
Implementation of a Storage Mechanism for Untrusted DBMSs

Ernesto Damiani
Università di Milano
26013 Crema - Italy

damiani@dti.unimi.it

Sabrina De Capitani di Vimercati
Università di Milano
26013 Crema - Italy

decapita@dti.unimi.it

Mario Finetti
mario.finetti@flashnet.it

Stefano Paraboschi
Università di Bergamo
24044 Dalmine - Italy

parabosc@unibg.it

Pierangela Samarati
Università di Milano
26013 Crema - Italy

samarati@dti.unimi.it

Sushil Jajodia
George Mason University
Fairfax, VA 22030-4444

jajodia@gmu.edu

Abstract

Several architectures have been recently proposed that
store relational data in encrypted form on untrusted rela-
tional databases. Such architectures permit the creation of
novel Internet services and also offer an opportunity for a
better construction of ASP solutions. Environments where
there are limited resources that do not permit an efficient
management of databases or where it is critical to offer a
robust Internet access to private data may all benefit from
the above architectures. In this paper we analyze the im-
pact that this architecture has on the typical services of a
database. The analysis is based on the experience gained
in the construction of a prototype of a complete architec-
ture for the management of encrypted databases. Specifi-
cally, we illustrate the impact on query translation and op-
timization, and the main components of the software archi-
tecture of the prototype.

1. Introduction

Recently, a new deployment infrastructure for e-
services has been taking shape where Application Service
Providers (ASP) host and manage complete e-business and
e-government applications on behalf of enterprises and gov-
ernment agencies. This infrastructure requires new security
techniques, especially designed for large-scale data host-
ing. Until recently, many organizations neglected static
data protection, believing that database systems located in-
side their own perimeter defences were safe from attacks.
Now, they are increasingly aware that databases hold a
high concentration of critical information, and threats com-
ing from insiders are considerably higher than the ones
posed by remote users. In fact, while data hosting has many

advantages, it may increase security risks, inasmuch crit-
ical data are deployed at an ASP remote location and are
managed by ASP personnel, both of which are not un-
der the full control of the data owner. If badly secured ap-
plication data can be compromised even by unskilled hack-
ers, hosting of unprotected databases is even worse because
it allows untrusted ASP staff to access critical informa-
tion such as payroll or sales data. The increasing success of
application hosting is gradually shifting companies’ and re-
searchers’ attention from well-understood encryption tech-
niques for protecting data during network transit and within
applications to those aimed at protecting static informa-
tion residing in databases. If database service has to become
a commodity widely available on the network, robust pro-
tection mechanisms, typically based on encryption, have to
be designed.

Database encryption [4] consists in encrypting data
stored within a database in order to protect it from be-
ing compromised. If the information managed by a
hosted database is encrypted, a hacker who breaks into
the ASP network will not be able to access it; further-
more (and perhaps more importantly) an ASP employee
(e.g., a database operator) who either intentionally or ac-
cidentally displays critical data will not be able to under-
stand them. Also, it is interesting to remark that while the
general problem of encrypting database content is cer-
tainly not new, its statement given above is very different
from the one proposed in the last century, where encryp-
tion was only performed at the physical level, while the
DBMS server (and its operator) was trusted. Traditional ap-
proaches to protecting databases utilized software-based
encryption, though recent research is highlighting the mer-
its of hardware-based approaches for ASP architectures.
The main effort of current research in this area is the de-
sign of a transparent mechanism that makes it possible to

Encryption and
indexing process

Catalogue

Query processor

(2) transformed query
(3) encrypted results

(1) query
(4) results

����������	�
� ��������	���
�� ��� � 	������ � ������������	�
 �"!$#&%'�(�)	��)*�	����

+

,�-

Figure 1. Scenario

use an encrypted database as a traditional one, with a guar-
antee on data confidentiality and with a loss in perfor-
mance as little as possible. Available results [11] show that
there is a clear trade-off between performance and confi-
dentiality, but careful database design can combine good
performance and a high level of data protection. In our pre-
vious work [3] we described a complete approach to
database encryption and evaluated its robustness with re-
spect to internal inference attacks, where an insider
can compare the whole encrypted database with clear-
text query results. In this paper we follow a different,
though related, line of research focusing on implementa-
tion guidelines aimed at providing efficient and transparent
database services by means of query translation and opti-
mization techniques especially designed for an encrypted
database setting. Our guidelines include functional de-
composition of the query execution environment in a set
of reusable components. The paper is organized as fol-
lows. Section 2 describes the basic concepts and the sce-
nario we consider. Section 3 illustrates our techniques for
computing the indexing information that allows for ex-
ecuting queries on encrypted data. Section 4 describes
the architecture of the query processor. Section 5 illus-
trates the main classes of our implementation. Finally,
Section 6 presents our conclusions.

2. Basic concepts and scenario

We briefly introduce preliminary definitions and con-
cepts of relational model and encryption.

We assume standard notions from the relational
database model. A relation scheme R is a finite set
A = {A1, . . . , An} of attributes. A tuple t is a map-
ping from a finite set A = {A1, . . . , An} of attributes to
a (possibly infinite) set V of values, where t[A] denotes
the mapping for attribute A in t. A relation r over rela-
tion scheme R is a finite set of tuples over R. A database B
over a set of relation schemes {R1, . . . , Rn} is a set of re-
lations {r1, . . . , rn}, where each ri is a relation over
Ri.

Figure 1 illustrates the basic scenario we consider. At the

trusted front end we are given a relational database B to be
outsourced to an external untrusted DBMS. The goal of our
approach is to produce an encrypted database in such a way
that the untrusted DBMS can efficiently execute queries on
the encrypted data. A first approach for solving this prob-
lem was presented in [6]. The idea is to associate with each
encrypted relation a set of index attributes that the untrusted
DBMS can use to retrieve relevant data to be returned in re-
sponse to a query. There is an index for each attribute Ai in
the original relation r on which conditions needs to be eval-
uated in the execution of queries. Each relation r is then
mapped into a relation re whose attributes are the encrypted
tuple and the corresponding indexes.

In this scenario, illustrated in Figure 1, each query (1) is
mapped onto a query on the encrypted data (2) that is ex-
ecuted at the untrusted DBMS. The result of this query is
a set of encrypted tuples (3) that are then decrypted by the
trusted front end (4). As we will see in Section 3, the front
end may need to execute an additional query to discard spu-
rious tuples that do not belong to the result set.

The application of encryption to a relational database
B can be performed at different granularity levels (e.g.,
relation, tuple, or single elements). We consider encryp-
tion at the tuple level because it provides a good trade-
off between query execution efficiency and front end work-
load [7]. We then assume that each relation r over schema
R = {A1, . . . , An} is stored at the untrusted DBMS as
a relation re over schema Re = {T e, I1, . . . , Im}, m ≤
n, where T e is an attribute for the encrypted tuple, and
Ii, i = 1, . . . , m, are attributes for the indexes. There-
fore, each tuple t[A1, . . . , An] ∈ r is mapped onto a tu-
ple t′[T e, I1, . . . , Im] ∈ re, where t′[T e] = Ek(t) with
Ek() an invertible encryption function using k as key, and
t′[Ii] = f(t[Aj]), i = 1, . . . , m, for some j = 1, . . . , n,
with f an indexing function.

The major challenges in this scenario is how to compute
and represent indexing information as well as how to effi-
ciently use it in the execution of queries. These issues will
be discussed in the remainder of the paper.

3. Data organization and indexing

Two different techniques can be used to compute the in-
dexing information: i) encrypted attribute value, and ii) hash
value. As we will see in the following, such indexes sup-
port an efficient execution of equality queries (i.e., queries
in which the WHERE clause includes only equality condi-
tions) but they do not support well interval-based queries.
To avoid this problem, the indexing information is enriched
with auxiliary B+-trees that are traditionally used in the re-
lational DBMSs for supporting interval-based queries [1].
In the remainder of this paper, we refer our examples to

BILL

ID Patient Charge
p1 Ada $10
p2 Burt $50
p3 Burt $20
p4 Clio $50
p5 Dido $30
p6 Elvira $50

PATIENT

Name Street City ZIP
Ada Florence St. Washington 98001
Burt Main Av. Miami 56345
Clio University rd. Miami 56345
Dido Salt St. Miami 56345
Elvira Dance rd. Philadelphia 12345
Fred Salt St. Washington 98001

Figure 2. An example of plaintext relations

BILL1e

T
e II IP IC

SeCS0U/7ZIY.A α η µ
uRnZBBQcrRPGY β θ ν
/WKu5y8laqK82 γ θ ρ
jzKzVi0D1as8E δ ι ν
AXYaqohgyVObU ε κ ξ
0CGZJvVV.zM4U ζ λ ν

(a)

BILL2e

T
e II IP IC

SeCS0U/7ZIY.A α η λ
uRnZBBQcrRPGY β θ µ
/WKu5y8laqK82 γ θ λ
jzKzVi0D1as8E δ η µ
AXYaqohgyVObU ε ι λ
0CGZJvVV.zM4U ζ ι µ

(b)

Figure 3. Encrypted relations corresponding
to relation BILL in Figure 2 with indexes by
encryption (a) and indexes by hashing (b)

the outsourcing of an hospital billing service and the corre-
sponding simple relations BILL and PATIENT in Figure 2.

3.1. Index by encryption

A simple approach for computing indexes consists in
using an invertible encryption function Ek() as indexing
function. Formally, each tuple t ∈ r is mapped to a tuple
t′ ∈ re where t′[Ii] = Ek(t[Aj]), i = 1, . . . , m and for
some j = 1, . . . , n. As an example, the relation in Figure 2
would be mapped into relation BILL1e (see Figure 3(a)).
Here, for simplicity, we assume that there is an index for
each attribute in the plaintext relation and the output of the
indexing function is represented by Greek letters. Also, the
encrypted relations and the index attributes have meaning-
ful names to increase readability. Obviously, in a real appli-
cation such names must be obfuscated. In this case, a query
on a plaintext relation has to be transformed into a query
on the corresponding encrypted relation by simply applying
the encryption function on each value specified in the orig-
inal query. This technique is simple and has the advantage
of preserving the distinguishability between values. That is,
the encryption function used to compute the index values
is such that two different plaintext values are always trans-
formed into two different encrypted values. In this way, the
set of tuples returned by the transformed query, after de-
cryption, corresponds to the set of tuples that the user could
obtain by applying the original query to the plaintext re-
lation. For instance, with reference to our example, query

“SELECT patient FROM BILL WHERE charge=$10” is trans-
formed in “SELECT Te FROM BILL1e WHERE IC = µ”
which returns the first encrypted tuple. Before presenting
the result to the user, the query processor has to decrypt
such a tuple and perform a projection on patient at-
tribute. The drawback of the indexing technique based on
the invertible encryption function is that it is often possi-
ble to guess the correspondence between plaintext and en-
crypted values based on frequency analysis, that is, by com-
paring the distributions of the plaintext values in the plain-
text relations with the corresponding distributions of the en-
crypted values. For instance, the correspondence ν = $50
for attribute charge can be easily pointed out as $50 (and
ν) are the only values with three occurrences.

3.2. Index by hashing

An alternative approach to indexing consists in using a
secure hash function h (i.e., a one-way function that takes
some plaintex input and transforms it into a fixed-length en-
crypted output). Formally, each tuple t ∈ r is mapped to a
tuple t′ ∈ re where t′[Ii] = h(t[Aj]), i = 1, . . . , m and
for some j = 1, . . . , n. As an example, the BILL relation
in Figure 2 would be mapped into relation BILL2e (see Fig-
ure 3(b)). Given an input x, the secure hash function h com-
putes a value y = h(x) which has a smaller number of bits
than x. This implies the possibility of collisions, that is, dif-
ferent plaintex values can be transformed by the function to
the same index. Another important property of a secure hash
function is that it uniformly covers its range (i.e., the out-
put probabilities from the hash function are uniform). The
combination of these two properties has the effect of flat-
tening the attribute values’ distribution and dispersing the
attribute’s values in |B | buckets, where B is the codomain
of the hash function, thus making frequency-based attacks
ineffective. As an example, consider the encrypted relation
BILL2e in Figure 3(b). Here, patients’ names have been dis-
tributed in three buckets, namely η, θ, and ι, and the values
of attribute Charge have been distributed in two buckets,
namely λ and µ. Like for the previous case, a query on a
plaintext relation is transformed into a query on the corre-
sponding encrypted relation by applying the hash function
on each value specified in the original query. However, due
to index collisions the transformed query may return spu-
rious tuples, that is, tuples that do not belong to the result
set of the original query. For instance, consider again query
“SELECT patient FROM BILL WHERE charge=$10” trans-
formed in “SELECT Te FROM BILL2e WHERE IC = λ”
which returns the first, third, and fifth encrypted tuple. The
query processor has to: decrypt the returned tuples, apply
the original condition (charge=$10) to discard possibly spu-
rious tuples (the third and fifth tuple), and finally perform a
projection on patient attribute.

0

31 2

Ada Burt Clio Dido Elvira

ElviraClio

(a)

B+table
ID Node
0 (1,Clio,2,Elvira,3)
1 (Ada,Burt,2)
2 (Clio,Dido,3)
3 (Elvira, ,-1)

B+Enctable
ID C
0 LxgEhc1bjrTJY
1 nfkwK5ZS85jus
2 yHxvBbn8.f8Tk
3 LhJLsrMkmlNhQ

(b)

Figure 4. An example of B+-tree with fan out
3 (a) and the corresponding plaintex and en-
crypted table used to store the B+tree (b)

These two index techniques allow an efficient evalua-
tion of equality conditions at the untrusted DBMS. There-
fore, if the same indexing function is used to compute in-
dexes of different relations, they also support well equi-
join. The drawback is that they do not support well interval-
based queries. For instance, consider query “SELECT pa-
tient FROM BILL WHERE charge≥ $10 AND charge≤ $30”
which should return Ada, Burt, and Dido. An efficient sup-
port for this kind of queries would be possible by using
order-preserving function (imposing h(ti[A]) < h(tj [A])
whenever ti[A] < tj [A]). However, this solution is not vi-
able as comparing the ordered sequences of index and plain-
text values would lead an easy reconstruct the correspon-
dence. A trivial approach consists in transforming a condi-
tion over an interval into a disjunction of equality condi-
tions, one for each value in the interval. However, this so-
lution is not efficient and is not always applicable. Our so-
lution is based on enriching indexing information with B+-
trees as discussed in the following.

3.3. Auxiliary B+-tree

We assume the reader is familiar with traditional B+-
trees and only give a concise description of them to intro-
duce the terms that are useful to describe their adoption in
our context. A B+-tree with fan out n is a tree where ev-
ery node can store up to n − 1 search key values and n
pointers, and, except for the root and leaf nodes, has at least
dn/2e children. Given an internal node storing p key values
(p ≤ n − 1), k1, . . . , kp, each ki is followed by a pointer
ai; k1 is preceded by a pointer a0. Pointer a0 addresses the
subtree that contains keys with values less than k1, ap ad-
dresses the subtree that contains keys with values greater
than or equal to kp, and each ai addresses the subtree that

contains keys with values included in the interval [ki, ki+1).
Leaf nodes are linked by a chain that allows the efficient ex-
ecution of interval queries. Figure 4(a) illustrates an exam-
ple of B+-tree built on attribute patient of the BILL rela-
tion in Figure 2. To access a tuple with key value k′, a search
of value k′ in the root node of the B+-tree is made. The tree
is then traversed by using the following scheme: if k′ < k1,
pointer a0 is chosen; if k′ ≥ kp, pointer ap is chosen, oth-
erwise if ki ≤ k′ < ki+1, pointer ai is chosen. The process
continues until a leaf node has been examined. If k′ is not
found in the leaf node then the desired tuple is not in the ta-
ble.

As mentioned in the previous section, the indexing func-
tion is not order-preserving and therefore B+-trees are use-
ful only if they are built on the plaintext values of the at-
tributes. This means that they contain sensitive informa-
tion that needs to be protected. Therefore, in our context,
B+-trees are built by the trusted front end and must be en-
crypted (at the trusted front end) for its storing at the un-
trusted server. We consider encryption at the level of whole
node to obfuscate the order relationship between index val-
ues. More precisely, a B+-tree is stored as a relation b over
schema B+Enctable= {ID, C}, where ID is the identifier
of the node, and C is the encrypted node. Figure 4(b) il-
lustrates the plaintext and encrypted B+-tree table for the
B+-tree in Figure 4(a). This way, B+-trees can be traversed
only by the trusted front end. Therefore, to retrieve the tu-
ples in the encrypted relation that are characterized by a
given value k′, it is necessary first to retrieve the root (tuple
with ID 0) from the encrypted table. The content of the node
is decrypted and k′ is compared with the values present in
the node. According to the search process described above,
the trusted front end identifies the ID of the next node that
has to be checked and communicates such a ID to the un-
trusted DBMS that in turn retrieves and sends it to the front
end. This process is repeated until a leaf is retrieved. For in-
stance, to retrieve the patient’s names starting with a letter
in the interval [C,E], the trusted front end has to generate
three queries in order to access nodes 0, 2, and 3.

4. Query processor

4.1. Architecture

An interpretation of the architecture presented in the pre-
vious section can assume the presence of two data represen-
tations at different levels. At the lower level there is the en-
crypted representation on a remote and untrusted database.
At the higher level, the virtual cleartext database can be ma-
terialized on the client after a transfer from the encrypted
database.

The components needed for the management of queries
in this environment are (see Figure 5):

SQL query

SELECT *
FROM R
WHERE cond

SELECT T^e
FROM R^e
WHERE cond$’$

SQL query on encrypted relations

Query optimizer

Query engine

Query processor

Figure 5. Architecture of the query processor

• a query engine in the client, able to invoke queries on
the remote untrusted database and to apply relational
operators on the results of the queries;

• a query optimizer, able to produce an efficient strategy
for query execution using the operators and the ser-
vices offered by the query engine.

Every query is expressed by the application as if ex-
pressed on the clear-text database. The query optimizer
analyzes the query and produces an execution plan that
splits the query computation into many steps organized in a
tree. Leaves of the tree represent accesses to the encrypted
database, typically using a network access and expressing
the query in SQL. All the other tree nodes represent a local
query computation, which occurs after the data have been
retrieved and decrypted, using traditional techniques of re-
lational query engines. We observe that since the leaves of
the tree, that represent the access to the remote database,
are able to execute on the remote database arbitrary SQL
queries, the structure of the tree will be simpler in this con-
text than for comparable queries on a regular database. In
our experience, most of the times queries can be represented
by a left-deep pipeline, which facilitates the execution of the
query in the engine.

The query on the clear-text database is expressed in
SQL. We are not planning to support in our prototype the
full SQL syntax. Our first aim is the support of selections

BILL2e

T
e II IP IC

SeCS0U/7ZIY.A α η λ
uRnZBBQcrRPGY β θ µ
/WKu5y8laqK82 γ θ λ
jzKzVi0D1as8E δ η µ
AXYaqohgyVObU ε ι λ
0CGZJvVV.zM4U ζ ι µ

PATIENTe

T
e IN IS IC IZ

LxgEhc1bjrTJY η o π $
hyiolYiulPoQf θ ρ % σ
i89knEErtjmQw θ ς % σ
9mkjhjgdsRTgi η τ % σ
opGTWkmnTbY4g ι υ % σ
p0jpHIGhksit7 ι φ ϕ χ
uihqsyuYIIbyt ψ υ π $

(a)

Original query

SELECT City, count(*) AS NumofPats
FROM BILL,PATIENT

WHERE Name=Patient
GROUP BY city

Query plan

� � � � � � �

� � 	 �
 � � �

� � � �

� � � � �
 � � �

� �
 � � � � � �
� ������������� ����� � � ��� � �!"�#� �%$&��� � �#�

'�(�%)#�*� +-,.� /
0)#1#23��� ����� � � 4!%��� �%$#�#�

Result

City NumofPats
Washington 1
Miami 3
Philadelphia 1

(b)

Figure 6. An example of query execution

with boolean expressions of comparison predicates, projec-
tions, arbitrary joins, group by on subsets of attributes
and selections on the result of aggregate functions (having
clause). We are deferring the implementation of queries us-
ing the binary set operators union, intersect and mi-
nus and of nested queries or other complex SQL structures.
The prototype should demonstrate the feasibility of the ap-
proach, and a more robust and complete implementation of
these services should start from an existing DBMS, where
the possibility to use encryption for storage on an untrusted
site should be introduced as an option of physical design.

The query engine offers a number of relational opera-
tors, each one accepting as input one or two relations and a
parameter specifying the transformation to apply. We have
implemented operators selection, projection, sort, join, and
group by. As an example, consider the relations in Figure 2,
and their encrypted version in Figure 6(a), where the index-
ing information has been built by using the same hashing
function.1 A user wants to find, for each city, the number of
patients who have to pay a bill. The original SQL query is
transformed in a tree as illustrated in Figure 6(b). The leaf
of this tree is a SQL query on the encrypted relations that
is executed at the untrusted DBMS. Due to indexing colli-

1 Note that for the readers convenience, we reproduce relation BILL2e

of Figure 3(b).

sions, the result of this query includes spurious tuples that
the client discards, after decryption, via a selection opera-
tion whose the applied predicate is the original condition
‘name=patient’. Subsequently, tuples are ordered according
to the city (sort operation) and then they are grouped (group
by operation) as specified in the original SQL query. Finally,
a projection operation is applied.

An important difference with respect to traditional
DBMS engines is the fact that in this context perfor-
mance is not dominated by disk access costs. Disks are
block-i/o devices and an adequate approximation of query
cost is the number of block transfers required. In our con-
text, I/Os on the remote database certainly are domi-
nated by disk access costs, but it is often reasonable
to assume that the most expensive resource is the net-
work bandwidth and the costs of encryption/decryption.
This moves the emphasis from the design and choice of op-
erators that require a limited number of disk I/Os to the
design and choice of operators that require limited com-
putational and network resources. A goal of the query
optimizer is indeed to transfer to the client only the por-
tion of the database that is of interest for a specific query. To
reduce the computational effort, we devised a lazy decryp-
tion approach that exploits the physical structure of the data
to decrypt only the portions that are actually needed in de-
crypted form; we present this technique in Section 4.2.
Another critical aspect is the reduction in the size of the in-
termediate results. Particularly critical is the identifica-
tion of the physical design strategy that permits to reduce
the complexity of join operators. We decided to disre-
gard the costs of query execution on the remote DBMS;
even if it is not correct in all contexts, it is a convenient hy-
pothesis, since it permits to reduce the complexity of
the problem and remove a component that is less crit-
ical than the minimization of network traffic and com-
putational costs in the client; the minimization of these
parameters produces queries that do not require an expen-
sive computation on the untrusted DBMS. This separation
allows us to use traditional techniques for the physical de-
sign of the untrusted DBMS.

Another important trade-off is the one between perfor-
mance and protection of data confidentiality, particularly
against inference attacks. We are in the process of building
a model that characterizes the exposure to inference attacks
of an encrypted database, depending on several assumptions
on attacker’s knowledge of the clear-text database. We are
not formally exploring this issue in the paper.

4.2. Lazy decryption

Encryption is realized using a block encryption algo-
rithm. The current prototype makes the choice of the algo-
rithm a simple configuration parameter, which can be easily

customized; the default choice in our experiments was AES.
We observe that a stream cipher would produce a greater
level of protection in the tuple, as tuples that would ex-
hibit a different prologue but the same intermediate content
would exhibit the same content in the encrypted represen-
tation, whereas they would exhibit different representations
in the stream-cypher. Despite this, we opted for a block ci-
pher algorithm because we want to be able to avoid the de-
cryption of parts of the tuple that are not needed. To remove
the disadvantages of the block cipher, making it difficult to
identify identical subparts, we offer the option of introduc-
ing, for each block, a random component that creates dif-
ferent encryptions for all the encryptions of the same con-
tent.

The technique that permits to avoid the decryption of the
tuple exploits the structure of the tuple. Each tuple is com-
posed by a list of values, each corresponding with an at-
tribute of a given domain. Since the space required for the
representation of an attribute value is usually not constant
(because the attribute is associated with a variable length
domain or because the null value is admitted), it is not pos-
sible to simply identify the positions in the tuple represen-
tation where each attribute must appear. It is then neces-
sary to introduce auxiliary information that permits to iden-
tify for each tuple the positions where the different attribute
values are represented. This problem also occurs in tradi-
tional databases, where each block containing tuples is sep-
arated into a part containing a page dictionary and a part
containing the tuples; the page dictionary is separated into
a sequence of tuple dictionaries, one for each tuple, that de-
scribe where in the block each component of the tuple is
stored. Here the situation is slightly different: there is no
need to group the representation of distinct tuples, but a tu-
ple dictionary should be used and it should occupy the first
bytes in the representation of the tuple. The presence of the
tuple dictionary in the first bytes allows the query engine to
decrypt only the portion of the tuple that is really needed
for the query in execution. For instance, if there is the need
to access a tuple with a great number of attributes, and the
query only needs the first and the last of the attributes, the
lazy approach will decrypt the first few bytes in order to
identify the starting positions of the attributes and it then
will decrypt only the blocks that may produce information
that is needed to answer the query. In Section 5.3 we present
the class PackedTuple of our prototype that is responsi-
ble for the execution of this mechanism.

5. Implementation of the prototype

To demonstrate the applicability and the advan-
tages of the solution, we implemented a prototype in Java.
We briefly present the main classes of the prototype, to il-
lustrate how the principles previously presented in the

left_results
UnaryNode

execute

results

left_results
right_results

Projection

Node

BinaryNodeLeaf

Selection Sort GroupBy Join

Algorithm
1

1
Cypher

Figure 7. Class diagram of Node

paper are concretely realized.

5.1. Class Node and its subclasses

The most important classes are the ones that represent
the operators of the query engine. A class Node represents
the generic operator that produces a relation as result. The
class diagram is reported in Figure 7. For conciseness, here
we do not give a detailed description of such a class, rather
we provide its functional decomposition. The term node is
used because a generic query is conventionally translated
into a tree that describes the execution plan, where each
node of the tree represents a distinct application of an opera-
tor. Class Node presents a method execute, that starts the
operator evaluation, and a property results that contains
the results of the node computation. Class Node is special-
ized into three classes, that correspond to leaf nodes, unary
operators and binary operators, respectively.

Class Leaf is responsible for extracting the data from
the remote untrusted DBMS. We assume that the remote
database is accessible using a JDBC connection. The main
method introduced by the class is a constructor that requires
the specification of all the properties that characterize each
instance of Leaf. These properties are the parts of the SQL
query that has to be executed remotely, the description of
the attributes that have to be kept in the result, and the names
and types of all the attributes in the result. Although our en-
gine has a specialized operator for projection, class Leaf
is able to realize a projection immediately; the justifica-
tion is that this projection can be done directly on the en-
crypted data representation. The mechanism has been pre-
sented in Section 4.2 and its implementation is realized by
class PackedTuple. Another important property of class
Leaf is the encryption algorithm used and the key to use
for decryption.

The encryption algorithm is specified by an instance of
Cypher class, part of the Java Cryptography Extension
(JCE [8]). Class Leaf is in fact the only class responsi-
ble for the decryption of database content. The result pro-
duced by Leaf is available to the client and is in clear-text.

Class UnaryNode represents a generic unary oper-
ator, which transforms a relation into another relation.
Class UnaryNode adds the property left results,
which represents the relational input of the operator. Class
UnaryNode is further specialized into several classes,
each one associated with a relational operator, like Se-
lection, Projection, Sort and GroupBy. The con-
structor of an instance of node Selection receives
as parameter the predicate that characterizes the selec-
tion. Node Projection is characterized by the list of at-
tributes that have to be kept in the result, among those
present in the input. Node Sort is characterized by the or-
dered list of attributes on which the tuples have to be
ordered; Sort is also responsible for duplicate elimina-
tion. Finally, node GroupBy is characterized by the at-
tributes that have to be used for the grouping, and by
the list of aggregate functions that have to be evalu-
ated for each group. As it happens in many relational
database engines, we assume that the grouping has as in-
put a relation ordered on the list of attributes to be used
for the grouping; this ordering may be a property de-
rived by the physical storage structures used to retrieve
the data or may be the result of a previous Sort opera-
tion.

Class BinaryNode is a specialization of Node and
represents a generic binary operator which, based on
the content of two relations, produces a relation as re-
sult. The class adds the two properties left results
and right results, which represent the two operands.
Class BinaryNode is further specialized into class Join.
Other specializations that will be implemented are Union,
Intersection, Minus, and any other binary opera-
tor that may be of interest. We observe that in this particular
context operator Join is used less frequently than in tradi-
tional databases, as most join evaluations are done on the
remote DBMS.

The tree is built constructing all the nodes and making
the result of a node the input of the node above it in the tree.
With this sharing of objects, what is produced by a node
is immediately available as input on the node following it
in the computation. As it is traditional for relational oper-
ators, nodes are distinguished into those operating a local
computation, where the computation can be realized sep-
arately on every tuple (e.g., Selection), and those op-
erating a global computation, that requires to have avail-
able all the input tuples before returning any output (e.g.,
Sort). Intermediate between the two is the behavior of the
GroupBy operator, which returns a tuple only after it has
finished the analysis of all the tuples of a group. When the
tree is completed, method execute is invoked progres-
sively from the leaves to the root. In the current implemen-
tation we associate a thread with each node and use the syn-
chronization mechanisms of Java on the relation shared be-

tween a node and its predecessor to guarantee a regular flow
of data. There are several advantages of a realization with a
thread for each node. The first advantage is a greater sim-
plicity of the code, since the switch from the computation
of a node to that of another node is realized transparently
by the thread scheduler, with no need to introduce special-
ized mechanisms. Also, when all the nodes in the tree are lo-
cal, it is possible to create a flow of tuples from the leaves to
the root, which minimizes the memory needed for the com-
putation of the query.

5.2. Classes Results and ResultRow

To represent relations within the relational engine we
created a class called Results. The class is similar to
class ResultSet of JDBC, with a number of services to
set and to query the structure and the content of the rela-
tion. We decided to implement from scratch this class, in-
stead of directly reusing class ResultSet of JDBC, be-
cause in this way we had greater control on the behavior
of the engine and were able to build a more compact struc-
ture. The class contains a set of tuples, represented by class
ResultRow. Tuples have a flexible structure and can be
composed of an arbitrary list of attributes of types extracted
from those available in SQL-92. An instance of Results
describes the structure of all the instances of ResultRow
contained in it.

5.3. Class PackedTuple

Class PackedTuple is responsible of the translation
from the encrypted format used to store them in the un-
trusted DBMS to the clear-text value that is used on the
client. Tuples are encrypted using a block-cipher algorithm
with a tuple structure that presents a tuple dictionary fol-
lowed by the representation of the values of all the at-
tributes. Class PackedTuple keeps two instances of class
ByteArray (specialization of standard Java class Byte-
Buffer): one called encrypted stores the tuple as it
is retrieved by the remote database, the other called de-
crypted stores all the blocks in the tuple that have already
been decrypted. Every time there is the need to access a part
of the tuple, the method verifies if the block is already avail-
able in decrypted; if the block is not present, the corre-
sponding block in encrypted is passed to the decryption
algorithm (passed from the instance of class Leaf contain-
ing PackedTuple) and is inserted into decrypted. The
class offers all the methods that understand the structure of
the tuple dictionary and that permit to access the separate
components of the tuple.

6. Conclusions

Efficient implementation of encrypted database hosting
is of paramount importance, and even more so since the
Gramm-Leach-Bliley Act (GBLA) of 1999 (which went
into effect in late 2002) has shown that U.S. Congress in-
tends to make both U.S. and foreign businesses financially
liable for unauthorized disclosure of customer data. On the
other hand, it is widely acknowledged that Web services
success will depend to a large extent on maximizing the
use of customer-related information already available in
databases. Dishonest or disgruntled employees are a grow-
ing problem that companies must face, and hosting might
mean a substantial increase of insider security threats, since
it brings untrusted ASP personnel into the picture. In this
paper, we dealt with some specific requirements for the im-
plementation of encrypted database technology in a Web-
based setting, focusing on modular design of components
that allow for an acceptable tradeoff between performance
and security. Our approach prevents the severe performance
hits that may occur when the information in indexed fields
is encrypted naively. Also, our guidelines guarantee clean
and effective functional decomposition, because they en-
sure that database administrators having access rights to
data does not mean that they have access rights to the keys
used to encrypt them.

7. Acknowledgments

The work reported in this paper has been partially sup-
ported by the Italian MURST within the KIWI and MAPS
projects.

References

[1] P. Atzeni, S. Ceri, S. Paraboschi, and R. Torlone. Database
Systems: Concepts, Languages, and Architecture. McGraw
Hill, 1999.

[2] L. Bouganim and P. Pucheral. Chip-secured data access:
Confidential data on untrusted servers. In Proc. of the 28th
International Conference on Very Large Data Bases, pages
131–142, Hong Kong, China, August 2002.

[3] E. Damiani, S. D. C. di Vimercati, S. Jajodia, S. Paraboschi,
and P. Samarati. Balancing confidentiality and efficiency in
untrusted relational dbmss. In Proc. of the 10th ACM Con-
ference on Computer and Communications Security, Wash-
ington, DC, USA, October 2003. to appear.

[4] G. Davida, D. Wells, and J. Kam. A database encryption sys-
tem with subkeys. ACM Transactions on Database Systems,
6(2):312–328, June 1981.

[5] S. Ghandeharizadeh and D. DeWitt. A multiuser perfor-
mance analysis of alternative declustering strategies. In Proc.
of the 6th Int. Conf. on Data Engineering, 1990.

[6] H. Hacigümüs, B. Iyer, C. Li, and S. Mehrotra. Executing
SQL over encrypted data in the database-service-provider

model. In Proc. of the ACM SIGMOD’2002, Madison, Wis-
consin, USA, June 2002.

[7] H. Hacigümüs, B. Iyer, C. Li, and S. Mehrotra. Providing
database as a service. In Proc. of the 18th International Con-
ference on Data Engineering, San Jose, California, USA,
February 2002.

[8] JavaTM cryptography extension (JCE).
http://java.sun.com/products/jce/.

[9] C. Jensen. Cryptocache: a secure sharable file cache for
roaming users. In Proc. of the 9th workshop on ACM
SIGOPS European workshop: beyond the PC: new chal-
lenges for the operating system, pages 73–78, Kolding, Den-
mark, September 2000.

[10] S. Klein, A. Bookstein, and S. Deerwester. Text retrieval sys-
tems on CD-ROM: compression and encryption considera-
tions. ACM Transactions on Information Systems, 7(3), July
1989.

[11] Rsa security: Securing data at rest: Develop-
ing a database encryption strategy (white pa-
per). http://www.rsasecurity.com/bsafe/whitepapers/
DDES WP 0702.pdf.

[12] D. Song, D. Wagner, and A. Perrig. Practical techniques for
searches on encrypted data. In Proc. of the IEEE Symposium
on Security and Privacy, Oakland, CA, USA, May 2000.

[13] J. Ward, M. O’Sullivan, T. Shahoumian, and J. Wilkes. Ap-
pia: Automatic storage area network fabric design. In Proc.
of the Conference on File and Storage Technologies (FAST
2002), Monterey, CA, January 2002.

[14] E. Yang, J. Xu, and K. Bennett. Private information retrieval
in the presence of malicious failures. In Proc. of the 26th
Annual International Computer Software and Applications
Conference, Oxford, England, August 2002.

