A Flexible Authorization Mechanism for
Relational Data Management Systems

ELISA BERTINO

Universita degli Studi di Milano
SUSHIL JAJODIA

George Mason University

and

PIERANGELA SAMARATI
Universita di Milano

In this article, we present an authorization model that can be used to express a number of
discretionary access control policies for relational data management systems. The model
permits both positive and negative authorizations and supports exceptions at the same time.
The model is flexible in that the users can specify, for each authorization they grant, whether
the authorization can allow for exceptions or whether it must be strongly obeyed. It provides
authorization management for groups with exceptions at any level of the group hierarchy, and
temporary suspension of authorizations. The model supports ownership together with decen-
tralized administration of authorizations. Administrative privileges can also be restricted so
that owners retain control over their tables.

Categories and Subject Descriptors: D.4.6 [Operating Systems]: Security and Protection—
access controls; H.2.0 [Database Management|: General—security, integrity, and protection

General Terms: Security, Theory

Additional Key Words and Phrases: Access control mechanism, access control policy, authori-
zation, data management system, relational database, group management support

A preliminary version of this article appeared under the title “Supporting Multiple Access
Control Policies in Database Systems” in the Proceedings of the 1996 IEEE Symposium on
Security and Privacy, Oakland, CA, May 1996 [Bertino et al. 1996¢].

The work of S. Jajodia was partially supported by the National Science Foundation under
grants IRI-9303416 and INT-9412507 and by the National Security Agency under grant
MDA904-94-C-6118.

Authors’ addresses: E. Bertino, Dipartimento di Scienze dell'Informazione, Universita degli
Studi di Milano, Milano, 20135, Italy; S. Jajodia, Center for Secure Information Systems and
Department of Information and Software Engineering, George Mason University, Fairfax, VA
22030-4444; P. Samarati, Dipartimento di Scienze dell’Informazione, Universita di Milano,
Polo Didattico e di Ricerca di Crema, Via Bramante 65, 26013, Crema, Italy.

Permission to make digital/hard copy of part or all of this work for personal or classroom use
is granted without fee provided that the copies are not made or distributed for profit or
commercial advantage, the copyright notice, the title of the publication, and its date appear,
and notice is given that copying is by permission of the ACM, Inc. To copy otherwise, to
republish, to post on servers, or to redistribute to lists, requires prior specific permission
and/or a fee.

© 1999 ACM 1046-8188/99/0400-0101 $5.00

ACM Transactions on Information Systems, Vol. 17, No. 2, April 1999, Pages 101-140.

102 . E. Bertino et al.

1. INTRODUCTION

Different data have often different protection requirements. This is true
even for data within the same system or database and data owned,
managed, and specified by the same user (see Example 14, Section 7). As a
matter of fact, each of us would like to store information related to our
everyday activity or personal information with different protection require-
ments: information that can be accessed by everybody, information we do
not want anyone else to access, information that can only be accessed by
specific users, and information that can only be accessed by everyone
except some specific users. One way to achieve this would be to require
users to specify for every object they own whether a specific access by a
user should be allowed or denied by the authorization mechanism. This is
not practical, however, since users generally do not think of specifying the
protection requirements in terms of individual access requests, but in
terms of higher-level access control policies. It is, therefore, desirable that
the access control model be powerful and flexible enough to directly mirror
the different protection requirements users would like to express. Some of
the desirable features an authorization model should provide are as fol-
lows:

—Support for positive and negative authorizations: Positive authorizations
state those accesses that are to be allowed; negative authorizations state
accesses to be denied. Most existing authorization models only support
one type of authorization, either positive or negative, thus applying
either the closed or the open policy! on all the data to which access is to
be controlled. Support for both types of authorizations allows users to
express the protection requirements in terms of what should be allowed
or, in a complementary way, what should be denied, depending on what
is more convenient in a specific situation. For instance, if accesses to
some data are to be allowed to only a few users, it is more convenient to
express the protection requirements in terms of positive authorizations.
In contrast, if accesses are to be allowed to all but a few users, it is more
convenient to use negative authorizations instead.

—Support for exceptions and strong enforcement: Exceptions allow general
statements to be overridden in particular cases. Exceptions in the autho-
rizations allow users to state that some authorizations, which have been
specified and should therefore be enforced, are overridden (i.e., these
authorizations are not to be considered valid) in some situations. For
instance, consider the case where all employees except tim should be
allowed to read certain data. It would be desirable to give read privileges
to the group composed of all the employees (see the support for grouping
of subjects below), with an exception stated for tim . Without the support
for exceptions, one would need to specify an authorization for each

A closed policy permits specification of only positive authorizations and allows only those
accesses that are explicitly authorized. In contrast, an open policy permits specification of only
negative authorizations and allows only those accesses that are not explicitly denied.

ACM Transactions on Information Systems, Vol. 17, No. 2, April 1999.

A Flexible Authorization Mechanism o 103

individual employee. Note that support of both negative and positive
authorization is needed to specify exceptions. In the example, one would
need to insert a positive authorization for the group employee and a
negative authorization for tim .

In a model supporting exceptions, it is also desirable that users be
allowed to state, for each authorization they grant, whether the authori-
zation admits exceptions or not. We call the ability of the users to grant
authorizations that do not admit exception strong enforcement, in con-
trast to weak enforcement which refers to the ability to grant authoriza-
tions that admit exception.

—Administration: Every authorization model must include an administra-
tive policy regulating the specification of authorizations. The administra-
tive policy allows users to grant and revoke access authorizations from
others. The most common administrative policies in use are the central-
ized policy (where a privileged user (or group of users) can specify
authorizations) and the ownership policy (where each user can regulate
the accesses on the objects he or she creates). More sophisticated decen-
tralized policies allow owners to delegate others to grant/revoke authori-
zations (see the next requirement).

—Possibility of delegation and control retainment: Decentralized policies
allow the creator of an object to delegate the privilege of specifying
authorizations on the object to others. Decentralized administration has
the important advantage that it permits delegation. It, however, has the
drawback that the owner of an object may lose control with respect to
who can access the object. Moreover, if an exception policy is in place, it
is possible that the authorizations specified by the owner are overridden
by authorizations specified by other users. Therefore, while decentralized
administration is generally desirable, it is important to provide a mech-
anism for delegating only limited forms of administrative privileges (for
example, delegating only specific accesses or only authorizations that can
be overridden by the owner).

—Support for grouping of subjects: Support for grouping of subjects allows
the specification of authorizations for collections of subjects. Subject
grouping can be enforced by supporting either groups or roles. Groups
define grouping of users, and roles define grouping of privileges [Jajodia
et al. 1997]. Groups and roles are complementary concepts both of which
augment the expressiveness of the model. The need for groups arises
naturally. Often, authorizations need to be specified with reference to a
collection of users that share some common characteristics (e.g., they are
employed in the same department, work on a given project, have a
certain citizenship status, and so on). If authorizations were to be
specified only for single users, the user who specifies the authorization
would need to keep track of which users should belong to the group and
then grant and revoke authorizations according to the changes in the
group membership. By grouping all the users in a group and specifying

ACM Transactions on Information Systems, Vol. 17, No. 2, April 1999.

104 . E. Bertino et al.

authorizations for the group, this complex administration task is
avoided. Authorizations specified for groups will apply to users as long as
they retain their membership in the group; there is no need for the user
who granted the authorization to keep track of these changes.

In this article we propose an authorization model for relational data
management systems that meets the aforementioned requirements. The
model supports positive and negative authorizations that can be either
strong or weak. The classification of authorizations as strong and weak is
useful because it permits users to specify whether an authorization admits
or does not admit exceptions. Note that these concepts are not new and
have already been used by other models. In particular, strong and weak
authorizations were first introduced in the Orion model [Rabitti et al.
1991]. However, we believe that the treatment of negative authorizations
in the Orion model, together with the resulting implication relationships
between authorizations, makes Orion inappropriate for a flexible system.
See Section 9.1 for a detailed comparison.

In our model, subject grouping is supported by a group hierarchy, and
our exception policy is based on the structure of this group hierarchy. Our
model allows authorization exceptions to be specified at any level in a
group hierarchy.? In particular, positive authorizations and negative au-
thorizations can be specified at any level. Thus it is possible to specify
exceptions to exceptions. Negative authorizations in our model are handled
as blocking authorizations. Whenever a user receives a negative authoriza-
tion taking precedence over positive authorizations, these positive authori-
zations are retained in the authorization base even though they are not
valid any longer. Positive authorizations become valid once again if the
negative authorization is revoked. This approach makes it possible to
temporarily suspend a privilege from a user by granting a negative autho-
rization for the privilege and by revoking such negative authorization later
on. In a system without negative authorization, the privilege would have to
be revoked and then granted again later on.

We define an administrative policy by which the creator of a table can
grant others administrative privileges on the table. Delegation can be
specified for each privilege, and further delegation of the privilege by the
recipient can be allowed or disallowed. Moreover, in our model, by delegat-
ing only the privilege of specifying weak authorizations, the creator of a
table can retain control on the authorizations on the table.

The organization of this article is as follows. Section 2 introduces some
notations and definitions. Section 3 presents our authorization model and
discusses how access control is performed. Section 4 discusses administra-
tion of authorizations. Section 5 discusses the consistency of the authoriza-
tion state, and Section 6 describes how possible conflicts between authori-
zations can be resolved. Section 7 illustrates how our model can be used to

?In a group hierarchy, a group can be a member of another group. Group nesting can be of
arbitrary depth.

ACM Transactions on Information Systems, Vol. 17, No. 2, April 1999.

A Flexible Authorization Mechanism o 105

represent different policies and protection requirements. Section 8 illus-
trates the catalogs and the administrative tools used by the implementa-
tion. Section 9 surveys other authorization models supporting negative
authorizations and group management. In Section 9.1 we describe the main
differences between our authorization model and the authorization model
of Orion, which first introduced the concept of strong and weak authoriza-
tions. Finally, Section 10 presents the conclusions.

2. NOTATIONS AND DEFINITIONS

In this section we introduce notations and definitions that will be used
throughout the article and give the basic assumptions on the objects and
the subjects of the model and on authorizations that subjects can hold on
objects.

2.1 Objects and Privileges

In our model, objects to be protected are tables of the database. Tables can
be either base tables or view tables. A view table (or simply, view) is a table
defined in terms of queries on other base tables or views. In the following,
notation ¢—>v indicates that view v is built on top of table ¢ (either directly
or indirectly). We indicate with BT the set of base tables, with VT the set
of view tables, and with 7' = BT U VT the set of all tables in the system.
We include views in our discussion since they are a good example of derived
objects. Moreover, views represent an effective mechanism to support
content-dependent authorizations, as illustrated by the following example.

Example 1. Suppose Luke creates table Salary and wants to give other
users the authorization to select the tuples of Salary for which the value of
attribute department is equal to “deptX.” Luke can define a view of the
form “select * from Salary where department = deptX” on top of Salary ,
and grant those users the select authorization on the view.

We consider only a privileged subset of users, specified by the database
administrator, will be allowed to create tables (base tables or views) in the
database.

Privileges that users can exercise on the tables and for which authoriza-
tions, either positive or negative, can be specified are all the actions
executable on tables: select (to retrieve data), update (to modify data),
insert (to write new data), create-view (to create view on the table), and
S0 on.

2.2 Subjects

Subjects of authorizations can be either users or groups. Groups can be
defined, dropped, and modified only by privileged users explicitly autho-
rized for that. Members of groups can be users as well as other groups. The
membership of a subject s in a group G; can be either direct or indirect. The
membership is direct, written s €; G, if the subject is defined as a member

ACM Transactions on Information Systems, Vol. 17, No. 2, April 1999.

106 . E. Bertino et al.

TN

Non-citizens Employees Soft- developers Luke

PRV

Staff Resgarchers Cong \

Matt

Alice Bill Eric
\ / ConsA Con B ConsC
Carol Frank David Gary Ted

Fig. 1. An example of a membership graph.

of G. The membership is indirect, written s €, G;, n > 1, if there exists a
sequence of subjects (s, ..., s,:+1), such thats; = s, s,,; = G;, ands €,
Si+1, 1 =i = n. Sequence (sq, ..., S,.1) is called a membership path of s
to G;, written mp(s, G;). We say that s; appears in a membership path mp
if s; is an element of sequence mp. We use €, to indicate equality (i.e., for
each subject s, s €, s)® and the sequence (s) to represent the membership
path of subject s to itself.

Groups need not be disjoint, i.e., a subject can belong to several groups.
The only constraint on the group configuration is that a group cannot be its
own member, neither directly nor indirectly. A subject can thus belong to a
group in many ways, either as a direct or as an indirect member. We use
MP(s;, s;) to denote the set of all membership paths from subject s; to
subject s;. We use the term membership to refer to either direct or indirect
membership. We will explicitly use the terms direct membership or indirect
membership when a distinction is needed.

We graphically represent the membership relationship between subjects
by a graph, called the group membership graph, in which nodes represent
subjects and in which an edge from node s; to node s; indicates that s; is a
direct member of s; (i.e., s; €, s;). Since, by assumption, no subject can be
its own member, the group membership graph is a directed acyclic graph.
An example of a group membership graph is illustrated in Figure 1.

Note that our treatment of subjects covers systems where no group
concept is supported. In particular, a system with no group management
can be represented with a subject structure where the set of subjects is the
set of users in the system and where the only membership relationship

3We continue to use the symbol € to denote the membership of an element in a set.

ACM Transactions on Information Systems, Vol. 17, No. 2, April 1999.

A Flexible Authorization Mechanism o 107

holding is the equality (&) of a subject to itself. The corresponding graph is
a graph having a node for each user and no arcs connecting the nodes.

2.3 Authorizations

In our model, authorizations can be specified for privileges as well as for
the negation (i.e., denial) of privileges. To indicate whether an authoriza-
tion refers to a privilege or to its negation, the privilege type (+ or —) is
included in the authorization. Negative authorizations can be specified only
on base tables. The reason is that negative authorizations on views would
make the access control too complex and difficult to use in practice. If
negative authorizations were to be specified also on views, when a user
accesses a view, all the authorizations on all the views directly or indirectly
referencing some table the view references would have to be checked in
order to prevent the user from accessing denied data. This approach is
obviously not suitable in general where several views may be defined on the
same table and subjects given different authorizations on the views. The
following example illustrates the consequences of allowing negative autho-
rizations on views.

Example 2. Consider a table Fundings and views V; and V, defined on
it as follows:

V; = “select * from Fundings where project = software”

V, = “select * from Fundings where code = private.”

Suppose that the views are not disjoint, i.e., some tuples are contained in
both views. Suppose moreover that Matt should be allowed access to
information about the software projects, but he should be denied access to
information about private projects. In terms of the authorizations, Matt
should have both the positive authorization for the select privilege on view
V; and the negative authorization for the select privilege on view V,.
Consider the request from Matt to access view V;. Although Matt is
authorized to select tuples from V;, with respect to the protection require-
ments, he should not be allowed to see the tuples in it which are also
contained in V,. Enforcing this restriction would entail comparison of the
predicates used in defining the two views.

Note that in some cases, users can express protection requirements
where a negative authorization on a view v would be required, by defining
a view complementary to v and specifying a positive authorization on it.
For instance, suppose a user is to be allowed to select all tuples of table ¢,
but those satisfying predicate p. This requirement can be expressed by
defining a view v’ containing all the tuples for which predicate p is not
satisfied and giving the user the positive authorization on view v’. With
reference to the example above, a view V3 could be defined as V3 = “select

ACM Transactions on Information Systems, Vol. 17, No. 2, April 1999.

108 . E. Bertino et al.

* from Fundings where project = software and code # private” and
Matt be given access to Vs.

Our model allows users to specify whether an authorization they grant
admits or does not admit exceptions. Authorizations that admit exceptions
are called weak. Authorizations that do not admit exceptions are called
strong. Intuitively, strong authorizations must always be obeyed and
cannot therefore be overridden. In contrast, weak authorizations can be
overridden by other strong or weak authorizations, as we will explain in
the following section.

Let U denote the set of users in the system, G the set of groups, S the set
of subjects (with S = U U @), T the set of tables, and P = {select, insert,
delete, update} the set of privileges executable on the tables. Authoriza-
tions are defined as follows:

Definition 1 (Access Authorization). An access authorization a is a
six-tuple (s, p, pt, t, g, at) where

—s € S is the subject (user or group) to whom the authorization is
granted;

—p € P is the privilege for which the authorization is granted;

—pt € {+, —} specifies whether the authorization refers to the privilege or
to its negation,;

—t € T is the table to which the authorization refers (¢ € BT if pt = —);
—g € U U {system , adm} is the grantor of the authorization;*

—at € {strong , weak} indicates whether the authorization can be over-
ridden.

Given an authorization a, we use the notation s(a), p(a), pt(a), t(a),
g(a), at(a) to denote the subject, the access mode, the table, the time, the
grantor, and the authorization type in a, respectively. For example, s(a) is
the subject in authorization a.

In the following we will use the terms access authorization and authori-
zation interchangeably.

Example 3. Tuple (Bill,select, +,Reports,Cathy,strong) indi-
cates that Bill can select tuples from table Reports and that this
authorization, which cannot be overridden, has been granted by Cathy .
Tuple (Consultants,select, —,Fundings,Pam,weak) indicates that
group Consultants (i.e., its members) cannot select tuples from table
Fundings and that this denial has been specified by Pam However, since
the authorization is weak, exceptions are admitted.

4Administration of authorizations will be discussed in Section 4. The meaning of terms
system and adm will be explained in Section 4.

ACM Transactions on Information Systems, Vol. 17, No. 2, April 1999.

A Flexible Authorization Mechanism . 109

sel,+,T6 Us,

gg{ }:; Non-citizens sel.+T1 Employees :g{:%% Soft-developers Luke :ﬁ{;:‘;l,z

sel+,V7 Staff. sel,+,T2 Res, archers

sel+. V7
sel+,V7 Alice Bill Eric

sel,.+.V7
ConsA sel,+,V7 Con B ConsC gy 'T3

ANVAN

sel,+,V7 Carol Frank David Gary W T7 Ron Sam sel,-, T7
sel

sel,-, T7 s

Legend: bold face indicates strong authorizations
V7 is a view defined over table T7

Fig. 2. An example of an authorization state.

The set of authorizations that are present at a given time represents the
authorization state. We graphically represent the authorization state as
follows. We indicate that subject s; owns a positive authorization for
privilege p on table ¢ by associating triple (p,+,f) with node s; in the group
membership graph. Analogously, triple (p,—.,t) associated with node s;
indicates that s; owns a negative authorization for p on ¢. To distinguish
between strong and weak authorizations, we write strong authorizations in
bold type. An example of an authorization state is illustrated in Figure 2.

From now on we will indicate authorizations simply with the four-tuple
(s,p,pt,t) if the grantor is not of interest in the explanation. As we do for
the figures, we will distinguish strong authorizations from weak authoriza-
tions by writing them in bold type.

The authorizations of the owner of a view on the view are derived from
the authorizations the user holds (either personally or as a member of a
group) on the tables underlying the view. Since negative authorizations
cannot be specified for views, possible negative authorizations the user may
have on the underlying tables are not redefined for the owner on the view.”
However, they are taken into account in the derivation of the authoriza-
tions for the owner on the view. In particular, the owner of a view will
receive (and maintain) the authorization for a privilege on the view if and
only if he or she has a valid® positive authorization for the privilege on

5Tt is possible for a user to define a view on a table even if he or she has some negative
authorizations on the table. As an example, suppose a user has both the authorization for the
select privilege and the negative authorization for the insert privilege on a table. The user can
still define a view on the table. However, the only privilege received on the view is the select
privilege.

SInformally, a positive authorization is valid for a subject if it is neither overridden nor
conflicting over the subject. We will elaborate on this concept in Section 3.

ACM Transactions on Information Systems, Vol. 17, No. 2, April 1999.

110 . E. Bertino et al.

every table directly referenced by the view. This derived authorization is
strong if the user has a strong authorization for the privilege on every table
directly referenced by the view. It is weak otherwise. Since the authoriza-
tions of the owner of a view on the view depend on his or her authorization
on the tables underlying the view, changes to these latter authorizations
may affect the authorizations on the view. Algorithms for maintaining
authorizations derived for views can be used for this purpose [Griffiths and
Wade 1976; Selinger 1990]. Note that it is important that authorizations
derived for the creator of a view be restricted by those authorizations that
the creator holds on the base tables. If the creator of the view was given full
privileges on the view because of his or her ownership, it would be possible
for users to bypass the restrictions stated by the authorizations simply by
defining new views.

3. THE AUTHORIZATION MODEL

In this section we present our authorization model. We start with an
overview of the basic concepts of the model and then give the formal
definitions and discuss access control.

3.1 Overview

In our model, authorizations can be specified for single users, as well as for
groups of users. At any time, a user holds, beside his or her own authoriza-
tions, all the authorizations of the groups to which he or she belongs. We do
not restrict the user to the authorizations of only one group at a time. Our
approach accords with the semantics of user groups. Unlike roles (which
are dynamic and users can act in a role or not, at their choice) groups are
static, in the sense that a member of a group always carries its membership
to the group [Jajodia et al. 1997]. To clarify the difference between the two
concepts, consider group Non-citizens in our reference group member-
ship graph. It is not correct to allow users to take or release this group at
will. Noncitizens are always as such, and the privileges/denials specified
for the group Non-citizens always apply to its members. Moreover,
although authorizations can be specified for both users and groups, access
requests are always submitted by users operating as single individuals.
Again, this assumption comes from our view on the semantics of user
groups in contrast with roles [Jajodia et al. 1997]. These assumptions on
subjects are common to most models considering users’ groups [Abadi et al.
1991; Castano et al. 1995; Jajodia et al. 1997].

The introduction of both strong authorizations, which do not allow for
exceptions, and weak authorizations, which do allow for exceptions, in-
creases the expressiveness of the authorization model. When decentralized
administration is in place, the use of strong authorizations may be the only
means users have to make sure the authorizations they specify will
certainly be obeyed. In contrast, weak authorizations allow for exceptions.
Suppose no distinction between strong and weak authorizations was made.
Then either all authorizations behave as strongly (i.e., they do not allow

ACM Transactions on Information Systems, Vol. 17, No. 2, April 1999.

A Flexible Authorization Mechanism o 111

exceptions) or as weakly (i.e., they do allow exceptions). In the first case, it

would not be possible to support exceptions to authorizations. In the second

case, it would not be possible to enforce with certainty the authorizations.
The basic principles behind our model can be summarized as follows:

—Authorizations can be either negative or positive, and either strong or
weak.

—Strong authorizations must always be obeyed. Hence, a subject cannot
hold at the same time a positive and a negative strong authorization for
an access.

—If a subject holds a negative and a positive authorization for an access
such that one of the authorizations is strong and the other is weak, the
strong authorization overrides the weak authorization.

—If a subject holds a negative and a positive weak authorization for an
access, whether an authorization overrides the other depends on the
(membership) relationships between this subject and the subjects for
which the authorizations are specified.

—A subject is allowed an access only if he or she holds (1) a positive strong
authorization or (2) a positive weak authorization which is neither
overridden nor conflicting.

In the remainder of this section we formally define the model and the
overriding and access control policies.

3.2 Formal Definitions

According to the semantics of authorization types, it is obvious that
whenever a strong and a weak authorization contrast, i.e., one states that
an access should be authorized, while the other states that the same access
should be denied, the strong authorization takes precedence. It is also
obvious that the situation where two strong authorizations contrast cannot
be accepted. The case where two weak authorizations contrast is less
obvious. In our model, the decision of which of the authorizations (if any)
should take precedence is based on the concept of more specific authoriza-
tion. Intuitively, authorizations given to a member of a group are always
more specific than authorizations given to the group over the membership
paths passing from both the member and the group. The reason why the
overriding relationship is referred to specific membership paths is to take
into consideration the fact that a subject can belong to a group through
different membership paths. Although an authorization can be overridden
for a subject over a membership path, the authorization can reach the
subject through other membership paths.

Example 4. Given the membership graph in Figure 1, the authoriza-
tions specified for group Soft-developers can reach Tim through both the
membership path passing from Researchers and the membership path
passing from Consultants . Authorizations specified for Consultants

ACM Transactions on Information Systems, Vol. 17, No. 2, April 1999.

112 . E. Bertino et al.

(respectively, Researchers) override authorizations specified for Soft-
developers only over the membership path passing through group Con-
sultants (respectively, Researchers).

The overriding rule between authorizations is formalized as follows.

Definition 2 (Overriding Authorization). An authorization a; overrides
an authorization a;, with p(a;) = p(a;), pt(a;) # pt(a;), and t(a;) = t(a;)
or t(a;)—t(a;) with respect to subject s, s €, s(a;), s €,, s(a;), (n, m =
0) over a path mp € MP(s, s(a;)) (written a;>["a;) if and only if any of
the following conditions is satisfied:

9

—at(a;) = “strong ” and at(a;) = “weak”;

—at(a;) = at(a;) = “weak”; s(a;) # s(a;); and s(a;) appears in mp.

If authorization a; overrides a; over all the membership paths of s to
s(a;), we simply say that a; overrides a; with respect to s (written a;>; a;).

Definition 2 states that

—a strong authorization a; overrides a weak authorization a;, with the
same privilege, a different privilege type, and either the same table or
such that t(a;) is a view referencing table ¢(a;), with respect to any
subject s which belongs to both s(a;) and s(a;) over all membership paths
from s to s(a;);

—a weak authorization a; overrides a weak authorization a;, with same
privilege, different privilege type, and either same table or such that
t(a;) is a view referencing table t(a;), with respect to a subject s
belonging to s(a;), with s(a;) # s(a;), over all membership paths from s
to s(a;) passing through s(a;).

Example 5. Consider the authorization state of Figure 2. Some overrid-
ing relationships are as follows:

(Non-citizens,sel,—,T;) >, (Employees,sel, +,T ;);

(Users,sel,+,Tg) > g (Edith,sel, - Te)
(Matt,sel,+,T5) > . (Consultants,sel, T
(ConsC,sel,+,T3) > g, (Consultants,sel, -T3)
(Res2,sel,-, T,) > 712 (Soft-developers,sel, +T)

for mp = (Tim,Res2,Researchers,Soft-developers);
(Consultants,sel,-,T,) > T2 (Soft-developers,sel, +,T 4

for mp = (Tim,ConsA,Consultants,Soft-developers).
(Non-citizens,sel,—,T,) > i (Alice,sel, +,V)
(Sam,sel, —,T,) »sam(ConsC,sel, +,V).

ACM Transactions on Information Systems, Vol. 17, No. 2, April 1999.

A Flexible Authorization Mechanism o 113

In our model, if two contrasting authorizations are specified, one for a
group G and one for a member m of G, although the authorization for m
overrides the authorization for G with respect to m, it may not necessarily
be so with respect to the members of m. The reason behind our approach is
illustrated by the following example.

Example 6. Consider the group membership graph of Figure 1. Suppose
Luke creates a table T, containing the evaluation of the consultants
working for the company. The table should be read by the researchers of
the company but, obviously, should not be read by the consultants, unless
explicitly authorized. In particular, Matt can read it. This situation can be
expressed by specifying a weak negative authorization for the group
Consultants and a positive authorization for group Researchers and for
Matt . The privilege type of the authorizations for Researchers and for
Matt depends on whether Luke wishes them to be strongly obeyed or to
allow for exceptions. There is a person in the company, Tim, who works as
both a researcher in group Res2 and a consultant in group ConsA. The
question arises of whether Tim should be granted the access in view of his
membership in Res2 or should be denied the access due to his membership
in ConsA. If the authorization granted to Researchers is strong, obviously
the access should be granted. If the authorization granted to Researchers
is weak (Figure 2), the system cannot decide a priori which of the two
authorizations give precedence. Thus, neither of the two authorizations
takes precedence over the other.

Consider now a similar case where Bill creates a table T; and wants to
give all soft-developers except consultants the authorization to read this
table. Moreover, among the consultants, those in group ConsC should be
authorized. This requirement can be expressed by specifying a negative
weak authorization for Consultants and a positive authorization for
Soft-developers and for ConsC. Again, the privilege type of these autho-
rizations depend on whether Bill ~wants them to be strongly obeyed.
Consider the case where the authorization for Soft-developers is weak
(Figure 2). Consider the authorizations for user Tim. Again, we claim the
system cannot decide a priori. In this case, the reason is that a different
semantics could be assigned to the presence of the authorizations for

Soft-developers and Consultants . A permissive interpretation is that
Consultants are not authorized, but all other Soft-developers are. In
this case Tim, who belongs to Soft-developers also in virtue to its

membership in Researchers , should be allowed to read the table, i.e., the
positive authorization should take precedence. A stricter interpretation is
that only the Soft-developers who are not consultants can read the
table. In this case the negative authorization should take precedence.
Therefore, no decision can be taken by the system. For this reason, neither
of the two authorizations is considered to take precedence over the other.

ACM Transactions on Information Systems, Vol. 17, No. 2, April 1999.

114 . E. Bertino et al.

Authorizations that are applicable, i.e., that must be considered for a
subject, are then defined as follows:

Definition 3 (Applicable Authorization). An authorization a; is applica-
ble to a subject s €, s(a;), with n = 0, if and only if there exists a
membership path of s to s(a;) over which a; is not overridden with respect
to s. Formally, a; is applicable to s if and only if 3mp € MP(s, s(a;)) such
that Aa;, € AS, a,;>"a;.

An authorization a; which is not applicable to a subject is said to be
ineffective for the subject. In terms of the overriding relationship, an
authorization is ineffective for a subject s, with s equal to or member of
s(a;), if it is overridden over all the membership paths from s to s(a;).

Example 7. Consider the authorization state illustrated in Figure 2.
Authorization (Soft-developers,sel, +,T 3) is applicable to Tim;
authorization (Soft-developers,sel, +,T ,) is ineffective for Tim;
authorization (Employees,sel, +,T ;) is ineffective for Bill ;
authorization (ConsC,sel, +,V ;) is ineffective for Sam

Two authorizations with the same privilege and table but different
privilege type in which both are applicable to a subject are said to be in
conflict with respect to the subject. Two authorizations with the same
privilege and table but different privilege type such that both are applica-
ble to a subject are said to be in conflict with respect to the subject.
Conflicting authorizations are formally defined as follows:

Definition 4 (Conflicting Authorizations). Two authorizations a; and a;
conflict with respect to subject s to which they are applicable (written a; ¢
a;), if and only if p(a;) = p(a;), pt(a;) # pt(a;), and any of the following
conditions is satisfied:

—at(a;) = at(a;) = “strong ” and (¢(a;) = t(a;) Ot(a;)—>t(a;))
—at(a;) = at(a;) = “weak” and t(a;) = t(a;).

Definition 4 states that two authorizations with the same privilege but
with different privilege type conflict with respect to a subject to which both
of them are applicable if either

both authorizations are strong; and the tables in the authorizations are
either equal, or one references the other; or

both authorizations are weak and they are on the same table.

Example 8. Consider the authorization state of Figure 2. The following
conflicts hold:

(Soft-developers,sel, +,T 3) Oqim (Consultants,sel, =T 3

ACM Transactions on Information Systems, Vol. 17, No. 2, April 1999.

A Flexible Authorization Mechanism . 115
(Researchers,sel, +,T,) Oqim (Consultants,sel, =T

(Non-citizens,sel,—,T;) O, (Staff, sel, +, V).

According to our definitions, two weak authorizations for the same
privilege but different privilege type such that the table in one of them is a
view referencing the table in the other which are both applicable on a
subject do not conflict. The subject will be allowed to access the view but
will not be allowed to access the whole table. The reason for this is that a
view is considered as more specific than the tables on which it is defined.
Although the (positive) authorization on the view takes precedence with
respect to the (negative) authorization on the base table, we cannot talk
about overriding here. As a matter of fact, the negative authorization is not
overridden, but it is applicable to the subject that, although allowed to
access the view, will not be allowed to directly access the table itself. For
instance, with reference to the authorization state of Figure 2, Carol ,
David , Matt , and Ted will be allowed the select access to view V; but will
be denied the select access to table T;.

Note that this reasoning only applies to weak authorizations, where not
obeying the denial stated by the negative authorization on the base table
accords with the semantics of the specifications. It does not apply to strong
authorizations, where the semantics requires that the negative authoriza-
tion on the base table be always obeyed, not permitting exceptions for more
specific subjects or objects.

Since strong authorizations must be necessarily obeyed, conflicts be-
tween strong authorizations are not allowed. The reason for this is that if
two strong authorization conflicts, any conflict resolution policy would
require to override one of the authorizations, therefore not obeying the
principle that strong authorizations cannot be overridden.

If two strong authorizations exist which conflict with respect to a given
subject, we say that the authorization state is inconsistent; it is consistent
otherwise. This is formalized by the following definition.

Definition 5 (Consistency of the Authorization State). The authorization
state is consistent if and only if strong authorizations do not conflict (with
respect to any subject). Formally, the authorization state is consistent if
and only if 4s € S, a;, a; € AS, such that at(a;) = at(a;) = “strong ,”
ana; ¢, a;.

It is the task of the access control system to ensure the consistency of the
authorization state. In particular, execution of an operation modifying the
authorization state (e.g., grant or revocation of authorizations) or the group
membership graph (e.g., addition or removal of members from groups) will
succeed only if the resulting authorization state is consistent (see Section
5).

By contrast, we admit conflicts between weak authorizations. Our deci-
sion is justified by the fact that since weak authorizations allow for
exceptions, conflicts can always be resolved. Users can either use excep-

ACM Transactions on Information Systems, Vol. 17, No. 2, April 1999.

116 . E. Bertino et al.

tions to explicitly resolve conflicts at their will (see Section 5) or can rely on
the default policy used by the system to resolve conflicts at the access
control time (see Section 3). This default policy, which obeys the denials-
take-precedence principle, can be seen as an exception policy to be used
when no other exceptions have been specified by the users.

3.3 Access Control

The access control is based on the concept of valid authorization. An
authorization for a privilege on a table is considered valid for a given
subject only if the authorization is applicable to the subject and does not
conflict with other authorizations for that subject, as expressed by the
following definition.

Definition 6 (Valid Authorization). An authorization a € AS is valid
for a given subject s, s €, s(a), for which a is applicable if and only if
Aa; € AS, a; O, a.

An access request is granted if and only if there exists a valid positive
authorization for it. We view the access control as a function access() that,
given an access request (u,p,t) stating that user u is requesting to exercise

privilege p on table ¢, returns true if the request must be authorized and
false otherwise. Function access() is defined as follows:

strong_auth(u, p, t) if strong_auth(u, p, t)
access(u, p, t) = # undecided
weak_auth(u, p,t) otherwise

where functions strong_auth() and weak_auth() are as follows:

true if 4 is a strong positive
authorization for the access
strong_auth(u, p, t) = | false if 4 is a strong negative

authorization for the access
undecided otherwise

true if 3 is a positive weak authorization
weak_auth(u, p, t) = for the access valid for u
false otherwise

The algorithms implementing functions strong_auth() and weak_auth()
can be found in Bertino et al. [1996b]. We briefly describe them here.

The algorithm implementing function strong_auth() checks the strong
authorizations of the user requesting the access. If some authorization,
either positive or negative, is found the reply is returned accordingly.
Otherwise, if no authorization is found, the authorizations of the groups to
which the user belongs are checked. Again, if some authorization is found

ACM Transactions on Information Systems, Vol. 17, No. 2, April 1999.

A Flexible Authorization Mechanism o 117

the reply is returned according to the privilege type in the authorization. If
no authorization is found, value undecided is returned. Note that if the
request is on a view table, function strong_auth() controls, beside the
authorizations on the view, also the negative authorizations on the base
tables underlying the view. Note also that there is no need to examine all
the authorizations; the algorithm terminates at the first authorization
(positive or negative) found.

The algorithm implementing function weak_auth() works as follows.
Consider first the case that the request is on a base table. The negative
authorizations of the user requesting the access are checked. If a negative
authorization for the access is found, then a false is returned, and the
algorithm terminates. Otherwise the positive authorizations of the user are
checked. If a positive authorization is found, value true is returned, and
the algorithm terminates. (Note that since weak authorizations may con-
flict it is important to first look for a negative authorization, and only in
case no negative authorization is found look for a positive authorization.) If
no authorization is found for the user, the authorizations of the groups to
which the user belongs are checked. Groups are considered by traversing
the membership paths from the user in increasing distance. Whenever a
positive authorization is found for a group, it is not necessary to proceed
further on that membership path, since this authorization overrides those
of the groups above on that membership path. Hence, either the authoriza-
tions of those groups are ineffective for the user, or those groups are
reachable through some other membership paths. The algorithm termi-
nates when either a negative authorization is found or when there are no
more groups to be considered. In the first case false is returned. In the
second case, a false is returned if no positive authorization was found; a
true is returned otherwise.

Consider now the case of view tables. The algorithm first checks if the
user holds a positive authorization on the view. If so, a true is returned,
and the algorithm terminates. Otherwise, the algorithm checks if the user
holds a negative authorization on any of the base tables underlying the
view. If such an authorization is found, a false 1is returned, and the
algorithm terminates. Note that, unlike for base tables, in this case positive
authorizations must be checked first because the positive authorization on
the view is valid even in presence of negative authorizations on the base
tables. If no authorization is found for the user, the groups to which the
user belongs are considered by traversing the membership paths from the
user in increasing distance. For each group the existence of positive
authorizations on the view and of negative authorizations on base tables
underlying the view is checked. Whenever a negative authorization is
found for a group, the algorithm does not proceed any longer on that
membership path because the negative authorization on the table over-
rides, over that membership path, all the possible authorizations of the
groups above for the view. The process terminates when either there are no
more groups to be considered, or a positive authorization is found. In the
first case a false is returned. In the second case a true is returned.

ACM Transactions on Information Systems, Vol. 17, No. 2, April 1999.

118 . E. Bertino et al.

Example 9. Consider the authorization state illustrated in Figure 2.

Request (Bill ,sel ,T;) is denied because of authorization (Non-
citizens,sel,—,T,);

request (Tim,sel ,T,) is denied because of authorization
(Res2,sel, —,T,)

request (David ,sel ,T,) is authorized thanks to authorization
(Researchers,sel, +,T).

request (David ,sel ,V;) is authorized in view of authorization
(Res2,sel,V ;).

Access control therefore requires the evaluation of the authorizations of
the users and, possibly, of the groups to which the user belongs. The cost of
the access control is the cost C; of evaluating function strong_auth and,
possibly, the cost C,, of evaluating function weak_auth, where C,, applies
only if no strong authorization has been found. This cost can be expressed
in terms of the number of subjects whose authorizations must be evaluated
to determine whether a user request must be granted or denied. Consider a
request by user u belonging to N, groups to access a base table. As for the
control of strong authorization, where the order in which the authoriza-
tions of the groups are checked is not important, the cost C, is 1 in the best
possible case (where a strong authorization exists for the user) and N, in
the worst possible case (where no strong authorization exists for the users
of the groups to which the user belongs).

The algorithm implementing function weak_auth evaluates the group in
a particular order, from the bottom of the hierarchy to the top with a
breadth-first strategy traversing the different paths from the user to the
root/s. This evaluation method allows us to control authorization overriding
without the need of further control (the first authorization found on a path
when going bottom up overrides those above) and minimizes the number of
subjects whose authorizations must be controlled. The cost C, of this
algorithm is therefore equal to

—1 , if a weak authorization exists for the user;

—1 + Xﬁz'lnmin(wi, h;) ,if (1) no authorization exists for the user and (2) no
valid negative authorization exists for any of the groups to which he or
she belongs;

—1+ Eéi?min(wi, h;, n — 1) + r, otherwise;

where m is the number of different paths from the user to a root node; 4; is
the length of the ith path; w; is the minimum distance from u to a group
with a weak authorization on the ith path; 7 is the minimum distance from
u to a group with a nonoverridden negative authorization; and r is 1 in the

ACM Transactions on Information Systems, Vol. 17, No. 2, April 1999.

A Flexible Authorization Mechanism o 119

best case and is equal to the number of paths i such that min(h;, w;) = n
in the worst case.

Note that when illustrating the algorithms we have assumed that the
groups to which a user directly or indirectly belongs is always known. In
particular, to efficiently enforce function strong_auth it is important that
all the groups to which the user belong be known without the need to
determine them as the transitive closure of the direct membership relation-
ship every time. Strategies to efficiently determine and maintain transitive
closures such as the one proposed by Gagliardi et al. [1989] can be used for
this purpose.

4. ADMINISTRATION OF AUTHORIZATIONS

The user creating an object is considered the owner of the object and as
such is the only one allowed to drop it. When a user creates a base table, he
or she receives a strong positive authorization for all the privileges on the
table. These authorizations, which have the system as grantor (denoted as
“system ”) will be deleted upon deletion of the table. As owner, the user can
grant other users authorizations (positive/negative, strong/weak) for the
privilege on the table. The user can also grant other users the administra-
tive authorizations for privileges on the table. We consider two types of
administrative privileges: adm-access and administer . If a user has the
adm-access privilege for a privilege on a table, the user can grant and
revoke other subject’s authorizations (positive/negative) for the privilege on
the table. If a user has the administer privilege for a privilege on a table,
the user can grant and revoke other subject’s authorizations (positive/
negative) for the privilege on the table as well as authorizations for the
administration of the privilege on the table.

A type (strong or weak) is also associated with each administrative
authorization. This type does not refer to the administrative authorization
itself but to the authorizations which can be granted through it, as
illustrated in Table I. Administrative authorizations themselves are not
classified as strong or weak, as no overriding policy is applied on them.
Administrative authorizations cannot be overridden (intuitively they are
always strong). To ensure that no subject will be allowed to administer an
access if it could not receive itself an authorization for it, we require
subjects with an (explicit or implicit) administrative authorization for a
privilege on a table to not hold any (implicit or explicit) strong negative
authorization for the privilege on the table.

Definition 7 (Administrative Authorization). An administrative authori-
zation a is a six-tuple {(s,p,ap,gat,t,g) where

—s € S is the subject (user or group) to whom the authorization is
granted;

—p € P is the privilege to which the authorization refers;
—ap € {adm-access ,administer } is the administrative privilege;

ACM Transactions on Information Systems, Vol. 17, No. 2, April 1999.

120 . E. Bertino et al.

Table I. Administrative Authorizations and Their Semantics

Administrative Authorization Semantics

(s,p,adm-access ,strong ,¢,g) can grant and revoke weak/strong
positive/negative access authorizations for p on ¢

(s,p,adm-access ,weak,t,g) s can grant and revoke weak positive/negative
access authorizations for p on ¢

(s,p,administer ,strong ,¢,g) s can grant and revoke weak/strong
positive/negative access authorizations for p on ¢

s can grant and revoke weak/strong
authorizations for the administration of p on ¢

(s,p,administer ,weak,¢,g) s can grant and revoke weak positive/negative
access authorizations for p on ¢

s can grant and revoke weak authorizations for
the administration of p on ¢

—gat € {strong ,weak} indicates the type of authorizations which s can
grant;

—t € T is the table to which the authorization refers;
—g € U is the grantor of the authorization;

For instance, authorization (Luke,sel,admin-access,weak,T ,,Cathy)
states that Luke can grant, and revoke, other subjects’ weak authorizations
for the select privilege on table T; and that this authorization was
granted by Cathy .

Note that we do not separate the administration of positive and negative
authorizations: if a user has an administrative authorization for a privilege
on a table the user can specify both permissions and denials for the
privilege. Since negative/positive authorizations can be specified as excep-
tions to other negative/positive authorizations, we believe that users al-
lowed to specify negative authorizations should also be allowed to specify
positive authorizations and vice versa. However, the model could be simply
extended to include different administrative authorizations for the admin-
istration of permissions and denials.

As we noted earlier, administrative authorizations are not classified as
strong or weak, since they do not admit exceptions. The reason for this
choice is that allowing overriding of administrative authorizations would
raise the problem of dealing with the authorizations granted by a user
whose administrative authorizations become overridden. Taking no effect
on them would imply that the authorizations granted by a user are still
valid while the administrative authorizations of the user are not. Propagat-
ing the “overriding” effect would make the authorization administration
task very complicated, since the overriding relationship should not only

ACM Transactions on Information Systems, Vol. 17, No. 2, April 1999.

A Flexible Authorization Mechanism o 121

consider the groups configuration but also the grantors of the authoriza-
tions. We believe such a complicated framework to be unnecessary.

When a user defines a view, administrative authorizations on the view
are derived for the user from the authorizations on the tables used in the
view definition. In order to receive an administrative authorization for a
privilege on a view, the user must have an administrative authorization for
the privilege on every table used in the view definition. If the user holds an
administer authorization for a privilege on every table directly referenced
by the view, he or she will receive the administer authorization for
privilege on the view. Otherwise, if the user holds either the adm-access
or the administer authorization for a privilege on every table directly
referenced by the view, he or she will receive the adm-access authoriza-
tion for the privilege on the view.

Authorizations can be revoked only by the users who granted them.
Moreover, a user can appear as grantor of an authorization for a privilege
on a table only if the user holds an administrative authorization for the
privilege on the table. As a consequence, when a user is revoked the
administrative authorization for a privilege on a table, a recursive revoca-
tion, may take place to delete the authorizations granted by the user or
derived for the users on views. Revocation algorithms enforcing recursive
deletion of authorizations proposed in other models [Bertino et al. 1997;
Fagin 1978; Gagliardi et al. 1989; Griffiths and Wade 1976; Informix 1993]
can be easily adapted to our model. Note that different approaches can be
taken to revocation in case this recursive deletion of authorization is not
wanted. For instance, a nonrecursive revocation can be enforced where a
revoke operation is not allowed if it would imply deletion of further
authorizations [Melton 1990] or where authorizations granted by the user
from whom the administrative privilege is revoked are not deleted but
respecified with, as grantor, the user who required revocation [Bertino et
al. 1997].

5. AUTHORIZATION STATE CONSISTENCY AND CONFLICT
RESOLUTION

The collection of authorizations applicable to subjects may change upon
execution of administrative operations by the users. These are operations
affecting the authorization state (i.e., granting and revocation of privileges
on tables), operations affecting the group membership graph (i.e., addition
and removal of members from groups), and operations affecting the tables
(i.e., creation and deletion of tables). Although some of these operations do
not have any effect on the authorizations themselves, they may affect the
authorizations applicable to subjects and may therefore introduce conflicts.
For instance, if a user is added to a group, the authorizations of the group
may become applicable to the user.

As stated in Section 3, we require that strong authorizations do not
conflict. By contrast, we permit conflicts among weak authorizations. In the
remainder of this section we illustrate how administrative operations can

ACM Transactions on Information Systems, Vol. 17, No. 2, April 1999.

122 . E. Bertino et al.

sel,-, T4 s

Non-citizens sel,+,T1 Employees sel,-, T4 Soft-developers Luke

Edith

sel,+,T3 Resgarchers sel,-, T1 Consult nts\
—~—

Matt

SlT3 Staff

]

Alice Bill Eric

\ / ConsA Con B ConsC

Carol Frank David Gary Ted
sel + T2

Legend: bold face indicates strong authorizations

Fig. 3. An example of authorization state.

affect the consistency of the authorization state and how users can resolve
conflicts among weak authorizations in accordance with their needs.

5.1 Ensuring Consistency of the Authorization State

Operations that decrease the authorizations applicable to the subjects (i.e.,
revocation of authorizations, removal of members from groups, or deletion
of tables) do not obviously affect consistency. By contrast, operations that
may increase the strong authorizations applicable to the subjects (grant of
strong authorizations, insertion of new members in groups, and creation of
new tables) may result in an inconsistent authorization state and must
therefore be controlled. We have already discussed, in Sections 3 and 4,
how the new authorizations to be assigned to the user defining a new table
are determined. The derivation of new authorizations upon creation of new
tables (either base tables or view tables) does not affect consistency, i.e.,
applied to a consistent authorization state it always produces a consistent
authorization state. The proof of this statement is trivial. A user is given a
strong authorization on a view only if he or she holds a strong authoriza-
tion on all the tables used in the view definition. Hence, if the new
authorization would conflict, a conflict should have existed among the
authorizations on the table underlying the view, which would contradict
the assumption that the authorization state before the operation was
consistent.

Let us now consider the operations of granting a strong authorization
and adding a member to a group.

Suppose a user wishes to insert a new strong authorization a. Inconsis-
tencies may arise if subject s(a), any member of s(a), or any group to which

ACM Transactions on Information Systems, Vol. 17, No. 2, April 1999.

A Flexible Authorization Mechanism o 123

s(a) or any of its members belongs already owns a strong authorization for
privilege p(a) on a table ¢ such that t = ¢(a), t—>¢(a), or t(a)—>t, with a
privilege type different from pt(a).

Example 10. Consider the authorization state illustrated in Figure 3,
and suppose that a new strong positive authorization for the select privi-
lege on table T, is being granted to group Employees, ie., a =
(Employees,sel,+,T,). The following conflicts would be introduced:”

(Employees,sel,+,T) O gmpioyees (Users,sel,—,T,)
(Employees,sel,+,T,) 5. (Staff,sel,—,T,)
(Employees,sel,+,T,) O recearchers (Soft-developers,sel,—,T,)

Consider the addition of a member m to a group G,. Inconsistencies may
arise if m, any of its members, or any of the groups to which m itself or any
of m’s members belong own some authorization which conflicts with an
authorization owned by group G, or by any of the groups to which G,
belongs.

Example 11. Consider the authorization state illustrated in Figure 3.
Suppose that group ConsA is to be temporarily included in the group
Staff . A request to add group ConsA to group Staff is submitted to the
system. The following conflicts would be introduced:

(Staff,sel,—,Ty) Op, (Pat,sel,+,T,)
(Employees,sel,+,T;) O consa (Consultants,sel,—,T,)
(Staff,sel,—,T3) © 1, (Researchers,sel,+,T;)

Algorithms that determine if the insertion of a strong authorization or
the addition of a member to a group would result in an inconsistent
authorization state together with a proof of their correctness can be found
in Bertino et al. [1996b]. We briefly describe them here.

The algorithm for controlling the authorization state consistency upon
insertion of a new authorization works as follows. Suppose a new authori-
zation a is being granted. The algorithm controls the authorizations of
s(a), of the subjects that belong to s(a), and of the subjects to which either
s(a) or any of its members belong. The set of authorizations with the same
privilege as a, different privilege type, and with a table either equal,
referencing, or referenced by ¢(a) is determined. If the set is empty, then no
conflicts would be introduced, and ok is returned. Otherwise, for each
authorization found, the conflicts which would arise are returned. Note,
that, if two authorizations conflict over a group and one of its member, only
the conflict over the group is returned.

"Note that to avoid unnecessary long lists of conflicts, if an authorization conflicts with the
new authorization over two subjects s and s’ such that s belongs to s’, only the conflict over s’
is returned.

ACM Transactions on Information Systems, Vol. 17, No. 2, April 1999.

124 . E. Bertino et al.

The algorithm controlling the authorization state consistency upon addi-
tion of a member m to a group G,, checks all the authorizations specified for
G, or for the groups to which G, belongs and to which m does not belong
against the authorizations specified for either (1) the subjects which belong
to m and do not belong to G, (including m itself) or (2) the groups to which
some members of m belong and that are neither a member of m nor a
member of G, and to which neither G, or any of its members belong. If two
authorizations are found with the same privilege, different privilege type,
and with the table either equal, or such that the table in one of the
authorizations references the table in the other authorizations, the conflict
which would be introduced is returned. Note that also in this case, if two
authorizations conflict over a group and one of its members, only the
conflict over the group is returned.

5.2 Resolving Conflicts among Weak Authorizations

In case of simultaneous presence of conflicting weak authorizations for an
access, our model denies the access. However, using the default of denial is
not the only option for resolving conflicts among weaj authorizations. Users
can resolve conflicts by inserting additional authorizations in the authori-
zation state. This means that the users do not have to accept the system
default option if they do not want; they can also eliminate conflicts in ways
that best suit their needs.

We claim that every conflict, with one exception, can be resolved by the
addition of a new authorization. The exception occurs when conflicting
authorizations are specified for the same subject.

To see this, suppose that there exist two authorizations a; and a; for a
privilege on a table that conflict with respect to a subject s. Thus, p(a;) =
p(a;) and t(a;) = t(a;), but pt(a;) # pt(a;). There are three cases to
consider.

Case 1: s(a;) # s(a;). Clearly,s # s(a;) and s # s(a;) (since otherwise
a; and a; will not conflict with respect to s). The conflict between a; and q;
with respect to subject s can be resolved by inserting another authorization
a,, with p(a,) = p(a;), t(a,) = t(a;), s(a,,) = s, and either pt(a,) =+ or
pt(a,) =—, depending on whether the grantor wishes to give or deny the
privilege to subject s.

Consider the authorization state of Figure 4. Conflict
(Employees,sel, +,T ;) O Rresearchers (SOft-developers,sel, —,T,) can
be resolved by specifying an authorization (either positive or negative) for
the select privilege on table T, for Researchers . Note that the insertion
of this authorization resolves also the conflict between the two authoriza-
tions with respect to all the members of Researchers

Case 2: s(a;) = s(a;), but s # s(a;). The conflict can once again be
resolved by inserting another authorization a,, as given in Case 1 above.
For instance, with reference to the authorization state of Figure 4, conflict

ACM Transactions on Information Systems, Vol. 17, No. 2, April 1999.

A Flexible Authorization Mechanism . 125

Non-citizens sel.+.T1 Employees sel,- Tl Soft-developers Luke

sel.- T4 Sel -5 sel,- T4 sel+T5
Edlth

Staff Res archers ns
/ T e e TS \

Matt

Alice Bill Eric

sel,+,T2 sel,-, T2

si / ConsA Con B ConsC
Te

Carol Frank David Gary d Ron Sam
sel.+,T3 sel,-, T3

Legend: bold face indicates strong authorizations

Fig. 4. An example of an authorization state.

(ConsC,sel, +,T,) Ogam(ConsC,sel, —,T,) can be resolved by specifying
an authorization (either positive or negative) for the select privilege on
table T, for Sam

Case 3: s(a;) = s(a;) = s. In this case, the conflict can only be resolved
by either deleting one of the two authorizations or by inserting a strong
authorization a with s as the subject and with the same privilege and table
as the two conflicting authorizations. Note, however, that the insertion of
the strong authorization may not always be possible, since it may result in
an inconsistent authorization state. For instance, consider the authoriza-
tion state of Figure 4. Conflict (Resl,sel, +,T3) Ores: (Reslsel, —T 3)
can be resolved only by deleting any of the two authorizations. The
insertion of any strong authorization for the select privilege on table T5 for
subject Resl would conflict with either the authorization of Carol or the
authorization of Frank . We claim that it is proper to require that one of the
two authorizations be deleted in order to resolve the conflict, since the
simultaneous presence of a negative and a positive authorization specified
for the same subject is intrinsically ambiguous.

6. AUTOMATIC DETECTION OF CONFLICTS

In the previous section we have illustrated how conflicts among weak
authorizations can be easily resolved by adding new, more specific authori-
zations. The number of subjects and the relationships among them, how-
ever, may make this task not easy. As a matter of fact, resolving conflicts
requires users to be informed of the existing authorizations, as well as of
the relationship among the subjects in them. To be feasible, this task must

ACM Transactions on Information Systems, Vol. 17, No. 2, April 1999.

126 . E. Bertino et al.

therefore be supported by appropriate tools that can inform the users of the
conflicts introduced upon execution of a given operation and their possible
solutions. In this section we illustrate two algorithms (whose complete
descriptions and commentaries can be found in Bertino et al. [1996b]) for
the automatic detection of conflicts introduced upon the insertion and
deletion of weak authorizations on base tables. The reason why only
authorizations on base tables are considered is, that, according to Defini-
tions 2 and 4, conflicts among weak authorizations can exist only for
authorizations on base tables. Algorithms for detecting conflicts introduced
by the addition or the removal of members from groups are analogous.
Users can then resolve the conflicts communicated by the detection algo-
rithms by specifying appropriate authorizations (negative or positive, ac-
cording to how they would like the conflicts to be resolved) for the
considered privilege and table on the subjects over which conflicts are
returned. (Note that the insertion of the authorizations resolving conflicts
must also be controlled for possible conflicts.)

The algorithm for finding conflicts introduced by the insertion of a new
weak authorization works as follows. Suppose a new weak authorization a
is granted. If the subject or any of the groups to which the subject belongs
owns a strong authorization for the privilege on the table, authorization a
is overridden, and therefore no conflict is introduced. Otherwise, if the
subject owns some weak authorizations for the privilege on the table with
privilege type different from a, the conflicts of these authorizations with a
over the subject are returned, and the process terminates. If no such
authorizations exist, no conflict over the subject is introduced. However, a
could conflict over the subject’s members with the authorizations specified
for some groups to which the members belong. To find these conflicts, the
following process is executed for each direct member s of s(a). If s owns an
authorization for the privilege on the table or if any of the groups to which
s belongs owns a strong authorization for the privilege on the table, then a
is overridden for s, and therefore no other control need to be executed for s
or for its members. Otherwise, if no such authorizations exist, all the
membership paths from s to the groups to which s belongs are traversed.
The traversal of a membership path is stopped when either an authoriza-
tion, positive or negative, is found or when there are no more groups to be
considered on it. Hence, if some authorizations with a privilege type
different from a have been found, the conflict of these authorizations with
a over s is returned. Otherwise, no conflict is originated over s. Hence,
since a could conflict over s’s members, the process is recursively repeated
for each member of s.

Example 12. Consider the authorization state of Figure 4 and the
request by Luke to grant a weak positive authorization for the select
privilege on table T, to Employees . The following conflicts would be
returned by the algorithm:

ACM Transactions on Information Systems, Vol. 17, No. 2, April 1999.

A Flexible Authorization Mechanism o 127

(Employee,sel, +,T,) <Ogy (Non-citizen,sel, =T
(Employee,sel, +,T 4) O Rresearchers (SOft-developers,sel, =T

The algorithm for controlling conflicts introduced by the removal of a
weak authorization works as follows. Suppose a weak authorization a is
removed. If the subject owns an authorization for the privilege on the table
or if any of the groups to which it belongs owns a strong authorization for
it, then the removal of ¢ cannot generate any conflict, and therefore the
process terminates. Otherwise, the subject does not have any other autho-
rizations, and therefore the weak authorizations of the groups to which it
belongs, which first were overridden by a, now become applicable to the
subject and, possibly, to its members. These authorizations can therefore
potentially create conflicts over s or its members. To find these authoriza-
tions, the groups to which s(a) belongs are checked by traversing all
membership paths from s(a) to the root and stopping over a membership
path whenever an authorization for the privilege on the table is found. If
both positive and negative authorizations are found, the conflicts between
each positive authorization and each negative authorization found over s
are returned, and the process terminates. If no authorizations were found
or if all the authorizations found have the same privilege type as a, no
conflict has been introduced, and the process terminates. Otherwise, all
authorizations found have a privilege type different from a, and the fact
that they are now applicable to the subject’s members may introduce
possible conflicts. Hence, the authorizations applicable to the subject’s
members must be controlled. Let us refer to the set of the authorizations
found for the groups to which s(a) belongs as confl_auth. Then, each
member of the subject is considered, and the existence of authorizations
with a privilege type different from that of the authorizations in confl_auth
specified for other groups to which the member belongs and applicable to
the member is checked. For each member for which such authorizations are
found, the conflict of each of such authorizations with each of the authori-
zations in confl_auth is returned. The process is also recursively repeated
for each member for each member for which none of such authorizations
have been found.

Example 13. Consider the authorization state of Figure 4 and the
request by Luke to revoke the weak positive authorization for the select
privilege on table T; from Researchers . The following conflicts would be
returned by the algorithm:

(Employee,sel, —,Ts) Orm (Consultants,sel, +,Tg)

(Employee,sel, —,T5) Opaia (Reslsel, +,Tg)

7. EXPRESSIVENESS OF THE MODEL

In this section we illustrate how our authorization model can be used to
mirror the following policies: the traditional closed and open policies, the

ACM Transactions on Information Systems, Vol. 17, No. 2, April 1999.

128 . E. Bertino et al.

policy specifications

MEDIATOR

policy mapping

FLEXIBLE AUTHORIZATION MECHANISM

authorization
catalogs
S ——

Fig. 5. The system architecture.

closed policy with negative authorizations and conflict resolution based on
the denials-take-precedence principle, and the closed policy with negative
authorizations and conflict resolution based on the most-specific-authoriza-
tion-takes-precedence principle. (Note that the last policy is the one actu-
ally enforced by our model.) We also show, by means of an example, how
the model can represent different protection requirements users may need
to express on their data. Here, we assume an architecture such as that
illustrated in Figure 5, based on a mechanism implementing our authoriza-
tion model and on a mediator interfacing the users and the authorization
model and enforcing the policy mapping.

The implementation of the closed policy is straightforward. When only
positive authorizations are used, our model reduces to the traditional
closed-policy approach. It is the task of the mediator to ensure that only
positive authorizations can be specified. The mediator rejects any attempts
by the users to specify negative authorizations.

The open policy can be easily represented by requiring the mediator to
ensure the satisfaction of the following conditions. For every object, a weak
positive authorization is specified for the group representing the root of the
graph.® Users will then be allowed to specify only strong negative authori-
zations. Since a strong negative authorization overrides the weak positive
authorization in our model, the result is an open policy where all accesses

8If the membership graph is not single rooted, a group, called public , containing all subjects
in the system can be inserted.

ACM Transactions on Information Systems, Vol. 17, No. 2, April 1999.

A Flexible Authorization Mechanism o 129

for which users do not specify negative authorizations are allowed. Note
that current DBMSes have a group, called public , containing all the users
of the system, to which authorizations can be granted; however, since
negative authorizations are not supported, no exceptions to the authoriza-
tions granted to the group public can be enforced.

The denials-take-precedence policy can be implemented by the mediator
by ensuring that all positive authorizations are weak, while all negative
authorizations are strong, so that negative authorizations will always
override positive authorizations.

A major advantage of using our framework is that all users are not
constrained to the use of a single policy. They can choose to apply different
policies on different relations, as illustrated by the following example.

Example 14. Consider the group membership graph illustrated in Fig-
ure 1 and a user Luke who creates the following tables with their different
protection requirements:

—Public_info : everybody is to be allowed access. This can be accom-
plished by granting a strong positive authorization to Users .

—Nat_pub_info : everybody who is a citizen has access. A weak positive
authorization can be granted to Users and a strong negative authoriza-
tion granted to Non-citizens

—Internal_report : everybody can access unless explicitly denied. A
weak positive authorization is granted to Users . Negations can be
specified at any time.

—Organization_info : Luke wishes to retain control of all access authori-
zations on the relation except for the select privilege, which can be
administered by the members of the group Staff . Moreover, Luke does
not want Matt to be able to read information in the relation. To this end,
Luke grants the weak adm-access for the select privilege on the
relation to Staff and grants a negative strong authorization for the
select privilege on the relation to Matt .

—Fundings : it contains all information about fundings. Those fundings
that have been already approved can be accessed by people explicitly
authorized. Access authorizations are to be administered by Edith . Luke
creates a view Appr-fundings defined as “select * from Fundings where
status = approved.” Edith is granted the adm-access privilege on
Appr-fundings

—Software_project : contains information about software projects. Peo-
ple involved in software development should be authorized. A weak
positive authorization is specified for Soft-developers

—Software_project : temporarily contains some private information not
yet to be released. Consultants must be temporarily forbidden access to
the relation. A negative (strong or weak) authorization can be specified
for the select privilege on the relation for Consultants . There is no

ACM Transactions on Information Systems, Vol. 17, No. 2, April 1999.

130 . E. Bertino et al.

need to revoke the authorization previously granted, since it will once
again become valid upon revocation of the denial.

We therefore believe that users can find in our model a flexible frame-
work in which protection requirements can be expressed in a way that best
suits their needs.

8. IMPLEMENTATION

A prototype of the authorization system described in this article has been
implemented. In the implementation, the authorization catalogs of a com-
mercial DBMS have been simulated and have been extended to support
advanced features of our model. Moreover, tools to support authorization
management have been developed.

The current version of the prototype has been developed on top of the
Informix relational DBMS. The access control functions are written in
ESQL/C. The graphical interface for the tools has been implemented using
OFS/MOTIF libraries for X Windows.

In the following, we briefly discuss the two main components of the
prototype, namely, the authorization catalog manager and the authoriza-
tion administration environment.

8.1 Authorization Catalog Manager

A critical aspect in the authorization catalog manager is the catalog
structure. In our prototype, we have followed the approach, common to
many relational DBMSes, of implementing the catalogs as relations. The
entire authorization system uses the following four catalogs:

NSYSTABAUTH: it stores for each table/view, the access privileges
granted on the table/view.

NSYSSUBJECT: it stores all subjects authorized to connect to the
database and any special privilege the subjects may
have such as DBA or Resource.

NSYSREACHABLE: it records, for each subject, the groups to which the
subject belongs, either directly or indirectly.

NSYSGROUPS: it records for each subject, the groups to which the
subject directly belongs.

The structure of those catalogs is similar to the structure of authoriza-
tion catalogs of many commercial relational DBMSes with some differences
due to the peculiarities of our authorization model.

Note that the information contained in the NSYSGROUPS could be
derived from the NSYSREACHABLE catalog, and vice versa. The tables
are both maintained to efficiently retrieve the different information on
group membership. In particular, when only direct membership must be
retrieved, access to NSYSGROUPS is more efficient, since the number of
tuples in it is considerably smaller than the number of tuples in NSYS-

ACM Transactions on Information Systems, Vol. 17, No. 2, April 1999.

A Flexible Authorization Mechanism . 131

Table II. Field of Table NSYSTABAUTH and Their Semantics

Field Name Field Description
grantee subject receiver of the authorization
table-id internal identifier of the table/view
auth-descr authorization descriptor
grantor subject who granted the authorization
date when the authorization was granted
time instant at which the authorization was granted
s/u/i/d/x/a +/- s/w
privilege privilege type | authorization type

Fig. 6. Field auth-descr of table NSYSTABAUTH.

REACHABLE. This table is therefore used in the access control process
when evaluating weak authorizations (function weak_auth). Table NSYS-
REACHABLE is instead used to efficiently retrieve, with a single access,
all the groups to which a subject belongs, either directly or indirectly. This
table is used in the access control process when evaluating strong authori-
zations (function strong_auth), where all the groups to which a subject
belongs must be considered, regardless of the path through which they are
reachable.

Table IT shows the structure of the NSYSTABAUTH catalog. We do not
show here the structure of the other catalogs and refer the reader to Loretti
[1996] for this. Among the fields of NSYSTABAUTH, the AUTHORIZA-
TION field is particularly important because it encodes, beside the privi-
lege, the sign (positive or negative) and the type (strong or weak) of the
authorization. This field is organized as a three-byte pattern, structured as
illustrated in Figure 6.

8.2 Authorization Administration Environment

This environment consists of a number of tools supporting the task of
managing authorizations. Basically, all commands for registering users and
granting and revoking authorizations can be performed using some high-
level tools, rather than SQL commands. The tools are mainly useful for
visualizing the effects of grant and revoke commands and for illustrating
the group structure.

These tools represent the most innovative aspect of our implementation.
When dealing with authorization exceptions, the semantics of the authori-
zation model becomes more complex, and therefore it may be difficult to
properly administrate authorizations. The tools we have developed provide
explanation facilities as well as visualization and exploration mechanisms
which allow the user to view the effects of administrative operations on the
authorization state. Explanation facilities provide users with information
about the effects of an operation on the users’ privileges or about why a
given administrative operation cannot be executed. For example, if an

ACM Transactions on Information Systems, Vol. 17, No. 2, April 1999.

132 . E. Bertino et al.

o0 ———— |

Grantee Authorized tables Generated conflicts
Employees E m <Employees,select,+ T4,Luke,weak> !
. Researchers
Privileges Privilege type <Soft-developers,select,-, T4,Luke,weak>
@ select & Positive
O tpdate & Negative <E,mployees,seleEc";1+,T4,L\n<e,weak>
O Insert <Non-citizens,select,-, T4, Luke,weak>
O Delete Authorization type
& Index & Strong ﬂ
[+ 1 1> |
& Alter & Veak
& Show conflicting authorizations
LGRANT select + weak oN T4 70 Employees |
& Show all authorizations
Authorization Graph
Usess
V‘ v ¥
sel-, T4weak Non-citizens [sel+,T4,weak] Employees sel,- T4,weak Soft-developers Luke sel+,T4,strong
" / V\/‘ '\‘\
Etaﬂ‘ Researchers Consultants‘ Edin
/ AN
Alice Bill Eric \ Matt
Res! Res2 ConsA ConsB ConsC
/) T‘\/ T‘\/‘ T f‘ \ v\
Carol Frank David Gary Tim Pat Ted Ron Sam
[« m x> |

Fig. 7. An example of a “grant authorization” dialog.

administrative request cannot be executed because it would produce an
inconsistent authorization state, the reasons for the rejection (i.e., the
conflicts which would have been introduced) are returned to the user. To
the best of our knowledge, current commercial DBMSes do not provide any
advanced support for authorization management. For example, no graphi-
cal tools are provided in available DBMSes for visualizing the state of the
authorization base and the relationships among the authorizations in it.
As an example, Figure 7 illustrates the window shown to the user for the
execution of the grant command reported in Example 12. When the grant
command is called, the window is visualized on the screen with all areas in
it empty, but for the one titled “authorization graph,” which contains the
graphical representation of the group membership graph. The user then
specifies, by writing in the appropriate area, or clicking on the appropriate
selection button, the grantee to which the authorization is to be given, the
table on which the authorization is specified, the privilege being granted,
and the privilege and authorization type. When all the parameters are
specified, the command area summarizes the grant command. Possible
conflicts introduced by the execution of the grant command are listed in the

ACM Transactions on Information Systems, Vol. 17, No. 2, April 1999.

A Flexible Authorization Mechanism o 133

area titled “Generated Conflicts.” Conflicting authorizations are visualized
in the group membership graph. The authorization whose insertion has
been required is written between square brackets to distinguish it from the
other authorizations in the graph.

9. RELATED WORK

Early authorization models [Castano et al. 1995] only allowed the specifi-
cation of positive authorizations. More recent authorization models for
operating systems and database systems also permit specification of nega-
tive authorizations stating accesses to be denied. As for operating systems,
an authorization model supporting positive as well as negative authoriza-
tions has been proposed in the context of the Andrew File System [Saty-
anarayanan 1989]. Subjects of the authorizations can be users and groups
of users. A group is a set of groups and users and is associated with an
owner who is allowed to add and remove members from the group. A user
operates with the union of his or her authorizations and that of the groups
to which he or she belongs. A user can temporarily disable personal
membership to some groups. Authorizations of disabled groups are not
available to the user. In case of the simultaneous presence of negative and
positive authorizations, the model adopts the denials-take-precedence pol-
icy. The model provides a limited form of authorization administration,
where only the owner of a file can grant and revoke authorizations to other
subjects. Moreover, since objects of the authorizations can only be files, the
problem of authorizations on derived objects does not arise.

In the database systems context, Bertino et al. [1997] extend the autho-
rization model proposed in the framework of System R [Griffiths and Wade
1976] to include negative authorizations. Authorizations can be specified
for both single users and user groups. Negative authorizations can be
specified with reference to specific privileges on tables, and the denials-
take-precedence policy is used for resolving conflicts among authorizations.
No administrative policy is provided.

A more flexible authorization model supporting both positive and nega-
tive authorizations has been developed at SRI in the context of the SeaView
project [Lunt 1989; Lunt et al. 1989]. The SeaView model supports negative
authorizations by introducing a special access mode, called “null.” Granting
the null privilege on an object to a user means denying the user all accesses
on the object. Thus, if a user is given a null privilege on an object, the user
will not be able to access the object, even if he or she owns an authorization
for the access. The administration of privileges is controlled through the
access modes “grant” and “give-grant.” If a user has the grant access mode
on a table, he or she can grant and revoke any access mode (including null)
on the table from other subjects in the system. If a user has the give-grant
access mode on a table, he or she can additionally grant and revoke the
grant and give-grant access modes on the table from other subjects in the
system. Although the SeaView model permits authorizations to be specified
for single users as well as groups of users, a subject operating on behalf of

ACM Transactions on Information Systems, Vol. 17, No. 2, April 1999.

134 . E. Bertino et al.

a user is constrained to the privileges owned by at most one group to which
the user belongs. Conflicts among authorizations are resolved on the basis
of the following policy: (1) authorizations specified for a user take prece-
dence over authorizations specified for the groups to which the user belongs
and (2) the authorization for the null access mode specified for a user
(group) takes precedence over any other authorization specified for the
same user (group). The SeaView model suffers from several limitations.
First, the model does not support negative authorization at the level of a
single access mode. Thus, for example, it is not possible to state that a user
is authorized for the select access mode, but denied for the insert access
mode on an object. Second, administrative authorizations are referred to all
privileges executable on an object and not to single privileges. Thus, it is
not possible to give a user the authorization to administer a specific
privilege (e.g., select) on a table. Third, only users can belong to groups.
Fourth, authorizations specified for groups are considered only when no
authorizations are explicitly specified for the user. Hence, if we would like
to give a user some authorization in addition to the authorization he or she
has as a member of some groups, we need to respecify the authorizations of
the groups for the user himself. Moreover, the SeaView model allows a user
to exercise an authorization on an object specified for a group to which the
user belongs even if the user belongs to another group which has been
explicitly given the null privilege for the object.

Another model supporting negative authorization has been proposed in
the context of object-oriented systems in the framework of the ORION/
ITASCA project [Rabitti et al. 1991]. Authorizations can be specified only
for “roles” (which are groups of users) and not for single users. The model,
which supports both positive and negative authorizations, introduces the
concept of strong and weak authorizations. Weak authorizations can be
overridden whereas strong authorizations cannot. The model enforces
derivation of additional authorizations, called implicit, from the authoriza-
tions explicitly specified by the users. Resolution of possible conflicts
between positive and negative authorizations is based on the concept of
more specific authorization. However, the Orion authorization model suf-
fers from several limitations and drawbacks (see Section 9.1).

Briiggemann [1992] proposes a model for the protection of object-oriented
databases, based on the concepts introduced in Orion, where authorization
conflicts are resolved based on explicit integer-valued priorities between
authorizations.

Another model supporting both negative and positive authorizations for
protection in object-oriented systems has been proposed by Gal-Oz et al.
[1993]. Authorizations specified on a class propagate to its subclasses.
Conflicts among positive and negative authorizations are resolved by
considering explicit authorizations as prevailing over implicit authoriza-
tions together with the denials-take-precedence policy. This model does not
consider groups of users; authorizations can be specified for single users
only.

ACM Transactions on Information Systems, Vol. 17, No. 2, April 1999.

A Flexible Authorization Mechanism o 135

Shen and Dewan [1992] propose an authorization model supporting both
positive and negative authorizations for the protection of information in
collaborative environments. Authorizations are specified for roles which
can be dynamically taken and released by users. Privileges and objects can
be specified as sets of other privileges and objects, respectively. In this way,
a single authorization can be specified which allows a role to exercise a set
of privileges on a set of objects. Resolution of conflicts between authoriza-
tions is based on the concept of more specific authorization. An authoriza-
tion a is considered more specific than an authorization a’ if the subject of
a is a member of the subject of a’. When no resolution policy can be
applied, since none of the subjects in the authorizations a and a' is a
member of the other, the access decision is based on an explicit precedence
relationship. The precedence relationship is based on the assumption that
authorizations are specified as ordered ACLs attached to objects. When the
conflicts between two authorizations cannot be solved on the basis of the
most specific rule, the authorization that appears first in the ACL wins
over the other. We note that the conflict resolution based on the inheritance
hierarchy is similar to that provided by us for weak authorizations. Notice,
however, that the overriding policy of Shen and Dewan is not exactly the
same as ours. In our model, authorization a overrides a’ only along the
membership path to the subject of ¢’ which passes through the subject of a
(see Section 3). A major difference between our model and the model by
Shen and Dewan concerns the way conflicts among authorizations are
solved when the subjects in the conflicting authorizations are not related in
the hierarchy. Our model assumes that no decision can be taken and
therefore takes the safest solution of denying the access. The model by
Shen and Dewan, instead, relies on explicit priorities. The idea of explicit
priorities is interesting and presents some advantages. In particular, the
model by Shen and Dewan, in some cases, is more flexible than ours, since
the consideration of explicit priorities may avoid the strict application of
the denials as default. However, this approach also presents some draw-
backs. A first problem concerns the specification of authorizations. In the
model by Shen and Dewan administrative privileges are not mentioned.
However, we note that decentralized administration would create some
problems in such a model. Since ACLs are position sensitive, users who
specify the authorizations should be given the possibility of specifying
where in the ACL a new authorization must be positioned. In particular, a
user could insert a new authorization before other existing authorizations,
thus giving to the new authorization higher priority. Then a user who
specifies an authorization cannot make sure that the system will definitely
obey it (like in the case of our strong authorizations). If insertions in the
ACLs are not controlled, the case could also be where authorizations
specified by some delegated users override those specified by the owner,
despite the willingnesss of the owner for that. In our model, instead, the
owner of an object can always keep control on the accesses to his or her
objects by specifying strong authorizations and by delegating only weak

ACM Transactions on Information Systems, Vol. 17, No. 2, April 1999.

136 . E. Bertino et al.

Table III. Comparison of Approaches with Respect to the Requirements Stated in Section 1

Requirements
Pos. and Exceptions/
Neg. Strong Delegation/Control Subject
Model Auth. Enforc. Admin. Retainment Grouping

Andrew [Satyanarayanan yes limited/no yes no/not appl groups

1989] (dynamic)
Bertino et al. [1997] yes limited/no no not appl/not appl groups
Sea-View [Lunt 1989; Lunt limited yes/no yes yes/no groups (not

et al. 1989] nested)
Orion [Rabitti et al. 1991] yes yes/yes yes yes/no roles
Briiggemann [1992] yes yes/yes no not appl/not appl roles
Gal-Oz et al. [1993] yes limited/no no not appl/not appl no
Shen and Dewan [1992] yes yes/limited no not appl/not appl roles
Our approach yes yes/yes yes yes/yes groups

adm-access privileges. The owner can have authorizations overridden, if
he or she wishes so, if the authorizations are specified as being weak.
Another drawback of the model by Shen and Dewan is that the order
among authorizations is taken into consideration only if the subjects in the
authorizations are not related. Then, the more specific relationship is
always applied first. This implies that authorizations of a group will always
be overridden by the authorizations of its members. It is therefore impossi-
ble to ensure that an authorization specified for a group will always be
obeyed (it is instead possible in our model by specifying the authorization
for the group as strong). As for the capability of representing the classical
access control policies, it is true that putting all the negative authoriza-
tions before the positive ones in ACLs enforces denials-take-precedence.
Likewise, putting all the positive authorizations before the negative ones in
ACLs enforces permissions-take-precedence. However, again, these policies
apply only when the two conflicting authorizations have subjects such that
none of them is a member of the other. Therefore, they cannot be enforced
properly.

Table III summarizes how the different models discussed in this section
address the requirements stated in Section 1. A “yes” value indicates that
the considered model addresses the requirement; a “no” value indicates
that the model does not address the requirement; a “limited” value indi-
cates that the model addresses the requirement only partially; and a “not
appl” value indicates that the requirement is not applicable. (For instance,
it is not meaningful to talk about delegation for a model which does not
support any administrative policy to talk about control retainment for a
model which does not support delegation.)

9.1 Comparison with Orion

The concept of strong and weak authorizations used in our model has been
first introduced in the Orion authorization model [Rabitti et al. 1991].
However, our model has a number of important differences from the

ACM Transactions on Information Systems, Vol. 17, No. 2, April 1999.

A Flexible Authorization Mechanism o 137

authorization model of Orion. These differences can be summarized as
follows:

—In the Orion authorization model, positive authorizations propagate from
more general to more specific subjects, and negative authorizations
propagate from more specific to more general subjects. For instance, with
reference to our group configuration graph, negative authorizations
specified for group Employees would not be propagated to Staff and
Researchers but to the group Users . Then, it is not possible to specify
negative authorizations for a group which propagate to the members of the
group. In our view, this is not consistent with the concept of user groups
and is due to the fact that the semantics of user groups and user roles is
mixed in Orion. This difference between the Orion model and our model
is very important in that it implies different concepts of more specific
authorizations and overriding relationships.

—In the Orion authorization model it is not possible to specify authoriza-
tions for single users, but only for groups of users. A user operates with
union of the privileges of all the groups to which he or she belongs.
Moreover, the relationship between users and groups is not taken into
account in the model when evaluating the consistency of the authoriza-
tion state. Hence, although the model guarantees absence of conflicts
among the authorizations of each single group, a user may belong to
groups with conflicting authorizations. For instance, with reference to
our group membership graph, the situation in which Non-citizens are
strongly denied an access and Employees are strongly authorized for the
same access will be allowed (although the groups intersect). In evaluat-
ing the access requests, positive authorizations take precedence over
negative authorizations. A user will then be allowed to exercise an access
even though he or she belongs to a group with a strong negative
authorization. With reference to our example, Bill (who is both an
Employees and a Non-citizens) will be allowed to exercise the access,
thus not obeying the strong requirement that Non-citizens must not be
allowed for the access. Then, it is not possible to really enforce strong
authorizations at the level of single users. In our model, authorizations
can be specified also for single users. The relationship between users and
groups is taken into consideration to ensure that no users holds conflict-
ing valid authorizations.

—The Orion authorization model requires the authorization base to be
complete: for every possible access request an authorization, either
positive or negative, strong or weak, implicit or explicit, must exist. This
approach requires users to specify all possible authorizations and forces
the use of negative authorizations to represent cases where the authoriza-
tion is simply not to be given rather than to support exceptions or denials.
We do not require the authorization state to be complete. We assume a
closed-world policy: if no authorization is specified for a given access, the
access is denied.

ACM Transactions on Information Systems, Vol. 17, No. 2, April 1999.

138 . E. Bertino et al.

—The Orion authorization model does not provide any administrative
policy. In the model, the assumption is made that every user who is
authorized for an access can also grant this access to other users. This
approach has the drawback that granting a subject the privilege to
exercise an access on an object implies granting him or her the privilege
to administer the access, i.e., to grant and revoke authorizations for the
access to other subjects. In this approach, it would therefore be impossi-
ble for the creator of an object to maintain control of who can access, and
how, the created objects. In our model, we provide an administrative
policy based on the ownership approach which supports different types of
administration.

—In the Orion authorization model no conflicts, neither among strong nor
among weak authorizations, are allowed. Each operation producing a
conflict in the authorization state is therefore rejected. By contrast we
allow conflicts between weak authorizations and handle negative autho-
rizations as blocking authorizations. If two weak authorizations conflict,
the positive authorization is retained in the authorization base even
though it is not valid any longer. It will become valid again once the
conflicting negative authorization is revoked. This approach has the
great advantage of providing temporary suspensions of authorizations
[Bertino et al. 1996a]. If conflicts were not allowed, the positive authori-
zation would have to be revoked and then granted again later on. This
characteristic of our model represents a real advantage, since the revoca-
tion of an authorization can have disruptive effects such as the dropping
of views and revocation of other authorizations [Bertino et al. 1997]. If
the revoked authorization is granted again later on, the views must be
redefined and the other authorizations granted again. With our ap-
proach, views and authorizations are preserved, although temporarily
invalidated. They become valid again when the negative authorization is
revoked.

—In the Orion authorization model no algorithm is proposed for finding or
resolving conflicts among authorizations. In our model we allow conflicts
among weak authorizations and apply a denials-take-precedence policy
in case of conflicts. In this way, users can temporarily live with conflicts,
resolving them according to their needs as we have illustrated in Section
5. Moreover, we have given algorithms for the detection of conflicts. As
for conflicts among strong authorizations these algorithms provide the
users with the explanation as to why the operation introducing the
conflicts is denied. As for weak authorizations, the algorithms provide
the users with the list of all the conflicts introduced by the administra-
tive operation requested. This information is then used by the users for
the specification of authorizations resolving the conflicts.

—The Orion model does not address authorization issues with respect to
derived objects, like views. The problem of assigning authorizations to the
creator of an object is never discussed. The tacit assumptions seem to be

ACM Transactions on Information Systems, Vol. 17, No. 2, April 1999.

A Flexible Authorization Mechanism o 139

taken that the user creating an object can exercise all the privileges on
the object. However, it is not clear how this is performed, since ownership
is never mentioned and since authorizations can be specified only for
roles.

10. CONCLUSIONS AND FUTURE WORK

In this article, we have presented an authorization model that can be used
to express different policies (open versus closed policies, and denials-take-
precedence versus exceptions-take-precedence) for different data in the
same database. The model permits both positive and negative authoriza-
tions and supports exceptions at the same time. The model is flexible in
that the users can specify, for each authorization they grant, whether the
authorization can allow for exceptions or whether it must be strongly
obeyed. It provides authorization management for groups with exceptions
at any level of the group hierarchy and temporary suspension of authoriza-
tions. The model supports ownership together with decentralized adminis-
tration of authorizations. Administrative privileges can also be restricted
so that owners retain control over their tables.

Although we couch our authorization model in terms of relational DBM-
Ses, it can be adapted to other data management systems as well. The
features provided in our model are relevant not only in the context of
advanced applications and cooperative environments, but also in federated
systems, where different policies need to be represented in a common
authorization model. Issues concerning authorization policies in federated
systems have not been adequately addressed so far. We believe that our
model can find a wide application scope in those systems.

ACKNOWLEDGMENTS
The authors wish to thank associate editor Prasun Dewan and the anony-
mous referees for their detailed and insightful comments.

REFERENCES

ABADI, M., BURROWS, M., LAMPSON, B., AND PLOTKIN, G. 1993. A calculus for access control in
distributed systems. ACM Trans. Program. Lang. Syst. 15, 4 (Sept.), 706-734.

BerTINO, E., BETTINI, C., FERRARI, E., AND SAMARATI, P. 1996a. A temporal access control
mechanism for database systems. IEEE Trans. Knowl. Data Eng. 8, 1 (Feb.).

BERTINO, E., JAJODIA, S., AND SAMARATI, P. 1996b. A flexible authorization mechanism for
relational data management systems. Tech. Rep. Computer Science Department, Univer-
sita di Milano, Milan, Italy.

BERTINO, E., JAJODIA, S., AND SAMARATI, P. 1996¢. Supporting multiple access control policies
in database systems. In Proceedings of the IEEE Symposium on Security and Privacy
(Oakland, CA, May). IEEE Press, Piscataway, NJ.

BERTINO, E., SAMARATI, P., AND JAJODIA, S. 1997. An extended authorization model for
relational databases. IEEE Trans. Knowl. Data Eng. 9, 1 (Jan.-Feb.), 85-101.

BrUGGEMANN, H. H. 1992. Rights in an object-oriented environment. In Database Security V,
Status and Prospects, C. Landwehr and S. Jajodia, Eds. Elsevier North-Holland, Inc., New
York, NY.

ACM Transactions on Information Systems, Vol. 17, No. 2, April 1999.

140 . E. Bertino et al.

CASTANO, S., FucIni, M. G., MARTELLA, G., AND SAMARATI, P. 1995. Database Security. ACM
Press/Addison-Wesley Publ. Co., New York, NY.

FaciN, R. 1978. On an authorization mechanism. ACM Trans. Database Syst. 3, 3, 310-319.

GAGLIARDI, R., LAPIS, G., AND LINDSAY, B. 1989. A flexible and efficient database authorization
facility. Tech. Rep. RJ 6826(65360). IBM Almaden Research Center.

GAL-Oz, N., GUDES, E., AND FERNANDEZ, E. B. 1993. A model of methods authorization in
object-oriented databases. In Proceedings of the International Conference on Very Large
Data Bases (Dublin, Ireland). Morgan Kaufmann Publishers Inc., San Francisco, CA.

GRIFFITHS, P. G. AND WADE, B. 1976. An authorization mechanism for a relational database
system. ACM Trans. Database Syst. 1, 3 (Sept.), 243-255.

INFORMIX. 1993. Informix-Online/Secure. Security Features User’s Guide. Informix Software,
Inc.

JAJODIA, S., SAMARATI, P.; AND SUBRAHMANIAN, V. S. 1997. A logical language for expressing
authorizations. In Proceedings of the 1997 IEEE Symposium on Security and Privacy
(Oakland, CA, MAY). IEEE Press, Piscataway, NdJ, 31-42.

LoreTTI, S. 1996. Flexauth system—User manual. Computer Science Department, Univer-
sita di Milano, Milan, Italy.

Lunt, T. F. 1989. Access control policies for database systems. In Database Security II:
Status and Prospects, C. E. Landwehr, Ed. North-Holland Publishing Co., Amsterdam, The
Netherlands, 41-52.

Lunt, T. F., DENNING, D. E., ScHELL, R. R., HECKMAN, M., AND SHOCKLY, W. R. 1989. Secure
distributed data views. Tech. Rep. Computer Science Laboratory, SRI International, Menlo
Park, CA. Volumes 1-4.

MEeLTON, J. 1990. ISO/ANSI working draft—Database language sql2. Tech. Rep. ANSI
X3H2-90-309. ANSI, New York, NY.

RaBiTTI, F., BERTINO, E., KiM, W., AND WOELK, D. 1991. A model of authorization for
next-generation database systems. ACM Trans. Database Syst. 16, 1 (Mar.), 88—-131.

SATYANARAYANAN, M. 1989. Integrating security in a large distributed system. ACM Trans.
Comput. Syst. 7, 3 (Aug.), 247-280.

SELINGER, P. G. 1990. Authorizations and views. In Distributed Data Bases, I. W. Draffan
and F. Pooe, Eds. Cambridge University Press, New York, NY.

SHEN, H. AND DEWAN, P. 1992. Access control for collaborative environments. In Proceedings
of the International Conference on Computer Supported Cooperative Work. ACM Press, New
York, NY, 51-58.

Received: September 1994; revised: August 1996, September 1996, January 1997, and
December 1997; accepted: December 1997

ACM Transactions on Information Systems, Vol. 17, No. 2, April 1999.

