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Abstract. Access control is the process of mediating every request to resources
and data maintained by a system and determining whether the request should
be granted or denied. The access control decision is enforced by a mechanism
implementing regulations established by a security policy. Different access con-
trol policies can be applied, corresponding to different criteria for defining what
should, and what should not, be allowed, and, in some sense, to different defi-
nitions of what ensuring security means. In this chapter we investigate the basic
concepts behind access control design and enforcement, andpoint out different
security requirements that may need to be taken into consideration. We discuss
several access control policies, and models formalizing them, that have been pro-
posed in the literature or that are currently under investigation.

1 Introduction

An important requirement of any information management system is toprotect data
and resourcesagainst unauthorized disclosure (secrecy) and unauthorized or improper
modifications (integrity), while at the same time ensuring their availability to legitimate
users (no denials-of-service). Enforcing protection therefore requires thatevery access
to a system and its resources be controlled and that all and only authorized accesses can
take place.This process goes under the name ofaccess control. The development of an
access control system requires the definition of the regulations according to which ac-
cess is to be controlled and their implementation as functions executable by a computer
system. The development process is usually carried out witha multi-phase approach
based on the following concepts:

Security policy: it defines the (high-level) rules according to which access control
must be regulated.1

Security model: it provides aformal representation of the access control security pol-
icy and its working. The formalization allows the proof of properties on the security
provided by the access control system being designed.

1 Often, the term policy is also used to refer to particular instances of a policy, that is, actual
authorizations and access restrictions to be enforced (e.g., Employees can read bulletin-board).
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Security mechanism: it defines the low level (software and hardware) functions that
implement the controls imposed by the policy and formally stated in the model.

The three concepts above correspond to a conceptual separation between different
levels of abstraction of the design, and provides the traditional advantages of multi-
phase software development. In particular, the separationbetween policies and mech-
anisms introduces an independence between protection requirements to be enforced
on the one side, and mechanisms enforcing them on the other. It is then possible to:
i) discuss protection requirements independently of their implementation,ii) compare
different access control policies as well as different mechanisms that enforce the same
policy, andiii) design mechanisms able to enforce multiple policies. This latter aspect is
particularly important: if a mechanism is tied to a specific policy, a change in the policy
would require changing the whole access control system; mechanisms able to enforce
multiple policies avoid this drawback. The formalization phase between the policy def-
inition and its implementation as a mechanism allows the definition of a formal model
representing the policy and its working, making it possibleto define and prove security
properties that systems enforcing the model will enjoy [54]. Therefore, by proving that
the model is “secure” and that the mechanismcorrectly implementsthe model, we can
argue that the system is “secure” (w.r.t. the definition of security considered). The im-
plementation of a correct mechanism is far from being trivial and is complicated by the
need to cope with possible security weaknesses due to the implementation itself and by
the difficulty of mapping the access control primitives to a computer system. The ac-
cess control mechanism must work as areference monitor, that is, a trusted component
intercepting each and every request to the system [5]. It must also enjoy the following
properties:

– tamper-proof: it should not be possible to alter it (or at least it should not be possible
for alterations to go undetected);

– non-bypassable: it must mediate all accesses to the system and its resources;
– security kernel: it must be confined in a limited part of the system (scattering secu-

rity functions all over the system implies that all the code must be verified);
– small: it must be of limited size to be susceptible of rigorous verification methods.

Even the definition of access control policies (and their corresponding models) is
far from being a trivial process. One of the major difficulty lies in the interpretation
of, often complex and sometimes ambiguous, real world security policies and in their
translation in well defined and unambiguous rules enforceable by a computer system.
Many real world situations have complex policies, where access decisions depend on
the application of different rules coming, for example, from laws, practices, and orga-
nizational regulations. A security policy must capture allthe different regulations to be
enforced and, in addition, must also consider possible additional threats due to the use
of a computer system. Access control policies can be groupedinto three main classes:

Discretionary (DAC) (authorization-based) policies control access based on the iden-
tity of the requestor and on access rules stating what requestors are (or are not)
allowed to do.
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Mandatory (MAC) policies control access based on mandated regulations determined
by a central authority.

Role-based (RBAC) policies control access depending on the roles that users have
within the system and on rules stating what accesses are allowed to users in given
roles.

Discretionary and role-based policies are usually coupledwith (or include) anad-
ministrativepolicy that defines who can specify authorizations/rules governing access
control.

In this chapter we illustrate different access control policies and models that have
been proposed in the literature, also investigating their low level implementation in
terms of security mechanisms. In illustrating the literature and the current status of ac-
cess control systems, of course, the chapter does not pretend to be exhaustive. However,
by discussing different approaches with their advantages and limitations, this chapter
hopes to give an idea of the different issues to be tackled in the development of an ac-
cess control system, and of good security principles that should be taken into account
in the design.

The chapter is structured as follows. Section 2 introduces the basic concepts of
discretionary policies and authorization-based models. Section 3 shows the limitation
of authorization-based controls to introduce the basis forthe need of mandatory poli-
cies, which are then discussed in Section 4. Section 5 illustrates approaches combining
mandatory and discretionary principles to the goal of achieving mandatory information
flow protection without loosing the flexibility of discretionary authorizations. Section 6
illustrates several discretionary policies and models that have been proposed. Section 7
illustrates role-based access control policies. Finally,Section 8 discusses advanced ap-
proaches and directions in the specification and enforcement of access control regula-
tions.

2 Basic concepts of discretionary policies

Discretionary policies enforce access control on the basisof the identity of the re-
questors and explicit access rules that establish who can, or cannot, execute which
actions on which resources. They are called discretionary as users can be given the
ability of passing on their privileges to other users, wheregranting and revocation of
privileges is regulated by an administrative policy. Different discretionary access con-
trol policies and models have been proposed in the literature. We start in this section
with the early discretionary models, to convey the basic ideas of authorization specifi-
cations and their enforcement. We will come back to discretionary policies after having
dealt with mandatory controls. We base the discussion of the“primitive” discretionary
policies on the access matrix model.

2.1 The access matrix model

The access matrix model provides a framework for describingdiscretionary access con-
trol. First proposed by Lampson [53] for the protection of resources within the context
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File 1 File 2 File 3 Program 1
own read execute

Ann read write
write

Bob read read
write

Carl read execute
read

Fig. 1. An example of access matrix

of operating systems, and later refined by Graham and Denning[41], the model was
subsequently formalized by Harrison, Ruzzo, and Ullmann (HRU model) [44], who de-
veloped the access control model proposed by Lampson to the goal of analyzing the
complexity of determining an access control policy. The original model is called access
matrix since the authorization state, meaning the authorizations holding at a given time
in the system, is represented as a matrix. The matrix therefore gives an abstract rep-
resentation of protection systems. Although the model may seem primitive, as richer
policies and languages have been investigated subsequently (see Section 6), its treat-
ment is useful to illustrate some aspects to be taken into account in the formalization of
an access control system.

A first step in the development of an access control system is the identification of
theobjectsto be protected, thesubjectsthat execute activities and request access to ob-
jects, and theactionsthat can be executed on the objects, and that must be controlled.
Subjects, objects, and actions may be different in different systems or application con-
texts. For instance, in the protection of operating systems, objects are typically files,
directories, or programs; in database systems, objects canbe relations, views, stored
procedures, and so on. It is interesting to note that subjects can be themselves objects
(this is the case, for example, of executable code and storedprocedures). A subject can
create additional subjects (e.g., children processes) in order to accomplish its task. The
creator subject acquires control privileges on the createdprocesses (e.g., to be able to
suspend or terminate its children).

In the access matrix model, the state of the system is defined by a triple (S,O,A),
whereS is the set of subjects, who can exercise privileges;O is the set of objects, on
which privileges can be exercised (subjects may be considered as objects, in which
caseS⊆ O); andA is the access matrix, where rows correspond to subjects, columns
correspond to objects, and entryA[s,o] reports the privileges ofs on o. The type of the
objects and the actions executable on them depend on the system. By simply providing a
framework where authorizations can be specified, the model can accommodate different
privileges. For instance, in addition to the traditional read, write, and execute actions,
ownership(i.e., property of objects by subjects), andcontrol (to model father-children
relationships between processes) can be considered. Figure 1 illustrates an example of
access matrix.

Changes to the state of a system is carried out throughcommandsthat can execute
primitiveoperations on the authorization state, possibly dependingon some conditions.
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OPERATION(op) CONDITIONS NEW STATE (Q⊢op Q′)

enter r into A[s,o] s∈ S S′ = S
o∈ O O′ = O

A′[s,o] = A[s,o]∪{r}
A′[si ,o j ] = A[si ,o j ] ∀(si ,o j) 6= (s,o)

deleter from A[s,o] s∈ S S′ = S
o∈ O O′ = O

A′[s,o] = A[s,o]\{r}
A′[si ,o j ] = A[si ,o j ] ∀(si ,o j) 6= (s,o)

create subjects′ s′ 6∈ S S′ = S∪{s′}
O′ = O∪{s′}
A′[s,o] = A[s,o] ∀s∈ S,o∈ O
A′[s′,o] = /0 ∀o∈ O′

A′[s,s′] = /0 ∀s∈ S′

create objecto′ o′ 6∈ O S′ = S
O′ = O∪{o′}
A′[s,o] = A[s,o] ∀s∈ S,o∈ O
A′[s,o′] = /0 ∀s∈ S′

destroy subjects′ s′ ∈ S S′ = S\{s′}
O′ = O\{s′}
A′[s,o] = A[s,o] ∀s∈ S′,o∈ O′

destroy objecto′ o′ ∈ O S′ = S
o′ 6∈ S O′ = O\{o′}

A′[s,o] = A[s,o] ∀s∈ S′,o∈ O′

Fig. 2. Primitive operations of the HRU model

The HRU formalization identified six primitive operations that describe changes to the
state of a system. These operations, whose effect on the authorization state is illustrated
in Figure 2, correspond to adding and removing a subject, adding and removing an
object, and adding and removing a privilege. Each command has a conditional part and
a body and has the form

commandc(x1, . . . ,xk)
if r1 in A[xs1,xo1] and

r2 in A[xs2,xo2] and
.
.
rm in A[xsm,xom]

then op1

op2

.

.
opn

end.
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with n > 0,m≥ 0. Herer1, ..., rm are actions,op1, ...,opn are primitive operations,
while s1, ...,sm ando1, ...,om are integers between 1 andk. If m=0, the command has no
conditional part.

For example, the following command creates a file and gives the creating subject
ownership privilege on it.

commandCREATE(creator,file)
create objectfile
enterOwn into A[creator,file] end.

The following commands allow an owner to grant to others, andrevoke from others,
a privilege to execute an action on her files.

commandCONFERa(owner,friend,file)
if Own inA[owner,file]

then enter a into A[friend,file] end.

commandREVOKEa(owner,ex-friend,file)
if Own inA[owner,file]

then delete a from A[ex-friend,file] end.

Note that herea is not a parameter, but an abbreviation for defining many similar
commands, one for each value thata can take (e.g., CONFERread, REVOKEwrite).
Since commands are not parametric w.r.t. actions, a different command needs to be
specified for each action that can be granted/revoked.

Let Q ⊢op Q′ denote the execution of operationop on stateQ, resulting in state
Q′. The execution of commandc(a1, ...,ak) on a system stateQ = (S,O,A) causes the
transition from stateQ to stateQ′ such that∃ Q1, . . . ,Qn for which Q ⊢op∗1

Q1 ⊢op∗2
... ⊢op∗n Qn = Q′, whereop∗1 . . .op∗n are the primitive operationsop1 . . .opn in the body
(operational part) of commandc, in which actual parametersai are substituted for each
formal parametersxi , i := 1, . . . ,k. If the conditional part of the command is not verified,
then the command has no effect andQ = Q′.

Although the HRU model does not include any buil-in administrative policies, the
possibility of defining commands allows their formulation.Administrative authoriza-
tions can be specified by attaching flags to access privileges. For instance, acopy flag,
denoted∗, attached to a privilege may indicate that the privilege canbe transferred to
others. Granting of authorizations can then be accomplished by the execution of com-
mands like the one below (again here TRANSFERa is an abbreviation for as many
commands as there are actions).

commandTRANSFERa(subj,friend,file)
if a* in A[subj,file]

then enter a into A[friend,file] end.

The ability of specifying commands of this type clearly provides flexibility as differ-
ent administrative policies can be taken into account by defining appropriate commands.
For instance, an alternative administrative flag (calledtransfer onlyand denoted+) can
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be supported, which gives the subject the ability of passingon the privilege to others
but for which, so doing, the subject looses the privilege. Such a flexibility introduces an
interesting problem referred to assafety, and concerned with the propagation of priv-
ileges to subjects in the system. Intuitively, given a system with initial configuration
Q, thesafetyproblem is concerned with determining whether or not a givensubjects
can ever acquire a given accessa on an objecto, that is, if there exists a sequence of
requests that executed onQ can produce a stateQ′ wherea appears in a cellA[s,o] that
did not have it inQ. (Note that, of course, not all leakages of privileges are bad and
subjects may intentionally transfer their privileges to “trusworthy” subjects. Trustwor-
thy subjects are therefore ignored in the analysis.) It turns out that the safety problem
is undecidable in general (it can be reduced to the halting problem of a Turing ma-
chine) [4]. It remains instead decidable for cases where subjects and objects are finite,
and inmono-operationalsystems, that is, systems where the body of commands can
have at most one operation (while the conditional part can still be arbitrarily complex).
However, as noted in [81], mono-operational systems have the limitation of making cre-
ate operations pretty useless: a single create command cannot do more than adding an
empty row/column (it cannot write anything in it). It is therefore not possible to support
ownership or control relationships between subjects. Progresses in safety analysis were
made in a later extension of the HRU model by Sandhu [81], who proposed theTAM
(Typed Access Matrix) model. TAM extends HRU with strong typing: each subject and
object has a type; the type is associated with the subjects/objects when they are created
and thereafter does not change. Safety results decidable inpolynomial time for cases
where the system is monotonic (privileges cannot be deleted), commands are limited to
three parameters, and there are no cyclic creates. Safety remains undecidable otherwise.

2.2 Implementation of the access matrix

Although the matrix represents a good conceptualization ofauthorizations, it is not ap-
propriate for implementation. In a general system, the access matrix will be usually
enormous in size and sparse (most of its cells are likely to beempty). Storing the ma-
trix as a two-dimensional array is therefore a waste of memory space. There are three
approaches to implementing the access matrix in a practicalway:

Authorization Table Non empty entries of the matrix are reported in a table with three
columns, corresponding to subjects, actions, and objects,respectively. Each tuple
in the table corresponds to an authorization. The authorization table approach is
generally used in DBMS systems, where authorizations are stored as catalogs (re-
lational tables) of the database.

Access Control List (ACL) The matrix is stored by column. Each object is associated
with a list indicating, for each subject, the actions that the subject can exercise on
the object.

Capability The matrix is stored by row. Each user has associated a list, called capabil-
ity list, indicating, for each object, the accesses that theuser is allowed to exercise
on the object.

Figure 3 illustrates the authorization table, ACLs, and capabilities, respectively, cor-
responding to the access matrix in Figure 1.
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USER ACCESS MODE OBJECT

Ann own File 1
Ann read File 1
Ann write File 1
Ann read File 2
Ann write File 2
Ann execute Program 1
Bob read File 1
Bob read File 3
Bob write File 3
Carl read File 2
Carl execute Program 1
Carl read Program 1

�
�
�
�

��

��

File 1 Ann

own
read
write

Ann

read

Bob

CarlFile 2

File 3

write
read

read

read

write

Ann

execute read
execute

CarlProgram 1

Bob

Program 1

execute

�
�
�
�

����

����

��

own
read
write

File 1 File 2

read
write

File 1

read
writeread

File 3

File 2

read

Ann

Bob

Carl Program 1

execute
read

Fig. 3. Authorization table, ACLs, and capabilities for the matrixin Figure 1

Capabilities and ACLs present advantages and disadvantages with respect to autho-
rization control and management. In particular, with ACLs it is immediate to check the
authorizations holding on an object, while retrieving all the authorizations of a subject
requires the examination of the ACLs for all the objects. Analogously, with capabilities,
it is immediate to determine the privileges of a subject, while retrieving all the accesses
executable on an object requires the examination of all the different capabilities. These
aspects affect the efficiency of authorization revocation upon deletion of either subjects
or objects.

In a system supporting capabilities, it is sufficient for a subject to present the appro-
priate capability to gain access to an object. This represents an advantage in distributed
systems since it permits to avoid repeated authentication of a subject: a user can be
authenticated at a host, acquire the appropriate capabilities and present them to obtain
accesses at the various servers of the system. However, capabilities are vulnerable to
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forgery(they can be copied and reused by an unauthorized third party). Another prob-
lem in the use of capability is the enforcement of revocation, meaning invalidation of
capabilities that have been released.

A number of capability-based computer systems were developed in the 1970s, but
did not prove to be commercially successful. Modern operating systems typically take
the ACL-based approach. Some systems implement an abbreviated form of ACL by
restricting the assignment of authorizations to a limited number (usually one or two) of
named groups of users, while individual authorizations arenot allowed. The advantage
of this is that ACLs can be efficiently represented as small bit-vectors. For instance, in
the popular Unix operating system, each user in the system belongs to exactly one group
and each file has an owner (generally the user who created it),and is associated with a
group (usually the group of its owner). Authorizations for each file can be specified for
the file’s owner, for the group to which the file belongs, and for “the rest of the world”
(meaning all the remaining users). No explicit reference tousers or groups is allowed.
Authorizations are represented by associating with each object an access control list of
9 bits: bits 1 through 3 reflect the privileges of the file’s owner, bits 4 through 6 those
of the user group to which the file belongs, and bits 7 through 9those of all the other
users. The three bits correspond to the read (r), write (w), and execute (x) privilege,
respectively. For instance, ACLrwxr-x--x associated with a file indicates that the file
can be read, written, and executed by its owner, read and executed by users belonging
to the group associated with the file, and executed by all the other users.

3 Vulnerabilities of the discretionary policies

In defining the basic concepts of discretionary policies, wehave referred to access re-
quests on objects submitted by users, which are then checkedagainsts the users’ au-
thorizations. Although it is true that each request is originated because of some user’s
actions, a more precise examination of the access control problem shows the utility
of separatingusersfrom subjects. Users are passive entities for whom authorizations
can be specified and who can connect to the system. Once connected to the system,
users originate processes (subjects) that execute on theirbehalf and, accordingly, sub-
mit requests to the system. Discretionary policies ignore this distinction and evaluate all
requests submitted by a process running on behalf of some user against the authoriza-
tions of the user. This aspect makes discretionary policiesvulnerable from processes
executing malicious programs exploiting the authorizations of the user on behalf of
whom they are executing. In particular, the access control system can be bypassed by
Trojan Horses embedded in programs. ATrojan Horseis a computer program with an
apparently or actually useful function, which contains additional hiddenfunctions that
surreptitiously exploit the legitimate authorizations ofthe invoking process. (Viruses
and logic bombs are usually transmitted as Trojan Horses.) ATrojan Horse can im-
properly use any authorizations of the invoking user, for example, it could even delete
all files of the user (this destructive behavior is not uncommon in the case of viruses).
This vulnerability to Trojan Horses, together with the factthatdiscretionary policies do
not enforce any control on the flow of information once this information is acquired by
a process,makes it possible for processes to leak information to usersnot allowed to
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read it. All this can happen without the cognizance of the data administrator/owner, and
despite the fact that each single access request is controlled against the authorizations.
To understand how a Trojan Horse can leak information to unauthorized users despite
the discretionary access control, consider the following example. Assume that within
an organization, Vicky, a top-level manager, creates a file Market containing impor-
tant information about releases of new products. This information is very sensitive for
the organization and, according to the organization’s policy, should not be disclosed to
anybody besides Vicky. Consider now John, one of Vicky’s subordinates, who wants to
acquire this sensitive information to sell it to a competitor organization. To achieve this,
John creates a file, let’s call it Stolen, and gives Vicky the authorization to write the file.
Note that Vicky may not even know about the existence of Stolen, or about the fact that
she has the write authorization on it. Moreover, John modifies an application generally
used by Vicky, to include two hidden operations, a read operation on file Market and a
write operation on file Stolen (Figure 4(a)). Then, he gives the new application to his
manager. Suppose now that Vicky executes the application. Since the application exe-
cutes on behalf of Vicky, every access is checked against Vicky’s authorizations, and
the read and write operations above are allowed. As a result,during execution, sensitive
information in Market is transferred to Stolen and thus madereadable to the dishonest
employee John, who can then sell it to the competitor (Figure4(b)).

The reader may object that there is little point in defendingagainst Trojan Horses
leaking information flow: such an information flow could havehappened anyway, by
having Vicky explicitly tell this information to John, possibly even off-line, without the
use of the computer system. Here is where the distinction between users and subjects
operating on their behalf comes in.While users are trusted to obey the access restric-
tions, subjects operating on their behalf are not. With reference to our example, Vicky
is trusted not to release the sensitive information she knows to John, since, according to
the authorizations, John cannot read it. However, the processes operating on behalf of
Vicky cannot be given the same trust. Processes run programswhich, unless properly
certified, cannot be trusted for the operations they execute. For this reason, restrictions
should be enforced on the operations that processes themselves can execute. In particu-
lar, protection against Trojan Horses leaking informationto unauthorized users requires
controlling the flows of information within processes execution and possibly restricting
them. Mandatory policies provide a way to enforce information flow control through
the use of labels.

4 Mandatory policies

Mandatory security policies enforce access control on the basis of regulations mandated
by a central authority. The most common form of mandatory policy is themultilevel se-
curity policy, based on the classifications ofsubjectsandobjectsin the system. Objects
are passive entities storing information. Subjects are active entities that request access
to the objects. Note that there is a distinction betweensubjectsof the mandatory policy
and theauthorization subjectsconsidered in the discretionary policies. While authoriza-
tion subjects typically correspond to users (or groups thereof), mandatory policies make
a distinction betweenusersandsubjects. Users are human beings who can access the
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Aug. 00; product X; price 7,000
Dec. 00; product Y; price 3,500
Jan. 01; product Z; price 1,200

read Market

write Stolen

File Market

Application

File Stolen

owner Vicky owner John
〈 Vicky,write,Stolen〉

(a)

Aug. 00; product X; price 7,000
Dec. 00; product Y; price 3,500
Jan. 01; product Z; price 1,200

read Market

write Stolen
�

�
�

�
�

�
�

�+

Q
Q

Q
Q

QQs

Aug. 00; product X; price 7,000
Dec. 00; product Y; price 3,500
Jan. 01; product Z; price 1,200

File Market

Vicky -invokes
Application

File Stolen

owner Vicky owner John
〈 Vicky,write,Stolen〉

(b)

Fig. 4. An example of Trojan Horse improperly leaking information
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system, while subjects are processes (i.e., programs in execution) operating on behalf
of users. This distinction allows the policy to control the indirect accesses (leakages or
modifications) caused by the execution of processes.

4.1 Security classifications

In multilevel mandatory policies, an access class is assigned to each object and sub-
ject. The access class is one element of a partially ordered set of classes. The partial
order is defined by adominancerelationship, which we denote with≥. While in the
most general case, the set of access classes can simply be anyset of labels that together
with the dominance relationship defined on them form a POSET (partially ordered set),
most commonly an access class is defined as consisting of two components: asecurity
leveland aset of categories. The security level is an element of a hierarchically ordered
set, such as Top Secret (TS), Secret (S), Confidential (C), and Unclassified (U), where
TS > S > C > U. The set of categories is a subset of an unordered set, whose elements
reflect functional, or competence, areas (e.g., NATO, Nuclear, and Army, for military
systems; Financial, Administration, and Research, for commercial systems). The dom-
inance relationship≥ is then defined as follows: an access classc1 dominates(≥) an
access classc2 iff the security level ofc1 is greater than or equal to that ofc2 and the
categories ofc1 include those ofc2. Formally, given a totally ordered set of security
levelsL , and a set of categoriesC , the set of access classes isA C = L ×℘(C )2, and
∀c1 = (L1,C1),c2 = (L2,C2) : c1 ≥ c2 ⇐⇒ L1 ≥ L2∧C1 ⊇ C2. Two classesc1 andc2

such that neitherc1 ≥ c2 norc2 ≥ c1 holds are said to beincomparable.
It is easy to see that the dominance relationship so defined ona set of access classes

A C satisfies the following properties.

– Reflexivity: ∀x∈ A C : x≥ x
– Transitivity: ∀x,y,z∈ A C : x≥ y,y≥ z=⇒ x≥ z
– Antisymmetry: ∀x,y∈ A C : x≥ y,y≥ x =⇒ x = y
– Existence of a least upper bound:∀x,y∈ A C : ∃ !z∈ A C

• z≥ x andz≥ y
• ∀t ∈ A C : t ≥ x andt ≥ y =⇒ t ≥ z.

– Existence of a greatest lower bound:∀x,y∈ A C : ∃ !z∈ A C

• x≥ zandy≥ z
• ∀t ∈ A C : x≥ t andy≥ t =⇒ z≥ t.

Access classes defined as above together with the dominance relationship between
them therefore form a lattice [31]. Figure 5 illustrates thesecurity lattice obtained con-
sidering security levelsTS andS, with TS>S and the set of categories{Nuclear,Army}.

The semantics and use of the classifications assigned to objects and subjects within
the application of a multilevel mandatory policy is different depending on whether the
classification is intended for asecrecyor anintegritypolicy. We next examine secrecy-
based and integrity-based mandatory policies.

2 ℘(C ) denotes the powerset ofC .
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TS,{Army,Nuclear}

TS,{Army} TS,{Nuclear}

TS,{ }
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S,{Army,Nuclear}

S,{Army} S,{Nuclear}

S,{ }

��������

HHHHHHHH

HHHHHHHH

��������

Fig. 5. An example of security lattice

4.2 Secrecy-based mandatory policies

A secrecy mandatory policy controls the direct andindirect flows of information to
the purpose of preventing leakages to unauthorized subjects. Here, the semantics of
the classification is as follows. The security level of the access class associated with
an object reflects the sensitivity of the information contained in the object, that is, the
potential damage that could result from the unauthorized disclosure of the information.
The security level of the access class associated with a user, also calledclearance, re-
flects the user’s trustworthiness not to disclose sensitiveinformation to users not cleared
to see it. Categories define the area of competence of users and data and are used to
provide finer grained security classifications of subjects and objects than classifications
provided by security levels alone. They are the basis for enforcing need-to-knowre-
strictions (i.e., confining subjects to access informationthey actually need to know to
perform their job).

Users can connect to the system at any access class dominatedby their clearance.
A user connecting to the system at a given access class originates a subject at that
access class. For instance, with reference to the lattice inFigure 5, a user cleared
(TS,{Nuclear}) can connect to the system as a (S,{Nuclear}), (TS, /0), or (TS, /0) sub-
ject. Requests by a subject to access an object are controlled with respect to the access
class of the subject and the object and granted only if some relationship, depending on
the requested access, is satisfied. In particular, two principles, first formulated by Bell
and LaPadula [12], must be satisfied to protect information confidentiality:

No-read-up A subject is allowed a read access to an object only if the access class of
the subject dominates the access class of the object.

No-write-down A subject is allowed a write access to an object only if the access class
of the subject is dominated by the access class of the object.

Satisfaction of these two principles prevents informationto flow from high level
subjects/objects to subjects/objects at lower (or incomparable) levels, thereby ensuring
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Fig. 6. Information flow for secrecy

the satisfaction of the protection requirements (i.e., no process will be able to make
sensitive information available to users not cleared for it). This is illustrated in Figure 6,
where four accesses classes composed only of a security level (TS, S, C, andU) are taken
as example. Note the importance of controlling both read andwrite operations, since
both can be improperly used to leak information. Consider the example on the Trojan
Horse illustrated in Section 3. Possible classifications reflecting the access restrictions
to be enforced could be: Secret for Vicky and Market, and Unclassified for John and
Stolen. In the respect of the no-read-up and no-write-down principles, the Trojan Horse
will never be able to complete successfully. If Vicky connects to the system as a Secret
(or Confidential) subject, and thus the application runs with a Secret (or Confidential)
access class, the write operation will be blocked. If Vicky invokes the application as an
Unclassified subject, the read operation will be blocked instead.

Given the no-write-down principle, it is clear now why usersare allowed to connect
to the system at different access classes, so that they are able to access information at
different levels (provided that they are cleared for it). For instance, Vicky has to connect
to the system at a level below her clearance if she wants to write some Unclassified
information, such as working instructions for John. Note that a lower class does not
mean “less” privileges in absolute terms, but only less reading privileges (see Figure 6).

Although users can connect to the system at any level below their clearance, the
strict application of the no-read-up and the no-write-downprinciples may result too
rigid. Real world situations often require exceptions to the mandatory restrictions. For
instance, data may need to be downgraded (e.g., data subjectto embargoes that can be
released after some time). Also, information released by a process may be less sensitive
than the information the process has read. For instance, a procedure may access per-
sonal information regarding the employees of an organization and return the benefits to
be granted to each employee. While the personal informationcan be considered Secret,
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the benefits can be considered Confidential. To respond to situations like these, mul-
tilevel systems should then allow for exceptions, loosening or waiving restrictions, in
a controlled way, to processes that aretrustedand ensure that information issanitized
(meaning the sensitivity of the original information is lost).

Note also that DAC and MAC policies are not mutually exclusive, but can be applied
jointly. In this case, an access to be granted needs bothi) the existence of the necessary
authorization for it, andii) to satisfy the mandatory policy. Intuitively, the discretionary
policy operateswithin the boundariesof the mandatory policy: it can only restrict the
set of accesses that would be allowed by MAC alone.

4.3 The Bell-LaPadula model (some history)

The secrecy based control principles just illustrated summarize the basic axioms of the
security model proposed by David Bell and Leonard LaPadula [12]. Here, we illustrate
some concepts of the model formalization to give an idea of the different aspects to be
taken into account in the definition of a security model. Thislittle bit of history is useful
to understand the complications of formalizing a policy andmaking sure that the policy’
axioms actually ensure protection as intended. We note firstthat different versions of the
model have been proposed (due to the formalization of new properties [10, 12, 55], or
related to specific application environments [11]), however the basic principles remain
the same (and are those illustrated in the previous section). Also, here we will be looking
only at the aspects of the formalization needed to illustrate the concepts we want to
convey: for the sake of simplicity, the formulation of the model is simplified and some
aspects are omitted.

In the Bell and LaPadula model a system is composed of a set of subjectsS, objects
O, and actionsA, which includesread andwrite3. The model also assumes a lattice
L of access classes and a functionλ : S∪O → L that, when applied to a subject (ob-
ject, resp.) in a given state, returns the classification of the subject (object, resp.) in that
state. A statev∈V is defined as a triple(b,M,λ), whereb∈℘(S×O×A) is the set of
current accesses(s,o,a), M is the access matrix expressing discretionary permissions
(as in the HRU model), andλ is the association of access classes with subjects and
objects. A system consists of an initial statev0, a set of requestsR, and a state transi-
tion functionT : V ×R→V that transforms a system state into another state resulting
from the execution of a request. Intuitively, requests capture acquisition and release of
accesses, granting and revocation of authorizations, as well as changes of levels. The
model then defines a set of axioms stating properties that thesystem must satisfy and
that express the constraints imposed by the mandatory policy. The first version of the
Bell and LaPadula model stated the following criteria.

simple property A statev satisfies the simple security property iff for everys∈ S,
o∈ O: (s,o,read) ∈ b =⇒ λ(s) ≥ λ(o).

*-property A statevsatisfies the *-security property iff for everys∈S, o∈O: (s,o,write)∈
b =⇒ λ(o) ≥ λ(s).

3 For uniformity of the discussion, we use the term “write” here to denote the “write-only” (or
“append”) action.
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The two axioms above correspond to the no-read-up and no-write-down principles
we have illustrated in Section 4.2. A state is then defined to be secure if it satisfies both
the simple security property and the *-property. A system(v0,R,T) is secure if and only
if every state reachable fromv0 by executing one or more finite sequences of requests
from R is state secure.

In the first formulation of their model, Bell and LaPadula provide aBasic Security
Theorem (BST), which states that a system is secure ifi) its initial statev0 is secure, and
ii) the state transitionT is security preserving, that is, it transforms a secure state into
another secure state.

As noticed by McLean in his example called “System Z” [63], the BST theorem
does not actually guarantee security. The problem lies in the fact that no restriction,
but to be preserving of state security, is put on transitions. In his System Z example,
McLean shows how failing to control transitions can compromise security. Consider a
systemZ whose initial state is secure and that has only one type of transition: when a
subject requests any type of access to an objecto, every subject and object in the system
are downgraded to the lowest possible access class and the access is granted. System
Z satisfies the Bell and LaPadula notion of security, but it isobviously not secure in
any meaningful sense. The problem pointed out by System Z is that transitions need to
be controlled. Accordingly, McLean proposes extending themodel with a new function
C : S∪O →℘(S), which returns the set of subjects allowed to change the level of its
argument. A transition is secure if it allows changes to the level of a subject/object
x only by subjects inC(x); intuitively, these are subjects trusted for downgrading.A
system (v0,R,T) is secureif and only if i) v0 is secure,ii) every state reachable fromv0

by executing a finite sequence of one or more requests fromR is (BLP) secure, andiii)
T is transition secure.

The problem with changing the security level of subjects andobjects was not cap-
tured formally as an axiom or property in the Bell and LaPadula, but as an informal
design guidance calledtranquility principle. The tranquility principle states that the
classification of active objects should not be changed during normal operation [55].
A subsequent revision of the model [10] introduced a distinction between the level
assigned to a subject (clearance) and its current level (which could be any level dom-
inated by the clearance), which also implied changing the formulation of the axioms,
introducing more flexibility in the control.

Another property included in the Bell and LaPadula model is thediscretionary prop-
erty which constraints the set of current accessesb to be a subset of the access matrix
M. Intuitively, it enforces discretionary controls.

4.4 Integrity-based mandatory policies: The Biba model

The mandatory policy that we have discussed above protects only the confidentiality of
the information; no control is enforced on its integrity. Low classified subjects could still
be able to enforce improper indirect modifications to objects they cannot write. With
reference to our organization example, for instance, integrity could be compromised if
the Trojan Horse implanted by John in the application would write data in file Market
(this operation would not be blocked by the secrecy policy).Starting from the principles
of the Bell and LaPadula model, Biba [16] proposed a dual policy for safeguarding
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Fig. 7. Information flow for integrity

integrity, which controls the flow of information and prevents subjects toindirectly
modify information they cannot write. Like for secrecy, each subject and object in the
system is assigned an integrity classification. The classifications and the dominance
relationship between them are defined as before. Example of integrity levels can be:
Crucial (C), Important (I), and Unknown (U). The semantics of integrity classifications
is as follows. The integrity level associated with a user reflects the user’s trustworthiness
for inserting, modifying, or deleting information. The integrity level associated with an
object reflects both the degree of trust that can be placed on the information stored in
the object and the potential damage that could result from unauthorized modifications
of the information. Again, categories define the area of competence of users and data.
Access control is enforced according to the following two principles:

No-read-down A subject is allowed a read access to an object only if the access class
of the object dominates the access class of the subject.

No-write-up A subject is allowed a write access to an object only if the access class of
the subject dominates the access class of the object.

Satisfaction of these principles safeguard integrity by preventing information stored
in low objects (and therefore less reliable) to flow to higher, or incomparable, objects.
This is illustrated in Figure 7, where classes composed onlyof integrity levels (C,I, and
U) are taken as example.

The two principles above are the dual of the two principles formulated by Bell
and LaPadula. Biba’s proposal also investigated alternative criteria for safeguarding in-
tegrity, allowing for more dynamic controls. These included the following two policies.

Low-water mark for subjects It constraints write operations according to the no-write-
up principle. No restriction is imposed on read operations.However, a subjects that
reads an objecto has its classification downgraded to the greatest lower bound of
the classification of the two, that is,λ′(s) = glb(λ(s),λ(o)).
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Low-water mark for objects It constraints read operations according to the no-read-
down principle. No restriction is imposed on write operations. However, if a subject
s writes an objecto, the object has its classification downgraded to the greatest
lower bound of the classification of the two, that is,λ′(o) = glb(λ(s),λ(o)).

Intuitively, the two policies attempt to apply a more dynamic behavior in the en-
forcement of the constraints. The two approaches suffer however of drawbacks. In the
low-water mark for subjects approach, the ability of a subject to execute a procedure
may depend on the order with which operations are requested:a subject may be denied
the execution of a procedure because of read operations executed before. The latter
policy cannot actually be considered as safeguarding integrity: given that subjects are
allowed to write above their level, integrity compromises can certainly occur; by down-
grading the level of the object the policy simply signals this fact.

As it is visible from Figures 6 and 7, secrecy policies allow the flow of information
only from lower to higher (secrecy) classes while integritypolicies allow the flow of
information only from higher to lower (integrity) classes.If both secrecy and integrity
have to be controlled, objects and subjects have to be assigned two access classes, one
for secrecy control and one for integrity control.

A major limitation of the policies proposed by Biba is that they only capture in-
tegrity compromises due to improper information flows. However, integrity is a much
broader concept and additional aspects should be taken intoaccount (see Section 6.5).

4.5 Applying mandatory policies to databases

The first formulation of the multilevel mandatory policies,and the Bell LaPadula model,
simply assumed the existence of objects (information container) to which a classifica-
tion is assigned. This assumption works well in the operating system context, where ob-
jects to be protected are essentially files containing the data. Later studies investigated
the extension of mandatory policies to database systems. While in operating systems
access classes are assigned to files, database systems can afford a finer-grained classi-
fication. Classification can in fact be considered at the level of relations (equivalent to
file-level classification in OS), at the level of columns (different properties can have a
different classification), at the level of rows (propertiesreferred to a given real world
entity or association have the same classification), or at the level of single cells (each
data element, meaning the value assigned to a property for a given entity or association,
can have a different classification), this latter being the finest possible classification.
Early efforts to classifying information in database systems, considered classification at
the level of each single element [50, 61]. Element-level classification is clearly appeal-
ing since it allows the assignment of a security class to eachsingle real world fact that
needs to be represented. For instance, an employee’s name can be labeled Unclassified,
while his salary can be labeled Secret; also the salary of different employees can take
on different classifications. However, the support of fine-grained classifications together
with the obvious constraint of maintaining secrecy in the system operation introduces
complications. The major complication is represented by the so calledpolyinstantiation
problem [49, 60], which is probably one of the main reasons why multilevel databases
did not have much success. Generally speaking, polyinstantiation is the presence in the
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Name λN Dept λD Salary λS

Bob U Dept1 U 100K U
Jim U Dept1 U 100K U
Ann S Dept2 S 200K S
Sam U Dept1 U 150K S

(a)

Name λN Dept λD Salary λS

Bob U Dept1 U 100K U
Jim U Dept1 U 100K U
Sam U Dept1 U – U

(b)

Fig. 8. An example of multilevel relation (a) and the Unclassified view on it (b)

system of multiple instances of the same real world fact or entity, where the instances
differ for the access class associated with them.

To illustrate the problem, let us start giving the definitionof multilevel relational
database. A relational database is composed of a finite set ofrelations, each defined
over a set of attributesA1, . . . ,An (columns of the relation). Each relation is composed
of a set of tuplest1, . . . ,tk (rows of the relation) mapping attributes to values over their
domain. A subset of the attributes, called key attributes, are used to uniquely identify
each tuple in the relation, and the followingkey constraintsare imposed:i) no two tuples
can have the same values for the key attributes, andii) key attributes cannot be null. In a
multilevel relational database supporting element-levellabeling, an access classλ(t[A])
is associated with each elementt[A] in a relation. An example of multilevel relation
is illustrated in Figure 8(a). Note that the classification associated with a value does
not represent the absolute sensitivity of the value as such,but rather the sensitivity of
the fact that the attribute takes on that value for a specific entity in the real world. For
instance, classification Secret associated with value150K of the last tuple is not the
classification of value150K by itself, but of the fact that it is the salary ofSam.4

Access control in multilevel DBMSs applies the two basic principles discussed in
Section 4.2, although the no-write-up restriction is usually reduced to the principle of
“write at their own level”. In fact, while write-up operations can make sense in operating
systems, where a file is seen as an information container and subjects may need to
append low-level data in a high-level container, element-level classification nullifies
this reasoning.

Subjects at different levels have different views on a relation, which is the view
composed only of elements they are cleared to see (i.e., whose classification they dom-
inate). For instance, the view of an Unclassified subject on the multilevel relation in
Figure 8(a) is the table in Figure 8(b). Note that, in principle, to not convey informa-
tion, the Unclassified subject should see no difference between values that are actually
null in the database and those that arenull since they have a higher classification.5

To produce a view consistent with the relational database constraints the classification
needs to satisfy at least the following two basic constraints: i) the key attributes must be

4 Note that this is not meant to say that the classification of anelement is independent of its
value. As a matter of fact it can depend on the value; for instance a classification rule may
state that all salaries above 100K must be classified as Secret [30].

5 Some proposals do not adopt this assumption. For instance, in LDV [43], a special value “re-
stricted” appears in a subject’s view to denote the existence of values not visible to the subject.
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Name λN Dept λD Salary λS

Bob U Dept1 U 100K U
Jim U Dept1 U 100K U
Ann S Dept2 S 200K S
Sam U Dept1 U 150K S
Ann U Dept1 U 100K U
Sam U Dept1 U 100K U

(a)

Name λN Dept λD Salary λS

Bob U Dept1 U 100K U
Jim U Dept1 U 100K U
Ann U Dept1 U 100K U
Sam U Dept1 U 100K U

(b)

Fig. 9.An example of a relation with polyinstantiation (a) and the Unclassified view on it (b)

uniformly classified, andii) the classifications of nonkey attributes must dominate that
of key attributes. If it were not so, the view at some levels would contain a null value
for some or all key attributes (and therefore would not satisfy the key constraints).

To see how polyinstantiation can arise, suppose that an Unclassified subject, whose
view on the table in Figure 8(a) is as illustrated in Figure 8(b), requests insertion of tu-
ple (Ann, Dept1, 100K). According to the key constraints imposed by the relational
model, no two tuples can have the same value for the key attributes. Therefore if clas-
sifications were not taken into account, the insertion couldhave not been accepted. The
database could have two alternative choices:i) tell the subject that a tuple with the same
key already exists, orii) replace the old tuple with the new one. The first solution intro-
duces acovert channel6, since by rejecting the request the system would be revealing
protected information (meaning the existence of a Secret entity namedAnn), and clearly
compromises secrecy. On the other hand, the second solutioncompromises integrity,
since high classified data would be lost, being overridden bythe newly inserted tuple.
Both solutions are therefore inapplicable. The only remaining solution would then be
to accept the insertion and manage the presence of both tuples (see Figure 9(a)). Two
tuples would then exist with the same value, but different classification, for their key
(polyinstantiated tuples). A similar situation happens if the unclassified subject requests
to update the salary ofSam to value100K. Again, telling the subject that a value already
exists would compromise secrecy (if the subject is not suppose to distinguish between
real nulls and values for which it does not have sufficient clearance), while overwriting
the existing Secret value would compromise integrity (as the Secret salary would be
lost). The only remaining solution would therefore seem to be to accept the insertion
(Figure 9(a)), implying then the existence of two tuples with the same value and classi-
fication for their key, but with different value and classification for one of their attributes
(polyinstantiated elements). Note that, when producing the view visible to a subject in
the presence of polyinstantiation, the DBMS must completely hide those tuples with
high polyinstiated values that the subject cannot see. For instance, an unclassified sub-
ject querying the relation in Figure 9(a) will see only one tuple for Ann and Sam (see
Figure 9(b)).

6 We will talk more about covert channels in Section 4.6.
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Name λN Dept λD Salary λS

Bob U Dept1 U 100K U
Jim U Dept1 U 100K U
Ann S Dept2 S 200K S
Sam U Dept1 U 150K S
Bob S Dept2 S 200K S
Jim U Dept1 U 150K S

(a)

Name λN Dept λD Salary λS

Bob U Dept1 U 100K U
Jim U Dept1 U 100K U
Sam U Dept1 U – U

(b)

Fig. 10.An example of a relation with polyinstantiation (a) and the Unclassified view on it (b)

Polyinstantiation can also occur because of requests by high level subjects. For in-
stance, consider again the relation in Figure 8(a) and assume a Secret subject requests
to insert tuple(Bob, Dept2, 200K). A tuple with keyBob already exists at level Un-
classified. If key uniqueness is to be preserved, the system can eitheri) inform the
subject of the conflict and refuse the insertion, orii) overwrite the existing tuple. Again,
the solution of refusing insertion is not advisable: although it would not leak protected
information, it introducesdenials-of-service, since high level subjects would not be al-
lowed to insert data. The second solution also is not viable since it would introduce a
covert channel due to the effect that the overwriting would have on the view of lower
level subjects (which would see the Unclassified tuple disappear). Again, the only pos-
sible solution seems to be to accept the insertion and have the two (polyinstantiated)
tuples coexist (see Figure 10(a)). A similar problem would arise at the attribute level,
for update operations. For instance, if a secret subject requires updating Jim’s salary to
150K, polyinstantiated elements would be introduced (see Figure 10(a)).

Earlier work in multilevel database systems accepted polyinstantiation as an in-
evitable consequence of fine-grained classification and attempted to clarify the seman-
tics of the database states in the presence of polyinstantiation [50, 61]. For instance,
the presence of two tuples with the same value, but differentclassification, for the pri-
mary key (tuple polyinstantiation) can be interpreted as the existence oftwo different
entitiesof the real world (one of which is known only at a higher level). The pres-
ence of two tuples with the same key and same key classification but that differ for
the value and classification of some of its attributes can be interpreted as asinglereal
world entity for which different values are recorded (corresponding to the different be-
liefs at different levels). However, unfortunately, polyinstantiation quickly goes out of
hand, and the execution of few operations could result in a database whose seman-
tics does not appear clear anymore. Subsequent work tried toestablish constraints to
maintain semantic integrity of the database status [69, 75,90]. However, probably be-
cause of all the complications and semantics confusion thatpolyinstantiation bears,
fine-grained multilevel databases did not have much success, and current DBMSs do
not support element-level classification. Commercial systems (e.g., Trusted Oracle [66]
and SYBASE Secure SQL Server) support tuple level classification.
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It is worth noticing that, although polyinstantiation is often blamed to be the reason
why multilevel relational databases did not have success, polyinstantiation is not neces-
sarily always bad. Controlled polyinstantiation may, for example, be useful to support
cover stories[38, 49], meaning non-true data whose presence in the database is meant
to hide the existence of the actual value. Cover stories are useful when the fact that a
given data is not released is by itself a cause of informationleakage. For instance, sup-
pose that a subject requires access to a hospital’s data and the hospital returns, for all its
patients, but for few of them, the illness for which they are being cured. Suppose also
that HIV never appears as an illness value. Observing this, the recipient may infer that it
is probably the case that the patients for which illness is not disclosed suffer from HIV.
The hospital could have avoided exposure to such an inference by simply releasing a
non-true alternative value (cover story) for these patients. Intuitively, cover stories are
“lies” that the DBMS says to uncleared subjects not to disclose (directly or indirectly)
the actual values to be protected. We do note that, while cover stories are useful for pro-
tection, they have raise objections for the possible integrity compromises which they
may indirectly cause, as low level subjects can base their actions on cover stories they
believe true.

A complicating aspects in the support of a mandatory policy at a fine-grained level
is that the definition of the access class to be associated with each piece of data is not
always easy [30]. This is the case, for example, ofassociationandaggregationrequire-
ments, where the classification of a set of values (properties, resp.) is higher than the
classification of each of the values singularly taken. As an example, while names and
salaries in an organization may be considered Unclassified,the association of a specific
salary with an employee’s name can be considered Secret (association constraint). Sim-
ilarly, while the location of a single military ship can be Unclassified, the location of all
the ships of a fleet can be Secret (aggregation constraint), as by knowing it one could
infer that some operations are being planned. Proper data classification assignment is
also complicated by the need to take into account possible inference channels [30, 47,
59]. There is an inference channel between a set of datax and a set of datay if, by
knowingx a user can infer some information ony (e.g., an inference channel can exist
between an employee’s taxes and her salary). Inference-aware classification requires
that no informationx be classified at a level lower (or incomparable) than the level
of the informationy that can be inferred from it. Capturing and blocking all inference
channels is a complex process, also because of the intrinsicdifficulty of detecting all
the semantics relationships between the data that can causeinference channels.

An interesting point that must be taken into account in multilevel database systems
is the system architecture, which is concerned with the needof confining subjects ac-
cessing a multilevel database to the data that can be made visible to them. This problem
comes out in any data system where classification has a finer granularity than the stored
objects (e.g., multilevel object-oriented systems). Two possible approaches are [68]:

– Trusted subject:data at different levels are stored in a single database (Figure 11(a)).
The DBMS itself must betrustedto ensure obedience of the mandatory policy (i.e.,
subjects will not gain access to data whose classification they do not dominate).

– Trusted computing base:data are partitioned in different databases, one for each
level (Figure 11(b)). In this case only the operating systemneeds to be trusted since
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Fig. 11.Multilevel DBMSs architectures

every DBMS will be confined to data which subjects using that DBMS can access.
Decomposition and recovery algorithms must be carefully constructed to be correct
and efficient [33].

4.6 Limitations of mandatory policies

Although mandatory policies, unlike discretionary ones, provide protection against in-
direct information leakages they do not guarantee completesecrecy of the information.
In fact, secrecy mandatory policies (even with tranquility) control onlyovertchannels
of information (i.e., flow throughlegitimatechannels); they still remain vulnerable to
covert channels. Covert channels are channels that are not intended for normal com-
munication, but still can be exploited to infer information. For instance, consider the
request of a low level subject to write a non-existent high level file (the operation is
legitimate since write-up operations are allowed). Now, ifthe system returns the error,
it exposes itself to improper leakages due to malicious highlevel processes creating and
destroying the high level file to signal information to low processes. However, if the low
process is not informed of the error, or the system automatically creates the file, subjects
may not be signalled possible errors made in legitimate attempts to write. As another
example, consider a low level subject that requires a resource (e.g., CPU or lock) that
is busy by a high level subject. The system, by not allocatingthe resource because it is
busy, can again be exploited to signal information at lower levels (high level processes
can module the signal by requiring or releasing resources).If a low process can see any
different result due to a high process operation, there is a channel between them. Chan-
nels may also be enacted without modifying the system’s response to processes. This is,
for example, the case oftiming channels, that can be enacted when it is possible for a
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high process to affect the system’s response time to a low process. With timing channels
the response that the low process receives is always the same, it is the time at which the
low process receives the response that communicates information. Therefore, in princi-
ple, anycommon resource or observable propertyof the system state can be used to leak
information. Consideration of covert channels requires particular care in the design of
the enforcement mechanism. For instance, locking and concurrency mechanisms must
be revised and be properly designed [7]. A complication in their design is that care
must be taken to avoid the policy for blocking covert channels to introduce denials-of-
service. For instance, a trivial solution to avoid covert channels between high and low
level processes competing over common resources could be toalways give priority to
low level processes (possibly terminating high level processes). This approach, how-
ever, exposes the systems to denials-of-service attacks whereby low level processes can
impede high level (and therefore, presumably, more important) processes to complete
their activity.

Covert channels are difficult to control also because of the difficulty of mapping
an access control model’s primitive to a computer system [64]. For this reason, covert
channels analysis is usually carried out in the implementation phase, to make sure that
the implementation of the model’s primitive is not too weak.Covert channel analysis
can be based on tracing the information flows in programs [31], checking programs for
shared resources that can be used to transfer information [52], or checking the system
clock for timing channels [92]. Beside the complexity, the limitation of such solutions
is that covert channels are found out at the end of the development process, where
system changes are much more expensive to correct. Interface models have been pro-
posed which attempt to rule out covert channels analysis in the modeling phase [64,
37]. Rather than specifying a particular method to enforce security, interface models
specify restrictions on a system’s input/output that must be obeyed to avoid covert
channels. It is then task of the implementor to determine a method for satisfying the
specifications. A well known principle which formed the basis of interface models
is thenon-interferenceprinciple proposed by Goguen and Meseguer [40]. Intuitively,
non-interference requires that high-level input cannot interfere with low-level output.
Non-interference constraints enhance the security properties that can be formalized and
proved in the model; it is however important to note that security models do not estab-
lish complete security of the system, they merely establishsecurity with respect to a
model, they can prove only properties that have been captured into the model.

5 Enriching DAC with mandatory restrictions

As we have discussed in the previous section, mandatory policies guarantee better secu-
rity than discretionary policies, since they can also control indirect information flows.
However, their application may result too rigid. Several proposals have attempted a
combination of mandatory flow control and discretionary authorizations. We illustrate
some of them in this section.
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ObjA-1 ObjA-2
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ObjB-1 ObjB-2

Company A Company B

Conflict of interest class

ObjC-1
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ObjD-1

Company C Company D

Conflict of interest class

Fig. 12.An example of object organization

5.1 The Chinese Wall policy

The Chinese Wall [22] policy was introduced as an attempt to balance commercial
discretion with mandatory controls. The goal is to prevent information flows which
cause conflict of interest for individual consultants (e.g., an individual consultant should
not have information about two banks or two oil companies). However, unlike in the
Bell and LaPadula model, access to data is not constrained bythe data classifications but
by what data the subjects have already accessed. The model isbased on a hierarchical
organization of data objects as follows:

– basic objectsare individual items of information (e.g., files), each concerning a
single corporation;

– company datasetsdefine groups of objects that refer to a same corporation;
– conflict of interest classesdefine company datasets that refer to competing corpo-

rations.

Figure 12 illustrates an example of data organization wherenine objects of four
different corporations, namelyA,B,C, andD, are maintained. Correspondingly four com-
pany datasets are defined. The two conflict of interest classes depicted define the con-
flicts betweenA andB, and betweenC andD.

Given the object organization as above, the Chinese Wall policy restricts access
according to the following two properties [22]:

Simple security rule A subjectscan be granted access to an objecto only if the object
o:

– is in the same company datasets as the objects already accessed bys, that is,
“within the Wall”, or

– belongs to an entirely different conflict of interest class.

*-property Write access is only permitted if

– access is permitted by the simple security rule, and
– no object can be read whichi) is in a different company dataset than the one

for which write access is requested, andii) contains unsanitized information.
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The term subject used in the properties is to be interpreted as user (meaning access
restrictions are referred to users). The reason for this is that, unlike mandatory policies
that control processes, the Chinese Wall policy controls users. It would therefore not
make sense to enforce restrictions on processes as a user could be able to acquire infor-
mation about organizations that are in conflict of interest simply running two different
processes.

Intuitively, the simple security rule blocks direct information leakages that can be
attempted by a single user, while the *-property blocks indirect information leakages
that can occur with the collusion of two or more users. For instance, with reference to
Figure 12, an indirect improper flow could happen if,i) a user reads information from
object ObjA-1 and writes it into ObjC-1, and subsequentlyii) a different user reads
information from ObjC-1 and writes it into ObjB-1.

Clearly, the application of the Chinese Wall policy still has some limitations. In par-
ticular, strict enforcement of the properties may result too rigid and, like for the manda-
tory policy, there will be the need for exceptions and support of sanitization (which is
mentioned, but not investigated, in [22]). Also, the enforcement of the policies requires
keeping and querying the history of the accesses. A further point to take into consid-
eration is to ensure that the enforcement of the properties will not block the system
working. For instance, if in a system composed of ten users there are eleven company
datasets in a conflict of interest class, then one dataset will remain inaccessible. This
aspect was noticed in [22], where the authors point out that there must be at least as
many users as the maximum number of datasets which appear together in a conflict of
interest class. However, while this condition makes the system operation possible, it
cannot ensure it when users are left completely free choice on the datasets they access.
For instance, in a system with ten users and ten datasets, again one dataset may remain
inaccessible if two users access the same dataset.

Although the model does have some limitations and drawbacks, the Chinese Wall
policy represents a good example ofdynamic separation of dutyconstraints present in
the real world, and has been taken as a reference in the development of several subse-
quent policies and models (see Section 7).

5.2 Authorization-based information flow policies

Other proposals that tried to overcome the vulnerability ofdiscretionary policies have
worked on complementing authorization control with information flow restrictions, in-
terpreting the mandatory and information flow policies [31,55] in a discretionary con-
text.

The work in [19, 51] proposes interposing, between programsand the actual file
system, a protected system imposing further restrictions.In particular, Boebert and Fer-
guson [19] forces all files to go through a dynamic linker thatcompares the name of
the user who invoked the program, the name of the originator of the program, and the
name of the owner of any data files. If a user invokes a program owned by someone else
and the program attempts to write the user’s files, the dynamic linker will recognize the
name mismatch and raise an alarm. Karger [51] proposes instead the specification of
name restrictions on the files that programs can access, and the refusal by the system of
all access requests not satisfying the given patterns (e.g., a FORTRAN compiler may be
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restricted to read only files with suffix “.for” and to create only files with suffix “.obj”
and “.lis”).

McCollum et al. [62] point out data protection requirementsthat neither the discre-
tionary nor the mandatory policies can effectively handle.They propose a dissemination
control system that maintains access control over one’s data by attaching to the data ob-
ject an access control list (imposing access restrictions)that propagates, through subject
and object labels, to all objects into which its content may flow. Examples of restrictions
can be:NOCONTRACT(meaning no access to contractors) orNOFORN(no releasable to
foreign nationals). By propagating restrictions and enforcing the control, intuitively, the
approach behaves like a dynamic mandatory policy; however,explicit restrictions in the
access list give more flexibility than mandatory security labels. The model also provides
support for exceptions (the originator of an ACL can allow restrictions to be waived)
and downgrading (trusted subjects can remove restrictionsimposed on objects).

A similar approach appears in [85], which, intuitively, interprets the information
flow model of Denning [31] in the discretionary context. In [85] each object has two
protection attributes: thecurrent accessand thepotential access. The current access
attribute describes what operations each user can apply on the object (like traditional
ACLs). It is a subset of the potential access attribute. The potential access attribute de-
scribes what operations which users can potentially apply to the information contained
in that object, information that, in the future, may be contained in any object and may
be of any type. The potential access attributes therefore control information flow. When
a new value of some objecty is produced as a function of objects inx1, . . . ,xn, then
the potential access attribute ofy is set to be the intersection of the potential access
attributes ofx1, . . . ,xn.

Walter et al. [87] propose an interpretation of the mandatory controls within the
discretionary context. Intuitively, the policy behind this approach, which we callstrict
policy, is based on the same principles as the mandatory policy. Access control lists are
used in place of labels, and the inclusion relationship between sets is used in place of
the dominance relationship between labels. Information flow restrictions impose that a
process can write an objecto only if o is protected in reading at least as all the objects
read by the process up to that point. (An objecto is at least as protected in reading as
another objecto′ if the set of subjects allowed to reado is contained in the set of subjects
allowed to reado′.) Although the discretionary flexibility of specifying accesses is not
lost, the overall flexibility is definitely reduced by the application of the strict policy.
After having read an objecto, a process is completely unable to write any object less
protected in reading thano, even if the write operation would not result in any improper
information leakage.

Bertino et al. [14] present an enhancement of the strict policy to introduce more flex-
ibility in the policy enforcement. The proposal bases on theobservation that whether
or not some information can be released also depends on the procedure enacting the re-
lease. A process may access sensitive data and yet not release any sensitive information.
Such a process should be allowed to bypass the restrictions of the strict policy, thus rep-
resenting anexception. On the other side, the information produced by a process may
be more sensitive than the information the process has read.An exception should in this
case restrict the write actions otherwise allowed by the strict policy. Starting from these
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observations, Bertino et al. [14] allow procedures to be granted exceptions to the strict
policy. The proposal is developed in the context of object-oriented systems, where the
modularity provided by methods associated with objects allows users to identify spe-
cific pieces oftrustedcode for which exceptions can be allowed, and therefore provide
flexibility in the application of the control. Exceptions can be positive or negative. A
positive exception overrides a restriction imposed by the strict policy, permitting an
information flow which would otherwise be blocked. A negative exception overrides a
permission stated by the strict policy forbidding an information flow which would other-
wise be allowed. Two kinds of exceptions are supported by themodel:reply-exceptions
andinvoke-exceptions. Reply exceptions apply to the information returned by a method.
Intuitively, positive reply exceptions apply when the information returned by a method
is less sensitive than the information the method has read. Reply exceptions can waive
the strict policy restrictions and allow information returned by a method to be disclosed
to users not authorized to read the objects that the method has read. Invoke exceptions
apply during a method’s execution, for write operations that the method requests. Intu-
itively, positive invoke exceptions apply to methods that are trusted not to leak (through
write operations or method invocations) the information they have acquired. The mech-
anism enforcing the control is based on the notion ofmessage filterfirst introduced
by Jajodia and Kogan [46] for the enforcement of mandatory policies in object-oriented
systems. Themessage filteris a trusted system component that acts as a reference moni-
tor, intercepting every message exchanged among the objects in a transaction execution
to guarantee that no unsafe flow takes place. To check whethera write or create op-
eration should be blocked, the message filter in [14] keeps track of the information
transmitted between executions and of the users who are allowed to know (read) it. A
write operation on objecto is allowed if, based on the ACLs of the objects read and on
the exceptions encountered, the information can be released to all users who have read
privileges ono.

6 Discretionary access control policies

In Section 2 we introduced the basic concepts of the discretionary policy by illustrating
the access matrix (or HRU) model. Although the access matrixstill remains a frame-
work for reasoning about accesses permitted by a discretionary policy, discretionary
policies have developed considerably since the access matrix was proposed.

6.1 Expanding authorizations

Even early approaches to authorization specifications allowedconditionsto be associ-
ated with authorizations to restrict their validity. Conditions can make the authorization
validity dependent on the satisfaction of some system predicates (system-dependent
conditions) like the time or location of access. For instance, a condition can be asso-
ciated with the bank-clerks’ authorization to access accounts, restricting its application
only from machines within the bank building and in working hours. Conditions can
also constraint access depending on the content of objects on which the authorization
is defined (content-dependentconditions). Content-dependent conditions can be used
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Fig. 13.An example of user-group hierarchy

simply as way to determine whether or not an access to the object should be granted
or as way to restrict the portion of the object that can be accessed (e.g., a subset of
the tuples in a relation). This latter option is useful when the authorization object has a
coarser granularity than the one supported by the data model[29]. Other possible con-
ditions that can be enforced can make an access decision depend on accesses previously
executed (history dependentconditions).

Another feature usually supported even by early approachesis the concept ofuser
groups(e.g., Employees, Programmers, Consultants). Groups can be nested and need
not be disjoint. Figure 13 illustrates an example of user-group hierarchy. Support of
groups greatly simplifies management of authorizations, since a single authorization
granted to a group can be enjoyed by all its members. Later efforts moved to the sup-
port of groups on all the elements of the authorization triple (i.e., subject, object, and ac-
tion), where, typically, groups are abstractions hierarchically organized. For instance, in
an operating system the hierarchy can reflect the logical filesystem tree structure, while
in object-oriented system it can reflect the class (is-a) hierarchy. Figure 14 illustrates
an example of object hierarchy. Even actions can be organized hierarchically, where
the hierarchy may reflect an implication of privileges (e.g., write is more powerful than
read [70]) or a grouping of sets of privileges (e.g., a “writing privileges” group can be
defined containing write, append, and undo [84]). These hierarchical relationships can
be exploitedi) to support preconditions on accesses (e.g., in Unix a subject needs the
execute,x, privilege on a directory in order to access the files within it), or ii) to sup-
port authorization implication, that is, authorizations specified on an abstraction apply
to all its members. Support of abstractions with implications provides a short hand way
to specify authorizations, clearly simplifying authorization management. As a matter
of fact, in most situations the ability to execute privileges depends on the membership
of users into groups or objects into collections: translating these requirements into ba-
sic triples of the form (user,object,action) that then haveto be singularly managed is a
considerable administrative burden, and makes it difficultto maintain both satisfactory
security and administrative efficiency. However, althoughthere are cases where abstrac-
tions can work just fine, many will be the cases where exceptions (i.e., authorizations
applicable to all members of a group but few) will need to be supported. This observa-
tion has brought to the combined support of bothpositiveandnegativeauthorizations.
Traditionally, positive and negative authorizations havebeen used in mutual exclusion
corresponding to two classical approaches to access control, namely:
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Closed policy: authorizations specify permissions for an access (like in the HRU model).
The closed policy allows an access if there exists a positiveauthorization for it, and
denies it otherwise.

Open policy: (negative) authorizations specify denials for an access. The open policy
denies an access if there exists a negative authorization for it, and allows it other-
wise.

The open policy has usually found application only in those scenarios where the
need for protection is not strong and by default access is to be granted. Most systems
adopt the closed policy, which, denying access by default, ensures better protection;
cases where information is public by default are enforced with a positive authorization
on the root of the subject hierarchy (e.g., Public).

The combined use of positive and negative authorizations was therefore considered
as a way to conveniently support exceptions. To illustrate,suppose we wish to grant
an authorization to all members of a group composed of one thousand users, except
to one specific member Bob. In a closed policy approach, we would have to express
the above requirement by specifying a positive authorization for each member of the
group except Bob.7 However, if we combine positive and negative authorizations we
can specify the same requirement by granting a positive authorization to the group and
a negative authorization to Bob.

The combined use of positive and negative authorizations brings now to the problem
of how the two specifications should be treated:

– what if for an access no authorization is specified? (incompleteness)
– what if for an access there are both a negative and a positive authorization? (incon-

sistency)

Completeness can be easily achieved by assuming that one of either the open or
closed policy operates as adefault, and accordingly access is granted or denied if no
authorization is found for it. Note that the alternative of explicitly requiring complete-
ness of the authorizations is too heavy and complicates administration.

Conflict resolution is a more complex matter and does not usually have a unique
answer [48, 58]. Rather, different decision criteria couldbe adopted, each applicable
in specific situations, corresponding to different policies that can be implemented. A

7 In an open policy scenario, the dual example of all users, buta few, who have to be denied an
access can be considered.
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natural and straightforward policy is the one stating that “the most specific authoriza-
tion should be the one that prevails”; after all this is what we had in mind when we
introduced negative authorizations in the first place (our example about Bob). Although
the most-specific-takes-precedence principle is intuitive and natural and likely to fit in
many situations, it is not enough. As a matter of fact, even ifwe adopt the argument
that the most specific authorization always wins (and this may not always be the case)
it is not always clear what more specific is:

– what if two authorizations are specified on non-disjoint, but non-hierarchically re-
lated groups (e.g., Citizens and CS-Dept in Figure 13)?

– what if for two authorizations the most specific relationship appear reversed over
different domains? For instance, consider authorizations(CS-Faculty, read+, mail)
and (CS-Dept, read−, personal); the first has a more specific subject, while the
second has a more specific object (see Figures 13 and 14).

A slightly alternative policy on the same line as the most specific policy is what
in [48] is calledmost-specific-along-a-path-takes-precedence. This policy considers an
authorization specified on an elementx as overriding an authorization specified on a
more general elementy only for those elements that are members ofy because ofx.
Intuitively, this policy takes into account the fact that, even in the presence of a more
specific authorization, the more general authorization canstill be applicable because of
other paths in the hierarchy. For instance, consider the group hierarchy in Figure 13 and
suppose that for an access a positive authorization is granted to Public while a nega-
tive authorization is granted to CS-Dept. What should we decide for George? On the
one side, it is true that CS-Dept is more specific than Public;on the other side, how-
ever, George belongs to Eng-Dept, and for Eng-Dept members the positive authoriza-
tion is not overridden. While the most-specific-takes-precedence policy would consider
the authorization granted to Public as being overridden forGeorge, the most-specific-
along-a-path considers both authorizations as applicableto George. Intuitively, in the
most-specific-along-a-path policy, an authorization propagates down the hierarchy until
overridden by a more specific authorization [35].

The most specific argument does not always apply. For instance, an organization
may want to be able to state that consultants should not be given access to private
projects,no exceptions allowed. However, if the most specific policy is applied, any
authorization explicitly granted to a single consultant will override the denial specified
by the organization. To address situations like this, some approaches proposed adopt-
ing explicit priorities. In ORION [70], authorizations are classified asstrongor weak:
weak authorizations override each other based on the most-specific policy, and strong
authorizations override weak authorizations (no matter their specificity) andcannot be
overridden. Given that strong authorizations must be certainly obeyed, they are required
to be consistent. However, this requirement may be not always be enforceable. This is,
for example, the case where groupings are not explicitly defined but depend on the
evaluation of some conditions (e.g., “all objects owned by Tom”, “all objects created
before 1/1/01”). Also, while the distinction between strong and weak authorizations is
convenient in many situations and, for example, allows us toexpress the organizational
requirement just mentioned, it is limited to two levels of priority, which may not be
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– Denials-take-precedence:negative authorizations take precedence (satisfies the “fail safe
principle”)

– Most-specific-takes-precedencethe authorization that is “more specific” w.r.t. a partial order
(i.e., hierarchy) wins

– Most-specific-along-a-path-takes-precedence:the authorization that is “more specific” wins
only on the paths passing through it. Intuitively, an authorization propagates down a hierar-
chy until overridden by a more specific authorization.

– Strong/weak:authorizations are classified as strong or weak: weak authorizations override
each other based on the most-specific policy, and strong authorizations override weak au-
thorizations (no matter their specificity). Strong authorizations are therefore required to be
consistent.

– Priority level: each authorization is associated with a priority level, theauthorization with
the highest priority wins.

– Positional: the priority of the authorizations depends on the order in which they appear in
the authorization list.

– Grantor-dependent:the priority of the authorizations depends on who granted them.
– Time-dependentthe priority of the authorizations depends on the time at they have been

granted (e.g., more recent wins)

Fig. 15.Examples of conflict resolution policies

enough. Many other conflict resolution policies can be applied. Some approaches, ex-
tending the strong and weak paradigm, proposed adoptingexplicit priorities; however,
these solutions do not appear viable as the authorization specifications may result not
always clear. Other approaches (e.g., [84]) proposed making authorization priority de-
pendent on theorder in which authorizations are listed(i.e., the authorizations that is
encountered first applies). This approach, however, has thedrawback that granting or
removing an authorization requires inserting the authorization in the proper place in the
list. Beside the administrative burden put on the administrator (who, essentially, has to
explicitly solve the conflicts when deciding the order), specifying authorizations im-
plies explicitly writing the ACL associated with the object, and may impede delegation
of administrative privileges. Other possible ways of defining priorities, and therefore
solving conflicts, can make the authorization’s priority dependent on thetimeat which
the authorizations was granted (e.g., more recent authorizations prevails) or on priori-
ties between thegrantors. For instance, authorizations specified by an employee may
be overridden by those specified by his supervisor; the authorizations specified by an
object’s owner may override those specified by other users towhom the owner has
delegated administrative authority.

As it is clear from this discussion, different approaches can be taken to deal with
positive and negative authorizations. Also, if it is true that some solutions may appear
more natural than others, none of them represents “the perfect solution”. Whichever
approach we take, we will always find one situation for which it does not fit. Also,
note that different conflict resolution policies are not mutually exclusive. For instance,
one can decide to try solving conflicts with the most-specific-takes-precedence policy
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first, and apply the denials-take-precedence principle on the remaining conflicts (i.e.,
conflicting authorizations that are not hierarchically related).

The support of negative authorizations does not come for free, and there is a price to
pay in terms of authorization management and less clarity ofthe specifications. How-
ever, the complications brought by negative authorizations are not due to negative au-
thorizations themselves, but to the different semantics that the presence of permissions
and denials can have, that is, to the complexity of the different real world scenarios
and requirements that may need to be captured. There is therefore a trade-off between
expressiveness and simplicity. For this reason, most current systems adopting negative
authorizations for exception support impose specific conflict resolution policies, or sup-
port a limited form of conflict resolution. For instance, in the Apache server [6], autho-
rizations can be positive and negative and an ordering (“deny,allow” or “allow,deny”)
can be specified dictating how negative and positive authorizations are to be interpreted.
In the “deny,allow” order, negative authorizations are evaluated first and access is al-
lowed by default (open policy). Any client that does not match a negative authorization
or matches a positive authorization is allowed access. In the “allow,deny” order, the
positive authorizations are evaluated first and access is denied by default (closed pol-
icy). Any client that does not match a positive authorization or does match a negative
authorization will be denied access.

More recent approaches are moving towards the development of flexible frame-
works with the support of multiple conflict resolution and decision policies. We will
examine them in Section 8.

Other advancements in authorization specification and enforcement have been car-
ried out with reference to specific applications and data models. For instance, authoriza-
tion models proposed for object-oriented systems (e.g., [2, 35, 71]) exploit theencap-
sulationconcept, meaning the fact that access to objects is always carried out through
methods (read and write operations being primitive methods). In particular, users granted
authorizations to invoke methods can be given the ability tosuccessfully complete them,
without need to have the authorizations for all the accessesthat the method execution
entails. For instance, in OSQL, each derived function (i.e., method) can be specified
as supportingstaticor dynamicauthorizations [2]. A dynamic authorization allows the
user to invoke the function, but its successful completion requires the user to have the
authorization for all the calls the function makes during its execution. With astatic
authorization, calls made by the function are checked against the creator of the func-
tion, instead of those of the calling user. Intuitively, static authorizations behave like
the setuid (set user id) option, provided by the Unix operating system that, attached to
a program (e.g., lpr) implies that all access control checksare to be performed against
the authorizations of the program’s owner (instead of thoseof the caller as it would
otherwise be). A similar feature is also proposed in [71], where each method is asso-
ciated with a principal, and accesses requested during a method execution are checked
against the authorization of the method’s principal. Encapsulation is also exploited by
the Java 2 security model [83] where authorizations can be granted to code, and re-
quests to access resources are checked against the authorizations of the code directly
attempting the access.
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6.2 Temporal authorizations

Bertino et al. [13] propose extending authorizations with temporal constraints and ex-
tending authorization implication with time-based reasoning. Authorizations have as-
sociated a validity specified by a temporal expression identifying the instants in which
the authorization applies. The temporal expression is formed by aperiodic expression
(e.g.,9 a.m. to 1 p.m. on Working-days, identifying the periods from 9a.m. to
1p.m. in all days excluding weekends and vacations), and atemporal intervalbounding
the scope of the periodic expression (e.g.,[2/1997,8/1997], restricting the specified
periods to those between February and August 1997). The model allows also the spec-
ification of derivation rules, expressing temporal dependencies among authorizations,
that allow the derivation of new authorizations based on thepresence or absence of
other authorizations in specific periods of time. For instance, it is possible to specify
that two users, working on the same project, must receive thesame authorizations on
given objects, or that a user should receive the authorization to access an object in cer-
tain periods, only if nobody else was ever authorized to access the same object in any
instant within those periods. Like authorizations, derivation rules are associated with
a temporal expression identifying the instants in which therule applies. A derivation
rule is a triple([tb, te], P, A 〈OP〉 A ), where interval[tb,te] and periodP represent
the temporal expression,A is the authorization to be derived,A a is boolean formula of
authorizations on which derivation is based, andOP is one of the following operators:
WHENEVER, ASLONGAS, UPON. The three operators correspond to different tempo-
ral relationships between authorizations on which derivation can work, and have the
following semantics:

– WHENEVER derivesA for each instant in([tb,te],P) for whichA is valid.
– ASLONGAS derivesA for each instant in([tb,te],P) such thatA has been “contin-

uously” valid in([tb, te],P).
– UPON derivesA from the first instant in([tb,te],P) for whichA is valid up tote.

A graphical representation of the semantics of the different temporal operators is
given in Figure 16. Intuitively,WHENEVERcaptures the usual implication of authoriza-
tions. For instance, a rule can state that summer-staff can read a document for every
instance (i.e.,WHENEVER) in the summer of year 2000 in which regular-staff can read
it. ASLONGASworks in a similar way but stops the derivation at the first instant in which
the boolean formula on which derivation works is not satisfied. For instance, a rule can
state that regular-staff can read a document every working day in year 2000 until the
first working day in which (i.e.,ASLONGAS) summer-staff is allowed for that. Finally,
UPON works like a trigger. For instance, a rule can state that Ann can read pay-checks
each working day starting from the first working day in year 2000 in which (i.e.,UPON)
Tom can write pay-checks.

The enforcement mechanism is based on a translation of temporal authorizations
and derivation rules into logic programs (Datalog programswith negation and periodic-
ity and order constraints). The materialization of the logic program guarantees efficient
access. The model is focussed on time-based constraints andreasoning and allows ex-
pressing authorization relationships and derivation not covered in other models. How-
ever, it does not address the enforcement of different implication and conflict resolution
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derivability of A if R is an ASLONGAS rule

derivability of A if R is an UPON rule

derivability of A if R is a WHENEVER rule

instants denoted by P

validity of formulaA

R=([tb,te],P,A <OP>    )

Fig. 16.Semantics of the different temporal operators [13]

policies (conflicts between permissions and denials are solved according to the denials-
take-precedence policy).

6.3 A calculus for access control

Abadi et al. [1] present a calculus for access control that combines authentication (i.e.,
identity check) and authorization control, taking also into account possible delegation
of privileges among parties. The calculus is based on the notion of principals. Principals
are sources of requests and make statements (e.g., “read filetmp”). Principals can be
either simple (e.g., users, machines, and communication channels) or composite. Com-
posite principals are obtained combining principals by means of constructors that allow
to capture groups and delegations.a Principals can be as follows [1]:

– Usersandmachines.
– Channels, such as input devices and cryptographic channels.
– Conjunction of principals, of the formA∧B. A request fromA∧B is a request that

bothA andB make (it is not necessary that the request be made in concert).
– Groups, define groups of principals, membership of principalPi in group Gi is

writtenPi =⇒ Gi . DisjunctionA∨B denotes a group composed only ofA andB.
– Principals inroles, of the formA as R. The principalA may adopt the roleR and

act under the name “A as R” when she wants to diminish her powers, in particular
as protection against blunders.8

– Principalson behalfof principals, of the formA for B. The principalA may delegate
authority toB, andB can then act on her behalf, using the identityB for A. In most

8 Note that there is a difference in the semantics assigned to roles in [1] and in role-based access
control model (see Section 7). In [1] a principal’s privileges always diminish when the principal
takes on some role; also an implication relationship is enforced allowing a principalP to use
authorizations granted to any principal of the formP as R.
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cases,A is a user delegating to a machineB; delegation can also occur between
machines.

– Principalsspeaking forother principals, of the formA◦B, denoting thatB speaks
on behalf ofA, but not necessarily with a proof thatA has delegated authority toB.

The process of determining whether a request from a principal should be granted or
denied is based on a modal logic that extends the algebra of principals and serves as a
basis for different algorithms and protocols. Intuitively, a request on an object will be
granted if it is authorized according to the authorizationsstated in the ACL of the object
and the implication relationships and delegations holdingamong principals.

6.4 Administrative policies

Administrative policies determine who is authorized to modify the allowed accesses.
This is one of the most important, and probably least understood, aspect of access
controls. In multilevel mandatory access control the allowed accesses are determined
entirely on basis of the security classification of subjectsand objects. Security levels
are assigned to users by the security administrator. Security levels of objects are deter-
mined by the system on the basis of the levels of the users creating them. The security
administrator is typically the only one who can change security levels of subjects and
objects. The administrative policy is therefore very simple. Discretionary access control
permits a wide range of administrative policies. Some of these are described below.

– Centralized:A single authorizer (or group) is allowed to grant and revokeautho-
rizations to the users.

– Hierarchical: A central authorizer is responsible for assigning administrative re-
sponsibilities to other administrators. The administrators can then grant and revoke
access authorizations to the users of the system. Hierarchical administration can be
applied, for example, according to the organization chart.

– Cooperative:Special authorizations on given resources cannot be granted by a sin-
gle authorizer but need cooperation of several authorizers.

– Ownership:Each object is associated with an owner, who generally coincides with
the user who created the object. Users can grant and revoke authorizations on the
objects they own.

– Decentralized:Extending the previous approaches, the owner of an object (or its
administrators) can delegate other users the privilege of specifying authorizations,
possibly with the ability of further delegating it.

Decentralized administration is convenient since it allows users to delegate adminis-
trative privileges to others. Delegation, however, complicates the authorization manage-
ment. In particular, it becomes more difficult for users to keep track of who can access
their objects. Furthermore, revocation of authorizationsbecomes more complex. There
are many possible variations on the way decentralized administration works, which may
differ in the way the following questions are answered.

– what is the granularity of administrative authorizations?
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– can delegation be restricted, that is, can the grantor of an administrative authoriza-
tion impose restrictions on the subjects to which the recipient can further grant the
authorization?

– who can revoke authorizations?

– what about authorizations granted by the revokee?

In general, existing decentralized policies allow users togrant administration for a
specific privilege (meaning a given access on a given object). They do not allow, how-
ever, to put constraints on the subjects to which the recipient receiving administrative
authority can grant the access. This feature could, however, result useful. For instance,
an organization could delegate one of its employees to granting access to some re-
sources constraining the authorizations she can grant to employees working within her
laboratory. Usually, authorizations can be revoked only bythe user who granted them
(or, possibly, by the object’s owner). When an administrative authorization is revoked,
the problem arises of dealing with the authorizations specified by the users from whom
the administrative privilege is being revoked. For instance, suppose that Ann gives Bob
the authorization to read File1 and gives him the privilege of granting this authorization
to others (in some systems, such capability of delegation iscalledgrant option[42]).
Suppose then that Bob grants the authorization to Chris, andsusequently Ann revokes
the authorization from Bob. The question now is: what shouldhappen to the authoriza-
tion that Chris has received? To illustrate how revocation can work it is useful to look at
the history of System R [42]. In the System R authorization model, users creating a ta-
ble can grant other users access privileges on it. Authorizations can be granted with the
grant-option. If a user receives the authorization for an access with the grant-option she
can grant the access (and the grant option on it) to others. Intuitively, this introduces a
chain of authorizations. The original System R policy, which we call(time-based) cas-
caderevocation, adopted the following semantics for revocation: when a user is revoked
the grant option on an access, all authorizations that she granted and could not have been
granted had the revoked authorization not been present, should also be (recursively)
deleted. The revocation is recursive since it may, in turn, cause other authorizations to
be deleted. More precisely, letAUTH be the initial authorization state andG1, . . . ,Gn

be a sequence of grant requests (history) that produced authorization stateAUTH′. The
revocation of a grantGk should result in authorization stateAUTH′′ as if Gk had never
been granted, that is, resulting from historyG1, . . . ,Gk−1,Gk+1, . . . ,Gn. Enforcement
of this revocation semantics requires to keep track ofi) who granted which authoriza-
tion, andii) the time at which the authorization was granted. To illustrate, consider the
sequence of grant operations pictured in Figure 17(a), referred to the delegation of a
specific privilege. Here, nodes represent users, and arcs represent the granting of a spe-
cific access from one user to another. The label associated with the arc states the time at
which the authorization was granted and whether the grant option was granted as well.
For instance, Ann granted the authorization, with the grantoption, to Bob at time 20,
and to Chris at time 30. Suppose now that Bob revokes the authorization he granted
to David. According to the revocation semantics to be enforced, the authorization that
David granted to Ellen must be deleted as well, since it was granted at time 50 when,
had David not hold the authorizations being revoked, the grant request would have been
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Fig. 17.Example of the original System-R, time-based cascade revocation

denied. Consequently, and for the same reasoning, the two authorizations granted by
Ellen also need to be deleted, resulting in the authorization state of Figure 17(b).

Although the time-based cascade revocation has a clean semantics, it is not always
accepted. Deleting all authorizations granted in virtue ofan authorization that is being
revoked is not always wanted. In many organizations, the authorizations that users pos-
sess are related to their particular tasks or functions within the organization. Suppose
there is a change in the task or function of a user (say, because of a job promotion).
This change may imply a change in the responsibilities of theuser and therefore in her
privileges. New authorizations will be granted to the user and some of her previous
authorizations will be revoked. Applying a recursive revocation will result in the unde-
sirable effect of deleting all authorizations the revokee granted and, recursively, all the
authorizations granted through them, which then will need to be re-issued. Moreover,
all application programs depending on the revoked authorizations will be invalidated.
An alternative form of revocation was proposed in [15], wherenon-cascaderevocation
is introduced. Instead of deleting all the authorizations granted by the revokee in virtue
of the authorizations being revoked, non-recursive revocation re-specifies them to be
under the authority of the revoker, which can then retain or selectively delete them. The
original time-based revocation policy of System R, was changed to not consider time
anymore. In SQL:1999 [28] revocation can be requestedwith or without cascade. Cas-
cade revocation recursively deletes authorizations if therevokee does not hold anymore
the grant option for the access. However, if the revokee still holds the grant option for
the access, the authorizations she granted are not deleted (regardless of time they were
granted). For instance, with reference to Figure 17(a), therevocation by Bob of the
authorization granted to David, would only delete the authorization granted to David
by Bob. Ellen’s authorization would still remain valid since David still holds the grant
option of the access (because of the authorization from Chris). With the non cascade
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option the system rejects the revoke operation if its enforcement would entail deletion
of other authorizations beside the one for which revocationis requested.

6.5 Integrity policies

In Section 4.4 we illustrated a mandatory policy (namely Biba’s model) for protecting
information integrity. Biba’s approach, however, suffersof two major drawbacks:i) the
constraints imposed on the information flow may result too restrictive, andii) it only
controls integrity intended as the prevention of a flow of information from low integrity
objects to high integrity objects. However, this notion of one-directional information
flow in a lattice captures only a small part of the data integrity problem [74].

Integrity is concerned with ensuring that no resource (including data and programs9)
has been modified in anunauthorizedor improperway and that the data stored in the
system correctly reflect the real world they are intended to represent (i.e., that users
expect). Integrity preservation requires prevention of frauds and errors, as the term “im-
proper” used above suggests: violations to data integrity are often enacted by legitimate
users executing authorized actions but misusing their privileges.

Any data management system today has functionalities for ensuring integrity [8].
Basic integrity services are, for example,concurrency control(to ensure correctness
in case of multiple processes concurrently accessing data)andrecoverytechniques (to
reconstruct the state of the system in the case of violationsor errors occur). Database
systems also support the definition and enforcement of integrity constraints, that de-
fine the valid states of the database constraining the valuesthat it can contain. Also,
database systems support the notion oftransaction, which is a sequence of actions for
which theACID properties must be ensured, where the acronym stands for:Atomicity
(a transaction is either performed in its entirety or not performed at all);Consistency
(a transaction must preserve the consistency of the database); Isolation (a transaction
should not make its updates visible to other transactions until it is committed); and
Durability (changes made by a transaction that has committed must neverbe lost be-
cause of subsequent failures).

Although rich, the integrity features provided by databasemanagement systems are
not enough: they are only specified with respect to the data and their semantics, and do
not take into account the subjects operating on them. Therefore, they can only protect
against obvious errors in the data or in the system operation, and not against misuses
by subjects [23]. The task of a security policy for integrityis therefore to fill this gap
and control data modifications and procedure executions with respect to the subjects
performing them. An attempt in this respect is represented by the Clark and Wilson’s
proposal [25], where the following four basic criteria for achieving data integrity are
defined.

1. Authentication. The identity of all users accessing the system must be properly
authenticated (this is an obvious prerequisite for correctness of the control, as well
as for establishing accountability).

9 Programs improperly modified can fool the access control andbypass the system restrictions,
thus violating the secrecy and/or integrity of the data (seeSection 3).
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C1: All IVPs must ensure that all CDIs are in a valid state when theIVP is run.
C2: All TPs must be certified to be valid (i.e., preserve validityof CDIs’ state)
C3: Assignment of TPs to users must satisfy separation of duty
C4: The operations of TPs must be logged
C5: TPs execute on UDIs must result in valid CDIs
E1: Only certified TPs can manipulate CDIs
E2: Users must only access CDIs by means of TPs for which they are authorized
E3: The identity of each user attempting to execute a TP must be authenticated
E4: Only the agent permitted to certify entities can change the list of such entities associated

with other entities

Fig. 18.Clark and Wilson integrity rules

2. Audit. Modifications should be logged for the purpose of maintaining an audit log
that records every program executed and the user who executed it, so that changes
could be undone.

3. Well-formed transactions Users should not manipulate data arbitrarily but only
in constrained ways that ensure data integrity (e.g., double entry bookkeeping in
accounting systems). A system in which transactions are well-formed ensures that
only legitimate actions can be executed. In addition, well-formed transactions should
provide logging and serializability of resulting subtransactions in a way that con-
currency and recovery mechanisms can be established.

4. Separation of duty The system must associate with each user a valid set of pro-
grams to be run. The privileges given to each user must satisfy the separation of
duty principle. Separation of duty prevents authorized users from making improper
modifications, thus preserving the consistency of data by ensuring that data in the
system reflect the real world they represent.

While authentication and audit are two common mechanisms for any access control
system, the latter two aspects are peculiar to the Clark and Wilson proposal.

The definition of well-formed transaction and the enforcement of separation of duty
constraints is based on the following concepts.

– Constrained Data Items.CDIs are the objects whose integrity must be safeguarded.
– Unconstrained Data Items.UDIs are objects that are not covered by the integrity

policy (e.g., information typed by the user on the keyboard).
– Integrity Verification Procedures.IVPs are procedures meant to verify that CDIs

are in a valid state, that is, the IVPs confirm that the data conforms to the integrity
specifications at the time the verification is performed.

– Transformation Procedures.TPs are the only procedures (well-formed procedures)
that are allowed to modify CDIs or to take arbitrary user input and create new CDIs.
TPs are designed to take the system from one valid state to thenext

Intuitively, IVPs and TPs are the means for enforcing the well-formed transaction
requirement: all data modifications must be carried out through TPs, and the result must
satisfy the conditions imposed by the IVPs.
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Separation of duty must be taken care of in the definition of authorized operations.
In the context of the Clark and Wilson’s model, authorized operations are specified by
assigning to each user a set of well-formed transactions that she can execute (which
have access to constraint data items). Separation of duty requires the assignment to
be defined in a way that makes it impossible for a user to violate the integrity of the
system. Intuitively, separation of duty is enforced by splitting operations in subparts,
each to be executed by a different person (to make frauds difficult). For instance, any
person permitted to create or certify a well-formed transaction should not be able to
execute it (against production data).

Figure 18 summarizes the nine rules that Clark and Wilson presented for the en-
forcement of system integrity. The rules are partitioned into two types: certification (C)
and enforcement (E). Certification rules involve the evaluation of transactions by an
administrator, whereas enforcement is performed by the system.

The Clark and Wilson’s proposal outlines good principles for controlling integrity.
However, it has limitations due to the fact that it is far fromformal and it is unclear how
to formalize it in a general setting.

7 Role-Based Access Control Policies

Role-based access control (RBAC) is an alternative to traditional discretionary (DAC)
and mandatory access control (MAC) policies that is attracting increasing attention,
particularly for commercial applications. The main motivation behind RBAC is the ne-
cessity to specify and enforce enterprise-specific security policies in a way that maps
naturally to an organization’s structure. In fact, in a large number of business activities
a user’s identity is relevant only from the point of view of accountability. For access
control purposes it is much more important to know what a user’s organizational re-
sponsibilities are, rather than who the user is. The conventional discretionary access
controls, in which individual user ownership of data plays such an important part, are
not a good fit. Neither are the full mandatory access controls, in which users have secu-
rity clearances and objects have security classifications.Role-based access control tries
to fill in this gap by merging the flexibility of explicit authorizations with additionally
imposed organizational constraints.

7.1 Named protection domain

The idea behind role-based access control is grouping privileges (i.e., authorizations).
The first work proposing collecting privileges for authorization assignment is proba-
bly the work by Baldwin [9], where the concept ofnamed protection domain(NPD)
is introduced as a way to simplify security management in an SQL-based framework.
Intuitively, a named protection domain identifies a set of privileges (those granted to the
NPD) needed to accomplish a well-defined task. For instance,in a bank organization,
an NPDAccounts Receivable can be defined to which all the privileges needed to
perform the account-receivable task are granted. NPD can begranted to users as well
as to other NPDs, thus forming a chain of privileges. The authorization state can be
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Fig. 19.An example of NPD privilege graph [9]

graphically represented as a directed acyclic graph where nodes correspond to privi-
leges, NPDs, and users, while arcs denote authorization assignments. An example of
privilege graph is illustrated in Figure 19, where three NPDs (Accounts Receivable,
Accounts Payable, andAccounts Supervisor) and the corresponding privileges are
depicted. Users can access objects only by activating NPDs holding privileges on them.
Users can only activate NPDs that have been directly or indirectly assigned to them.
For instance, with reference to Figure 19,Bob can activate any of three NPDs, thus ac-
quiring the corresponding privileges. To enforceleast privilege, users are restricted to
activate only one NPD at the time. NPDs can also be used to group users. For instance,
a NPD namedEmployees can be defined which corresponds to the set of employees of
an organization. NPDs correspond to the current concept ofroles in SQL:1999 [28].

7.2 Role-based policies

Role-based policies regulate the access of users to the information on the basis of the
organizational activities and responsibility that users have in a system. Although dif-
ferent proposals have been made (e.g., [3, 36, 45, 56, 67, 76,80]), the basic concepts are
common to all approaches. Essentially, role based policiesrequire the identification of
roles in the system, where a role can be defined as a set of actions andresponsibilities
associated with a particular working activity. The role canbe widely scoped, reflecting
a user’s job title (e.g.,secretary), or it can be more specific, reflecting, for exam-
ple, a task that the user needs to perform (e.g.,order processing). Then, instead of
specifying all the accesses each users is allowed to execute, access authorizations on
objects are specified for roles. Users are then given authorizations to adopt roles (see
Figure 20). The user playing a role is allowed to execute all accesses for which the role
is authorized. In general, a user can take on different roleson different occasions. Also
the same role can be played by several users, perhaps simultaneously. Some proposals
for role-based access control (e.g., [76, 80]) allow a user to exercise multiple roles at
the same time. Other proposals (e.g., [28, 48]) limit the user to only one role at a time,
or recognize that some roles can be jointly exercised while others must be adopted in
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Fig. 20.Role-based access control

exclusion to one another. It is important to note the difference between groups (see Sec-
tion 6) and roles: groups define sets of users while roles define sets of privileges. There
is a semantic difference between them: roles can be “activated” and “deactivated” by
users at their discretion, while group membership always applies, that is, users cannot
enable and disable group memberships (and corresponding authorizations) at their will.
However, since roles can be defined which correspond to organizational figures (e.g.,
secretary, chair, andfaculty), a same “concept” can be seen both as a group and
as a role.

The role-based approach has several advantages. Some of these are discussed below.

Authorization management Role-based policies benefit from a logical independence
in specifying user authorizations by breaking this task into two parts:i) assigne-
ment of roles to users, andii) assignement of authorizations to access objects to
roles. This greatly simplifies the management of the security policy: when a new
user joins the organization, the administrator only needs to grant her the roles cor-
responding to her job; when a user’s job changes, the administrator simply has to
change the roles associated with that user; when a new application or task is added
to the system, the administrator needs only to decide which roles are permitted to
execute it.

Hierarchical roles In many applications there is a natural hierarchy of roles, based on
the familiar principles of generalization and specialization. Figure 21 illustrates an
example of role hierarchy: each role is represented as a nodeand there is an arc
between a specialized role and its generalization. The rolehierarchy can be ex-
ploited for authorization implication. For instance, authorizations granted to roles
can be propagated to their specializations (e.g., thesecretary role can be allowed
all accesses granted toadm staff). Authorization implication can also be enforced
on role assignments, by allowing users to activate all generalizations of the roles
assigned to them (e.g., a user allowed to activatesecretary will also be allowed
to activate roleadm staff). Authorization implication has the advantage of further
simplifying authorization management. Note however that not always implication
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Fig. 21.An example of role hierarchy

may be wanted, as propagating all authorizations is contrary to the least privilege
principle. The hierarchy has also been exploited in [77] forthe definition of ad-
ministrative privileges: beside the hierarchy of organizational roles, an additional
hierarchy of administrative roles is defined; each administrative role can be given
authority over a portion of the role hierarchy.

Least privilege Roles allow a user to sign on with the least privilege required for the
particular task she needs to perform. Users authorized to powerful roles do not need
to exercise them until those privileges are actually needed. This minimizes the dan-
ger of damage due to inadvertent errors, Trojan Horses, or intruders masquerading
as legitimate users.

Separation of duties Separation of duties refer to the principle that no user should
be given enough privileges to misuse the system on their own.For instance, the
person authorizing a paycheck should not be the same person who can prepare
them. Separation of duties can be enforced either statically (by defining conflicting
roles, that is, roles which cannot be executed by the same user) or dynamically (by
enforcing the control at access time). An example of dynamicseparation of duty
restriction is the two-person rule. The first user to executea two-person operation
can be any authorized user, whereas the second user can be anyauthorized user
different from the first [79].

Constraints enforcement Roles provide a basis for the specification and enforcement
of further protection requirements that real world policies may need to express. For
instance, cardinality constraints can be specified, that restrict the number of users
allowed to activate a role or the number of roles allowed to exercise a given priv-
ilege. The constraints can also be dynamic, that is, be imposed on roles activation
rather than on their assignment. For instance, while several users may be allowed to
activate rolechair, a further constraint can require that at most one user at a time
can activate it.

Role-based policies represent a promising direction and a useful paradigm for many
commercial and government organizations. However, there is still some work to be
done to cover all the different requirements that real worldscenarios may present. For
instance, the simple hierarchical relationship as intended in current proposals may not
be sufficient to model the different kinds of relationships that can occur. For example, a
secretary may need to be allowed to write specific documentson behalfof her manager,
but neither role is a specialization of the other. Differentways of propagating privileges



Access Control: Policies, Models, and Mechanisms 45

(delegation) should then be supported. Similarly, administrative policies should be en-
riched. For instance, the traditional concept of ownershipmay not apply anymore: a
user does not necessarily own the objects she created when ina given role. Also, users’
identities should not be forgotten. If it true that in most organizations, the role (and not
the identity) identifies the privileges that one may execute, it is also true that in some
cases the requestor’s identity needs to be considered even when a role-based policy is
adopted. For instance, a doctor may be allowed to specify treatments and access files
but she may be restricted to treatments and files for her own patients, where the doctor-
patient relationships is defined based on their identity.

8 Advanced access control models

Throughout the chapter we investigated different issues concerning the development
of an access control system, discussing security principles, policies, and models pro-
posed in the literature. In this section we illustrate recent proposals and ongoing work
addressing access control in emerging applications and newscenarios.

8.1 Logic-based authorization languages

As discussed in Section 6, access control systems based onlyon the closed policy
clearly have limitations. The support of abstractions and authorization implications
along them and the support of positive and negative authorizations provide more flexi-
bility in the authorization specifications. As we have seen,several access control poli-
cies can be applied in this context (e.g., denials-take-precedence, most-specific-takes-
precedence, strong and weak) and have been proposed in the literature. Correspond-
ingly, several authorization models have been formalized and access control mecha-
nisms enforcing them implemented. However, each model, andits corresponding en-
forcement mechanism, implements a single specified policy,which is in fact built into
the mechanism. As a consequence, although different policychoices are possible in
theory, each access control system is in practice bound to a specific policy. The major
drawback of this approach is that a single policy simply cannot capture all the protec-
tion requirements that may arise over time. As a matter of fact, even within a single
system:

– different users may have different protection requirements;
– a single user may have different protection requirements ondifferent objects;
– protection requirements may change over time.

When a system imposes a specific policy on users, they have to work within the
confines imposed by the policy. When the protection requirements of an application are
different from the policy built into the system, in most cases, the only solution is to
implement the policy as part of the application code. This solution, however, is danger-
ous from a security viewpoint since it makes the tasks of verification, modification, and
adequate enforcement of the policy difficult.

Recent proposals have worked towards languages and models able to express, in
a single framework, different access control policies, to the goal of providing a single
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mechanism able to enforce multiple policies. Logic-based languages, for their expres-
sive power and formal foundations, represent a good candidate. The first work investi-
gating logic-languages for the specification of authorizations is the work by Woo and
Lam [91]. Their proposal makes the point for the need of flexibility and extensibility in
access specifications and illustrates how these advantagescan be achieved by abstract-
ing from the low level authorization triples and adopting a high level authorization
language. Their language is essentially a many-sorted first-order language with a rule
construct, useful to express authorization derivations and therefore model authorization
implications and default decisions (e.g., closed or open policy). The use of a very gen-
eral language, which has almost the same expressive power offirst order logic, allows
the expression of different kinds of authorization implications, constraints on authoriza-
tions, and access control policies. However, as a drawback,authorization specifications
may result difficult to understand and manage. Also, the trade-off between expressive-
ness and efficiency seems to be strongly unbalanced: the lackof restrictions on the
language results in the specification of models which may noteven be decidable and
therefore will not be implementable. As noted in [48], Woo and Lam’s approach is
based on truth in extensions of arbitrary default theories,which is known, even in the
propositional case to be NP-complete, and in the first order case, is worse than unde-
cidable.

Starting from these observations, Jajodia et al. [48] worked on a proposal for a logic-
based language that attempted to balance flexibility and expressiveness on the one side,
and easy management and performance on the other. The language allows the represen-
tation of different policies and protection requirements,while at the same time provid-
ing understandable specifications, clear semantics (guaranteeing therefore the behavior
of the specifications), and bearable data complexity. Theirproposal for a Flexible Au-
thorization Framework (FAF) identifies a polynomial time (in fact quadratic time) data
complexity fragment of default logic; thus resulting effectively implementable. The lan-
guage identifies the following predicates for the specification of authorizations. (Below
s,o, anda denote a subject, object, and action term, respectively, where a term is either
a constant value in the corresponding domain or a variable ranging over it).

cando(o,s,〈sign〉a) represents authorizations explicitly inserted by the security admin-
istrator. They represent the accesses that the administrator wishes to allow or deny
(depending on the sign associated with the action).

dercando(o,s,〈sign〉a) represents authorizations derived by the system using logical
rules of inference (modus ponens plus rules for stratified negation). Logical rules
can express hierarchy-based authorization derivation (e.g., propagation of autho-
rizations from groups to their members) as well as differentimplication relation-
ships that may need to be represented.

do(o,s,〈sign〉a) definitely represents the accesses that must be granted or denied. Intu-
itively, do enforces the conflict resolution and access decision policies, that is, it
decides whether to grant or deny the access possibly solvingexisting conflicts and
enforcing default decisions (in the case where no authorization has been specified
for an access).

done(o,s,r,a,t)keeps the history of the accesses executed. A fact of the formdone(o,s,r,a,t)
indicates thats operating in roler executed actiona on objecto at timet.
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error signals errors in the specification or use of authorizations; it can be used to en-
force static and dynamic constraints on the specifications.

In addition, the language considers predicates, calledhie-predicates, for the evalu-
ation of hierarchical relationships between the elements of the data system (e.g., user’s
membership in groups, inclusion relationships between objects). The language also al-
lows the inclusion of additional application-specific predicates, calledrel- predicates.
These predicates can capture the possible different relationships, existing between the
elements of the data system, that may need to be taken into account by the access con-
trol system. Examples of these predicates can beowner(user,object), which models
ownership of objects by users, orsupervisor(user1,user2), which models respon-
sibilities and controls between users according to the organizational structure.

Authorization specifications are stated as logic rules defined on the predicates of the
language. To ensure clean semantics and implementability,the format of the rules is re-
stricted to guarantee (local) stratification of the resulting program (see Figure 22).10 The
stratification also reflects the different semantics given to the predicates:cando will be
used to specify basic authorizations,dercando to enforce implication relationships and
produce derived authorizations, anddo to take the final access decision. Stratification
ensures that the logic program corresponding to the rules has a unique stable model,
which coincides with the well founded semantics. Also, thismodel can be effectively
computed in polynomial time. The authors also present a materialization technique for
producing and storing the model corresponding to a set of logical rules. Materializa-
tion has been usually coupled with logic-based authorization languages. Indeed, given
a logic program whose rules correspond to an authorization specification in the given
language, one can assess a request to execute a particular action on an object by check-
ing if it is true in the unique stable model of the logic program. If so, the request is
authorized, otherwise it is denied. However, when implementing an algorithm to sup-
port this kind of evaluation, one needs to consider the following facts:

– the request should be either authorized or denied very fast,and
– changes to the specifications are far less frequent than access requests.

Indeed, since access requests happen all the time, the security architecture should
optimize the processing of these requests. Therefore, Jajodia et al. [48] propose imple-
menting their FAF with amaterialized view architecture, which maintains the model
corresponding to the authorization specifications. The model is computed on the initial
specifications and updated with incremental maintenance strategies.

8.2 Composition of access control policies

In many real world situations, access control needs to combine restrictions indepen-
dently stated that should be enforced as one, while retaining their independence and ad-
ministrative autonomy. For instance, the global policy of alarge organization can be the

10 A program is locally stratified if there is no recursion amongpredicates going through nega-
tion.
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Stratum Predicate Rules defining predicate
0 hie-predicatesbase relations.

rel-predicatesbase relations.
done base relation.

1 cando body may containdone, hie-
andrel-literals.

2 dercando body may containcando,dercando,done,
hie-, andrel- literals. Occurrences of
dercando literals must be positive.

3 do in the case when head is of the form
do( , ,+a) body may containcando,
dercando,done, hie- andrel- literals.

4 do in the case when head is of the form
do(o,s,−a) body contains just one literal
¬do(o,s,+a).

5 error body may containdo,cando,dercando,done,
hie-, andrel- literals.

Fig. 22.Rule composition and stratification of the proposal in [48]

combination of the policies of its different departments and divisions as well as of ex-
ternally imposed constraints (e.g., privacy regulations); each of these policies should be
taken into account while remaining independent and autonomously managed. Another
example is represented by the emerging dynamic coalition scenarios where different
parties, coming together for a common goal for a limited time, need to merge their se-
curity requirements in a controlled way while retaining their autonomy. Since existing
frameworks assume a single monolithic specification of the entire access control pol-
icy, the situations above would require translating and merging the different component
policies into a single “program” in the adopted access control language. While exist-
ing languages are flexible enough to obtain the desired combined behavior, this method
has several drawbacks. First, the translation process is far from being trivial; it must
be done very carefully to avoid undesirable side effects dueto interference between
the component policies. Interference may result in the combined specifications not re-
flecting correctly the intended restrictions. Second, after translation it is not possible
anymore to operate on the individual components and maintain them autonomously.
Third, existing approaches cannot take into account incomplete policies, where some
components are not (completely) known a priori (e.g., when somebody else is to pro-
vide that component). Starting from these observations, Bonatti et al. [20] make the
point for the need of a policy composition framework by whichdifferent component
policies can be integrated while retaining their independence. They propose an algebra
for combining security policies. Compound policies are formulated as expressions of
the algebra, constructed by using the following operators.

Addition merges two policies by returning their union. For instance,in an organiza-
tion composed of different divisions, access to the main gate can be authorized by
any of the administrator of the divisions (each of them knowswhich users need
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access to reach their division). The totality of the accesses through the main gate
to be authorized should then be the union of the statements ofeach division. Intu-
itively, additions can be applied in any situation where accesses can be authorized
if allowed by any of the component policies.

Conjunction merges two policies by returning their intersection. For instance, con-
sider an organization in which divisions share certain documents (e.g., clinical
folders of patients). An access to a document may be allowed only if all the au-
thorities that have a say on the document agree on it. That is,if the corresponding
authorization triple belongs to the intersection of their policies.

Subtraction restricts a policy by eliminating all the accesses in a second policy. Intu-
itively, subtraction specifies exceptions to statements made by a policy, and encom-
passes the functionality of negative authorizations in existing approaches.

Closure closes a policy under a set of derivation (i.e., implication) rules, w.r.t. which
the algebra is parametric. Rules can be, for example, expressed with a logic-based
language (e.g., [48]).

Scoping restriction restricts the application of a policy to a given set of subjects, ob-
jects, and actions that satisfy certain properties (i.e., belong to a given class). It is
useful to enforce authority confinement (e.g., authorizations specified in a given
component can be referred only to specific subjects and objects).

Overriding replaces portion of a policy with another. For instance, a laboratory pol-
icy may impose authorizations granted by the lab tutors to beoverridden by the
department policy (which can either confirm the authorization or not) for students
appearing in a blacklist for infraction to rules.

Template defines a partially specified (i.e., parametric) policy thatcan be completed
by supplying the parameters. Templates are useful for representing policies where
some components are to be specified at a later stage. For instance, the components
might be the result of further policy refinement, or might be specified by a different
authority.

Enforcement of compound policies is based on a translation from policy expressions
into logic programs, which provide executable specifications compatible with different
evaluation strategies (e.g., run time, materialized view,partial evaluation). The logic
program simply provides an enforcement mechanism and is transparent to the users,
who can therefore enjoy the simplicity of algebra expressions. The modularity of the
algebra, where each policy can be seen as a different component, provides a convenient
way for reasoning about policies at different levels of abstractions. Also, it allows for
the support of heterogeneous policies and policies that areunknown a priori and can
only be queried at access control time.

8.3 Certificate-based access control

Today’s Globally Internetworked Infrastructure connectsremote parties through the use
of large scale networks, such as the World Wide Web. Execution of activities at vari-
ous levels is based on the use of remote resources and services, and on the interaction
between different, remotely located, parties that may knowlittle about each other. In
such a scenario, traditional assumptions for establishingand enforcing access control
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regulations do not hold anymore. For instance, a server may receive requests not just
from the local community of users, but also from remote, previously unknown users.
The server may not be able to authenticate these users or to specify authorizations for
them (with respect to their identity). The traditional separation betweenauthentication
andaccess controlcannot be applied in this context, and alternative access control so-
lutions should be devised. A possible solution to this problem is represented by the use
of digital certificates (or credentials), representing statements certified by given enti-
ties (e.g., certification authorities), which can be used toestablish properties of their
holder (such as identity, accreditation, or authorizations) [39]. Trust-management sys-
tems (e.g., PolicyMaker [18], Keynote [17], REFEREE [24], and DL [57]) use cre-
dentials to describe specific delegation of trusts among keys and to bind public keys
to authorizations. They therefore depart from the traditional separation between au-
thentication and authorizations by granting authorizations directly to keys (bypassing
identities). Trust management systems provide an interesting framework for reasoning
about trust between unknown parties; however, assigning authorizations to keys, may
result limiting and make authorization specifications difficult to manage. A promising
direction exploiting digital certificates to regulate access control is represented by new
authorization models making the access decision of whetheror not a party may execute
an access dependent on properties that the party may have, and can prove by present-
ing one or more certificates (authorization certificates in [18] being a specific kind of
them). Besides a more complex authorization language and model, there is however a
further complication arising in this new scenario, due to the fact that the access control
paradigm is changing. On the one side, the server may not haveall the information it
needs in order to decide whether or not an access should be granted (and exploits cer-
tificates to take the decision). On the other side, however, the requestor may not know
which certificates she needs to present to a (possibly just encountered) server in order
to get access. Therefore, the server itself should, upon reception of the request, return
the user with the information of what she should do (if possible) to get access. In other
words the system cannot simply return a “yes/no” access decision anymore. Rather, it
should return the information of the requisites that it requires be satisfied for the access
to be allowed. The certificates mentioned above are one type of access requisites. In ad-
dition, other uncertified declarations (i.e., not signed byany authority) may be required.
For instance, we may be requested our credit card number to perform an electronic pur-
chase; we may be requested to fill in a profile when using publicor semipublic services
(e.g., browsing for flight schedules). The access control decision is therefore a more
complex process and completing a service may require communicating information not
related to the access itself, but related to additional restrictions on its execution, pos-
sibly introducing a form of negotiation [21, 72, 89]. Such information communication
makes the picture even more complex, since it introduces twonew protection require-
ments (in addition to the obvious need of protecting resources managed by the server
from unauthorized or improper access):

Client portfolio protection: the client (requestor) may not be always willing to release
information and digital certificates to other parties [65],and may therefore impose
restrictions on their communication. For this purpose, a client may—like a server—
require the counterpart to fulfill some requirements. For instance, a client may be
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Fig. 23.Client/server interplay in [21]

willing to release a AAA membership number only to servers supplying a credential
stating that the travel agent is approved by AAA.

Server’s state protection: the server, when communicating requisites for access to a
client, wants to be sure that possible sensitive information about its access control
policy is not disclosed. For instance, a server may require adigitally signed guar-
antee to specific customers (who appear blacklisted for bad credit in some database
it has access to); the server should simply ask this signed document, it should not
tell the customer that she appears blacklisted.

The first proposals investigating the application of credential-based access control
regulating access to a server, were made by Winslett et al. [82, 89]. Access control rules
are expressed in a logic language and rules applicable to an access can be communi-
cated by the server to clients. The work was also extended in [88, 93] investigating trust
negotiation issues and strategies that a party can apply to select credentials to submit to
the opponent party in a negotiation. In particular, [88] distinguishes betweeneagerand
parsimoniouscredential release strategies. Parties applying the first strategy turn over
all their credentials if the release policy for them is satisfied, without waiting for the
credentials to be requested. Parsimonious parties only release credentials upon explicit
request by the server (avoiding unnecessary releases). Yu et al. [93] present a prudent
negotiation strategy to the goal of establishing trust among parties, while avoiding dis-
closure of irrelevant credentials.

A credential-based access control is also presented by Bonatti and Samarati in [21].
They propose a uniform framework for regulating service access and information dis-
closure in an open, distributed network system like the Web.Like in previous proposals,
access regulations are specified as logical rules, where some predicates are explicitly
identified. Besides credentials, the proposal also allows to reason about declarations
(i.e., unsigned statements) and user-profiles that the server can maintain and exploit for
taking the access decision. Communication of requisites tobe satisfied by the requestor
is based on a filtering and renaming process applied on the server’s policy, which ex-
ploits partial evaluation techniques in logic programs. The filtering process allows the
server to communicate to the client the requisites for an access, without disclosing pos-
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sible sensitive information on which the access decision istaken. The proposal allows
also clients to control the release of their credentials, possibly making counter-requests
to the server, and releasing certain credentials only if their counter-requests are satisfied
(see Figure 23). Client-server interplay is limited to two interactions to allow clients to
apply a parsimonious strategy (i.e., minimizing the set of information and credentials
released) when deciding which set credentials/declarations release among possible al-
ternative choices they may have.

While all these approaches assume access control rules to beexpressed in logic
form, often the people specifying the security policies areunfamiliar with logic based
languages. An interesting aspect to be investigated concerns the definition of a language
for expressing and exchanging policies based on a high levelformulation that, while
powerful, can be easily interchangeable and both human and machine readable. Insights
in this respect can be taken from recent proposals expressing access control policies as
XML documents [26, 27].

All the proposals above open new interesting directions in the access control area.
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