
Support for write privileges on outsourced data

Sabrina De Capitani di Vimercati1, Sara Foresti1, Sushil Jajodia2,
Stefano Paraboschi3, and Pierangela Samarati1

1 DTI - Università degli Studi di Milano, 26013 Crema, Italia
firstname.lastname@unimi.it

2 CSIS - George Mason University, Fairfax, VA 22030-4444, USA
jajodia@gmu.edu

3 DIIMM - Università degli Studi di Bergamo, 24044 Dalmine, Italia
parabosc@unibg.it

Abstract. In the last years, data outsourcing has received an increasing
attention by the research community thanks to the benefits that it brings
in terms of data management. A basic requirement in such a scenario is
that outsourced data be made accessible only to authorized users, that is,
no unauthorized party (including the storing server) should have access
to the data. While existing proposals provide a sound basis for addressing
such a need with respect to data dissemination (i.e., enforcement of read
authorizations), they fall short on the support of write authorizations.
In this paper we address such an open problem and present an approach
to enforce write privileges over outsourced data. Our work nicely extends
and complements existing solutions, and exploiting key derivation tokens,
hashing, and HMAC functions provides efficient and effective controls.

Keywords: Data outsourcing, data protection, authorization management

1 Introduction

Data outsourcing offers to end users and companies the opportunity to benefit
from the lower costs, higher availability and larger elasticity that are offered
by the rapidly growing market of cloud providers. The major obstacle to the
adoption of cloud storage services is commonly recognized to be the uncertainty
about a correct management of security requirements, with the user interested
in robust guarantees about the confidentiality and integrity of the outsourced
data. Several techniques have been recently proposed by the research commu-
nity [5, 10, 16]. Most of these proposals have been developed with reference to
scenarios where the data should remain confidential also to the external server
storing them, which is considered honest-but-curious , i.e., trustworthy for man-
aging resources but should not see or learn the resource content. To provide
such confidentiality guarantee, these proposals (e.g., [5, 10, 16]) assume data to
be encrypted before being outsourced to the external server, and they associate
with the encrypted data additional indexing information that can be used by the

Sara Foresti
© Springer Berlin / Heidelberg, Lecture Notes in Computer Science (2012)http://link.springer.com/chapter/10.1007%2F978-3-642-30436-1_17

Sara Foresti

Sara Foresti

Sara Foresti

Sara Foresti

server to perform queries on the encrypted data. For efficiency reasons, encryp-
tion is based on symmetric keys. Earlier proposals typically consider data to be
encrypted with a single key, assuming then all users to have complete visibility of
the resources in the data collection or the data owner to mediate access requests
to the data to enforce write authorizations. More recent proposals, addressing
the problem of providing selective visibility over the data to the users (differ-
ent sets of users can enjoy visibility over different resources), have proposed the
application of a ‘selective encryption’ approach. Intuitively, different user views
can be enforced by using different encryption keys for the resources and users
will be able to have visibility on the resources depending on the keys they know.
Proper modeling and derivation techniques have been devised to ensure limited
key management overhead in such selective encryption.

While interesting and promising, however, all the solutions above assumed
outsourced data to be read only. In other words, the owner can modify resources
while all other users can only read them. Such an assumption can result restric-
tive in several scenarios where a data owner outsourcing the data to the external
server may also want to authorize other users (again selectively) to write the
resources it stores. We then build upon and complement previous proposals pro-
viding a solution for enforcing write authorizations on the encrypted outsourced
data. Our solution is based on the same principles as previous proposals ex-
ploiting encryption itself for enforcing access control and having efficiency and
manageability in mind. Our proposal enjoys compatibility and easy deployment
with previous proposals, thus providing a natural and efficient extension to them
for enforcing write authorizations.

The remainder of the paper is organized as follows. Section 2 introduces
the basic concept on previous work on which our proposal in based. Section 3
illustrates our proposal for enforcing write authorizations. Section 4 discusses
the control features of our proposal that allow a data owner to check the write
operations executed and detect possible misbehaviors by the server or by the
users. Section 5 discusses related work. Finally, Section 6 concludes the paper.

2 Basic concepts

Our work builds upon and extends a previous proposal [8] for confidential data
outsourcing. In this section, we briefly introduce the basic concepts of the original
proposal that are useful to our treatment.

According to the proposal in [8], a data owner outsourcing data to a honest-
but-curious server and wishing to provide selective visibility over them to other
users encrypts resources before outsourcing them to the server and reflects the
authorization policy in the encryption itself. Therefore, each resource o is en-
crypted with a key to be made known only to the users authorized to read o,
that is, to users who belong to the access control list of o. Symmetric encryption
is used and different keys are assumed: one for each user and one for each group
of users that corresponds to an access control list. The adoption of a key deriva-
tion technique based on public tokens permits users to access the system while

o acl
o1 ABC
o2 BCD
o3 ABC
o4 AB

r labelo idencr resource

lABC 1 zKZlJxVcCC0g
lBCD 2 t9qdJqC7ImXU
lABC 3 AxalPH8v37Ts
lAB 4 xwfPJSn.MVqY

!" #$
%& '(A !!!" #$

%& '(AB

""!
!!

!!
!

!" #$
%& '(B

##
""

"
""

$$##
##

##
##

##
##

!" #$
%& '(ABC

!" #$
%& '(C

%%$$$$$$$$$$$$!!!" #$
%& '(BCD

!" #$
%& '(D

%%$$$$$$$$$$$$

%%$$$$$$$$$$$$

li lj ti,j

lA lAB kAB⊕h(kA,lAB)
lB lAB kAB⊕h(kB ,lAB)
lB lBCD kBCD⊕h(kB ,lBCD)
lC lABC kABC⊕h(kC ,lABC)
lC lBCD kBCD⊕h(kC ,lBCD)
lD lBCD kBCD⊕h(kD,lBCD)
lAB lABC kABC⊕h(kAB ,lABC)

(a) (b) (c) (d)

Fig. 1. An example of four resources with their acls (a), encrypted resources (b), key
derivation graph (c), and tokens (d)

having to manage only one key. Each key ki is identified by a public label li.
Given keys ki and kj , token ti,j is computed as kj⊕h(ki,lj), with ⊕ the bitwise
xor operator, and h a deterministic cryptographic function. Token ti,j permits
to derive key kj from the knowledge of key ki and public label lj [2]. All keys
with which resources are encrypted are then connected in a key derivation graph.
A key derivation graph is a DAG whose nodes correspond to keys (of users and
acls) and whose edges correspond to tokens that ensure that each user can - via
a sequence of public tokens - derive the keys corresponding to the sets to which
she belongs. Each users is then communicated the key of the node representing
herself in the graph. Each resource is encrypted with the key corresponding to
its acl. Encrypted resources as well as the tokens are outsourced to the server. In
particular, for each resource o, the external server stores the encrypted version
of the resource together with the resource identifier and the label of the key
with which the resource is encrypted. A user authorized to read a resource (i.e.,
belonging to its acl) can, via the tokens available on the server, derive the key
corresponding to the acl of the resource and decrypt it.

Example 1. Consider a system with four users U={A,B,C,D} and four resources
O={o1,o2,o3,o4}, whose acls are reported in Figure 1(a). Figure 1(b) illustrates
the encrypted resources stored at the server, where: r label is the label of the
key used to encrypt the resource (i.e., the key associated with its acl); o id is
the resource identifier; and encr resource is the encrypted resource. Figure 1(c)
illustrates the key derivation graph enforcing the authorizations. For simplicity
and readability, in the key derivation graph we denote a key corresponding to a
given acl U (i.e., a key with label lU and value kU) simply with U . Figure 1(d)
illustrates the tokens corresponding to the key derivation graph in Figure 1(c).

3 Enforcement of write authorizations

The support of only read accesses may result limiting when considering emerging
data sharing scenarios (e.g., document sharing), where users different from the
data owner can be authorized to modify resources. Unfortunately, the keys as-
sociated with resources for regulating the read accesses to them cannot be used

for regulating write accesses as well. As a matter of fact, we can imagine that in
many situations the set of users authorized to write a resource is different from
(typically being a subset of) the set of users authorized to read the resource.
A straightforward solution for enforcing write authorizations can be to simply
outsource to the external server the authorization policy (for write privileges)
as is and have the server to perform traditional (authorization-based) access
control. This would involve user authentication and policy enforcement, with
the drawback of requesting a considerable management overhead. Following the
same spirit of the proposal in [8], and to the aim of providing an extension easily
integrable with it, we aim at basing enforcement of write authorizations also on
encryption. While simply encrypting a resource with a key known to all and only
the users authorized to read the resource automatically ensures enforcement of
read authorizations, enforcement of write privileges requires cooperation from
the external server. Having resources being tied to access restrictions to them
by means of cryptographic solutions provides more robustness and flexibility of
the control, whose enforcement is less exposed to server misbehaviors and not
affected by possible server allocation strategies.

The basic idea of our approach consists in associating each resource with a
write tag, which is defined by the data owner, and encrypting it with a key to
be known only to the users authorized to write the resource and to the external
server (i.e., only the external server and the users authorized to write a resource
can have access to the corresponding write tag). The server will accept a write
operation on a resource when the user requesting it shows knowledge of the write
tag. The key used for encrypting the write tag has to be shared among the server
and the writers, and we leverage on the underlying structure already in place
for regulating read operations to achieve this.

3.1 Key derivation structure

Elaborating the approach in [8], and adapting it to our context, we introduce a
set-based key derivation graph as follows.

Definition 1 (Set-based key derivation graph). Let U be a set of users
and U ′ ⊆ 2U be a family of subsets of users in U such that ∀u∈U , {u}∈U ′. A
set-based key derivation graph is a triple 〈K,L,T 〉, with K a set of keys, L the
set of corresponding labels, and T a set of tokens, such that:

1. ∀U∈U ′, there exists a key kU∈K;
2. ∀u∈U , ∀U∈U ′−{u}, there exists a token tu,U or a sequence 〈tu,U1

, . . . , tUn,U 〉
of tokens in T , with tc,d following ta,b in the sequence if b = c, and n ≥ 1,
iff u∈U .

Intuitively, the approach in [8], while not explicitly reporting the definition
above, basically translates to it if we assume U ′ to include, besides singleton sets
of users, the read acls of resources.

Since in the scenario we consider each resource is associated with a write tag
that must be encrypted with a key shared among the server and the authorized

INPUT
U : set of users
S : external server
U ′ ⊆ 2U : family of subsets of users in U
U ′′ ⊆ U ′ : subset of U ′

OUTPUT
〈K,L,T 〉 : key derivation structure

DEFINE KEY DERIVATION STRUCTURE
1:/* Step 1: define the set-based key derivation graph */
2:K′ := ∅, L′ := ∅; T ′ := ∅
3: for each U∈U ′ do /* generate a key for all U∈U ′ (C1 in Def. 1) */
4: generate a key kU and a label lU
5: K′ := K′ ∪ {kU }, L′ := L′ ∪ {lU}
6:/* define a set of tokens s.t. ∀U∈U ′ and ∀u∈U , kU is derivable from ku iff u∈U (C2 in Def. 1) */
7: for each Uj∈U ′, |Uj | > 1 do
8: coverj := {U1,. . . ,Un ⊆ U ′ |

⋃
n

i=1
Ui=Uj}

9: T ′ := T ′ ∪ {tUi,Uj
=kUj

⊕h(kUi
,lUj

) | Ui∈coverj}
10: /* Step 2: define a key derivation structure */
11: generate a key kS and a label lS /* generate a key for the external server (C1 in Def. 2) */
12: K := K′ ∪ {kS}, L := L′ ∪ {lS}
13: T := T ′

14: for each U∈U ′′ do /* for each U∈U ′′, compute kU∪{S} as the hash of kU (C1 in Def. 2) */
15: kU∪{S} := h(kU)
16: generate a label lU∪{S}

17: K := K ∪ {kU∪{S}}, L := L ∪ {lU∪{S}}
18: T := T ∪ {tS,U∪{S}=kU∪{S}⊕h(kS ,lU∪{S})} /* token from kS to kU∪{S} (C2 in Def. 2) */
19: return(〈K,L,T 〉)

Fig. 2. Function that defines a key derivation structure

writers of the resource, we need to extend the set-based key derivation graph
with the external server. The external server cannot however be treated as an
authorized user of the system since it cannot access the plaintext of the out-
sourced resources. We then define a key derivation structure by extending the
set-based key derivation graph to include also keys shared between authorized
users and the server, which will be used to encrypt the write tags for enforcing
write privileges (see Section 3.2). These additional keys can be derived both
by the authorized users, applying a secure hash function to a key they already
know (or can derive via a sequence of tokens), and by the external server, ex-
ploiting a token specifically added to the key derivation structure. Formally, a
key derivation structure is defined as follows.

Definition 2 (Key derivation structure). Let U be a set of users, S be an
external server, U ′ ⊆ 2U be a family of subsets of users in U such that ∀u∈U ,
{u}∈U ′, U ′′ be a subset of U ′, and 〈K′,L′,T ′〉 be a set-based key derivation graph.
A key derivation structure is a triple 〈K,L,T 〉, with K a set of keys, L the set
of corresponding labels, and T a set of tokens, such that:

1. K = K′ ∪ {kS} ∪ {kU∪{S}=h(kU) | U∈ U ′′ and h is a secure hash function};
2. T = T ′ ∪ {tS,U∪{S} | U∈ U ′′}.

Figure 2 illustrates function Define Key Derivation Structure that
builds a key derivation structure. The function receives as input a set U of users,
an external server S, and two families U ′ and U ′′ of subsets of users in U , with

U ′′ ⊆ U ′. The function first defines a set-based key derivation graph 〈K′,L′,T ′〉
by leveraging on the algorithms in [8]. The function then extends the set-based
key derivation graph by generating a key for the external server and for each set
U∪{S}, with U∈U ′′, and by inserting into T a token that allows the derivation
of kU∪{S} from kS . The following theorem, whose proof is omitted for space
constraints, formally shows that function Define Key Derivation Structure
correctly computes a key derivation structure.

Theorem 1 (Correctness). Let U be a set of users, S be an external
server, U ′ ⊆ 2U be a family of subsets of users in U such that ∀u∈U ,
{u}∈U ′, and U ′′ be subset of U ′. Triple 〈K,L,T 〉 computed by function
Define Key Derivation Structure in Figure 2 is a key derivation structure.

Example 2. Consider a system with four users U={A,B,C,D}, a fam-
ily U ′={A,B,C,D,AB,CD,ABC,BCD} of subsets of users, and a subset
U ′′={C,AB,CD} of U ′. Figure 3(c) illustrates the key derivation structure com-
puted by function Define Key Derivation Structure in Figure 2. In the fig-
ure, continuous lines correspond to tokens forming the set-based key derivation
graph, dotted lines correspond to tokens added to define the key derivation
structure, and double lines correspond to hash-based derivation.

3.2 Resource encryption, write tags, and access control enforcement

We consider the case of a data owner outsourcing her resources, which can be
read or modified by other users. Each resource o is then associated with two
access control lists: i) a read access list r[o] reporting the set of users authorized
to read o, and ii) a write access list w[o] reporting the set of users authorized to
write o. We assume the users authorized to write a resource also to be able to
read it, that is, ∀o ∈O: w[o]⊆r[o]. As mentioned at the beginning of this section,
we use write tags for enforcing write authorizations. For each resource o∈O, the
data owner defines a write tag, denoted tag[o], by using a secure random function.
The consideration of a secure random function ensures the independence of the
write tag from the resource identifier (since otherwise readers not authorized to
write could infer it) as well as from its content (since again readers could infer
it or the server could infer information on the resource content). The write tag
associated with a resource o is then encrypted with the key corresponding to the
set U of users authorized to write it (i.e., U = w [o]) plus the server S, that is,
with key kU∪{S}. Each resource o ∈ O is then stored at the external server in
encrypted form together with the following metadata.

r label: it is the label of the key with which the resource is encrypted, which is
the key associated with the set of users authorized to read o (i.e., lr [o]).

w label: it is the label of the key shared by the users authorized to write o and
the server S (i.e., lw [o]∪{S}).

encw tag: it is the write tag of the resource and is encrypted with the key
identified by the label in w label (i.e., E(tag[o], kw [o]∪{S})).

o r[o] w[o]
o1 ABC AB
o2 BCDCD
o3 ABC C
o4 AB AB

r labelw labelo idencw tagencr resource

lABC lABS 1 α zKZlJxVcCrC0g
lBCD lCDS 2 β t9qdJqC7AImXU
lABC lCS 3 γ AxalPH8Kv37Ts
lAB lABS 4 δ xwfPJSLn.MVqY

(a) (b)

!" #$
%& '(A !!!" #$

%& '(AB

$$%%
%%%

%%%
%%

%%%
$& ABS

!" #$
%& '(B

%%$$$$$$$$$$$$

$$##
##

##
##

##
##

##
##

##
##

##
##

##
##

!" #$
%& '(ABC

S

&'

'(

()

!" #$
%& '(C

)*##
##

##
##

##
##

*&$$$$$$$$$$$$$$$$$$$$$$$$$$$$ $& CS
!" #$
%& '(BCD

!" #$
%& '(D !!!" #$

%& '(CD

*&&&&&&&&&&&&&& $& CDS

li lj ti,j
lA lAB kAB⊕h(kA,lAB)
lB lAB kAB⊕h(kB ,lAB)
lB lBCD kBCD⊕h(kB ,lBCD)
lC lABC kABC⊕h(kC ,lABC)
lC lCD kCD⊕h(kC ,lCD)
lD lCD kCD⊕h(kD ,lCD)
lAB lABC kABC⊕h(kAB ,lABC)
lCD lBCD kBCD⊕h(kCD ,lBCD)
lS lCS kCS⊕h(kS ,lCS)
lS lABS kABS⊕h(kS ,lABS)
lS lCDS kCDS⊕h(kS ,lCDS)

(c) (d)

Fig. 3. An example of read and write acls (a), encrypted resources (b), key derivation
structure (c), and tokens (d)

encr resource: it is the encrypted version of the resource, encrypted with the
key identified by the label in r label (i.e., E(o, kr [o])).

Let U be the set of users and O be the set of resources in the system,
where each resource is associated with read and write access control lists as
mentioned-above. To outsource her resources, the data owner must first com-
pute keys and tokens forming the key derivation structure, by calling function
Define Key Derivation Structure in Figure 2. To this aim, she needs to de-
fine two families U ′ and U ′′ of subsets of users in U . U ′ corresponds to all the
sets of users whose keys must be represented in the system for the correct en-
forcement of the authorizations. It then includes the singleton sets of users in U ,
and the sets of users representing read and write access lists of resources in O.
U ′′ is the subset of U ′ representing those sets of users that have to share a key
with the external server. It then includes all the sets corresponding to the write
access lists of resources in O. The data owner then:

– communicates to each user u key ku and to the external server key kS ;
– computes and stores at the external server the encrypted resources and the

associated metadata as described above;
– stores at the external server all tokens in T as a set of triples of the form

〈li, lj , ti,j〉 indicating that key with label lj can be derived directly from key
with label li through token ti,j .

Example 3. Consider a system with four users U={A,B,C,D} and four resources
O={o1,o2,o3,o4}, and assume read and write acls of resources to be as in Fig-
ure 3(a) (read acls are the same as in Example 1). Figure 3(c) illustrates the

key derivation structure computed as described in Example 2. Figure 3(b) and
Figure 3(d) illustrate the encrypted resources and associated metadata, and the
public tokens outsourced to the external server, respectively.

Enforcement of read authorizations is automatically guaranteed as in the
original proposal [8]: the key with which a resource is encrypted can be known
only to users authorized to read the resource. Enforcement of write authoriza-
tions can be easily delegated to the server that will accept a write operation on a
resource only if the user shows knowledge of the corresponding (plaintext) write
tag. Since the write tag of the resource is encrypted with kw [o]∪{S}, besides the
server only the authorized writers will be able to decrypt such an information.
Also, since the server is assumed honest-but-curious (and therefore do not have
interest to tamper with resources), this simple control allows us to enforce write
authorizations. (More details in Section 4.)

It is easy to see that our approach guarantees: i) the correct read autho-
rization enforcement , because the content of a resource is visible only to users
authorized to read the resource; ii) the correct write authorization enforcement ,
because the write tag of a resource is visible only to users authorized to write
the resource; iii) the write control by the server, because the tag of a resource
is visible to the server. This is formalized by the following theorem, whose proof
is omitted for space constraints.

Theorem 2 (Correct enforcement of authorizations). Let U be a set of
users, S be an external server, O be a set of resources with r[o] and w[o] the read
and write access lists, respectively, of o. Our access control system satisfies the
following conditions:

1. ∀u ∈ U and ∀o ∈ O, u can decrypt encr resource[o] iff u ∈ r [o] (read
authorization enforcement);

2. ∀u ∈ U and ∀o ∈ O, u can decrypt encw tag[o] iff u ∈ w [o] (write autho-
rization enforcement);

3. ∀o ∈ O, S can decrypt encw tag[o] (write control).

4 Write integrity control and resource management

According to our reference scenario our complicating factor in policy enforcement
is to ensure proper protection of the confidentiality of data, while the server can
be assumed trustworthy to manage resources and delegated actions. Neverthe-
less, it is important to provide a means to the data owner to verify that server
and users are behaving properly. Providing such a control has a double advan-
tage: i) it allows detecting resource tampering, due to the server not performing
the required check on the write tags or directly tampering with resources, and
ii) it discourages improper behavior by the server and by the users since they
know that their improper behavior can be easily detected, and their updates rec-
ognized as invalid and discarded. In this section, we illustrate our approach for
providing the data owner with a means to verify that modifications to a resource

have been produced only by users authorized to write the resource. As discussed
in the previous section, if the server performs the correct control on the write
tags, such a property is automatically guaranteed. We therefore present how to
perform a write integrity control to detect misbehavior (or laziness) by the server
as well as misbehavior by users that can happen with the help of the server (not
enforcing the control on the write tags since it is either colluding with the user
or just behaving lazily) or without the help of the server (if the user improperly
acquires the write tag for a resource by others).

A straightforward approach to provide such a write integrity control would
be to apply a signature-based approach. This requires each user to have a pair
〈private,public〉 of keys and, when updating a resource, to sign the new resource
content with her private key. The data owner can then check the write integrity
by verifying that the signature associated with a resource correctly reflects the
resource content and it is produced by a user authorized for the operation. Such
an approach, while intuitive and simple, has however the main drawback of being
computationally expensive (asymmetric encryption is considerably more expen-
sive and therefore less efficient than symmetric encryption) and not well aligned
with our approach, which - as a matter of fact - exploits symmetric encryption,
tokens, and hash functions to provide efficiency in storage and processing. In the
spirit of our approach, we then build our solution for controlling write integrity
on HMAC functions [3].4 In addition to the metadata illustrated in the previous
section, we then associate with each resource three write integrity control fields:

encw ts: it is the timestamp of the write operation, encrypted with the key
kw [o]∪{S} corresponding to the group including the server and all the users
in the write access list of o (i.e., E(ts, kw [o]∪{S}));

user tag: it is a HMAC computed with the key ku of the user who performed
the write operation over the resource concatenated with the user tag of the
resource prior to the write operation,5 and the timestamp of the write oper-
ation (i.e., HMAC(o||u t′||ts, ku));

group tag: it is a HMAC computed with the key kw [o] corresponding to the
write access list of o over the resource concatenated with the timestamp of
the write operation (i.e., HMAC(o||ts, kw [o])).

Figure 4 summarizes the information associated with each encrypted resource.
At time zero, when the data owner outsources her resources to the server,

the values of the user tag and group tag are those computed by the owner with
her own key for the user tag, and with the key of the write access list of the
resource (to which the owner clearly belongs) for the group tag. Every time a
user updates a resource, it also updates its user tag and group tag.

4 For common platforms, the ratio between the execution times of digital signatures
and of HMAC is more than three orders of magnitude.

5 The reason for including the user tag of the resource prior to the write operation is
to provide the data owner with a hash chain connecting all the resource versions (we
assume the server to never overwrite resources but to maintain all their versions).

metadata resource write integrity control

︷ ︸︸ ︷ ︷ ︸︸ ︷ ︷ ︸︸ ︷

lr[o] lw[o]∪{S} o id E(tag[o], kw[o]∪{S}) E(o, kr[o]) E(ts, kw[o]∪{S})HMAC(o||u t′||ts, ku) HMAC(o||ts, kw[o])

r labelw label o id encw tag encr resource encw ts user tag group tag

Fig. 4. Structure of outsourced resources

A user tag is considered valid if it matches the resource content and it is
produced by a user in the write access list of the resource. The user tag provides
write integrity (meaning the resource has been written by an authorized user)
and accountability of user actions. In fact, since the data owner knows the key ku
of every user u (which she generated and distributed), she can check the validity
of the user tag and detect possible mismatches, corresponding to unauthorized
writes. In addition, every write operation considered valid (according to the
control on the user tag) cannot be repudiated by the user u whose key ku has
generated the HMAC. The consideration of group tag extends the ability of
checking the validity of the write operations (i.e., write integrity) also to all the
users in the write access list of the resource. To guarantee the integrity of the
metadata associated with each resource and that no resource is dropped from the
system, we adopt traditional approaches based on aggregate signatures [13] (i.e.,
the first four fields in Figure 4 are signed as a whole by the data owner, providing
efficient and scalable integrity check for the structure with one signature).

While we assume the server to be trustworthy and therefore not interested
in tampering with the resources, we note that the user tag would allow also to
detect possible tampering of the server with the resource (since not being an
authorized writer, the server will not be able to produce a valid user tag). The
server could also tamper with the write authorizations, by decrypting the write
tag and encrypting it with the key corresponding to a different write access list.
However, the improper inclusion of a user in the write access list does not have
any different effect than when the server does not perform the control, since the
user improperly included in the write access list will not be able to produce a
valid user tag. Analogously, the improper removal of a user from the write access
list has the same effects as when the server refuses its services.

Unauthorized write operations in the case of a well behaving server can only
happen if a user has improperly acquired or received from other authorized users
the write tag of a resource. Whichever the case, the user will be able to provide
neither a valid user tag nor a valid group tag for the resource. Also, the data
owner and any user authorized to write the resource will be able to detect the
invalidity of the group tag, since the key used to compute the HMAC will not
correspond to the key of w[o].

5 Related work

In the last few years, several research efforts have been devoted to enable data
owners to outsource the storage and management of their data to possibly non-

fully trusted third parties [16]. Most proposals have addressed the problem of
efficiently performing queries on outsourced encrypted data, without decrypting
sensitive information at the server side (e.g., [1, 5, 7, 10, 17]), or the problem of
protecting data integrity and authenticity (e.g., [11, 13, 14, 18]). The problem of
enforcing an authorization policy on outsourced data is orthogonal to these is-
sues and has recently received the attention of the research community (e.g., [8,
12, 19]). The proposal in [12] protects access to XML documents by encrypting
different portions of the XML tree using different keys. The solution in [8] com-
bines selective encryption and key derivation strategies for controlling accesses
to outsourced resources. This approach also permits to delegate to the server
the management of policy updates. More recently, attribute-based encryption
has been proposed for providing system scalability [19].

All the approaches above consider read access privileges only and few works
have addressed the issue of enforcing write privileges. Raykova et al. [15] adopt
selective encryption to enforce read and write privileges on outsourced data.
The authors introduce a two-layer access control model. The server restricts
read/write accesses at the level of block. To enforce the authorization policy at
the granularity of resources within blocks, the proposed system adopts asymmet-
ric encryption and defines two key derivation hierarchies: one for private keys
(to enforce read privileges) and one for public keys (to enforce write privileges).
This solution cannot easily enforce policies where resources with the same read
access control policy can be modified by two different sets of users. In this case,
the approach in [15] can be adapted by associating different pairs of keys to the
same group of users, thus increasing key management overhead. Zhao et al. [20]
propose attribute-based encryption and attribute-based signature techniques to
enforce read and write access privileges, respectively. This approach requires the
presence of a trusted party for correct policy enforcement. Also, attribute-based
techniques are computationally more expensive than traditional symmetric en-
cryption.

6 Conclusions

In this paper, we presented an approach for supporting both read and write
privileges on outsourced encrypted data. The proposed solution relies on the
use of symmetric encryption, hashing, and HMAC functions for enforcing access
control in an efficient and effective way. Our proposal performs then a step
towards the development of solutions actually applicable to real-world scenarios
where efficiency and scalability are mandatory.

Acknowledgements. This work was partially supported by the EC within
the 7FP, under grant agreement 257129 (PoSecCo), by the Italian Ministry of
Research within the PRIN 2008 project “PEPPER” (2008SY2PH4), and by the
Università degli Studi di Milano within the project “PREVIOUS”. The work
of Sushil Jajodia was partially supported by the National Science Foundation
under grants CCF-1037987 and CT- 20013A.

References

1. Agrawal, R., Kierman, J., Srikant, R., Xu, Y.: Order preserving encryption for
numeric data. In: Proc. of SIGMOD 2004. Paris, France (June 2004)

2. Atallah, M., Frikken, K., Blanton, M.: Dynamic and efficient key management for
access hierarchies. In: Proc. of CCS 2005. Alexandria, VA, USA (November 2005)

3. Bellare, M., Canetti, R., Krawczyk, H.: Keying hash functions for message authen-
tication. In: Proc. of CRYPTO 1996. Santa Barbara, CA, USA (August 1996)

4. Cimato, S., Gamassi, M., Piuri, V., Sassi, R., Scotti, F.: Privacy-aware biomet-
rics: Design and implementation of a multimodal verification system. In: Proc. of
ACSAC 2008. Anaheim, CA, USA (December 2008)

5. Damiani, E., De Capitani di Vimercati, S., Jajodia, S., Paraboschi, S., Samarati, P.:
Balancing confidentiality and efficiency in untrusted relational DBMSs. In: Proc.
of CCS 2003. Washington, DC, USA (October 2003)

6. Damiani, E., De Capitani di Vimercati, S., Paraboschi, S., Samarati, P.: Fine
grained access control for SOAP e-services. In: Proc. of WWW 2001. Hong Kong,
China (May 2001)

7. De Capitani di Vimercati, S., Foresti, S., Jajodia, S., Paraboschi, S., Samarati, P.:
A data outsourcing architecture combining cryptography and access control. In:
Proc. of CSAW 2007. Fairfax, VA, USA (November 2007)

8. De Capitani di Vimercati, S., Foresti, S., Jajodia, S., Paraboschi, S., Samarati, P.:
Encryption policies for regulating access to outsourced data. ACM TODS 35(2),
12:1–12:46 (April 2010)

9. Gamassi, M., Piuri, V., Sana, D., Scotti, F.: Robust fingerprint detection for access
control. In: Proc. of RoboCare 2005. Rome, Italy (May 2005)

10. Hacigümüs, H., Iyer, B., Mehrotra, S., Li, C.: Executing SQL over encrypted data
in the database-service-provider model. In: Proc. of the SIGMOD 2002. Madison,
WI, USA (June 2002)

11. Merkle, R.: A certified digital signature. In: Proc. of CRYPTO 1989. Santa Bar-
bara, CA, USA (August 1989)

12. Miklau, G., Suciu, D.: Controlling access to published data using cryptography.
In: Proc. of VLDB 2003. Berlin, Germany (September 2003)

13. Mykletun, E., Narasimha, M., Tsudik, G.: Authentication and integrity in out-
sourced databases. ACM TOS 2(2), 107–138 (May 2006)

14. Pang, H., Jain, A., Ramamritham, K., Tan, K.: Verifying completeness of relational
query results in data publishing. In: Proc. of SIGMOD 2005. Baltimore, MA, USA
(June 2005)

15. Raykova, M., Zhao, H., Bellovin, S.: Privacy enhanced access control for outsourced
data sharing. In: Proc. of FC 2012. Bonaire (February-March 2012)

16. Samarati, P., De Capitani di Vimercati, S.: Data protection in outsourcing scenar-
ios: Issues and directions. In: Proc. of ASIACCS 2010. China (April 2010)

17. Wang, H., Lakshmanan, L.V.S.: Efficient secure query evaluation over encrypted
XML databases. In: Proc. of VLDB 2006. Seoul, Korea (September 2006)

18. Xie, M., Wang, H., Yin, J., Meng, X.: Integrity auditing of outsourced data. In:
Proc. of VLDB 2007. Vienna, Austria (September 2007)

19. Yu, S., Wang, C., Ren, K., Lou, W.: Achieving secure, scalable, and fine-grained
data access control in cloud computing. In: Proc. of INFOCOM 2010. San Diego,
CA, USA (March 2010)

20. Zhao, F., Nishide, T., Sakurai, K.: Realizing fine-grained and flexible access control
to outsourced data with attribute-based cryptosystems. In: Proc. of ISPEC 2011.
Guangzhou, China (May 2011)

