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ABSTRACT
Data outsourcing is an emerging paradigm that allows users
and companies to give their (potentially sensitive) data
to external servers that then become responsible for their
storage, management, and dissemination. Although data
outsourcing provides many benefits, especially for parties
with limited resources for managing an ever more increas-
ing amount of data, it introduces new privacy and security
concerns. In this paper we discuss the main privacy issues
to be addressed in data outsourcing, ranging from data con-
fidentiality to data utility. We then illustrate the main re-
search directions being investigated for providing effective
data protection to data externally stored and for enabling
their querying.

Categories and Subject Descriptors
H.2.4 [Database Management]: Systems—Relational
databases; H.2.7 [Database Management]: Database
Administration—Security, integrity, and protection; H.3.3
[Information Storage and Retrieval]: Informa-
tion Search and Retrieval—Query formulation; K.6.5
[Management of Computing and Information Sys-
tems]: Security and Protection

General Terms
Security, Design

Keywords
Data outsourcing, privacy, confidentiality, data protection,
data fragmentation, encryption, access control

1. INTRODUCTION
In the last years, the rapid evolution of storage, process-

ing, and communication technologies has changed the tradi-
tional ways in which data are managed, stored, and dissem-
inated. Users are more and more interested in sharing and
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disseminating their personal information using the services
provided by external parties (e.g., Web sites such as Face-
book or MySpace have millions of users using their services).
Companies are also interested in exploiting external services
for managing their (potentially sensitive) data since the de-
sign, realization, and management of a secure system able
to grant the confidentiality of sensitive information might be
very expensive. Due to the growing costs of in-house storage
and management of large collections of sensitive data, since
it demands for both storage capacity and skilled administra-
tive personnel, data outsourcing and dissemination services
have then recently seen widespread diffusion. Data out-
sourcing presents important advantages: management costs
are reduced and higher availability and more effective dis-
aster protection than in-house operations are provided. On
the other hand, data outsourcing opens the door to possible
violations to the data and introduces therefore new issues to
be addressed. Being stored externally, data are not under
the control of their owners anymore, their confidentiality and
integrity can therefore be at risk. This aspect is also recog-
nized by recent regulations (e.g., California Senate Bill SB
1386 and the Personal data protection code, Legislative De-
cree no. 196 of 30 June 2003) that explicitly require specific
categories of sensitive information to be either encrypted or
kept separate from other personally identifiable information
to ensure data confidentiality. In many cases, the server it-
self might not be allowed to read the actual content of the
data outsourced to it for storage and management. In this
case, the honest-but-curious server should provide effective
service while operating on data that should result not intel-
ligible to it. Honest-but-curious servers are then relied upon
for ensuring availability of data and for enforcing the basic
security control on the data they store. While trustworthy
with respect to their services in making outsourced infor-
mation available, these external servers are however trusted
neither to access the content nor to fully enforce access con-
trol policy and privacy protection requirements. It is there-
fore of primary importance to provide means of protecting
the confidentiality of the information remotely stored, with-
out necessarily requiring trust in the subject managing the
information, while guaranteeing its availability to legitimate
users. A solution to these data protection issues would then
allow users and companies to use a dissemination service of-
fering strong guarantees about the protection of user privacy
against both adversaries breaking into the system and the
server itself. Query execution, access control enforcement,
information utility and exposure to privacy breaches are all
issues that require careful investigation and development of



novel techniques for allowing the effective and widespread
use of outsourcing services in a secure and private way.

In this paper, we first highlight the different issues that
need to be investigated in relationship to providing pri-
vacy and security of data outsourced to external parties
(Section 2). We then illustrate some directions under in-
vestigation for providing data protection, and in particu-
lar confidentiality of data stored at external honest-but-
curious servers. In particular, we illustrate approaches based
on: complete encryption of the data (Section 3), combi-
nation of encryption and splitting of data over two non-
communicating servers (Section 4), combination of encryp-
tion and splitting of data among unlinkable fragments (Sec-
tion 5), and proposals based on the involvement of the owner
of the data as a trusted party storing a limited amount of
information (Section 6).

2. PROTECTION ISSUES IN DATA OUT-
SOURCING SCENARIOS

We consider as a reference a typical data outsourcing sce-
nario, where we can distinguish tree different parties [24]: i)
users require access to the outsourced data by querying one
or more external servers via a client front-end; ii) a client
transforms the queries posed by users into equivalent queries
operating on the data stored on the servers; iii) a server
manages the outsourced data and make them available for
distribution to the authorized users. A server operates on
behalf of one or more data owners that outsource their data
(or a portion of them) to it. Also, for simplicity, in the dis-
cussion and examples we assume outsourced data are stored
within a relational database management system (DBMS),
where data are organized in tables. We note, however, that
many of the issues discussed as well as of the proposals il-
lustrated apply to generic resources and data models.

We now describe the main issues that need to be addressed
for guaranteeing proper protection and access to outsourced
data.

• Data protection. Outsourced data are stored at ex-
ternal servers and outside the control of their owners.
Since data might be sensitive, their content should be
properly protected. Sensitive data might need to be
protected from the server itself, that, while providing
data storage and management should not be autho-
rized to know the actual data content. The problem
of protecting data when outsourcing them to exter-
nal servers has emerged to the attention of researchers
quite recently, with the introduction of the so called
Database As a Service (DAS) paradigm [24, 25]. Dif-
ferent approaches have been proposed, typically rely-
ing on encrypting the information outsourced to the
server (e.g., [7, 24, 25]) or on splitting information
(fragments of the original data) across several servers
or tables (e.g., [1, 9, 10]). These solutions use fragmen-
tation, possibly combined with encryption, to break
sensitive associations among outsourced data.

• Query execution. Since outsourced data must be pro-
tected also by the server itself, the server does not have
complete visibility of the data necessary to execute
possible queries independently. As a matter of fact,
when data are encrypted, the DBMS running at the
server is not trusted to decrypt them for the purpose

of query execution; when data are split among different
fragments, the server cannot join them for responding
to queries. The application of a data protection tech-
nique on the outsourced data must therefore be ac-
companied by corresponding techniques enabling the
execution of queries on encrypted or fragmented data.
Techniques that have been investigated associate with
encrypted data indexing information (e.g., [2, 7, 24, 25,
36]) on which queries can be executed. The challenges
for indexing methods is the trade off between precision
and privacy: more precise indexes provide more effi-
cient query execution but a greater exposure to possi-
ble privacy violations. Data protection measures must
also be accompanied by proper query transformation
techniques defining how queries on the original table
are to be translated into queries on the encrypted or
fragmented data [1, 9, 10].

• Private access. Data protection mentioned above re-
lates to guaranteeing the privacy of the data stored
at an external server. Another important issue that
arises when accessing data stored at a third party is
preserving the confidentiality of the query itself. The
need for protecting query confidentiality can arise re-
gardless of whether outsourced data are encrypted or
not. In the first case, maintaining query confidential-
ity might be needed since queries themselves might be
exploited by the server or by external observers for in-
ferring information on the data content. In the second
case, the reason for protecting queries arises since it is
the query itself that is confidential. Consider, for ex-
ample, scenarios allowing users to query external med-
ical databases. The fact that a user queries the data in
search for treatments for a given illness discloses the
fact that the user is interested in the specific illness
(and therefore the user, or a person close to her, might
be suffering from it). Effective protection of query con-
fidentiality requires not only protecting confidentiality
of individual queries, but also protecting confidential-
ity of access patterns. In other words, it should not
be possible for an observer, or for the server storing
data, to infer that two queries aim at accessing the
same or different data. Private access and private ac-
cess pattern have recently raise attention of researchers
and some directions are being investigated. The work
in [23] introduces the concept of oblivious RAM that is
the basis of solutions for searching on encrypted data
stored on a server while hiding data access patterns
(e.g., [38]). Other solutions are based on the definition
of B-tree indexes (e.g., [14, 29]).

• Data integrity and correctness. Database As a Service
scenarios and proposals addressing the protection of
data stored at an external server, typically assume the
server to be curious (i.e., the server is not allowed to
see the data content) but trustworthy, that is, relied
upon for properly enforcing data storage and manage-
ment. The server is then assumed reliable for prop-
erly responding to queries (provided correctness of the
query translation process mentioned above). In sce-
narios where such a trust on the server is not appli-
cable, there is the need to provide the data owner (or
the users accessing the data) with techniques to assess
the integrity and the correctness of the returned data.



Guaranteeing integrity and correctness implies guar-
anteeing that the server does not improperly modify
data as well as the fact that the server provides a cor-
rect response to queries (i.e., the server does not delete
or modify data improperly either in storage or in query
computation). Few proposals have investigated the
problem of guaranteeing correctness of the data stored
or returned by external outsourcing servers. Typically
they are based on the use of signatures attached to tu-
ples in the database (e.g., [31, 39]) or on chain struc-
tures (e.g., skip lists [19]) that allow the client to assess
the integrity of the returned tuples.

• Access control enforcement. In many scenarios access
to data is selective, with different users enjoying dif-
ferent views over the data. When data are outsourced
there is therefore the problem of enforcing possible ac-
cess control restrictions on it. On one hand, having the
owner enforcing the access control restrictions would
require the owner to mediate every query and response
to filter out accesses that should not be authorized
to the requesting users, causing a possible bottleneck
in the system and impacting performances. On the
other hand, simply outsourcing the authorization pol-
icy and its enforcement at the external server is not
possible. First, the access control policy itself, like the
data, might be sensitive and therefore cannot be com-
pletely disclosed. Second, access control restrictions
might depend on the data content, which the server
is not permitted to see. Third, completely outsourc-
ing the management of the access control policy to the
external server requires complete trust in the external
server in its enforcement. There is therefore the need
for developing techniques for enforcing access control
in a reliable way without requesting the run time in-
volvement of the owner. Some directions have started
to be investigated relying on the combination of en-
cryption and access control policies, towards a selective
encryption enforcing itself access control. Intuitively,
the key with which data are encrypted is regulated by
the access authorizations holding on the data [15, 17].

• Support for selective write privileges. Current propos-
als in the data outsourcing scenario are based on the
assumption that write operations are possible but are
considered a privileged (and less frequent) operation
by the owner. Data outsourcing proposals have con-
centrated on the management and execution of read
accesses. The assumption of limiting the large com-
munity of users to a read access while reserving the
write privileges to the owner is applicable in the out-
sourcing scenarios as well as in social network-like set-
tings, where outsourcing is meant for data publication
by owners. There are however other contexts where
the consideration of read privileges only is limiting.
For instance, within a multi-owner scenario selective
write privileges may need to be enforced. It would
then be interesting to extend current approaches for
enforcing selective access to the consideration of write
operations.

• Data publication and utility. In data outsourcing, the
main goal is to give the data to an external server to
avoid the burden of managing and storing them. Tech-

niques developed for protecting data in outsourcing
scenarios could also be extended and applied to data
publication scenarios, where the goal is to make certain
information publicly or semi-publicly available while
ensuring proper protection of sensitive data. While in
data outsourcing scenarios, the plaintext availability of
certain data or associations among them might impact
query efficiency, in data publication scenarios it im-
pacts data visibility and therefore becomes of outmost
importance. In data publication it is in fact crucial
to guarantee a proper balance between data protec-
tion on one hand and data utility on the other hand.
Data utility might be defined differently depending on
the specific context or application. For instance, data
utility might refer to the fact that certain data or as-
sociations among data should be made available or
to the fact that certain queries over data should be
possible. As an example, consider the publication of
medical data for given studies. If the studies aim at
evaluating the relationship between job of patients and
illnesses they suffer, it is important that these data be
available in association (and other data might instead
be encrypted or not released). On the other hand, if
the study is related to establishing associations among
geographical areas and illnesses, it is more important
to publish the area where patient leave (and possibly
withhold their job if releasing it could open the door
to privacy breaches). Analogous reasoning applies to
utility of queries, where different protection techniques
or solutions could offer different ability of responding
to specific or aggregated queries for which data publi-
cation is intended. Data protection and utility can be
seen conflicting requirements: the more data are en-
crypted or obfuscated, the less the ability to withdraw
knowledge and inferences from them. However, trade
offs can be evaluated and data protection techniques
can be specifically aimed at providing utility of data
with respect to the specific scenarios or applications in
which they are aimed to be used. Some efforts have
started in this direction, for example, proposing the
publication of associations among data in obfuscated
(clustered) form [12]. Intuitively, such approaches ex-
tended k-anonymity like reasoning [11, 33] to operate
over associations among data.

• Private collaborative computation. Previous ap-
proaches in data outsourcing have been focused on
the data exchange between an external server and a
client. However, advances in communication technolo-
gies make it easy to share information among multiple
servers that often need to interact to accomplish a com-
mon goal or to provide a service. This collaboration
among different servers to reach a common goal re-
sembles the secure multi-party computation problem,
where different parties need to collaborate to perform
a computation on their data without however revealing
the data used in the computation [21]. However, while
multi-party computation approaches aim at not dis-
closing any of the data source content, in many scenar-
ios selective disclosure (i.e., release of portions of data)
can be applicable. In this case, the problem is to deter-
mine an effective and safe execution plan for a query
computation in which the servers collaborate releasing



each other only information that can be disclosed for
the aim of computing the query result. This problem
requires the definition of approaches for the specifica-
tion of the different views servers and users can have
over the different data sources. Authorized views could
also span data across different servers, then requiring
a collaborative approach in the definition of the au-
thorizations. A first step in this direction has been
investigated in [16]. The authors propose a model for
the specification and enforcement of authorizations in
a distributed collaborative scenario, where multiple in-
dependent servers collaborate in responding to queries.

3. DATA ENCRYPTION
A first solution used for preventing a server from accessing

data stored on its own machines consists in encrypting the
data before outsourcing them. We now describe how data
can be encrypted and accessed to minimize the workload at
the client side [18]. We then discuss how to support different
access privileges [15, 17].

3.1 Data model
In principle, data encryption can be performed by using

either symmetric or asymmetric encryption schemas. Since
however symmetric encryption is cheaper than asymmetric
encryption, many proposals are based on symmetric encryp-
tion [28]. Encryption can also be applied at different gran-
ularity levels, depending on the data that need to be ac-
cessed. When data are organized as tables, encryption can
be applied at the finer grain of table, attribute, tuple, and
element [28]. Both table level and attribute level encryp-
tion imply the communication to the requesting client of
the whole table involved in a query, as it is not possible to
extract any subset of the tuples in the encrypted represen-
tation of the table. On the other hand, encrypting at the
element level would require an excessive workload for data
owners and clients in encrypting/decrypting data. For bal-
ancing client workload and query execution efficiency, most
proposals assume that the database is encrypted at tuple
level. To directly query the encrypted data (remember that
confidentiality demands that data decryption must be pos-
sible only at the client side), additional indexing informa-
tion is stored together with the encrypted database [24, 25].
Such indexes can be used by the DBMS to select the data to
be returned in response to a query (see Section 3.2) and are
computed starting from the plaintext values of the attributes
with which they are associated. Before outsourcing a plain-
text database D, each relation r over schema R(A1, . . . , An)
in D is therefore mapped onto an encrypted relation re over
schema Re(ID,Etuple , I1, . . . , In) in De, where ID is the pri-
mary key, Etuple is the attribute containing the encrypted
tuple, and Ii, i = 1, . . . , n, is the index associated with the
i-th attribute in R (without loss of generality and for sim-
plicity we assume that the encrypted relation has always
an index for each attribute of the corresponding plaintext
relation). For each tuple t ∈ r, there is a tuple te ∈ re

where te[Etuple ] = Ek(t), with k the symmetric encryption
key, and te[Ii] = f(t[Ai]), i = 1, . . . , n, with f an indexing
function computing the index value te[Ii] according to the
specific indexing method adopted. Figure 1(a) illustrates an
example of plaintext relation reporting information about
the patients of a hospital and Figure 1(b) illustrates the cor-
responding encrypted relation. The encrypted relation has

Patients
SSN Name DoB Zip Treatment Illness

123-45-6789 Alice 1969/01/01 90012 actifed flu
652-98-3471 Bob 1965/07/23 90022 altace heart disease
842-74-9249 Carol 1971/10/27 90010 actifed cold
843-42-8251 Dave 1950/11/22 90005 alendronate osteoporosis

(a)

Patientse

ID Etuple IS IN ID IZ IT II

id1 hsh7wmdn ρ κ η δ ν β

id2 kjsjhc82 λ ϕ η ǫ ϑ α

id3 ks6b98hc χ µ σ θ ϑ α

id4 j0jmkdd3 π µ υ δ ω γ

(b)

Figure 1: An example of plaintext relation (a) and
corresponding encrypted relation (b)

exactly the same number of tuples as the original relation.

3.2 Query execution
The introduction of indexes makes it possible to partially

evaluate any query Q at the server side, provided it is pre-
viously translated into an equivalent query operating on the
encrypted data. In general, a user submits a query Q that
refers to the schema of the plaintext relations in D. This
query is passed to the client that maps it into a query Qs

working on the encrypted relations in De at the server side
and a query Qc working on the result of query Qs at the
client side. In particular, the server executes query Qs and
returns a set of encrypted tuples to the client that decrypts
them and eventually discards spurious tuples (i.e., tuples
that do not satisfy the query submitted by the user). These
spurious tuples are removed by executing query Qc. The
final plaintext result is then returned to the user.

The process of transforming Q in Qs and Qc depends both
on the indexing method adopted and on the kind of query
Q. There are operations that need to be executed by the
client, since the indexing method does not support them
(e.g., range queries are not supported by all types of in-
dexes) and the server cannot decrypt data. Also, there are
operations that the server could execute over the index, but
that require a pre-computation that only the client can per-
form and therefore must be postponed in Qc.

In the literature, different indexing methods have been
proposed (e.g., [2, 7, 24, 27, 37]). In [24] the authors first
introduce an indexing method that consists in partitioning
the domain of an attribute Ai of plaintext relational schema
R in a number of non-overlapping subsets of values contain-
ing contiguous values. Each partition is then associated with
a unique value and the set of these values is the domain for
index Ii associated with Ai. Given a plaintext tuple t in r

over relational schema R, the corresponding index value is
then the unique value associated with the partition to which
the plaintext value t[Ai] belongs. The domain of index Ii

may or may not follow the same order as the one of the plain-
text attribute Ai and the partitions may be chosen so that
they have all the same length or contain the same number
of tuples. The partition-based indexing method allows the
server side evaluation of equality queries (i.e., queries with
equality conditions in the where clause). Also, equality
conditions involving attributes defined on the same domain
can be evaluated by the server, provided that attributes are



indexed using the same partition. Such methods do not eas-
ily support range queries. Since the index domain does not
necessarily preserve the plaintext domain ordering, a range
condition of the form Ai ≥ v, where v is a constant value,
must be mapped into a series of equality conditions operat-
ing on index Ii of the form Ii = v′

1 ∨ . . . ∨ Ii = v′

l, where
v′

1 . . . v′

l are the values associated with partitions that corre-
spond to plaintext values greater than or equal to v. Note
also that since the same index value is associated with more
than one plaintext value, partition-based indexing usually
produces spurious tuples that need to be filtered out by the
client front-end. It is easy to see that the number of spurious
tuples is inversely proportional to the number of partitions
since a large number of partitions increase query precision
while however compromising privacy. On the other hand, a
small number of partitions increases privacy but affects per-
formance. The problem of computing an optimal partition
that maximizes efficiency has been studied in [27].

Another indexing method supporting equality queries has
been presented in [13]. The proposed index is based on a
one-way secure hash function that takes in input the plain-
text values of an attribute and returns the corresponding
index values. A secure hash function satisfies important
properties that turn out to be fundamental for the defini-
tion of an index. First, like the partition-based indexes,
a secure hash function is deterministic, meaning that the
application of a secure hash function to a given attribute
value produces always the same index value, thus making
easy the translation of a query Q into an equivalent query
Qs on the encrypted data. Second, a secure hash function
produces collisions, meaning that different plaintext values
are mapped onto the same index value. This property guar-
antees that even if an adversary knows the distribution of
plaintext values in the original database, from the index val-
ues it is not possible to infer the corresponding plaintext val-
ues (i.e., frequency-based attacks are not applicable). Third,
a secure hash function does not preserve the domain order
of the attribute on which it is applied.

In addition to these two simple indexing methods, other
solutions have been proposed (e.g., [2, 7, 26]). In [7] the au-
thors present a B+-tree indexing method supporting both
equality and range conditions appearing in the where clause
of a query. The idea consists in using a B+-tree data struc-
ture for physically indexing data. An encrypted version of
the B+-tree is then stored at the server side and is itera-
tively used to retrieve the desired data. The B+-tree in-
dexing method, being order preserving, also allows the eval-
uation of order by and group by clauses, and of most
of the aggregate operators, directly on the encrypted data.
In [26] the authors present an indexing method based on
privacy homomorphism [32]. In [2] an order preserving en-
cryption schema (OPES) is presented to support equality
and range queries as well as max, min, and count queries
over encrypted data. The basic idea is that given a target
distribution, the plaintext values are transformed by using
an order-preserving transformation in such a way that the
transformed values follow the target distribution. OPES is
applicable to numeric data and is secure against ciphertext-
only attacks. In [36] the authors present an order preserv-
ing encryption with splitting and scaling (OPESS) schema.
Splitting and scaling techniques are used to create index
values so that the distribution of plaintext values is dif-
ferent from that of index values. Orders of plaintext val-

ues are preserved so that range queries can be easily sup-
ported. Other works (e.g., [6, 20]) illustrate techniques for
performing arithmetic operations (+,−,×,÷) on data en-
crypted using a privacy homomorphic encryption function.
Recently a fully homomorphic encryption schema has been
proposed [22] that allows the computation of an arbitrary
functions over encrypted data without the decryption key.

On a different but related line of work, other proposals
have been presented for searching keywords in encrypted
data (e.g., [5, 35]).

Note also that when defining the indexing method for an
attribute, it is important to consider two conflicting require-
ments: on one hand, the indexing information should be
related to the data well enough to provide for an effective
query execution mechanism; on the other hand, the relation-
ship between indexes and data should not open the door to
inference and linking attacks that can compromise the pro-
tection granted by encryption. Different indexing methods
can provide a different trade-off between query execution ef-
ficiency and data protection from inference. A deep analysis
of the level of protection provided by an indexing method
against inference and linking attacks is then an important
aspect that has been however considered only for few pro-
posals (e.g., [7, 27]). In [7] the authors consider the problem
of quantitatively measuring the level of exposure due to the
publication of indexes computed either with direct encryp-
tion or with a secure hash function. They show that even a
straightforward direct encryption can provide an adequate
level of protection against inference attacks, as long as a
limited number of index attributes are used.

3.3 Selective access
A recent proposal for enforcing selective access to out-

sourced data puts forward the idea of using selective en-
cryption [15, 17]. The proposed approach consists in en-
crypting different portions of the data with different keys
that are then distributed to users according to their access
privileges. This idea is not new per se since it has been ap-
plied in other contexts, for example, for selectively sharing
XML documents [30]. However, the problems related to the
definition, management, and evolution of the authorization
policy, and therefore of the corresponding encryption have
been never addressed before and are instead the focus of
the proposals in [15, 17]. These proposals integrate access
control and encryption, meaning that the data to be out-
sourced are encrypted with different keys depending on the
authorizations to be enforced on the data. The authoriza-
tion policy defined by the data owner is expressed through
an access matrix. Such a policy is then translated into an
equivalent encryption policy regulating which data are en-
crypted with which key and regulating key release to users.
This translation process is performed by having in mind two
important desiderata: i) at most one key is released to each
user, and ii) each resource is encrypted at most once. To
achieve these desiderata, the authors exploit a hierarchical
organization of keys allowing the derivation of keys from
other keys and public tokens [3, 4]. Basically, users with the
same access privileges are grouped and each resource is en-
crypted with the key associated with the set of users that can
access it (i.e., the set of users forming its access control list).
In this way, a single key can be possibly used to encrypt more
than one resource. The key derivation hierarchy used in [15,
17] exploits the hierarchy among sets of users induced by
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Figure 2: An example of authorization policy (a),
key derivation hierarchy (b), and minimized key
derivation hierarchy (c) for the relation in Fig-
ure 1(a)

the partial order relationship based on set containment (⊆).
Each vertex v in the hierarchy is associated with a key k and
a public label l, and each edge connecting two vertices, say
vi and vj , is associated with a public token ti,j computed as
kj⊕h(ki,lj), with ⊕ the xor operator and h a deterministic
cryptographic function [4]. Each resource is then encrypted
by using the key of the vertex representing its access control
list, and each user is given the key of the vertex represent-
ing herself in the hierarchy. From such a key and the public
tokens, each user can derive the keys of the vertices repre-
senting groups of users containing herself. This implies that
each user can decrypt all and only the resources she can
access. Intuitively, the key derivation hierarchy so gener-
ated defines an encryption policy (i.e., a set of keys, a set of
tokens, an association user-key, and an association resource-
key) that is equivalent to the authorization policy specified
by the data owner. In [17] the authors illustrate a heuristic
algorithm for computing a minimal encryption policy, that
is, an encryption policy where the number of tokens used
(i.e., the number of edges in the key derivation hierarchy)
is minimal. The rationale is to reduce the user’s overhead
in deriving keys maintaining only the information strictly
needed to correctly enforcing an authorization policy. As
an example, consider relation Patients in Figure 1(a) and
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Figure 3: Possible views on resource r [15]

suppose that the tuples of this relation should be protected
according to the authorization policy represented through
the access matrix A in Figure 2(a). The access matrix has
four columns, one for each tuple in the relation, and four
rows, one for each authorized users, that is, Ellen (E), Frank
(F ), George (G), and Hilary (H). An entry A[u, t] in the
matrix is set to 1 when user u can access tuple t; it is set to
0 otherwise. Figure 2(b) shows the key derivation hierarchy
induced by the partial order relationship based on the set
containment relationship defined over {E,F ,G,H}. In the
figure, each vertex reports between square brackets the set
of users that it represents, and the dotted edges represent the
associations user-key and resource-key. It is easy to see that
this key derivation hierarchy represents an encryption policy
equivalent to the authorization policy in Figure 2(a). User
Ellen, for example, can derive from her key (i.e., the key as-
sociated with vertex v1) the keys associated with all vertices
representing sets of users that contain E, including the keys
of vertices v12 and v13 that have been used to encrypt tuples
t1, t3, and t4 that are all and only the tuples that Ellen can
access. The key derivation hierarchy in Figure 2(b) however
requires the publication of more keys and tokens than actu-
ally needed. For instance, the key associated with vertex v11

is not needed for enforcing the authorization policy since it
is not used for encrypting any resource. Based on this ob-
servation, in [17] the authors present a heuristic algorithm
that generates a key derivation hierarchy with the goal of
minimizing the number of tokens to be maintained by the
server to improve the efficiency of the key derivation process
at the client side. The algorithm creates a minimized ver-
sion of the key derivation hierarchy equivalent to the given
authorization policy. Figure 2(c) illustrates a minimized key
derivation hierarchy equivalent to the authorization policy
in Figure 2(a).

In [15] the authors also propose the use of a two-layer
approach to enforce selective encryption without requesting
the owner to re-encrypt the resources every time there is a
change in the authorization policy. The first layer of encryp-
tion (Base Encryption Layer - BEL) is applied by the data
owner at initialization time (when releasing the resources for
outsourcing). The second layer of encryption (Surface En-
cryption Layer - SEL) is applied by the service itself to take
care of authorization policy changes. Each layer of protec-
tion on a resource can be seen as a fence denoting the barrier
to the access imposed by the knowledge of the keys used for
encrypting a resource at the BEL (inner fence) and at the
SEL (outer fence). A user can then access a resource only
if she can pass both the fences, that is, only if she knows
both the keys used at the BEL and SEL. Figure 3 illustrates
the possible views of the server and of users over a spe-
cific resource r. Here, the fence is continuous if there is no
knowledge of the corresponding key; it is dashed, otherwise.



Figure 3(a) illustrates the view of the server, which knows
only the keys at the SEL and does not know the key at the
BEL. Figure 3(b) illustrates the view (open) of authorized
users who know both the keys at the SEL and BEL. Fig-
ures 3(c)-(e) illustrate the views of non-authorized users who
do not know the keys at SEL and BEL (locked), the key at
SEL (sel locked), or the key at BEL (bel locked), respectively.
In [15] the authors presents an algorithm that through the
combination of an encryption policy at the BEL and of an
encryption policy at the SEL allows the outsourcing of the
the management of the authorization policy defined by the
data owner.

4. DATA FRAGMENTATION AND EN-
CRYPTION: NON-COMMUNICATING
SERVERS

Encrypting data for storing them at the external server
bears a considerable cost. More than the cost of encrypting
and decrypting data, the problem relates to the efficiency
of query execution. As a matter of fact, since the server
itself is not trusted for decrypting data for querying them,
query execution needs to operate on indexes. As noted there
is a trade-off between precision of the index (and therefore
effectiveness of the queries) and privacy protection: most
precise indexes allow for more efficient execution but can
leak information about the indexed data, therefore open-
ing the door to possible privacy breaches. Alternative solu-
tions have therefore been devised trying to depart from the
use of encryption to protect data since encryption might be
an overdo for two main reasons. First, not all data items
are sensitive and therefore should be encrypted. Non sen-
sitive values could then be left in the clear, thus enabling
the precise enforcement of selection conditions on them at
the server side. Second, in many situations data themselves
are not sensitive; rather their associations are sensitive. For
instance, with respect to the relation in Figure 1(a), the
list of patients’ names and the list of illness could be made
publicly available, while the association of specific illnesses
with individual patients is sensitive and must be protected.
Therefore, there is no need to encrypt both patients’ names
and illnesses if there are alternative ways of protecting their
association.

4.1 Data model
The first proposal putting forward the idea of breaking as-

sociations among attributes rather than encrypting them in
an outsourcing scenario is the work in [1]. In this work the
authors start from the identification of the privacy require-
ments of the data to be outsourced. Privacy requirements
are characterized as sets of attributes: singleton sets identify
attributes that are sensitive per se, non singleton sets iden-
tify attributes whose association is sensitive. For instance,
Figure 4 illustrates a set of privacy requirements related to
relation Patients in Figure 1(a): p0 states that Social Se-
curity Numbers individually taken are sensitive; p1 and p2

state that the associations between the values of attribute
Name and of attributes Treatment and Illness, respectively,
are sensitive; p3 states that the association between the val-
ues of attributes Treatment and Illness is sensitive; p4 and
p5 state that the association of the values of attributes DoB
and Zip with the values of attributes Treatment and Illness
are considered sensitive. These last two protection require-

p0 = {SSN}
p1 = {Name,Treatment}
p2 = {Name,Illness}
p3 = {Treatment,Illness}
p4 = {DoB,Zip,Treatment}
p5 = {DoB,Zip,Illness}

Figure 4: Examples of protection requirements as-
sociated with the relation in Figure 1(a)

ments derive from the observation that DoB and Zip to-
gether can be exploited to infer the identity of patients (i.e.,
they can work as a quasi-identifier [33]), consequently their
associations with other pieces of information are considered
sensitive.

It is easy to see that, while simple, such a characterization
of privacy requirements captures most requirements of real
scenarios. To outsource data in such a way that the pro-
tection requirements identified are preserved, the approach
in [1] stores the data to two independent non-communicating
servers. Data stored at a server can be either encoded or
stored in the clear. The authors propose different encod-
ing techniques that consist in storing an attribute A as two
separate attributes A1 and A2 in the two servers. For in-
stance, the encrypted value of A can be stored at one server
(i.e., A1=Ek(A)) and the encryption key at the other server
(i.e., A2=k). For simplicity, in the following we assume
that encryption is used as an encoding technique. Basi-
cally, sensitive attributes (singleton constraints) need to be
encrypted, while sensitive associations can be protected by
splitting (fragmenting) the involved attributes among the
two servers. In addition to sensitive attributes, other at-
tributes might need to be encrypted if storing them at any
of the two servers in the clear would break at least one
sensitive association. A relational schema R is then split
into two fragments, each stored at a different server. The
fragments are obtained by a vertical fragmentation of the
relational schema R, with some of the attributes possibly
encrypted. A fragmentation of R is then a triple 〈F1,F2,E〉,
where fragments F1 and F2 contain a set of attributes in the
clear (including a tuple identifier to ensure lossless decom-
position) and a set E of attributes encrypted (i.e., E ⊆ F1

and E ⊆ F2). The encrypted attributes, as well as the tu-
ple identifier, are reported in both fragments. To guarantee
protection, the set of attributes in the clear in each frag-
ment must not be a superset of any privacy requirements,
that is, for each protection requirement pi over relational
schema R, pi 6⊆ (F1 − E) and pi 6⊆ (F2 − E). For instance,
consider relation Patients in Figure 1(a) and the protection
requirements in Figure 4. Attribute SSN is a sensitive at-
tribute (p0) that can be protected only through encryption.
Protection requirement p1 can be satisfied by storing at-
tribute Name in fragment F1 and attribute Treatment in
fragment F2. Protection requirement p2 can instead be sat-
isfied only by encrypting attribute Illness since it can be
stored in the clear neither in F1 nor F2 as p2 or p3, re-
spectively, would be violated. The encryption of attribute
Illness guarantees then also the satisfaction of protection
requirements p3 and p5. Protection requirement p4 can
be satisfied by storing attributes DoB and Zip in fragment
F1. The final decomposition is: 〈F1(ID,Name,DoB,Zip),
F2(ID,Treatment),{SSN,Illness}〉. Given an original rela-



tional schema R and a set P of privacy requirements, a
solution decomposing the relation in two fragments as pre-
scribed above always exist (in the worst case each attribute
is encrypted). In general, there might exist more than one
solution. A key question is therefore what is the best de-
composition to use. In [1] the authors assume that the best
solution is a solution that minimizes the cost of the workload
being executed against the database. The characterization
of the different costs of decompositions is based on the use
of an affinity matrix M typically used in databases, which
is adapted as follows: entry M [i, j] represents the ‘cost’ of
splitting attributes i and j (i.e., placing them in the clear in
different fragments); entry M [i, i] represents the cost of en-
crypting attribute i. The best solution is therefore a solution
that minimizes the overall cost, that is, the sum of the costs
of the encryption and splitting involved. The authors model
the problem of finding such a solution as a hypergraph col-
oring problem. The hypergraph is obtained by considering
a node for each attribute, where node i is associated with
weight M [i, i] and each edge 〈i, j〉 is associated with weight
M [i, j]. Also, each privacy requirement is represented as an
hyper-edge connecting the involved attributes. Encrypting
an attribute corresponds to deleting the corresponding node.
Storing an attribute in the clear on a server corresponds to
coloring the node with the color of the server. The problem
is therefore to determine a 2-coloring of the graph in such
a way that the sum of the weights of deleted nodes and of
bichromatic edges is minimized. Clearly the problem is NP-
hard. The authors then propose different heuristics for its
solution, which make use of approximate min-cuts and of
approximate weighted set cover as basic techniques.

4.2 Query execution
Since the original relation is split among the two exter-

nal servers, query execution may need to access information
at both servers and properly combining it. Reformulating
a query over the two fragments is rather straightforward,
as it reduces to substituting the join among the two frag-
ments (F1 ⊲⊳ F2) in place of the original relational schema
R in the query plan. The query plan can then undergo
traditional query optimization, with minor modifications to
account for attribute fragmentation. For instance, projec-
tions may be pushed down to both fragments, taking care
not to project out tuple identifiers necessary for the join;
selection conditions involving an individual attribute may
be pushed down to the corresponding fragment (if the at-
tribute appears in the clear); selection conditions involving
more attributes may be pushed down to the fragment con-
taining them in the clear (if any). Once the query plan is
optimized, the physical plan determines how the query ex-
ecution is partitioned across the two servers and the client.
The basic partition of the plan is straightforward: all oper-
ations above the top-most join have to be executed at the
client side; all operations under the join and above Fi are
executed by the server storing Fi. In some cases, it may
be possible to push all operators to either F1 or F2, thus
eliminating the need for a join. Otherwise, the join must be
executed. There are essentially three options for executing
the sub-queries and the join. The first option is to execute
the sub-queries on F1 and F2 in parallel and join the results
at the client side. The second option and third option are
to execute a sub-query at one of the server first, and to per-
form a semi join of the returned tuple identifiers with the

select Name,Illness

from Patients
where DoB<1970/01/01 and Treatment like ‘actifed’

(a) Original query Q

Q1

select ID ,Name,Illness

from F1

where DoB<1970/01/01

Q2

select ID ,Illness as k

from F2

where Treatment like ‘actifed’

(b) Sub-queries at the servers

select Name, Decrypt(ResQ1 .Illness, k) as Illness

from ResQ1 , ResQ2
where ResQ1 .ID = ResQ2 .ID

(c) Query at the client

Figure 5: An example of query translation in the
non-communicating servers scenario

fragment on the other server in addition to executing the
sub-query on it. The first option is more expensive, since it
requires more data to be transmitted from the servers to the
client and the execution of the join at the client side. The
second and third options potentially enjoy a lower cost (de-
pending on the selectivity of the sub-query executed first)
but imply a sequential computation and a possible risk of
privacy breaches. In fact, it implies disclosing to one of the
servers the tuple identifiers that satisfy the condition on the
other server. Even assuming the query is not known (as oth-
erwise privacy would be compromised), the fact that some
tuple identifiers enjoy some common characteristics may be
exploited for withdrawing inferences on possible values in
the tuples.

As an example of query execution, suppose that a user
submits query Q in Figure 5(a) that returns the name and
illness of all patients born before 1970 and whose treatment
is actifed. Suppose also that the encrypted values of at-
tribute Illness are stored at the first server and the encryp-
tion key at the second server. Query Q is translated into two
sub-queries Q1 and Q2 (see Figure 5(b)) that are executed
over fragments F1 and F2, respectively. Query Q1 retrieves
from the first server the tuple identifier (ID), the encrypted
attribute Illness, and the Name of patients born before
1970. Query Q2 applies the selection on attribute Treatment
and returns the tuple identifier (attribute ID) and attribute
Illness (renamed as k) corresponding to the key used for en-
crypting the values of attribute Illness in Patients. Finally,
the client executes a query that performs a join between the
results of queries Q1 and Q2, denoted ResQ1 and ResQ2 ,
respectively, and decrypts attribute ResQ1 .Illness using the
key retrieved from Q2 (see Figure 5(c)).

5. DATA FRAGMENTATION AND EN-
CRYPTION: UNLINKABLE FRAG-
MENTS

While presenting an interesting direction, the approach
in [1] suffers from two major limitations. First, privacy relies
on the absence of communication between the two servers,



which have to be completely unaware of each other. This
assumption is clearly too strong and difficult to enforce in
real environments. A collusion among the servers (or the
users accessing them) easily breaches privacy. Second, the
assumption of two servers limits the number of associations
that can be solved by fragmenting data, often forcing the use
of encryption. In [10] the authors address these limitations
while exploiting the combined use of fragmentation and en-
cryption proposed in [1]. We now describe this proposal
more in details.

5.1 Data model
The starting point of the problem, that is, a relational

schema R and a set of privacy requirements (called confi-
dentiality constraints in [10]) are the same as in [1]. Dif-
ferently from [1], in [10] the authors assume that multiple
fragments can be created and stored at different servers or
even at the same server. Rather than relying on the storing
servers not knowing each other, the approach in [10] relies
on the fact that fragments are guaranteed to be not linkable
(i.e., it is not possible for parties different from the client to
reconstruct the original relation and determine the sensitive
values and associations). Encryption is applied at the at-
tribute level, that is, it involves an attribute in its entirety.
Encrypting an attribute means encrypting (tuple by tuple)
all its values. To protect encrypted values from frequency
attacks [34], a salt is applied to each encryption. Fragmen-
tation, like encryption, applies at the attribute level, that is,
it involves an attribute in its entirety. Fragmenting means
splitting sets of attributes so that they are not visible to-
gether, that is, the associations among their values are not
available without access to the encryption key. While sin-
gleton constraints can be solved only by encryption, every
association constraint could be solved by either: i) encrypt-
ing any (one suffices) of the attributes involved in the con-
straint, so to prevent joint visibility, or ii) fragmenting the
attributes involved in the constraint so that they are not vis-
ible together. For instance, with respect to relation Patients
in Figure 1(a) and the protection requirements in Figure 4,
a possible fragmentation, denoted F , is {{Name,DoB,Zip},
{Illness}, {Treatment}}. At the physical level the original
relation is represented as a set of physical fragments each
containing: a salt (also exploited as tuple identifier), a set
of attributes of R in the clear, and an encrypted attribute
corresponding to the encrypted subtuple of all the attributes
that are not represented in the clear. Privacy is guaranteed
by requesting that: i) no fragment contains in the clear all
the attributes appearing together in a confidentiality con-
straint and ii) fragments do not have attributes in common
(i.e., they cannot be linked). Note that the use of a salt
guarantees that the encrypted values cannot be used for
linking. Figure 6 illustrates the physical fragments corre-
sponding to fragmentation F ={Name,DoB,Zip}, {Illness},
{Treatment}} of relation Patients in Figure 1(a).

Since the availability of attributes in the clear in a frag-
ment permits an efficient execution of queries, fragmentation
is considered to be preferred over encryption whenever pos-
sible. In other words, association constraints are solved via
fragmentation, and encryption is limited to those attributes
that are sensitive by themselves (i.e., singleton constraints).
Similarly to what noted in [1], different fragmentations can
exist, all limiting encryption to sensitive attributes but dif-
fering in how the attributes are distributed in the fragments

F1

Salt Enc Name DoB Zip

s1 α Alice 1980/01/01 90012
s2 β Bob 1965/07/23 90022
s3 γ Carol 1971/10/27 90010
s4 δ Dave 1950/11/22 90005

F2

Salt Enc Illness

s5 ǫ flu
s6 ε heart disease
s7 ζ cold
s8 η osteoporosis

F3

Salt Enc Treatment

s9 θ actifed
s10 ϑ altace
s11 ι actifed
s12 κ alendronate

Figure 6: Physical fragments for the relation in Fig-
ure 1(a) and enforcing the requirements in Figure 4

and/or in the number of fragments. Again, the goal is to
determine a solution that provides minimality. In [10] the
authors assume minimality to be characterized by the num-
ber of fragments in a fragmentation and investigate therefore
the problem of determining a fragmentation with a mini-
mum number of fragments. Since the problem is NP-hard,
the authors introduce an alternative definition of minimality
and assume that a solution is minimal if merging any two
fragments would break at least a confidentiality constraint.
They then propose a heuristic approach to its solution. The
minimization of the number of fragments exploits the basic
principle according to which the presence of a high number
of attributes in the clear permits an efficient execution of
queries. While this principle may be considered acceptable
in many situations, different combinations of attributes can
be accessed all together a different number of times, depend-
ing on the queries executed on the data. In [10] the authors
then acknowledge the need for keeping together some specific
attributes according to the queries that are frequently exe-
cuted on the data. Given a query Q and a fragmentation F ,
the execution cost of Q varies according to the specific frag-
ment used for computing the query. This implies that, with
respect to a specific query workload, different fragmenta-
tions may be more convenient than others in terms of query
performance.

To take into consideration the query workload in the frag-
mentation process, the authors exploit the concept of at-
tribute affinity, where attribute affinity is also a measure of
how strong the need of keeping the attributes in the same
fragment is (i.e., what is the cost of splitting the attributes
in different fragments). Attribute affinity is then naturally
extended to fragments and fragmentations. Intuitively, the
affinity of a fragment is the sum of the affinity of the different
pairs of attributes in the clear in the fragment; the affinity
of a fragmentation is the sum of the affinity of its fragments.
Fragmentations that maintain together attributes with high
affinity are to be preferred. Again, the problem is NP-hard,
and the authors present a heuristic approach to its solution.

In [8] the authors go a step further in aiming at character-
izing what fragmentation can provide best with respect to a
given workload and, instead of characterizing the workload
with the affinity matrix, they assume that a query workload
is given as a set of queries together with their frequency of
execution. The authors then present a query cost model
that is used to evaluate the cost of a query, and therefore
of a query workload, against a fragmentation and introduce
the problem of determining a fragmentation that minimizes



select Name,Illness

from Patients
where DoB<1970/01/01 and Treatment like ‘actifed’

(a) Original query Q

select Salt,Enc,Name

from F1

where DoB<1970/01/01

(b) Query operating on fragment F1

select Name,Illness

from Decrypt(ResQF1
, k)

where Treatment like ‘actifed’

(c) Query operating at the client

Figure 7: An example of query translation in the
unlinkable fragments scenario

the cost of executing the given query workload. Their for-
mulation of the problem is based on the definition of the
space of the different fragmentation and on its organization
as a lattice (with bottom and top elements the extreme frag-
mentations represented by putting all attributes in the same
fragments or each attribute in a different fragment, respec-
tively). Noting the monotonicity of the fragmentation cost
over the lattice, the authors propose a heuristic algorithm
that partially visits the lattice, following a top-down strat-
egy to compute a locally minimal fragmentation that, as
proved by experimental results has a cost near to the opti-
mum.

5.2 Query execution
Since each fragment contains all the original attributes, in

either the clear or encrypted form, it is sufficient to access
a fragment (any fragment) for executing a query, although
different fragments may differ with respect to the efficiency
(i.e., the cost) of running the query. In [10] the authors ad-
dress the translation and execution of select-from-where

queries. Query execution is rather simple. The only obser-
vation is that a selection conditions can be pushed down to
a fragment only if all involved attributes appear in the frag-
ment in the clear, otherwise it needs to be executed at the
client (returning all the attributes needed for evaluation).
Hence, the execution of a query on a given fragment re-
quires translating the query into two different queries. First,
a query, executed at the external server on the stored frag-
ment that evaluates all selection conditions that operate on
attributes that are in the clear in the fragment and returns
the requested attributes as well as the salt (attribute Salt)
and the encrypted field (attribute Enc), if the query needs
to evaluate attributes that are encrypted in the fragment.
Then, a query is executed at the client: the returned data are
decrypted, the remaining conditions are evaluated, and the
attributes requested as result are returned. As noted, any
query could be executed on any fragment although differ-
ent fragments may different with respect to the query cost.
In particular, it is better to execute the query on a frag-
ment that allows the most selective conditions to be pushed
down to the fragment. As an example, consider again the
query returning the name and illness of patients born before
1970 and whose treatment is actifed (see Figure 7(a)). Since

fragment F1 contains attribute DoB in the clear, which we
assume to be more selective than attribute Treatment, F1

is chosen for query evaluation. The server storing fragment
F1 then executes a query that selects the tuples that satisfy
the condition on DoB and returns attributes Salt, Enc, and
Name (see Figure 7(b)). Finally, the client decrypts the con-
tent of attribute Enc of the tuples returned by the server and
on the decrypted tuples executes a query that retrieves those
satisfying the condition on attribute Treatment. Figure 7(c)
illustrates the query executed at the client side, where k is
the decrypting key and ResQF1

denotes the result of the

query in Figure 7(b).

6. DATA FRAGMENTATION WITH
OWNER INVOLVEMENT

Proceeding along the directions of minimizing the use of
encryption, in [9] the authors put forward the idea of com-
pletely departing from encryption and adopt fragmentation
as the only means of protecting privacy when outsourcing
data. The rational for the assumption that data should not
be encrypted is that encryption is sometimes considered a
too rigid tool, delicate in its configuration, and requiring
careful management to fulfill its potential. Systems pro-
tecting sensitive information based on an extensive use of
encryption suffer from significant consequences due to both
the compromise and loss of keys. In the real world, key man-
agement, particularly the operations at the human side, is a
difficult and delicate process. Also, as already noted, while
the computational cost of symmetric encryption for modern
computer architectures is usually negligible, the presence of
encryption often causes an increase in the computational
load, affecting the performance of query execution.

6.1 Data model
In [9] the authors depart from encryption by involving the

data owner in storing, and managing, a small portion of the
data, while delegating the management of all other data to
the external server. The management of a small portion
of data is considered an advantage with respect to the oth-
erwise required encryption. The need for the data owner
to maintain control on part of the data is to avoid expos-
ing sensitive attributes or associations externally. Sensitive
attributes are maintained at the owner side. Sensitive asso-
ciations are protected by ensuring that not all the attributes
in an association are stored externally. In other words, for
each sensitive association, the owner should locally store at
least one attribute. The original relational schema R is split
in two fragments: Fo, stored at the data owner, and Fs,
stored at the external server. To correctly reconstruct the
content of a relation r over schema R, at the physical level,
Fo and Fs have a common tuple identifier that corresponds
to the primary key of R, if it is not sensitive, or can be an
attribute that does not belong to the schema of R and that
is added to Fo and Fs after the fragmentation process. A
fragmentation 〈Fo, Fs〉 is considered correct if it satisfies the
following conditions: 1) all attributes in R should appear
in at least one fragment, to avoid loss of information; 2)
the external fragment should not violate any confidentiality
constraint. Note that this condition applies only to Fs since
Fo is under the data owner control and therefore is accessi-
ble only to authorized users. Also, a fragmentation should
be non redundant, that is, the two fragments should have



Fo

ID SSN Treatment Illness

id1 123-45-6789 actified flu
id2 652-98-3471 altace heart disease
id3 842-74-9249 actified cold
id4 843-42-8251 alendronate osteoporosis

Fs

ID Name DoB Zip

id1 Alice 1980/01/01 90012
id2 Bob 1965/07/23 90022
id3 Carol 1971/10/27 90010
id4 Dave 1950/11/22 90005

Figure 8: An example of physical fragments with
owner involvement

no attribute in common. While not needed for preserving
privacy, non redundancy avoids unnecessary storage at the
data owner side (there is no need to maintain information
that is outsourced); it also avoids usual replica management
problems. Figure 8 illustrates a possible fragmentation of
relation Patients in Figure 1(a) that satisfies the protection
requirements in Figure 4.

Similarly to previous approaches, given a relation and a
set of protection requirements (confidentiality constraints)
on it, the problem is to determine a fragmentation that pro-
vides best, where ‘best’ is to be defined with respect to a cost
for the owner of executing queries against the fragmented
data. The starting observation is that storage and compu-
tational resources offered by the external server are consid-
ered, for a given level of availability and accessibility, less
expensive than the resources within the trust boundary of
the owner. The owner has then a natural incentive to rely as
much as possible, for storage and computation, on the exter-
nal server. In the absence of confidentiality constraints, all
data would then be remotely stored and all queries would be
computed by the external server. In the case of confidential-
ity constraints, the owner internally stores some attributes,
and consequently is involved in some computation.

In [9] the authors discuss several metrics (and correspond-
ing weight functions to be minimized) that could be used to
characterize the quality of a fragmentation, and therefore to
determine which attributes are stored at the owner side and
which attributes are outsourced at the external server. The
different metrics may be applicable to different scenarios,
depending on the owner’s preferences and/or on the specific
knowledge (on the data or on the query workload) available
at design time. The authors consider four possible scenar-
ios, in increasing level of required knowledge. The first two
scenarios support measuring storage, while the latter two
scenarios support measuring computation.

• Min-Attr . Only the relation schema (set of attributes)
and the confidentiality constraints are known. The
only applicable metric aims at minimizing the storage
required at the owner side by minimizing the number
of attributes in Fo.

• Min-Size. Besides the mandatory knowledge of the re-
lation schema and confidentiality constraints on it, the
size of each attribute is known. In this case, it is pos-
sible to produce a more precise estimate of the storage
required at the owner side, aiming at minimizing the

physical size of Fo, that is, the actual storage required
by its attributes.

• Min-Query . In addition to the relation schema and
the confidentiality constraints, a representative profile
of the expected query workload is known. The profile
defines, for each query, the frequency of execution and
the set of attributes evaluated by its conditions. Here,
the goal is to minimize the number of query executions
that require processing at the owner side, producing
immediate benefits in terms of the reduced level of use
of the more expensive and less powerful computational
services available at the owner.

• Min-Cond . In addition to the relation schema and the
confidentiality constraints, a complete profile of the
expected query workload is known. The complete pro-
file assumes that the specific conditions (not only the
attributes on which they are evaluated) appearing in
each query are known. The precise characterization of
the workload allows the definition of a metric to min-
imize the number of conditions that require processing
at the owner side. Note that the minimization of the
conditions executed at the owner side has a direct rela-
tionship with the minimization of the traffic needed for
receiving results of the portion of queries outsourced
to the external server. As a matter of fact, minimizing
the conditions executed by the owner is equivalent to
maximizing the conditions outsourced to the external
server, and therefore delegating to it as much compu-
tation as possible. In fact, since the result of eval-
uating a condition on a relation is a smaller relation,
the greater the number of conditions outsourced to the
external servers, the smaller will be the corresponding
results to be received in response.

In [9] the authors provide a uniform modeling of the
fragmentation problem, encompassing the different metrics
above, which can be simply represented by the definition of
a proper weight function input to the minimization prob-
lem. The minimization of the cost of involving the owner
(either for storage or computation) is NP-hard (it reduces
to the minimum hitting set in its simplest form of minimiz-
ing the number of attributes). The authors then provide a
heuristic algorithm for the computation of a solution that
guarantees minimality (i.e., moving any attribute from Fo

to Fs would violate at least one constraint). Also, according
to experiments, the returned solution well approximates the
optimum.

6.2 Query execution
Like for the fragmentation approach based on two non-

communicating servers, query execution may need to access
the information stored on the two fragments Fo and Fs.
A select-from-where query Q defined over the original
relational schema R is then translated into queries operating
on the two fragments. This translation process can follow
two basic strategies: client-first and server-first .

With the client-first strategy a query Qo is first executed
at the client side. Query Qo is obtained from the original
query Q as follows. The select clause of query Qo contains
attribute ID since it is needed to perform a join operation
between the result of Qo and Fs; other attributes therefore
cannot appear in the select clause because they cannot be



select Name,Illness

from Patients
where DoB<1970/01/01 and Treatment like ‘actifed’

(a) Original query Q

Client-first Server-first

select ID

from Fo

where Treatment like ‘actifed’

(b) Query Qo

select ID ,Name

from ResQo ,Fs

where ResQo .ID =Fs.ID and

DoB<1970/01/01

(d) Query Qs

select Name,Illness

from Fo,ResQs

where Fo.ID =ResQs .ID

(f) Query Qos

select ID ,Name

from Fs

where DoB<1970/01/01

(c) Query Qs

select Name,Illness

from Fo,ResQs

where Fo.ID =ResQs .ID and

Treatment like ‘actifed’

(e) Query Qo

Figure 9: An example of query translation in the
owner involvement scenario

communicated to the server. The where clause of Qo con-
tains all conditions of Q that involve attributes stored in
Fo only since their evaluation can be performed only by the
data owner. The client executes Qo and sends to the server
a query Qs operating on the join between Fs and the re-
sult of Qo. The select clause of Qs contains all attributes
of Fs appearing in the select clause of the original query
Q and all attributes in Fs appearing in conditions that are
involved in a comparison with attributes in Fo. The condi-
tions in the where clause of Qs are those appearing in the
original query Q and involving attributes stored in Fs only
and that therefore can be evaluated by the server. The re-
sult of query Qs is then sent back to the client, which further
refines the result possibly executing another query Qos on
the join between Fo and the result of query Qs. Query Qos

applies the conditions in Q that involve at the same time at-
tributes stored in Fo and Fs. Note that if the server knows
the original query Q, the client-first strategy cannot be used
since the server infer the tuples that satisfy the conditions
in the where clause of Q and that involve attributes stored
in Fo only.

With the server-first strategy a query Qs is first executed
at the server side. The result of Qs is then further refined at
the client side. Query Qs is obtained from the original query
Q as follows. The select clause of Qs contains attribute
ID needed for performing the join between the result of Qs

and Fo, and all attributes in Fs appearing in the select

clause of Q or that appears together with attributes in Fo in
conditions in the where clause of Q (these conditions can
therefore be evaluated by the data owner only). The where

clause of Qs contains all conditions appearing in the where

clause of Q that involve attributes stored in Fs only. The
server executes Qs and returns the corresponding result to
the client that performs the join with Fo and removes the
tuples that do not satisfy the conditions in the where clause
of Q and that involve attributes in Fo only or attributes in
both Fo and Fs.

Figure 9 illustrates an example of query execution oper-
ating on the fragments illustrated in Figure 8 according to
both the client-first (left-hand side) and server-first (right-
hand side) strategies. Note that in the client-first strategy,
the last query Qos (Figure 9(f)) has only a join condition
in the where clause since the original query Q does not
have any condition that involves both attributes in Fo and
attributes in Fs.

7. CONCLUSIONS
Effective adoption of data outsourcing solutions as well

as effective information sharing and dissemination can take
place only if data owners can be assured that, while releas-
ing or storing information externally, disclosure of sensitive
information is not a risk. Data protection and privacy in
emerging storing and sharing scenarios is far from been a
trivial problem and requires the investigation of new issues
and the design of technological solutions to address them.
This paper has discussed problems to be addressed and il-
lustrated some emerging directions introducing novel data
protection approaches in outsourcing scenarios.
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