Apply with attribute FunctionID denoting the XACML
predicate (e.g., string-equal, integer-less-than) and with
appropriate sub-elements denoting both the attribute
against which the condition is evaluated and the compar-
ison value. The rule’s effect is then returned whenever
the rule evaluates to true. The Obligation element spec-
ifies an action that has to be performed in conjunction
with the enforcement of an authorization decision. Each
element Policy has attribute RuleCombiningAlgID spec-
ifying how to combine the decisions of different rules
to obtain a final decision of the policy evaluation (e.g.,
deny overrides, permit overrides, first applicable, only
one applicable). According to the selected combining
algorithm, the authorization decision can be permit,
deny, not applicable (i.e., no applicable policies or rules
can be found), or indeterminate (i.e., some information
is missing for the completion of the evaluation process).

4.2 Support for credentials

In XACML, properties appearing in conditions are typi-
cally uncertified. To represent credentials, and therefore
relevant properties and conditions, with minimal impact
on the XACML specification, we consider splitting the
conditions on metadata from the conditions on the at-
tributes. Attributes in the credentials can be treated just
like any other property. The only change needed for
their treatment is that they must be associated with a
certificate. To this purpose, we exploit the Issuer attribute
that is included in the SubjectAttributeDesignator

element of XACML. In particular, an occurrence of at-
tribute c.A in the subject expression will translate into an
element SubjectAttributeDesignator, where attribute
AttributeId is equal to A, and attribute Issuer refers
to c. Every credential symbol appearing in a subject
expression translates to a value of the Issuer attribute,
and different credential symbols translate to different
values. Hence, attributes referring to the same credential
(e.g., c.Ai and c.Aj) will have the same value c in their
attribute Issuer, while attributes referring to different
credentials (e.g., ci.Ai and cj .Aj) will not. This binding of

<certifications>
<certification id=”IT IC”>

<group>
<type Disclosure=”condition”>identity card</type>
<issuer Disclosure=”property”>IT Gov</issuer>
<method Disclosure=”condition”>X.509</method>

</group>
<group>

<type Disclosure=”condition”>passport</type>
<issuer Disclosure=”property”>IT Gov</issuer>
<method Disclosure=”condition”>SAML</method>

</group>
</certification>
<certification id=”VISA CC”>

<group>
<type Disclosure=”condition”>credit card</type>
<issuer Disclosure=”condition”>VISA</issuer>
<method Disclosure=”condition”>SAML</method>

</group>
</certification>

</certifications>

Fig. 1. XML representation of conditions on credentials

metadata

attributes to credentials implicitly guarantees binding of
attributes that must be certified by the same credential.

To represent credentials, and relevant metadata, we in-
troduce a new XML schema, whose document instances
correspond to the specification of credential conditions
on metadata. The schema defines certifications as
the root element containing one or more certification

elements. Each certification corresponds to the def-
inition of a credential condition on metadata. A
certification element has an attribute id whose
value is the identifier by which the credential con-
dition should be referred to. In other words, it de-
fines the values to be used in the Issuer attribute of a
SubjectAttributeDesignator to state that it must be
certified by a credential satisfying the corresponding
conditions on metadata. A certification element in-
cludes one or more group elements, whose content de-
pends on the considered metadata. Conditions expressed
by elements within a group are considered in conjunc-
tion, while different elements group are considered in
disjunction.

Figure 1 illustrates an example of metadata conditions.
Element certification with attribute id equals to IT IC
represents either a credential of type identity card issued
by IT Gov with the X.509 proof method, or a credential
of type passport issued by IT Gov with the SAML proof
method. Element certification with attribute id equals
to VISA CC represents a credential of type credit card
issued by VISA with the SAML proof method.

Figure 2 presents the XACML-based representation
of the policy in Example 3.1 stating that “a user can
access a service if her nationality is Italian, city of birth
is Milan, and year of birth is less than 1981”, and that
all attributes/conditions must be certified via an X.509
identity card or via a SAML passport both released by
IT Gov. Since all attributes refer to the same element
certification (i.e., the certification element whose
attribute id is equal to IT IC), the conditions defined on
such attributes have to be satisfied by attributes included

8

<Rule RuleId=”ExampleRule” Effect=”Permit”>
<Target><!−− all target fields −−></Target>
<Condition

FunctionId=”urn:oasis:names:tc:xacml:1.0:function:and”>
<Apply Disclosure=”property”

FunctionId=”urn:oasis:names:tc:xacml:2.0:function:string−equal”>
<SubjectAttributeDesignator

DataType=”http://www.w3.org/2001/XMLSchema#string”
Issuer=”urn:ext:cred−reference:IT IC”
AttributeId=”urn:oasis:names:tc:xacml:2.0:attribute:nationality”/>

<AttributeValue
DataType=”http://www.w3.org/2001/XMLSchema#string”>

Italian
</AttributeValue>

</Apply>
<Apply Disclosure=”condition”

FunctionId=”urn:oasis:names:tc:xacml:2.0:function:string−equal”>
<SubjectAttributeDesignator

DataType=”http://www.w3.org/2001/XMLSchema#string”
Issuer=”urn:ext:cred−reference:IT IC”
AttributeId=”urn:oasis:names:tc:xacml:2.0:attribute:city−birth”/>

<AttributeValue
DataType=”http://www.w3.org/2001/XMLSchema#string”>

Milan
</AttributeValue>

</Apply>
<Apply Disclosure=”predicate”

FunctionId=”urn:oasis:names:tc:xacml:2.0:function:integer−less−than”>
<SubjectAttributeDesignator

DataType=”http://www.w3.org/2001/XMLSchema#integer”
Issuer=”urn:ext:cred−reference:IT IC”
AttributeId=”urn:oasis:names:tc:xacml:2.0:attribute:year−birth”/>

<AttributeValue
DataType=”http://www.w3.org/2001/XMLSchema#integer”>

1981
</AttributeValue>

</Apply>
</Condition>

</Rule>

Fig. 2. An example of XACML policy

in a single credential that may be either an identity card
or a passport.

4.3 Support for abstractions

In Section 3, we introduced the concept of abstraction
(sc← co) as the means to perform ontological reasoning,
and to specify compact and abstract policies. To manage
abstraction specification in XACML, we prescribe the
integration of XACML with XQuery.

XQuery is a language developed by W3C for querying
XML data. XQuery 1.0 [5] reached the status of recom-
mendation in 2007. XQuery has been designed taking
into account the experience of the database commu-
nity and presents strong similarities with SQL: queries,
for example, are declarative and the execution plan is
produced by a query optimizer. XQuery follows the
functional programming paradigm. Even if the spec-
ification is relatively recent, there are already several
XQuery engines and many experts envision a significant
role for the language in the context of XML and Web
technology. Since XACML is a declarative XML language
for controlling access, it is quite natural to consider its
integration with XQuery. In the following, we show that
the use of XQuery provides an interesting solution to the
management of abstractions. Recursion is also supported
by XQuery (Section 4.4).

Abstractions can be defined via XQuery functions and

declare function local:expand($x as xs:string∗) as xs:string∗ {
let $m := $doc//abstractions/abstraction

for $i in $x
return

if (0 = count($m[@id=$i]/is/item)) then $i
else $m[@id = $i]/is/item/text()

};

Fig. 3. XQuery function expand

<abstractions>
<abstraction id=”id document”>

<is>
<item>identity card</item>
<item>driver license</item>
<item>passport</item>

</is>
</abstraction>
<abstraction id=”emoney”>

<is>
<item>credit card</item>
<item>debit card</item>
<item>paypal</item>

</is>
</abstraction>

</abstractions>

Fig. 4. XML representation of two abstractions

embedded in XACML conditions. Our solution consists
in the definition of an XQuery function called expand (see
Figure 3), which takes in input abstraction head sc and
produces in output abstraction tail co.

To specify abstractions in the definition of a condi-
tion, let us define an XML schema that models the
abstractions to be used. This schema includes a root
element called abstractions containing a number of
abstraction elements, each with an id (head sc), and
a set of equivalences in the is element (tail co). Figure 4
illustrates an example of two abstractions. The first
abstraction shows the equivalence between id document
and {identity card,driver license,passport}, while the
second one shows the equivalence between emoney and
{credit card,debit card,paypal}. Based on the proposed
schema and on function expand, an XQuery invocation
that refers to an abstraction via its id can be defined both
in a XACML condition, and in an XML-based metadata
condition. At evaluation time, the server applies function
expand to the abstraction in the policy and compares
the expanded abstraction with the data in the context.
If the data are not sufficient, the abstraction must be
presented to the requester. The requester however does
not have to know the meaning of the abstraction, and
therefore may not be able to release the proper credential
for satisfying it. As a consequence, the requester will
receive a request including all the conditions in the tail
of the abstraction. Figure 5 illustrates an example of
condition stating that the value of attribute last name has
to be equal to Smith and that last name must be certified
through a certificate of type id document corresponding
to the first abstraction in Figure 4. At evaluation time,
the server will apply function expand to the condition on
metadata type and will search for the last name in an

9

<Condition Disclosure=”property”
FunctionId=”urn:oasis:names:tc:xacml:2.0:function:string−equal”>
<SubjectAttributeDesignator

DataType=”http://www.w3.org/2001/XMLSchema#string”
Issuer=”urn:ext:cred−reference:IT ABBR”
AttributeId=”urn:oasis:names:tc:xacml:2.0:attribute:last name”/>

<AttributeValue
DataType=”http://www.w3.org/2001/XMLSchema#string”>

Smith
</AttributeValue>

</Condition>

(a)

<certifications>
<certification id=”IT ABBR”>

<group>
<type Disclosure=”condition”>

local:expand(’id document’)
</type>

</group>
</certification>

</certifications>

(b)

Fig. 5. An example of XACML condition (a) and of

abstraction-based metadata condition (b)

identity card, a driver license, or a passport of the re-
quester. If such information is not available, the requester
will receive a request for attribute last name certified by
an identity card, a driver license, or a passport.

4.4 Support for recursion

As we discussed in Section 3.3, recursion is a useful
construct in the definition of access control policies,
specifically to manage situations involving chains of
credentials and recursive relations. Current XACML im-
plementations impose a flat context as the only source
of data. Data used in policy evaluation must be ma-
terialized in the context and complex reasoning is not
supported.

Let us first consider the scenario where a verification
of credential chains is requested. The server may ask a
client to provide a credential certified directly by a given
authority CA, or alternatively to provide a credential
certified by an authority that belongs to a chain referring
to CA. Upon receiving the credentials, the server should
be able to check, by means of a trusted party, whether
they have been released directly, or indirectly, through
a chain of credentials. To illustrate in a simple way
how a recursive reasoning can be supported in XACML,
we consider a scenario where a server has to evaluate
conditions requiring a recursive reasoning on data. An
example could also be realized for detailing restrictions
on the chain of delegations. However, it would be only
more complex than the example that we will describe in
the following, without providing any additional insight.

Suppose therefore that a policy states that all supervi-
sors of a doctor d can read patients’ records of d. We rely
on the assumption that the XACML context contains the
complete description of the relation between each doctor
and her direct supervisor. In this case, XACML should

be able to evaluate conditions that need recursion over
the data, since the supervisor of a supervisor of d, is also
a supervisor of d.

We propose to manage recursion in XACML using
the services of an XQuery engine in a similar way to
what is done for abstractions. Recursive conditions are
realized by defining recursive XQuery functions, which
are then embedded and referenced in the policies, with-
out changes to the XACML language. XQuery functions
are used to define complex and recursive concepts to
be used in the definition of the policy conditions. These
functions take in input the XACML context, and produce
new information to be used in policy evaluation. As a
consequence, XQuery offers recursive reasoning and al-
lows for the just in time creation of additional attributes
to be used in the evaluation of the XACML policies.

A working example presents how XQuery can be used
to manage a recursive policy stating that “all supervisors
of doctor d can read patients’ records of d”.

First, consider the XACML context in Figure 6, which
contains identity information of doctors, including the
supervisor relation. For instance, doctor George Williams,
specialized in surgery, is a supervisor of doctor Charles
White, specialized in pediatric surgery; therefore, doc-
tor White may authorize doctor Williams to access his
patients data.

Figure 7 defines an XQuery function to reason about
the context and to retrieve information about the chain
of supervisor relations. Variable $doc represents the
whole XACML context. As said before, the supervisor
relation is recursive. Then, if we authorize access to the
data of the patients of d to d’s supervisors, we also
authorize the supervisor of d’s supervisors. Note that,
in the XQuery processing approach, no extension to the
context is provided; the information needed for policy
evaluation is generated just in time, exploited in the
policy evaluation process, and then discarded.

Figure 8 provides an example of a XACML condition
where doctors who are direct or indirect supervisors of
the doctor of a patient are granted access to the patient’s
data. The XQuery function in the XACML condition is
simply invoked as a part of the XPath URI. In fact, at
evaluation time, the AttributeSelector field is gener-
ated by applying function getSupervisor (see Figure 7)
that takes as input the element doctor retrieved via URI:

//doctor[@id=//patient[@id=
urn:oasis:names:tc:xacml:2.0:attribute:patient-id]/doctorid]

identifying the doctor of the patient for which access
to data is requested. Function getSupervisor then returns
all doctors that are direct or indirect supervisors of such
a doctor, and from these doctors attribute id (i.e., /@id) is
selected. Here, we assume that //patient is the portion
of the context that contains data of the patient.

XQuery constructs can be integrated within XACML
with a minimal impact on the language. Our approach
requires a single extension, that is, the definition of rules
presenting references to XQuery functions.

10

<context>
<doctor id=”1”>

<first name>George</first name>
<last name>Williams</last name>
<specialized>Surgery</specialized>
<sex>M</sex>
<supervisor/>

</doctor>
<doctor id=”2”>

<first name>Charles</first name>
<last name>White</last name>
<specialized>Pediatric Surgery</specialized>
<sex>M</sex>
<supervisor>

<doctorid>1</doctorid>
</supervisor>

</doctor>
<doctor id=”3”>

<first name>Mary</first name>
<last name>Wilson</last name>
<specialized>Pediatric Allergy</specialized>
<sex>F</sex>
<supervisor>

<doctorid>1</doctorid>
</supervisor>

</doctor>
<doctor id=”4”>

<first name>Paul</first name>
<last name>Brown</last name>
<specialized>Kidney Ailments</specialized>
<sex>M</sex>
<supervisor>

<doctorid>3</doctorid>
</supervisor>

</doctor>
<doctor id=”5”>

<first name>Dorothy</first name>
<last name>Jackson</last name>
<specialized>Fitness and Nutrition</specialized>
<sex>F</sex>
<supervisor/>

</doctor>
</context>

Fig. 6. An example of XACML context

declare function local:getSupervisor($Doctors as element()∗) as element()∗ {
let $c := $doc//doctor

for $d in $Doctors
return

if (0 = count($d/supervisor/doctorid)) then $d
else $d | local:getSupervisor($c[@id = $d/supervisor/doctorid])

};

Fig. 7. XQuery function getSupervisor

<Condition
FunctionId=”urn:oasis:names:tc:xacml:2.0:function:string−equal”>
<SubjectAttributeDesignator

DataType=”http://www.w3.org/2001/XMLSchema#string”
AttributeId=”urn:oasis:names:tc:xacml:2.0:attribute:doctor−id”/>

<AttributeSelector RequestContextPath=
‘‘local:getSupervisor(//doctor[@id=
//patient[@id=urn:oasis:names:tc:xacml:2.0:attribute:patient−id]
/doctorid])/@id’’
DataType=”http://www.w3.org/2001/XMLSchema#string”/>

</Condition>

Fig. 8. An example of XACML condition invoking the

XQuery function in Figure 7

We conclude this section with a note on performance.
One can be afraid that the integration of a power-
ful query language in XACML could cause excessive
computational load on the system in the access control

evaluation. Still, the Web service scenario we are con-
sidering typically offers large computational resources
and the gain in terms of flexibility of the access control
language clearly overcomes possible worries about the
load incurred. We also observe that the explicit use of
XQuery recursion exploits all the benefits that derive
from its robust implementation in the language. XQuery
engines are implemented taking into account all the
work done in the last 20 years in the database com-
munity for the management of recursive queries, which
has produced support for recursive SQL queries in most
recent relational DBMSs. Such sophisticated strategies
are far from trivial, and in the approach we present they
are immediately available in the evaluation of expressive
security policies. In general, the proposal is consistent
with the long term evolution of access policies, for which
a stricter integration with declarative query languages
is more and more often considered also in the context
of databases. Compared to the database scenario, here
we have an even stronger motivation for the use of
declarative query languages, due to the openness of the
environment and the need for supporting more flexible
identification services.

4.5 Support for dialog

Support for dialog requires both to introduce a change
in the XACML language for representing the disclosure
policies associated with conditions and to define how the
different disclosure policies are effectively enforced (note
that changes requested to the XACML architecture will
be discussed in Section 5). For each condition appearing
in a XACML policy, the corresponding disclosure policy
is represented through a new attribute Disclosure added
to elements Condition and Apply of XACML, and to
each sub-element of group. The admissible values for
such an attribute are the disclosure policies presented
in Section 3.4. For instance, certification VISA CC in
Figure 1 includes three conditions on type, issuer, and
method, respectively, that are associated with disclosure
policy condition, as represented by the value of their
attributes Disclosure. Analogously, in the XACML policy
in Figure 2, we have a conjunction of three conditions
on attributes nationality, city-birth, and year-birth, respec-
tively, that, according to the value of attribute Disclosure
of the corresponding elements Apply, are associated with
disclosure policies property, condition, and predicate,
respectively.

A disclosure policy that specifies what information
in a condition cannot be released is then enforced by
hiding such information. To this purpose, a special key-
word undisclosed will be used in the XACML policy to
indicate information hidden to comply with the selected
disclosure policy. Keyword undisclosed is equivalent to
the empty square brackets in our formal model. For
instance, consider again the XACML policy in Figure 2.
If the information needed for policy evaluation is not
available at the server side, the server communicates to

11

TABLE 2

From formal concepts to XACML

Basic Constructs XACML

Declaration conditions No change required

Certification c ⊲ M π m 〈certification〉

. . .

〈/certification〉

Credential conditions Attribute Issuer in element

c ⊲ M π m ∧ c.A π v 〈SubjectAttributeDesignator〉

Abstractions XQuery functions

Recursive statements XQuery functions

Dialog management Attribute Disclosure in any of:

- element 〈Condition〉 in XACML

- element 〈Apply〉 in XACML

- sub-elements of 〈group〉

the requester the policy, where each condition is trans-
formed according to the corresponding disclosure policy.
In our example, since the disclosure policy is property,
the first condition on attribute nationality is transformed
by hiding, that is, by setting to undisclosed the value of
attribute FunctionId and the value Italian. The remaining
two conditions are transformed in an analogous way by
applying the corresponding disclosure policies.

It is important to note that whenever a policy includes
a condition that involves an abstraction, the abstraction
is first expanded by replacing its occurrences in the
condition with the corresponding expansion. Then, the
disclosure policy associated with the original condition
is applied to each component of the expansion. For in-
stance, consider the XACML condition in Figure 5(a) that
defines a condition on attribute last name that should
be certified via abstraction id document represented in
Figure 5(b). Abstraction id document is expanded to
identity card, driver license, and passport. No change is
required on the expansion since the specified disclosure
policy is condition; for disclosure policies different from
condition, the transformation must be applied to the
components resulting by the expansion of id document.

Table 2 summarizes the mapping between the basic
constructs of our formal model and the changes intro-
duced in XACML.

5 EXTENDED XACML ARCHITECTURE

To support the new functionalities of the XACML lan-
guage introduced in the previous section, we present
a possible extension of the XACML architecture. In the
following, we first present the standard XACML archi-
tecture, and then describe the new components and data
flows of the extended architecture.

5.1 Standard XACML architecture

XACML defines both a modular and distributed archi-
tecture for the evaluation of policies, and a communica-
tion protocol for message interchange. The architecture

PEP

Attributes

Requester

Access

Requester

Obligations

Service

Context

Handler

PAP Subjects Environment

Resource

1. Policy

2. Access Request

3. Request

4. Request Notification

5. Attribute Queries

10. Attributes

11 Response Context

6. Attribute Query

7.1. Subject

Attributes

7.2. Enviroment Attributes

7.3. Resource Attributes

8. Attributes

9. Resource Content

12. Response

13. Obligations

14. Undefined

Attributes

15. Sanitization

Rules

PDP

XQuery

Engine

PIP

Attributes

Logger

Fig. 9. Extended XACML architecture

includes different functional components that interact
to take an access control decision. Figure 9 illustrates
the standard XACML architecture with solid lines while
our extensions are represented through dashed lines.
We now focus our discussion on the standard XACML
architecture.

Each access request is received by the Policy Enforce-
ment Point (PEP), that is responsible for the enforcement
of each access decision. The Policy Decision Point (PDP)
is the component that produces the access decision for
each access request by retrieving the applicable policies
from the Policy Administration Point (PAP), that provides
functionalities to administer access control policies. The
PDP must receive all information relevant for the deci-
sion process. To this aim, the Context Handler manages
the data released directly by the requester, and provides
the interface to access additional information. In addition
to what is included in the access request, in fact, the
PDP may also need to get information via the Policy
Information Point (PIP), that is the component acting as
a source of attribute values. PIP retrieves the attribute
values related to the subject, the resource, or the environ-
ment from the system information storage (e.g., DBMS).

Data flow in the standard XACML model can be
summarized as follows.

• The requester sends an access request to the PEP
module (step 2), which has to enforce the access
decision that will be taken by the PDP. The requester
has to release all relevant information for policy
evaluation.

• The PEP module sends the access request to the
Context Handler (step 3) that translates the origi-
nal request into a canonical format, called XACML
request context, and sends it to the PDP (step 4).

• The PDP identifies the applicable policies by means
of the PAP module (step 1), and retrieves the re-
quired attributes and, possibly, the resource by

12

means of the Context Handler. The context handler
also relies on the PIP module (step 5-10) to access
attribute values about the subject, resource, action,
and environment. To this purpose, the PIP inter-
acts with the Subject, Resource, and Environment
modules. The Environment module provides a set
of attributes that are relevant to take an access deci-
sion and are independent from a particular subject,
resource, or action.

• The PDP evaluates the policies and returns the
XACML response context, together with an optional
set of obligations, to the Context Handler (step
11). The Context Handler translates the XACML
response context to the native format of the PEP and
returns it to the PEP (step 12). If some information is
missing, the PDP cannot take a decision, and returns
an error (Indeterminate response).

• The PEP fulfills the obligations (step 13) and, if per-
mitted, it gives access to the requester. Otherwise,
access is denied.

5.2 An extended XACML architecture to support lan-

guage improvements

We describe the extensions we propose to the stan-
dard XACML architecture, which, as already mentioned
above, are represented through dashed lines in Figure 9.

The integration of credential definition and evaluation
in XACML (see Section 4.2) requires changes in the
PDP component. The PDP is extended to support the
evaluation of conditions that express restrictions on the
certification mechanisms. To this aim, the PDP has to:

• understand metadata conditions defined in the cer-
tification document,

• retrieve data about certifications stored in the con-
text or PIP extensions,

• evaluate conditions based on metadata restrictions
(i.e., c ⊲ M π m).

The definition of an ad-hoc XACML profile for sup-
porting the specification of credential conditions (see
Figure 1) minimizes the changes needed to the core
XACML language, but it requires the addition of an
ad-hoc parsing process in the PDP. A possible solution
to limit architectural changes is to define credential
conditions by means of traditional XACML conditions.
This solution may however result in inconsistencies due
to the fact that XACML conditions permit the definition
of complex restrictions also involving negations and
negative authorizations. To limit, on one side, changes
required to the PDP evaluation mechanism, and, on the
other side, the possibility of wrong policy definition, we
can adopt a hybrid solution where:

1) restrictions on the credential metadata are defined
using the ad-hoc XACML profile that we have
designed,

2) an XSLT style-sheet is defined to translate the ad-
hoc syntax into the traditional XACML condition
syntax.

This solution allows for the re-use of most part of the
XACML evaluation mechanism, still limiting the com-
plexity of the policy definition. In summary, the PDP
has to be enriched with the functionality to transform,
via XSLT, the certification document into a schema based
on XACML conditions.

The integration of the XQuery-based approach for
defining and evaluating complex and recursive condi-
tions, discussed in Sections 4.3 and 4.4, calls for the de-
velopment of an XQuery engine in the PDP component.
The PDP enhanced with the XQuery engine manages the
integration and execution of XQuery functions specified
in XACML conditions. It actively evaluates the XQuery-
based conditions by executing the XQuery functions
contained in an XPath URI used to express each attribute.
To this aim, the XQuery engine needs to access the
Context Handler to retrieve all relevant attributes for
policy evaluation. Also, the PDP retrieves the XQuery
function definitions stored either in the XACML poli-
cies or in an ad-hoc profile, and uses them to expand
and evaluate the policies. The XQuery extension is also
suitable for the definition and evaluation of conditions
involving XQuery-based abstractions (Section 4.3). The
XQuery engine expands XQuery abstractions when they
are used in XACML policies. Like with recursive XQuery
functions, when the PDP needs to reason on abstractions,
it extracts the definition of the abstractions stored in the
XACML policies or in a XACML profile, and processes
them in the policy under evaluation.

In general, the integration of credentials, recursive
conditions, and abstractions in XACML only requires
the implementation of an enhanced PDP, without mod-
ifying the communication flow of the standard XACML
architecture, whereas the enhancement needed for dialog
management (Section 4.5) calls for extensions to both
XACML standard components and the communication
flow.

An enhanced PIP has to be designed to identify and
store all the attributes that are not available at evaluation
time and need to be requested to the client. To manage
such a case, resulting in an indeterminate evaluation
returned by the PDP to the PEP via the Context Han-
dler, the standard PEP must be extended with a direct
communication channel to the PIP, to retrieve the list of
missing attributes (step 14). In this way, the PEP collects
all the information that must be required to the requester
to complete the evaluation process. Before communicat-
ing with the requester, the PEP needs to retrieve from
the PDP the conditions associated with each missing
attribute, and the meta-information regarding the disclo-
sure policy to be applied to such conditions (Section 4.5).
Intuitively, the communication flow must be enriched to
allow for direct communication between PDP and PEP
(step 15). As discussed in Section 4.3, the dialog also
supports XQuery-based abstractions: the requester will
receive a request for attributes and credentials after the
relevant abstractions have been expanded. After collect-
ing all conditions for which some attributes are missing,

13

and applying the disclosure policy, a response that calls
for additional information is returned to the requester.
To support dialog management on the client-side, the
client application must be extended to understand and
fulfill such requests.

6 RELATED WORK

Several access control models presented in the literature
are based on logic expressions, and prescribe access
decisions on the basis of some properties of the request-
ing party, which can be proven by presenting one or
more certificates (e.g., [6]–[10]). All these solutions are
typically based on logic-based access control languages,
which are powerful, highly expressive, and permit to
specify recursive conditions and complex relations be-
tween parties in a simple yet effective way. While pow-
erful, logic-based solutions may not always be applicable
in real world scenarios like the one discussed in this
paper, where simplicity and easiness are a must. In
this work we then depart from logic-based paradigm to
provide a solution that balances usability and expres-
siveness.

Another important research line focuses on providing
solutions and protocols for trust negotiation [11], [12].
Several works (e.g., [10], [11]) investigated trust issues
and strategies that a party can apply for selecting cre-
dentials that have to be submitted to the opponent party
during a negotiation. These works view a negotiation
process as a bidirectional exchange of request-response
messages, where trust can be established by gradually
disclosing data. In the context of open web services,
however, trust negotiation approaches are not suitable
for a wide range of use cases that request low complexity,
low overhead, and high performance.

The research community has then focused on the
definition of access control languages for an open world
scenario, which provide flexibility and interoperabil-
ity [1], [13]. eXtensible Access Control Markup Language
(XACML) [1] is an XML-based language for expressing
and interchanging access control policies. XACML has
gained popularity, and has been extensively adopted in
real world implementations dealing with open scenarios.
However, XACML still has some important drawbacks
related to the support of credential-based conditions, the
definition of complex conditions (e.g., based on recur-
sion), and the management of the dialog between the
involved parties. In this context, the efforts in [14]–[16]
provided XACML extensions to support trust negotia-
tion based on its language and architecture. Chadwick et
al. [17] described a mechanism to integrate XACML with
the support for delegation of authority with chains of
credentials issued from one user to another. The solution
proposed is based on a Credential Validation Service
(CVS) that works with the PDP in the evaluation of the
policies.

The Web Services profile of XACML (WS-
XACML) [18] aims at defining the aspects related

to authorization, access control, and privacy policy in
a Web Service environment. This profile is meant to
be used in combination with the WS-Policy proposal.
WS-XACML is supposed to wrap XACML policies in
a standardized format that can be put in a WS-Policy
framework in alternative to policies from various
other domains. Another relevant WS-* effort is the
Web Service Security (WSS) specification [19], which
prescribes a standard set of SOAP extensions to
build secure Web Services ensuring message integrity
and confidentiality. The authorization language we
propose is expressive enough to include references
to the security domain currently dealt with by the
WSS proposal, which our XACML extension is not
meant to counter, but to integrate. The Enterprise
Privacy Authorization Language (EPAL) [20] is a formal
language for writing enterprise privacy policies to
govern data handling practices in IT systems. EPAL
presents some relevant differences from XACML since it
is specifically enterprise-oriented and proprietary [21].

7 CONCLUSIONS

The proposal presented in the paper is the result of
our efforts within PrimeLife, a large EU-funded project
with several industrial and academic partners, which is
studying and developing novel technological solutions
for privacy management. The specific focus of the project
is toward the definition of a novel policy language and
architecture able to support the privacy requirements of
individuals interested in exploiting the services of the
Web, keeping control on their data. In this scenario,
XACML has been identified as a promising solution
thanks to its technical features and the widespread
support. However, its application in complex advanced
scenarios, like the one considered in our project, requires
overcoming the limitations discussed, and addressed,
in this paper. The project is committed to building a
robust prototype of a system supporting the manage-
ment of privacy policies. An early implementation effort
has already demonstrated the feasibility of the strategy
presented in the paper and the absence of obstacles to
its deployment.

ACKNOWLEDGMENT

This work was supported in part by the EU within the
7FP project “PrimeLife” under grant agreement 216483.

REFERENCES

[1] T. Moses, eXtensible Access Control Markup Language (XACML)
Version 2.0, OASIS, 2005.

[2] A. Anderson and H. Lockhart, SAML 2.0 profile of XACML, OASIS,
September 2004.

[3] C. Ardagna, J. Camenisch, M. Kohlweiss, R. Leenes, G. Neven,
B. Priem, P. Samarati, D. Sommer, and M. Verdicchio, “Exploiting
cryptography for privacy-enhanced access control: A result of the
prime project,” Journal of Computer Security (JCS), vol. 18, no. 1,
pp. 123–160, 2010.

14

[4] J. Camenisch and A. Lysyanskaya, “An efficient system for non-
transferable anonymous credentials with optional anonymity re-
vocation,” in Proc. of EUROCRYPT 2001, Innsbruck, Austria, May
2001.

[5] S. Boag et al., XQuery 1.0: An XML Query Language, World Wide
Web Consortium (W3C), 2007.

[6] P. Bonatti and P. Samarati, “A unified framework for regulating
access and information release on the Web,” Journal of Computer
Security, vol. 10, no. 3, pp. 241–272, 2002.

[7] K. Irwin and T. Yu, “Preventing attribute information leakage
in automated trust negotiation,” in Proc. of ACM CCS 2005,
Alexandria, VA, USA, November 2005.

[8] S. Jajodia, P. Samarati, M. Sapino, and V. Subrahmanian, “Flexible
support for multiple access control policies,” ACM Transactions on
Database Systems, vol. 26, no. 2, pp. 214–260, June 2001.

[9] M. Winslett, N. Ching, V. Jones, and I. Slepchin, “Assuring secu-
rity and privacy for digital library transactions on the Web: Client
and server security policies,” in Proc. of ADL 1997, Washington,
DC, USA, May 1997.

[10] T. Yu, M. Winslett, and K. Seamons, “Supporting structured cre-
dentials and sensitive policies trough interoperable strategies for
automated trust,” ACM TISSEC, vol. 6, no. 1, pp. 1–42, February
2003.

[11] P. Bonatti and D. Olmedilla, “Driving and monitoring provisional
trust negotiation with metapolicies,” in Proc of POLICY 2005,
Stockholm, Sweden, June 2005.

[12] K. Seamons, M. Winslett, and T. Yu, “Limiting the disclosure of
access control policies during automated trust negotiation,” in
Proc. of NDSS 2001, San Diego, CA, USA, April 2001.

[13] C. Ardagna, M. Cremonini, S. De Capitani di Vimercati, and
P. Samarati, “A privacy-aware access control system,” Journal of
Computer Security, vol. 16, no. 4, pp. 369–392, 2008.

[14] V. Cheng, P. Hung, and D. Chiu, “Enabling web services policy
negotiation with privacy preserved using XACML,” in Proc. of
HICSS 2007, Hawaii, USA, January 2007.

[15] D. Haidar, N. Cuppens, F. Cuppens, and H. Debar, “XeNA: an
access negotiation framework using XACML,” Annals of telecom-
munications, vol. 64, no. 1–2, January 2009.

[16] U. Mbanaso, G. Cooper, D. Chadwick, and S. Proctor, “Privacy
preserving trust authorization framework using XACML,” in Proc.
of WOWMOM 2006, Niagara-Falls, USA, June 2006.

[17] D. Chadwick, S. Otenko, and T. Nguyen, “Adding support to
XACML for dynamic delegation of authority in multiple do-
mains,” in Proc. of CMS 2006, Heraklion, Crete, Greece, October
2006.

[18] O. X. T. Committee, Web Services Profile of XACML (WS-XACML)
Version 1.0, OASIS, 2006.

[19] O. W. T. Committee, Web Services Security: SOAP Message Security
1.1 (WS-Security 2004), OASIS, 2006.

[20] P. Ashley, S. Hada, G. Karjoth, C. Powers, and M. Schunter,
Enterprise Privacy Authorization Language (EPAL), Research Report
RZ 3485, IBM Research, March 2003.

[21] A. Anderson, A comparison of two privacy policy languages: EPAL
and XACML, Sun Microsystems, 2005.

[22] A. Singhal, T. Winograd, and K. Scarfone, Guide to Secure Web
Services. Recommendations of the National Institute of Standards
and Technology, National Institute of Standards and Technology
(NIST), Special Publication 800-95, 2007.

[23] E. Damiani, S. De Capitani di Vimercati, S. Paraboschi, and
P. Samarati, “Controlling access to XML documents,” IEEE In-
ternet Computing, vol. 5, no. 6, November/December 2001.

[24] ——, “A fine-grained access control system for XML documents,”
ACM TISSEC, vol. 5, no. 2, May 2002.

[25] C. Farkas and M. Huhns, “Securing enterprise applications:
Service-oriented security (SOS),” in Proc. of IEEE CEC/EEE 2008,
Washington, USA, July 2008.

[26] C. Gutierrez, E. Fernandez-Medina, and M. Piattini, “A survey of
web services security,” in Proc. of ICCSA, Assisi, Italy, May 2004.

[27] P. Belsis, S. Gritzalis, C. Skourlas, and V. Tsoukalas, “Design and
implementation of distributed access control infrastructures for
federations of autonomous domains,” in Proc. of TrustBus 2007,
Regensburg, Germany, September 2007.

[28] M. Murata, A. Tozawa, M. Kudo, and S. Hada, “XML access
control using static analysis,” ACM TISSEC, vol. 9, no. 3, pp. 292–
324, August 2006.

Claudio A. Ardagna is an assistant professor at
the Department of Information Technology, Uni-
versità degli Studi di Milano, Italy. His research
interests are in the area of information security,
privacy, access control, mobile networks, and
open source. He is the recipient of the ERCIM
STM WG 2009 Award for the Best Ph.D. Thesis
on Security and Trust Management.
http://www.dti.unimi.it/ardagna

Sabrina De Capitani di Vimercati is a professor
at the Department of Information Technology,
Università degli Studi di Milano, Italy. Her re-
search interests are in the area of information
security, databases, and information systems.
She has been a visiting researcher at SRI In-
ternational, CA (USA), and George Mason Uni-
versity, VA (USA). She is vice-chair of the IFIP
WG 11.3 on Data and Application Security.
http://www.dti.unimi.it/decapita

Stefano Paraboschi is a professor and deputy-
chair at the Dipartimento di Ingegneria dellInfor-
mazione e Metodi Matematici of the Università
degli Studi di Bergamo. He has been a visit-
ing researcher at Stanford University and IBM
Almaden, CA (USA), and George Mason Uni-
versity, VA (USA). His research focuses on in-
formation security and privacy, Web technology
for data intensive applications, XML, information
systems, and database technology.
http://cs.unibg.it/parabosc

Eros Pedrini is a software engineer at the De-
partment of Information Technology, Università
degli Studi di Milano, Italy. He has participat-
ed/participates in the EU projects “PRIME” and
“PrimeLife”. His interests are in the area of in-
formation security, privacy, access control, and
object oriented languages.
http://www.dti.unimi.it/pedrini

Pierangela Samarati is a professor at the De-
partment of Information Technology, Università
degli Studi di Milano, Italy. Her main research
interests are in data protection, access con-
trol, and information privacy and security. She
serves as chair and as a member of the steer-
ing committees of several conferences. She has
served as General Chair, Program Chair, and PC
member of various conferences. In 2009, she
has been named ACM Distinguished Scientist.
http://www.dti.unimi.it/samarati

Mario Verdicchio is an assistant professor at
Dipartimento di Ingegneria dellInformazione e
Metodi Matematici of the Università degli Studi
di Bergamo. His main interests follow the guide-
lines and widen the scope of his doctoral thesis
on formal semantics of agent communication
languages to a more general analysis of formal-
ization of interaction among agents, providing a
context for the current research on policy lan-
guages for personal data exchange.
http://cs.unibg.it/verdicch

