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Abstract. Access control is the process of mediating every requestsiources
and data maintained by a system and determining whetheretheest should
be granted or denied. The access control decision is enfdrgea mechanism
implementing regulations established by a security polifferent access con-
trol policies can be applied, corresponding to differeitecia for defining what
should, and what should not, be allowed, and, in some semskfférent defi-
nitions of what ensuring security means. In this chaptermwestigate the basic
concepts behind access control design and enforcemenpaamidout different
security requirements that may need to be taken into coraide. We discuss
several access control policies, and models formaliziegittthat have been pro-
posed in the literature or that are currently under inveditg.

1 Introduction

An important requirement of any information managementesysis toprotect data
and resourcesgainst unauthorized disclosuserecy and unauthorized or improper
modifications integrity), while at the same time ensuring their availability to tegate
users (o denials-of-servige Enforcing protection therefore requires tleaery access
to a system and its resources be controlled and that all amglawthorized accesses can
take placeThis process goes under the namaaéess controlThe development of an
access control system requires the definition of the reignistaccording to which ac-
cess is to be controlled and their implementation as funstéxecutable by a computer
system. The development process is usually carried out avitiulti-phase approach
based on the following concepts:

Security policy: it defines the (high-level) rules according to which accesstrol
must be regulated.

Security model: it provides aormal representation of the access control security pol-
icy and its working. The formalization allows the proof obperties on the security
provided by the access control system being designed.

1 Often, the term policy is also used to refer to particulatdnses of a policy, that is, actual
authorizations and access restrictions to be enforced Enployees can read bulletin-board).
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Security mechanism: it defines the low level (software and hardware) functiorat th
implement the controls imposed by the policy and formalitest in the model.

The three concepts above correspond to a conceptual Sepavatween different
levels of abstraction of the design, and provides the fi@tit advantages of multi-
phase software development. In particular, the separbtbmeen policies and mech-
anisms introduces an independence between protectiotireawnts to be enforced
on the one side, and mechanisms enforcing them on the otherthen possible to:
i) discuss protection requirements independently of theplémentationii) compare
different access control policies as well as different nagi$ms that enforce the same
policy, andiii) design mechanisms able to enforce multiple policies. Htisl aspectis
particularly important: if a mechanismis tied to a specifitiqy, a change in the policy
would require changing the whole access control systemharesms able to enforce
multiple policies avoid this drawback. The formalizatidmgge between the policy def-
inition and its implementation as a mechanism allows thendifh of a formal model
representing the policy and its working, making it posstbldefine and prove security
properties that systems enforcing the model will enjoy [F4lerefore, by proving that
the model is “secure” and that the mechanismrectly implementthe model, we can
argue that the system is “secure” (w.r.t. the definition @iusity considered). The im-
plementation of a correct mechanism is far from being thiarad is complicated by the
need to cope with possible security weaknesses due to tHerimeptation itself and by
the difficulty of mapping the access control primitives tocanputer system. The ac-
cess control mechanism must work agference monitgrthat is, a trusted component
intercepting each and every request to the system [5]. It alas enjoy the following
properties:

— tamper-proof it should not be possible to alter it (or at least it shoulth®possible
for alterations to go undetected);

— non-bypassablet must mediate all accesses to the system and its resqurces

— security kernelit must be confined in a limited part of the system (scattps@cu-
rity functions all over the system implies that all the codestbe verified);

— smalt it must be of limited size to be susceptible of rigorous fieaition methods.

Even the definition of access control policies (and theiresponding models) is
far from being a trivial process. One of the major difficultgd in the interpretation
of, often complex and sometimes ambiguous, real world #gqouolicies and in their
translation in well defined and unambiguous rules enforeday a computer system.
Many real world situations have complex policies, whereeasadecisions depend on
the application of different rules coming, for example nfrétaws, practices, and orga-
nizational regulations. A security policy must capturetladi different regulations to be
enforced and, in addition, must also consider possibletiaddi threats due to the use
of a computer system. Access control policies can be groumedhree main classes:

Discretionary (DAC) (authorization-based) policies control access basedeién-
tity of the requestor and on access rules stating what réapgeare (or are not)
allowed to do.
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Mandatory (MAC) policies control access based on mandated regulationsmatsl
by a central authority.

Role-based (RBAC) policies control access depending on the roles that uses ha
within the system and on rules stating what accesses areegllto users in given
roles.

Discretionary and role-based policies are usually couplighl (or include) arad-
ministrativepolicy that defines who can specify authorizations/rulegegaing access
control.

In this chapter we illustrate different access control el and models that have
been proposed in the literature, also investigating their level implementation in
terms of security mechanisms. In illustrating the literatand the current status of ac-
cess control systems, of course, the chapter does not grtetbe exhaustive. However,
by discussing different approaches with their advantagediaitations, this chapter
hopes to give an idea of the different issues to be tackledeérdevelopment of an ac-
cess control system, and of good security principles thatilshbe taken into account
in the design.

The chapter is structured as follows. Section 2 introdubeshasic concepts of
discretionary policies and authorization-based modedsti&n 3 shows the limitation
of authorization-based controls to introduce the basigHfereed of mandatory poli-
cies, which are then discussed in Section 4. Section 5rifltet approaches combining
mandatory and discretionary principles to the goal of achggmandatory information
flow protection without loosing the flexibility of discretiary authorizations. Section 6
illustrates several discretionary policies and modelsliage been proposed. Section 7
illustrates role-based access control policies. Fin&gtion 8 discusses advanced ap-
proaches and directions in the specification and enforceafetcess control regula-
tions.

2 Basic concepts of discretionary policies

Discretionary policies enforce access control on the bafithe identity of the re-
questors and explicit access rules that establish who gacarmot, execute which
actions on which resources. They are called discretionanysars can be given the
ability of passing on their privileges to other users, whgnanting and revocation of
privileges is regulated by an administrative policy. Diéfet discretionary access con-
trol policies and models have been proposed in the litegalive start in this section
with the early discretionary models, to convey the basiasdef authorization specifi-
cations and their enforcement. We will come back to disoretry policies after having
dealt with mandatory controls. We base the discussion ofghimitive” discretionary
policies on the access matrix model.

2.1 The access matrix model

The access matrix model provides a framework for descrithisgretionary access con-
trol. First proposed by Lampson [53] for the protection cfaerces within the context
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File 1 File 2 File 3 Program 1

own | read execute
Ann| read|write
write
Bob| read read
write
Carl read execute
read

Fig. 1. An example of access matrix

of operating systems, and later refined by Graham and Den#aifjgthe model was
subsequently formalized by Harrison, Ruzzo, and UlimarnRHnodel) [44], who de-
veloped the access control model proposed by Lampson toddleofi analyzing the
complexity of determining an access control policy. Thgimdl model is called access
matrix since the authorization state, meaning the autatioias holding at a given time
in the system, is represented as a matrix. The matrix therefives an abstract rep-
resentation of protection systems. Although the model nesyrsprimitive, as richer
policies and languages have been investigated subsegfsed Section 6), its treat-
ment is useful to illustrate some aspects to be taken intowatén the formalization of
an access control system.

A first step in the development of an access control systeimeisdentification of
theobjectsto be protected, theubjectghat execute activities and request access to ob-
jects, and thectionsthat can be executed on the objects, and that must be ceiwtroll
Subjects, objects, and actions may be different in diffesgatems or application con-
texts. For instance, in the protection of operating systarhgects are typically files,
directories, or programs; in database systems, objectbeaglations, views, stored
procedures, and so on. It is interesting to note that subjsnt be themselves objects
(this is the case, for example, of executable code and spyoe@:dures). A subject can
create additional subjects (e.g., children processegyierdo accomplish its task. The
creator subject acquires control privileges on the creptedesses (e.g., to be able to
suspend or terminate its children).

In the access matrix model, the state of the system is defipedttiple (S, O,A),
whereSis the set of subjects, who can exercise privilegess the set of objects, on
which privileges can be exercised (subjects may be coresidas objects, in which
caseSC 0); andA is the access matrix, where rows correspond to subjectsie
correspond to objects, and en#s, o] reports the privileges afon o. The type of the
objects and the actions executable on them depend on tieesyBy simply providing a
framework where authorizations can be specified, the mastehccommodate different
privileges. For instance, in addition to the traditionadewrite, and execute actions,
ownership(i.e., property of objects by subjects), acahtrol (to model father-children
relationships between processes) can be consideredeFigliustrates an example of
access matrix.

Changes to the state of a system is carried out threaogimandshat can execute
primitive operations on the authorization state, possibly deperatirgpme conditions.
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Fig. 2. Primitive operations of the HRU model

The HRU formalization identified six primitive operatiorisat describe changes to the
state of a system. These operations, whose effect on theri&astion state is illustrated
in Figure 2, correspond to adding and removing a subjectingdahd removing an
object, and adding and removing a privilege. Each commaaétanditional part and
a body and has the form

commandc(xy, ..., Xg)
if r1in A, ,Xo,] and
r2 in AlXs,, %o,] and

Fm iN AXs, Xorm)
thenopy

0Pz

Opn
end.
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with n > 0,m > 0. Herery,...,ry are actionsppy, ..., 0py are primitive operations,
while sy, ...,y andoy, ..., 0y are integers between 1 akdf m=0, the command has no
conditional part.

For example, the following command creates a file and gives<thating subject
ownership privilege on it.

command CREATE(creator,file)
create objecfile
enterOwninto Alcreator,filé end.

The following commands allow an owner to grant to others,r@udke from others,
a privilege to execute an action on her files.

command CONFER,(owner,friend,file)
if Own in Ajowner,filg
then enter a into Afriend,filg] end.

command REVOKE;(owner,ex-friend,file)
if Own in Ajowner,filg
then delete a from fex-friend,filg end.

Note that herea is not a parameter, but an abbreviation for defining manylami
commands, one for each value tlzatan take (e.g., CONFERy 4 REVOKEyite)-
Since commands are not parametric w.r.t. actions, a diffetemmand needs to be
specified for each action that can be granted/revoked.

Let Q op Q denote the execution of operatiop on stateQ, resulting in state
Q. The execution of commantay, ..., a) on a system stat® = (S,O,A) causes the
transition from stateQ to stateQ’ such that3 Qq,...,Qn for which Q Fop; Q1 Fopg
... Fop: Qn = @', whereop ... op;, are the primitive operatiorsp; ... op, in the body
(operational part) of commarg]in which actual parametess are substituted for each
formal parametenrs,i:=1,..., k. If the conditional part of the command is not verified,
then the command has no effect a@d= Q'.

Although the HRU model does not include any buil-in admigite policies, the
possibility of defining commands allows their formulatidxdministrative authoriza-
tions can be specified by attaching flags to access privilégesnstance, aopy flag
denotedk, attached to a privilege may indicate that the privilege loartransferred to
others. Granting of authorizations can then be accompliblgethe execution of com-
mands like the one below (again here TRANSEKEER an abbreviation for as many
commands as there are actions).

command TRANSFER,(subj,friend,file)
if a* in A[subj,filg
then enter a into Afriend,file] end.

The ability of specifying commands of this type clearly pr®s flexibility as differ-
ent administrative policies can be taken into account bydefiappropriate commands.
For instance, an alternative administrative flag (cattadsfer onlyand denoted-) can
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be supported, which gives the subject the ability of passimghe privilege to others
but for which, so doing, the subject looses the privilegetsaflexibility introduces an
interesting problem referred to aafety and concerned with the propagation of priv-
ileges to subjects in the system. Intuitively, given a systeith initial configuration
Q, the safetyproblem is concerned with determining whether or not a gsajects
can ever acquire a given accesen an objecp, that is, if there exists a sequence of
requests that executed @can produce a stat@ wherea appears in a cel\[s, o] that
did not have it inQ. (Note that, of course, not all leakages of privileges are &ed
subjects may intentionally transfer their privileges tauworthy” subjects. Trustwor-
thy subjects are therefore ignored in the analysis.) Itdunut that the safety problem
is undecidable in general (it can be reduced to the haltiogplpm of a Turing ma-
chine) [4]. It remains instead decidable for cases whergesthand objects are finite,
and inmono-operationasystems, that is, systems where the body of commands can
have at most one operation (while the conditional part cilrbstarbitrarily complex).
However, as noted in [81], mono-operational systems hayhrttitation of making cre-
ate operations pretty useless: a single create commandtdmmore than adding an
empty row/column (it cannot write anything in it). It is tiedore not possible to support
ownership or control relationships between subjects. fegsgs in safety analysis were
made in a later extension of the HRU model by Sandhu [81], wiopgsed th&TAM
(Typed Access Matrix) model. TAM extends HRU with strongityp each subject and
object has a type; the type is associated with the subjdists when they are created
and thereafter does not change. Safety results decidapl@ynomial time for cases
where the system is monotonic (privileges cannot be dédlatechmands are limited to
three parameters, and there are no cyclic creates. Safeayre undecidable otherwise.

2.2 Implementation of the access matrix

Although the matrix represents a good conceptualizatiautiiorizations, it is not ap-
propriate for implementation. In a general system, the sxoeatrix will be usually
enormous in size and sparse (most of its cells are likely terbpty). Storing the ma-
trix as a two-dimensional array is therefore a waste of mgrspace. There are three
approaches to implementing the access matrix in a practagl

Authorization Table Non empty entries of the matrix are reported in a table witheh
columns, corresponding to subjects, actions, and objextpgectively. Each tuple
in the table corresponds to an authorization. The authiioizéable approach is
generally used in DBMS systems, where authorizations aredtas catalogs (re-
lational tables) of the database.

Access Control List (ACL) The matrix is stored by column. Each object is associated
with a list indicating, for each subject, the actions that slubject can exercise on
the object.

Capability The matrix is stored by row. Each user has associated adiftdocapabil-
ity list, indicating, for each object, the accesses thautter is allowed to exercise
on the object.

Figure 3 illustrates the authorization table, ACLs, ancatdlities, respectively, cor-
responding to the access matrix in Figure 1.



8 Pierangela Samarati and Sabrina De Capitani di Vimercati

|USERJACCESS MODE OBJECT |

Ann own File 1
Ann read File 1
Ann write File 1
Ann read File 2
Ann write File 2
Ann execute |Program 1
Bob read File 1
Bob read File 3
Bob write File 3
Carl read File 2
Carl execute |Program 1
Carl read Program 1
File 1——=| Ann Bob Ann —| File 1 File 2 Program 1
own
read read OWZ read
write reg write execute
write
P
- -
File 2—| Ann Carl
Bob —| Filel File 3
read
write read read
read write
-
- |
File 3—| Bob
read Carl —| File2 Program 1|
write read execute
read
Program I—| Ann Ccarl M
execute
execule/ read
P

Fig. 3. Authorization table, ACLs, and capabilities for the matrixigure 1

Capabilities and ACLs present advantages and disadvantéterespect to autho-
rization control and management. In particular, with ACLis immediate to check the
authorizations holding on an object, while retrieving b tauthorizations of a subject
requires the examination of the ACLs for all the objects. lagausly, with capabilities,
it is immediate to determine the privileges of a subject |ahétrieving all the accesses
executable on an object requires the examination of all iffiereint capabilities. These
aspects affect the efficiency of authorization revocatiporudeletion of either subjects
or objects.

In a system supporting capabilities, it is sufficient for hjeat to present the appro-
priate capability to gain access to an object. This reptesanadvantage in distributed
systems since it permits to avoid repeated authenticafi@asubject: a user can be
authenticated at a host, acquire the appropriate capediind present them to obtain
accesses at the various servers of the system. Howevebilitgmare vulnerable to
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forgery (they can be copied and reused by an unauthorized third)partpther prob-
lem in the use of capability is the enforcement of revocatioeaning invalidation of
capabilities that have been released.

A number of capability-based computer systems were deedlapthe 1970s, but
did not prove to be commercially successful. Modern opegagiystems typically take
the ACL-based approach. Some systems implement an abted¥@m of ACL by
restricting the assignment of authorizations to a limitachber (usually one or two) of
named groups of users, while individual authorizationgateallowed. The advantage
of this is that ACLs can be efficiently represented as smaNéctors. For instance, in
the popular Unix operating system, each user in the systéong®to exactly one group
and each file has an owner (generally the user who createshd)is associated with a
group (usually the group of its owner). Authorizations fack file can be specified for
the file’s owner, for the group to which the file belongs, and‘tbe rest of the world”
(meaning all the remaining users). No explicit referenceders or groups is allowed.
Authorizations are represented by associating with eagtban access control list of
9 bits: bits 1 through 3 reflect the privileges of the file’s @rrbits 4 through 6 those
of the user group to which the file belongs, and bits 7 througfo8e of all the other
users. The three bits correspond to the ragdwrite (W), and executex( privilege,
respectively. For instance, AQlwxr - x- - X associated with a file indicates that the file
can be read, written, and executed by its owner, read anditscby users belonging
to the group associated with the file, and executed by all theraisers.

3 \Wulnerabilities of the discretionary policies

In defining the basic concepts of discretionary policies haee referred to access re-
quests on objects submitted by users, which are then chexjadsts the users’ au-
thorizations. Although it is true that each request is oged because of some user’s
actions, a more precise examination of the access contoblgn shows the utility
of separatingusersfrom subjects Users are passive entities for whom authorizations
can be specified and who can connect to the system. Once ¢ednieche system,
users originate processes (subjects) that execute onbibiedlf and, accordingly, sub-
mit requests to the system. Discretionary policies ignioisedistinction and evaluate all
requests submitted by a process running on behalf of sonmmeaga@st the authoriza-
tions of the user. This aspect makes discretionary polinigiserable from processes
executing malicious programs exploiting the authorizadiof the user on behalf of
whom they are executing. In particular, the access congsiem can be bypassed by
Trojan Horses embedded in programsTildjan Horseis a computer program with an
apparently or actually useful function, which containsiiddal hiddenfunctions that
surreptitiously exploit the legitimate authorizationstbé invoking process. (Viruses
and logic bombs are usually transmitted as Trojan Horseslyojan Horse can im-
properly use any authorizations of the invoking user, famegle, it could even delete
all files of the user (this destructive behavior is not uncamrnm the case of viruses).
This vulnerability to Trojan Horses, together with the faztdiscretionary policies do
not enforce any control on the flow of information once thfsiimation is acquired by
a processmakes it possible for processes to leak information to usetsillowed to
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read it. All this can happen without the cognizance of tha dalministrator/owner, and
despite the fact that each single access request is cautialainst the authorizations.
To understand how a Trojan Horse can leak information to thmaized users despite
the discretionary access control, consider the followixgneple. Assume that within
an organization, Vicky, a top-level manager, creates a filgkdt containing impor-
tant information about releases of new products. This infion is very sensitive for
the organization and, according to the organization’sggpfihould not be disclosed to
anybody besides Vicky. Consider now John, one of Vicky'sssdimates, who wants to
acquire this sensitive information to sell it to a competiigganization. To achieve this,
John creates afile, let’s call it Stolen, and gives Vicky ththarization to write the file.
Note that Vicky may not even know about the existence of 8taeabout the fact that
she has the write authorization on it. Moreover, John maidieapplication generally
used by Vicky, to include two hidden operations, a read djperan file Market and a
write operation on file Stolen (Figure 4(a)). Then, he giesiew application to his
manager. Suppose now that Vicky executes the applicatione$he application exe-
cutes on behalf of Vicky, every access is checked againgtyéi@uthorizations, and
the read and write operations above are allowed. As a relsuihg execution, sensitive
information in Market is transferred to Stolen and thus madelable to the dishonest
employee John, who can then sell it to the competitor (Figiog).

The reader may object that there is little point in defendigginst Trojan Horses
leaking information flow: such an information flow could haveppened anyway, by
having Vicky explicitly tell this information to John, pab$y even off-line, without the
use of the computer system. Here is where the distinctiowdsi users and subjects
operating on their behalf comes M/hile users are trusted to obey the access restric-
tions, subjects operating on their behalf are néfith reference to our example, Vicky
is trusted not to release the sensitive information she krtowohn, since, according to
the authorizations, John cannot read it. However, the gs@seoperating on behalf of
Vicky cannot be given the same trust. Processes run progrdmict, unless properly
certified, cannot be trusted for the operations they exe€iatethis reason, restrictions
should be enforced on the operations that processes therasain execute. In particu-
lar, protection against Trojan Horses leaking informatmnonauthorized users requires
controlling the flows of information within processes exému and possibly restricting
them. Mandatory policies provide a way to enforce informatilow control through
the use of labels.

4 Mandatory policies

Mandatory security policies enforce access control on #sistof regulations mandated
by a central authority. The most common form of mandatoricgas themultilevel se-
curity policy, based on the classificationssafbjectsandobjectsin the system. Objects
are passive entities storing information. Subjects areaentities that request access
to the objects. Note that there is a distinction betwadnjectf the mandatory policy
and theauthorization subjectsonsidered in the discretionary policies. While autheriza
tion subjects typically correspond to users (or groupsth®r mandatory policies make

a distinction betweensersandsubjects Users are human beings who can access the



Access Control: Policies, Models, and Mechanisms 11

Application

read Market

File Stolen

write Stolen
File Market
Aug. 00; product X; price 7,000
Dec. 00; product Y; price 3,500
Jan. 01; product Z; price 1,200
owner Vicky
_ ()
) i nvokes o
Vicky Application
read Market
write Stolen
File Market
Aug. 00; product X; price 7,000
Dec. 00; product Y; price 3,500
Jan. 01; product Z; price 1,200
owner Vicky
(b)

owner John
( Vicky,write,Stolen)

File Stolen

Aug. 00; product X; price 7,000
Dec. 00; product Y; price 3,500
Jan. 01; product Z; price 1,200

owner John
( Vicky,write,Stolen)

Fig. 4. An example of Trojan Horse improperly leaking information
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system, while subjects are processes (i.e., programs guggn) operating on behalf
of users. This distinction allows the policy to control tinelirect accesses (leakages or
modifications) caused by the execution of processes.

4.1 Security classifications

In multilevel mandatory policies, an access class is assidga each object and sub-
ject. The access class is one element of a partially ordexedfslasses. The partial
order is defined by @ominancerelationship, which we denote with. While in the
most general case, the set of access classes can simply betarfiyabels that together
with the dominance relationship defined on them form a PO$&ETi@lly ordered set),
most commonly an access class is defined as consisting ofdmpanents: @ecurity
leveland aset of categoriesThe security level is an element of a hierarchically ordere
set, such as Top Secréty), Secret §), Confidential C), and Unclassifiedl), where
TS > S> C> U. The set of categories is a subset of an unordered set, wheyserds
reflect functional, or competence, areas (e.g., NATO, Narclend Army, for military
systems; Financial, Administration, and Research, forroencial systems). The dom-
inance relationship> is then defined as follows: an access clesgominateg>) an
access class; iff the security level ofc; is greater than or equal to that of and the
categories ot include those of,. Formally, given a totally ordered set of security
levels £, and a set of categories, the set of access classeszis = £ x(¢)?, and
Ver = (L1,C1),c = (L2,Co) s €1 > ¢y <= L1 > Lo ACy D Cp. Two classeg; andcy
such that neithet; > ¢, norc, > ¢; holds are said to bemcomparable

Itis easy to see that the dominance relationship so definedsehof access classes
4 ¢ satisfies the following properties.

— Reflexivity: Vxe a¢ :x>X

— Transitivity: VXy,Zz€ 4¢C :X>Yy,y>z=—=Xx>2

— Antisymmetry: VYX,yE€ AC :X>Y,y>X=X=Y

— Existence of a least upper bound:Vx,y € a¢ : 3lze ac
e z>Xxandz>y
eVteac: t>xandt>y—=t>z

— Existence of a greatest lower boundvx,ye ac : 3lze ac

e X>zandy>z
e Vtegac: :x>tandy>t —=z>t.

Access classes defined as above together with the dominglatiemship between
them therefore form a lattice [31]. Figure 5 illustrates $keurity lattice obtained con-
sidering security level§S andS, with TS>S and the set of categori¢sucl ear ,Arny }.

The semantics and use of the classifications assigned totsljed subjects within
the application of a multilevel mandatory policy is diffatalepending on whether the
classification is intended forgecrecyor anintegrity policy. We next examine secrecy-
based and integrity-based mandatory policies.

20(c) denotes the powerset of
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TS, {Army,Nucleai

TS{Army} S{Army,Nucleat TS{Nuclear

S{Army} TSA{} S{Nucleat

S}

Fig. 5. An example of security lattice

4.2 Secrecy-based mandatory policies

A secrecy mandatory policy controls the direct andirect flows of information to
the purpose of preventing leakages to unauthorized sgbjelerre, the semantics of
the classification is as follows. The security level of theess class associated with
an object reflects the sensitivity of the information coméal in the object, that is, the
potential damage that could result from the unauthorizedd$ure of the information.
The security level of the access class associated with aalsercalledcclearance re-
flects the user’s trustworthiness not to disclose sensitfeemation to users not cleared
to see it. Categories define the area of competence of usérdaaa and are used to
provide finer grained security classifications of subjents @bjects than classifications
provided by security levels alone. They are the basis fooreifig need-to-knowe-
strictions (i.e., confining subjects to access informathay actually need to know to
perform their job).

Users can connect to the system at any access class dontyatieeir clearance.
A user connecting to the system at a given access class atégira subject at that
access class. For instance, with reference to the lattideigare 5, a user cleared
(TS, {Nucl ear }) can connect to the system asSa{Nucl ear }), (TS, 0), or (TS, 0) sub-
ject. Requests by a subject to access an object are codtvatle respect to the access
class of the subject and the object and granted only if sotagarship, depending on
the requested access, is satisfied. In particular, two iptex; first formulated by Bell
and LaPadula [12], must be satisfied to protect informatarfidentiality:

No-read-up A subject is allowed a read access to an object only if thesscckass of
the subject dominates the access class of the object.

No-write-down A subject is allowed a write access to an object only if thesasclass
of the subject is dominated by the access class of the object.

Satisfaction of these two principles prevents informatiorilow from high level
subjects/objects to subjects/objects at lower (or incaatge) levels, thereby ensuring
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Fig. 6. Information flow for secrecy

the satisfaction of the protection requirements (i.e., mess will be able to make
sensitive information available to users not cleared jofihis is illustrated in Figure 6,
where four accesses classes composed only of a securityT8y8, C, andU) are taken
as example. Note the importance of controlling both readwarit operations, since
both can be improperly used to leak information. Considerekample on the Trojan
Horse illustrated in Section 3. Possible classificatiofiectng the access restrictions
to be enforced could be: Secret for Vicky and Market, and bissified for John and
Stolen. In the respect of the no-read-up and no-write-daiitiples, the Trojan Horse
will never be able to complete successfully. If Vicky contsdo the system as a Secret
(or Confidential) subject, and thus the application runfwitSecret (or Confidential)
access class, the write operation will be blocked. If Viakyakes the application as an
Unclassified subject, the read operation will be blocketbimd.

Given the no-write-down principle, it is clear now why usars allowed to connect
to the system at different access classes, so that they réoadccess information at
different levels (provided that they are cleared for it)t Fstance, Vicky has to connect
to the system at a level below her clearance if she wants tie wome Unclassified
information, such as working instructions for John. Notatth lower class does not
mean “less” privileges in absolute terms, but only lessirepgrivileges (see Figure 6).

Although users can connect to the system at any level belew ttearance, the
strict application of the no-read-up and the no-write-dgwimciples may result too
rigid. Real world situations often require exceptions te thandatory restrictions. For
instance, data may need to be downgraded (e.g., data stdbmuibargoes that can be
released after some time). Also, information released bypegss may be less sensitive
than the information the process has read. For instancegaeg@ure may access per-
sonal information regarding the employees of an orgaminatnd return the benefits to
be granted to each employee. While the personal informatarbe considered Secret,
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the benefits can be considered Confidential. To responduatigihs like these, mul-
tilevel systems should then allow for exceptions, loosgrinwaiving restrictions, in
a controlled way, to processes that amestedand ensure that information sanitized
(meaning the sensitivity of the original information istps

Note also that DAC and MAC policies are not mutually exclesbut can be applied
jointly. In this case, an access to be granted needsiptih existence of the necessary
authorization for it, and) to satisfy the mandatory policy. Intuitively, the discoatary
policy operatesvithin the boundariesf the mandatory policy: it can only restrict the
set of accesses that would be allowed by MAC alone.

4.3 The Bell-LaPadula model (some history)

The secrecy based control principles just illustrated sanma the basic axioms of the
security model proposed by David Bell and Leonard LaPadi#la Here, we illustrate
some concepts of the model formalization to give an idea®flifferent aspects to be
taken into account in the definition of a security model. Titfile bit of history is useful
to understand the complications of formalizing a policy araking sure that the policy’
axioms actually ensure protection as intended. We notetimstifferent versions of the
model have been proposed (due to the formalization of nepepties [10, 12, 55], or
related to specific application environments [11]), howetie basic principles remain
the same (and are those illustrated in the previous secfdsy, here we will be looking
only at the aspects of the formalization needed to illustthe concepts we want to
convey: for the sake of simplicity, the formulation of the dedis simplified and some
aspects are omitted.

In the Bell and LaPadula model a system is composed of a sab#dsS, objects
O, and actiong\, which includes ead andwr i t e3. The model also assumes a lattice
L of access classes and a functionSUO — L that, when applied to a subject (ob-
ject, resp.) in a given state, returns the classificatioh@tubject (object, resp.) in that
state. A state € V is defined as a tripléh, M,A), whereb € 0 (Sx O x A) is the set of
current access€s,0,a), M is the access matrix expressing discretionary permissions
(as in the HRU model), andl is the association of access classes with subjects and
objects. A system consists of an initial statg a set of request®, and a state transi-
tion functionT : V x R— V that transforms a system state into another state resulting
from the execution of a request. Intuitively, requests gapacquisition and release of
accesses, granting and revocation of authorizations, Asasehanges of levels. The
model then defines a set of axioms stating properties thagytstem must satisfy and
that express the constraints imposed by the mandatoryypdlie first version of the
Bell and LaPadula model stated the following criteria.

simple property A statev satisfies the simple security property iff for everyg S,
0€ O: (s,0,read) € b= A(s) > A(0).

*-property A statev satisfies the *-security property iff for evesy S,0€ O: (s,0,write) €
b= A(0) > A(s).

3 For uniformity of the discussion, we use the term “write” ééo denote the “write-only” (or
“append”) action.
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The two axioms above correspond to the no-read-up and rte-doiwn principles
we have illustrated in Section 4.2. A state is then definecktedzure if it satisfies both
the simple security property and the *-property. A systemR, T) is secure if and only
if every state reachable fromy by executing one or more finite sequences of requests
from Ris state secure

In the first formulation of their model, Bell and LaPadulayide aBasic Security
Theorem (BSTwhich states that a system is secuiig ifs initial statevp is secure, and
i) the state transitiofl is security preserving, that is, it transforms a secure stab
another secure state.

As noticed by McLean in his example called “System Z” [63 BST theorem
does not actually guarantee security. The problem liesenfdlat that no restriction,
but to be preserving of state security, is put on transitibméiis System Z example,
McLean shows how failing to control transitions can compisensecurity. Consider a
systemZ whose initial state is secure and that has only one type péitian: when a
subject requests any type of access to an objestery subject and object in the system
are downgraded to the lowest possible access class anddéssas granted. System
Z satisfies the Bell and LaPadula notion of security, but mbsiously not secure in
any meaningful sense. The problem pointed out by Systemtztdtansitions need to
be controlled. Accordingly, McLean proposes extendingtioglel with a new function
C:SUO — (S), which returns the set of subjects allowed to change thd teies
argument. A transition is secure if it allows changes to thell of a subject/object
x only by subjects irC(x); intuitively, these are subjects trusted for downgradiig.
system Yp, R, T) is securef and only if i) vg is secureii) every state reachable frow
by executing a finite sequence of one or more requests Rs{BLP) secure, anii)

T is transition secure

The problem with changing the security level of subjects alpjgcts was not cap-
tured formally as an axiom or property in the Bell and LaPadblt as an informal
design guidance callettanquility principle. The tranquility principle states that the
classification of active objects should not be changed dumiormal operation [55].
A subsequent revision of the model [10] introduced a disitimcbetween the level
assigned to a subjeatl€arancé and its current level (which could be any level dom-
inated by the clearance), which also implied changing theédation of the axioms,
introducing more flexibility in the control.

Another property included in the Bell and LaPadula moddiésliscretionary prop-
erty which constraints the set of current accedsés be a subset of the access matrix
M. Intuitively, it enforces discretionary controls.

4.4 Integrity-based mandatory policies: The Biba model

The mandatory policy that we have discussed above protabtshe confidentiality of

the information; no control is enforced on its integrityviolassified subjects could still
be able to enforce improper indirect modifications to olgebey cannot write. With
reference to our organization example, for instance, iittegould be compromised if
the Trojan Horse implanted by John in the application woutdendata in file Market

(this operation would not be blocked by the secrecy poliStarting from the principles
of the Bell and LaPadula model, Biba [16] proposed a dualcgdior safeguarding
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Fig. 7. Information flow for integrity

integrity, which controls the flow of information and preversubjects tdndirectly
modify information they cannot write. Like for secrecy, baubject and object in the
system is assigned an integrity classification. The classifins and the dominance
relationship between them are defined as before. Exampletedrity levels can be:
Crucial €, Important (), and Unknown (). The semantics of integrity classifications
is as follows. The integrity level associated with a useerf the user’s trustworthiness
for inserting, modifying, or deleting information. The égfrity level associated with an
object reflects both the degree of trust that can be placetiemtormation stored in
the object and the potential damage that could result froauthorized modifications
of the information. Again, categories define the area of catence of users and data.
Access control is enforced according to the following twimgiples:

No-read-down A subject is allowed a read access to an object only if thesacclass
of the object dominates the access class of the subject.

No-write-up A subject is allowed a write access to an object only if theeasclass of
the subject dominates the access class of the object.

Satisfaction of these principles safeguard integrity lavpnting information stored
in low objects (and therefore less reliable) to flow to higleerincomparable, objects.
This is illustrated in Figure 7, where classes composed afrilytegrity levels C,| , and
U) are taken as example.

The two principles above are the dual of the two principlesnidated by Bell
and LaPadula. Biba’s proposal also investigated altaraatiteria for safeguarding in-
tegrity, allowing for more dynamic controls. These inclddiee following two policies.

Low-water mark for subjects It constraints write operations according to the no-write-
up principle. No restriction is imposed on read operatiblsvever, a subjecthat
reads an objeat has its classification downgraded to the greatest lower ¢hofin
the classification of the two, that i¥/(s) = glb(A(s),A(0)).
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Low-water mark for objects It constraints read operations according to the no-read-
down principle. No restriction is imposed on write operaioHowever, if a subject
s writes an objecb, the object has its classification downgraded to the greates
lower bound of the classification of the two, thati§0) = glb(A(s),A(0)).

Intuitively, the two policies attempt to apply a more dynarbehavior in the en-
forcement of the constraints. The two approaches suffeeliemof drawbacks. In the
low-water mark for subjects approach, the ability of a sabfe execute a procedure
may depend on the order with which operations are request®iject may be denied
the execution of a procedure because of read operationsitexebefore. The latter
policy cannot actually be considered as safeguardingiityegiven that subjects are
allowed to write above their level, integrity compromisas certainly occur; by down-
grading the level of the object the policy simply signalstaict.

As itis visible from Figures 6 and 7, secrecy policies alltw flow of information
only from lower to higher (secrecy) classes while integptficies allow the flow of
information only from higher to lower (integrity) classétboth secrecy and integrity
have to be controlled, objects and subjects have to be a&sbigo access classes, one
for secrecy control and one for integrity control.

A major limitation of the policies proposed by Biba is thaeyhonly capture in-
tegrity compromises due to improper information flows. Hegreintegrity is a much
broader concept and additional aspects should be takeadotmunt (see Section 6.5).

4.5 Applying mandatory policies to databases

The first formulation of the multilevel mandatory policiasd the Bell LaPadula model,
simply assumed the existence of objects (information éoatato which a classifica-
tion is assigned. This assumption works well in the opegatirstem context, where ob-
jects to be protected are essentially files containing the. dater studies investigated
the extension of mandatory policies to database systemge \dhoperating systems
access classes are assigned to files, database systemfoodia fiher-grained classi-
fication. Classification can in fact be considered at thellefzeelations (equivalent to
file-level classification in OS), at the level of columns feient properties can have a
different classification), at the level of rows (propertiegerred to a given real world
entity or association have the same classification), oretetel of single cells (each
data element, meaning the value assigned to a property feea gntity or association,
can have a different classification), this latter being thedt possible classification.
Early efforts to classifying information in database systeconsidered classification at
the level of each single element [50, 61]. Element-levedsifécation is clearly appeal-
ing since it allows the assignment of a security class to saxie real world fact that
needs to be represented. For instance, an employee’s narbe &@beled Unclassified,
while his salary can be labeled Secret; also the salary tdrdifit employees can take
on different classifications. However, the support of finakged classifications together
with the obvious constraint of maintaining secrecy in thstegn operation introduces
complications. The major complication is represented bysthcallegolyinstantiation
problem [49, 60], which is probably one of the main reasong miltilevel databases
did not have much success. Generally speaking, polyinatamtis the presence in the
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[NamelAn| Dept[Ap[Salary[Ag] [Name[An] Dept [Ap[Salary|Ag]
Bob | U |Deptl U | 100K | U Bob | U [Deptl U | 100K | U
Jim | U [Deptl U | 100K |U Jim | U |Deptl U | 100K | U
Ann | S|Dept? S| 200K | S Sam|U |Dept U| - |U
Sam| U |Dept U | 150K | S

@) (b)

Fig. 8. An example of multilevel relation (a) and the Unclassifiegwion it (b)

system of multiple instances of the same real world fact tityemvhere the instances
differ for the access class associated with them.

To illustrate the problem, let us start giving the definitimihmultilevel relational
database. A relational database is composed of a finite sefaifons, each defined
over a set of attributedy, ..., A, (columns of the relation). Each relation is composed
of a set of tuple$, ..., tk (rows of the relation) mapping attributes to values oveirthe
domain. A subset of the attributes, called key attributes,used to uniquely identify
eachtuple in the relation, and the followikey constraintare imposed) no two tuples
can have the same values for the key attributesjipidy attributes cannot be null. In a
multilevel relational database supporting element-l&tsling, an access clas& [A))
is associated with each elemef in a relation. An example of multilevel relation
is illustrated in Figure 8(a). Note that the classificati@sariated with a value does
not represent the absolute sensitivity of the value as dudtrather the sensitivity of
the fact that the attribute takes on that value for a speaitfiityein the real world. For
instance, classification Secret associated with vah{X of the last tuple is not the
classification of valu@50K by itself, but of the fact that it is the salary 84m*

Access control in multilevel DBMSs applies the two basiapiples discussed in
Section 4.2, although the no-write-up restriction is uguaduced to the principle of
“write at their own level”. In fact, while write-up operatis can make sense in operating
systems, where a file is seen as an information container @njgécis may need to
append low-level data in a high-level container, elemewél classification nullifies
this reasoning.

Subjects at different levels have different views on a rmetwhich is the view
composed only of elements they are cleared to see (i.e.,exdlassification they dom-
inate). For instance, the view of an Unclassified subjecthennultilevel relation in
Figure 8(a) is the table in Figure 8(b). Note that, in pritejgo not convey informa-
tion, the Unclassified subject should see no difference &etvwalues that are actually
nul | in the database and those that amel since they have a higher classification.
To produce a view consistent with the relational databasstcaints the classification
needs to satisfy at least the following two basic constsainthe key attributes must be

4 Note that this is not meant to say that the classification oélament is independent of its
value. As a matter of fact it can depend on the value; for mstaa classification rule may
state that all salaries above 100K must be classified ast380ie

5 Some proposals do not adopt this assumption. For instamt&V [43], a special value “re-
stricted” appears in a subject’s view to denote the exigt@fiwalues not visible to the subject.
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[NamelAn| Dept[Ap[Salary[Ag] [Name[An] Dept[Ap[Salary|As]
Bob | U |Deptl U | 100K |U Bob | U |Dept] U | 100K |U
Jim | U [Deptl U | 100K |U Jim | U |Deptl U| 100K |U
Ann | S|Deptd S | 200K | S Ann | U [Dept] U | 100K (U
Sam| U |Dept U | 150K | S Sam| U |Deptll U | 100K |U
Ann | U |Dept] U | 100K (U
Sam| U |Dept] U | 100K (U

(@) (b)

Fig. 9. An example of a relation with polyinstantiation (a) and theclassified view on it (b)

uniformly classified, and) the classifications of nonkey attributes must dominate that
of key attributes. If it were not so, the view at some levelsildacontain a null value
for some or all key attributes (and therefore would not §atise key constraints).

To see how polyinstantiation can arise, suppose that araelgsifiled subject, whose
view on the table in Figure 8(a) is as illustrated in Figure)8fequests insertion of tu-
ple(Ann, Deptl, 100K). According to the key constraints imposed by the relational
model, no two tuples can have the same value for the key atdsbTherefore if clas-
sifications were not taken into account, the insertion cbalee not been accepted. The
database could have two alternative choigetll the subject that a tuple with the same
key already exists, ai) replace the old tuple with the new one. The first solutiorointr
duces acovert channé| since by rejecting the request the system would be rexgalin
protected information (meaning the existence of a SectayermmedAnn), and clearly
compromises secrecy. On the other hand, the second sotidgimpromises integrity,
since high classified data would be lost, being overriddethnbynewly inserted tuple.
Both solutions are therefore inapplicable. The only refimgirsolution would then be
to accept the insertion and manage the presence of botrst(gede Figure 9(a)). Two
tuples would then exist with the same value, but differeassification, for their key
(polyinstantiated tupl@sA similar situation happens if the unclassified subjeqtiests
to update the salary &mto valuel00K. Again, telling the subject that a value already
exists would compromise secrecy (if the subject is not sappo distinguish between
real nulls and values for which it does not have sufficierau@ace), while overwriting
the existing Secret value would compromise integrity (a&s Slecret salary would be
lost). The only remaining solution would therefore seeméadpaccept the insertion
(Figure 9(a)), implying then the existence of two tupledwtite same value and classi-
fication for their key, but with different value and classifiion for one of their attributes
(polyinstantiated elemernjtdNote that, when producing the view visible to a subject in
the presence of polyinstantiation, the DBMS must compjeéde those tuples with
high polyinstiated values that the subject cannot see.rf@amce, an unclassified sub-
ject querying the relation in Figure 9(a) will see only onpleufor Ann and Sam (see
Figure 9(b)).

6 We will talk more about covert channels in Section 4.6.
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[Name[An] Dept [Ap[Salary[Ag] [Name[An] Dept[Ap[Salary[As]
Bob | U [Deptl U 100K [U Bob [ U [Deptl U 100K [U
Jim | U [Deptl U | 100K |U Jim | U |Deptl U | 100K | U
Ann | S|Dept? S| 200K | S Sam|U |DeptiU| - |U
Sam| U |Dept U | 150K | S
Bob | S|Dept2 S| 200K | S
Jim | U |Dept] U | 150K | S

@ (b)

Fig. 10.An example of a relation with polyinstantiation (a) and theclAssified view on it (b)

Polyinstantiation can also occur because of requests lhylaigl subjects. For in-
stance, consider again the relation in Figure 8(a) and assuBecret subject requests
to insert tuplg( Bob, Dept2, 200K). A tuple with keyBob already exists at level Un-
classified. If key uniqueness is to be preserved, the systameitheri) inform the
subject of the conflict and refuse the insertionijjooverwrite the existing tuple. Again,
the solution of refusing insertion is not advisable: althloit would not leak protected
information, it introduceslenials-of-servicesince high level subjects would not be al-
lowed to insert data. The second solution also is not viableesit would introduce a
covert channel due to the effect that the overwriting wolddehon the view of lower
level subjects (which would see the Unclassified tuple gisap). Again, the only pos-
sible solution seems to be to accept the insertion and havenih (polyinstantiated)
tuples coexist (see Figure 10(a)). A similar problem wouldeaat the attribute level,
for update operations. For instance, if a secret subjecimesjupdating Jim's salary to
150K, polyinstantiated elements would be introduced (see Eig0(a)).

Earlier work in multilevel database systems accepted pstgintiation as an in-
evitable consequence of fine-grained classification aedngited to clarify the seman-
tics of the database states in the presence of polyinstantigp0, 61]. For instance,
the presence of two tuples with the same value, but diffeskassification, for the pri-
mary key (tuple polyinstantiation) can be interpreted a&sekistence ofwo different
entitiesof the real world (one of which is known only at a higher levélhe pres-
ence of two tuples with the same key and same key classificétio that differ for
the value and classification of some of its attributes camtezpreted as ainglereal
world entity for which different values are recorded (cepending to the different be-
liefs at different levels). However, unfortunately, paigtantiation quickly goes out of
hand, and the execution of few operations could result intabdse whose seman-
tics does not appear clear anymore. Subsequent work triegtailish constraints to
maintain semantic integrity of the database status [6®0]5However, probably be-
cause of all the complications and semantics confusionghbftinstantiation bears,
fine-grained multilevel databases did not have much suceesscurrent DBMSs do
not support element-level classification. Commercialayst(e.g., Trusted Oracle [66]
and SYBASE Secure SQL Server) support tuple level clastiita
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Itis worth noticing that, although polyinstantiation igeri blamed to be the reason
why multilevel relational databases did not have succedginstantiation is not neces-
sarily always bad. Controlled polyinstantiation may, feample, be useful to support
cover storieg38, 49], meaning non-true data whose presence in the daadaneant
to hide the existence of the actual value. Cover stories se@lwhen the fact that a
given data is not released is by itself a cause of informdé&akage. For instance, sup-
pose that a subject requires access to a hospital’s dathahdspital returns, for all its
patients, but for few of them, the illness for which they aeily cured. Suppose also
that HIV never appears as an illness value. Observing tiegdcipient may infer that it
is probably the case that the patients for which iliness tdiszlosed suffer from HIV.
The hospital could have avoided exposure to such an inferepsimply releasing a
non-true alternative valued@ver story for these patients. Intuitively, cover stories are
“lies” that the DBMS says to uncleared subjects not to diselirectly or indirectly)
the actual values to be protected. We do note that, whilercstoges are useful for pro-
tection, they have raise objections for the possible itegompromises which they
may indirectly cause, as low level subjects can base théorecon cover stories they
believe true.

A complicating aspects in the support of a mandatory poligy fane-grained level
is that the definition of the access class to be associatédeaith piece of data is not
always easy [30]. This is the case, for examplesfociatiorandaggregatiorrequire-
ments, where the classification of a set of values (progentésp.) is higher than the
classification of each of the values singularly taken. As>amele, while names and
salaries in an organization may be considered Unclassifiedssociation of a specific
salary with an employee’s name can be considered Secret{assn constraint). Sim-
ilarly, while the location of a single military ship can be tJassified, the location of all
the ships of a fleet can be Secret (aggregation constrainbly &nowing it one could
infer that some operations are being planned. Proper dasaifitation assignment is
also complicated by the need to take into account possildeence channels [30, 47,
59]. There is an inference channel between a set of xlatad a set of daty if, by
knowingx a user can infer some information gre.g., an inference channel can exist
between an employee’s taxes and her salary). Inferenceeahassification requires
that no informationx be classified at a level lower (or incomparable) than thel leve
of the informationy that can be inferred from it. Capturing and blocking all nefiece
channels is a complex process, also because of the intdif§a@ulty of detecting all
the semantics relationships between the data that can tdasence channels.

An interesting point that must be taken into account in rfeyél database systems
is the system architecture, which is concerned with the éednfining subjects ac-
cessing a multilevel database to the data that can be mabkwsthem. This problem
comes out in any data system where classification has a fiarulgrity than the stored
objects (e.g., multilevel object-oriented systems). Twegible approaches are [68]:

— Trusted subjectata at different levels are stored in a single databaser&itl(a)).
The DBMS itself must b#rustedto ensure obedience of the mandatory policy (i.e.,
subjects will not gain access to data whose classificatieydio not dominate).

— Trusted computing basetata are partitioned in different databases, one for each
level (Figure 11(b)). In this case only the operating systemds to be trusted since
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Fig. 11. Multilevel DBMSs architectures

every DBMS will be confined to data which subjects using thBMS can access.
Decomposition and recovery algorithms must be carefulhstrmicted to be correct
and efficient [33].

4.6 Limitations of mandatory policies

Although mandatory policies, unlike discretionary ongsvde protection against in-
direct information leakages they do not guarantee compkateecy of the information.
In fact, secrecy mandatory policies (even with tranquildgntrol onlyovertchannels
of information (i.e., flow throughegitimatechannels); they still remain vulnerable to
covert channelsCovert channels are channels that are not intended foralarom-
munication, but still can be exploited to infer informatidfor instance, consider the
request of a low level subject to write a non-existent higreldile (the operation is
legitimate since write-up operations are allowed). Nowhd system returns the error,
it exposes itself to improper leakages due to malicious legél processes creating and
destroying the high level file to signal information to lovopesses. However, if the low
process is not informed of the error, or the system automticreates the file, subjects
may not be signalled possible errors made in legitimatergite to write. As another
example, consider a low level subject that requires a resofe.g., CPU or lock) that
is busy by a high level subject. The system, by not allocatiegesource because it is
busy, can again be exploited to signal information at loweels (high level processes
can module the signal by requiring or releasing resourtfess)ow process can see any
different result due to a high process operation, there laamel between them. Chan-
nels may also be enacted without modifying the system’soespto processes. This is,
for example, the case ¢ifning channelsthat can be enacted when it is possible for a
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high process to affect the system’s response time to a loeggs With timing channels
the response that the low process receives is always the gastae time at which the
low process receives the response that communicates iafermTherefore, in princi-
ple, anycommon resource or observable propesfyhe system state can be used to leak
information. Consideration of covert channels requirasigadar care in the design of
the enforcement mechanism. For instance, locking and ecoeroey mechanisms must
be revised and be properly designed [7]. A complication wirtkdesign is that care
must be taken to avoid the policy for blocking covert chastielintroduce denials-of-
service. For instance, a trivial solution to avoid coverrmhels between high and low
level processes competing over common resources coulddde&ys give priority to
low level processes (possibly terminating high level psses). This approach, how-
ever, exposes the systems to denials-of-service attackei low level processes can
impede high level (and therefore, presumably, more impbyiarocesses to complete
their activity.

Covert channels are difficult to control also because of iffeulty of mapping
an access control model’s primitive to a computer systerh Jgar this reason, covert
channels analysis is usually carried out in the implementgthase, to make sure that
the implementation of the model’s primitive is not too we@lkvert channel analysis
can be based on tracing the information flows in programs [3idcking programs for
shared resources that can be used to transfer informat@ndbchecking the system
clock for timing channels [92]. Beside the complexity, tmitation of such solutions
is that covert channels are found out at the end of the dewedap process, where
system changes are much more expensive to correct. Interfadels have been pro-
posed which attempt to rule out covert channels analysisémtodeling phase [64,
37]. Rather than specifying a particular method to enfoemusty, interface models
specify restrictions on a system’s input/output that muestobeyed to avoid covert
channels. It is then task of the implementor to determine #hatefor satisfying the
specifications. A well known principle which formed the Isasif interface models
is the non-interferenceprinciple proposed by Goguen and Meseguer [40]. Intuiivel
non-interference requires that high-level input canntgrfiere with low-level output.
Non-interference constraints enhance the security ptiegahat can be formalized and
proved in the model; it is however important to note that s&gmodels do not estab-
lish complete security of the system, they merely estaldesturity with respect to a
model, they can prove only properties that have been capinte the model.

5 Enriching DAC with mandatory restrictions

As we have discussed in the previous section, mandatorgipsljuarantee better secu-
rity than discretionary policies, since they can also adritrdirect information flows.
However, their application may result too rigid. Severabpmsals have attempted a
combination of mandatory flow control and discretionaryhauizations. We illustrate
some of them in this section.
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Fig. 12. An example of object organization

5.1 The Chinese Wall policy

The Chinese Wall [22] policy was introduced as an attemptalarice commercial
discretion with mandatory controls. The goal is to prevefidimation flows which
cause conflict of interest for individual consultants (eag.individual consultant should
not have information about two banks or two oil companiegjweler, unlike in the
Bell and LaPadula model, access to data is not constraindetlmata classifications but
by what data the subjects have already accessed. The mdxsldd on a hierarchical
organization of data objects as follows:

— basic objectsare individual items of information (e.g., files), each ceming a
single corporation;

— company datasetdefine groups of objects that refer to a same corporation;

— conflict of interest classedefine company datasets that refer to competing corpo-
rations.

Figure 12 illustrates an example of data organization winéme objects of four
different corporations, namel;B,C, andD, are maintained. Correspondingly four com-
pany datasets are defined. The two conflict of interest dadspicted define the con-
flicts betweerA andB, and betweeg andD.

Given the object organization as above, the Chinese Waityoéstricts access
according to the following two properties [22]:

Simple security rule A subjectscan be granted access to an obgeohly if the object
o:

— is in the same company datasets as the objects already eddBss that is,
“within the Wall”, or

— belongs to an entirely different conflict of interest class.
*-property Write access is only permitted if

— access is permitted by the simple security rule, and
— no object can be read whidhis in a different company dataset than the one
for which write access is requested, aijdcontains unsanitized information.
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The term subject used in the properties is to be interpreteder (meaning access
restrictions are referred to users). The reason for thisais tinlike mandatory policies
that control processes, the Chinese Wall policy controésaudt would therefore not
make sense to enforce restrictions on processes as a utitbeable to acquire infor-
mation about organizations that are in conflict of inter@spsy running two different
processes.

Intuitively, the simple security rule blocks direct infoation leakages that can be
attempted by a single user, while the *-property blocksriecti information leakages
that can occur with the collusion of two or more users. Fotainee, with reference to
Figure 12, an indirect improper flow could happeni)ifa user reads information from
object ObjA-1 and writes it into ObjC-1, and subsequeti)lya different user reads
information from ObjC-1 and writes it into ObjB-1.

Clearly, the application of the Chinese Wall policy stillrgome limitations. In par-
ticular, strict enforcement of the properties may resudtrigid and, like for the manda-
tory policy, there will be the need for exceptions and suppbsanitization (which is
mentioned, but not investigated, in [22]). Also, the enéanent of the policies requires
keeping and querying the history of the accesses. A furthit po take into consid-
eration is to ensure that the enforcement of the propertibsiet block the system
working. For instance, if in a system composed of ten usensethre eleven company
datasets in a conflict of interest class, then one datasktemilain inaccessible. This
aspect was noticed in [22], where the authors point out therietmust be at least as
many users as the maximum number of datasets which appedihéodn a conflict of
interest class. However, while this condition makes theesysoperation possible, it
cannot ensure it when users are left completely free chaidh@datasets they access.
For instance, in a system with ten users and ten datasets,@gadataset may remain
inaccessible if two users access the same dataset.

Although the model does have some limitations and drawhalksChinese Wall
policy represents a good exampledyinamic separation of dugonstraints present in
the real world, and has been taken as a reference in the gevetd of several subse-
quent policies and models (see Section 7).

5.2 Authorization-based information flow policies

Other proposals that tried to overcome the vulnerabilitgdistretionary policies have
worked on complementing authorization control with infation flow restrictions, in-
terpreting the mandatory and information flow policies 3], in a discretionary con-
text.

The work in [19,51] proposes interposing, between prograntsthe actual file
system, a protected system imposing further restrictionsarticular, Boebert and Fer-
guson [19] forces all files to go through a dynamic linker tbanpares the name of
the user who invoked the program, the name of the origindttreoprogram, and the
name of the owner of any data files. If a user invokes a prograned by someone else
and the program attempts to write the user’s files, the dyaéinker will recognize the
name mismatch and raise an alarm. Karger [51] proposesathste specification of
name restrictions on the files that programs can accesshamdftisal by the system of
all access requests not satisfying the given patterns éeFORTRAN compiler may be
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restricted to read only files with suffix “.for” and to createlpfiles with suffix “.obj”
and “.1is”).

McCollum et al. [62] point out data protection requiremethest neither the discre-
tionary nor the mandatory policies can effectively hantlleey propose a dissemination
control system that maintains access control over oneslaasttaching to the data ob-
ject an access control list (imposing access restrictithrag)propagates, through subject
and object labels, to all objects into which its content mayfExamples of restrictions
can beNOCONTRACT(meaning no access to contractorsNarORN (no releasable to
foreign nationals). By propagating restrictions and etifay the control, intuitively, the
approach behaves like a dynamic mandatory policy; howexgticit restrictions in the
access list give more flexibility than mandatory securibela. The model also provides
support for exceptions (the originator of an ACL can allowstrietions to be waived)
and downgrading (trusted subjects can remove restriciiopesed on objects).

A similar approach appears in [85], which, intuitively, énprets the information
flow model of Denning [31] in the discretionary context. Irb]&ach object has two
protection attributes: theurrent accessand thepotential accessThe current access
attribute describes what operations each user can applyeoolject (like traditional
ACLS). It is a subset of the potential access attribute. Totertial access attribute de-
scribes what operations which users can potentially agpllyet information contained
in that object, information that, in the future, may be camgd in any object and may
be of any type. The potential access attributes therefare@anformation flow. When
a new value of some objegtis produced as a function of objectsu, ..., xn, then
the potential access attribute pfis set to be the intersection of the potential access
attributes ofxy, ..., xn.

Walter et al. [87] propose an interpretation of the mandatamtrols within the
discretionary context. Intuitively, the policy behindgtdpproach, which we cadtrict
policy, is based on the same principles as the mandatorgypélccess control lists are
used in place of labels, and the inclusion relationship betwsets is used in place of
the dominance relationship between labels. Informatiom flestrictions impose that a
process can write an objeaonly if o is protected in reading at least as all the objects
read by the process up to that point. (An objeds at least as protected in reading as
another objead’ if the set of subjects allowed to reads contained in the set of subjects
allowed to read’.) Although the discretionary flexibility of specifying a&gses is not
lost, the overall flexibility is definitely reduced by the dipption of the strict policy.
After having read an objed, a process is completely unable to write any object less
protected in reading tha even if the write operation would not result in any improper
information leakage.

Bertino et al. [14] present an enhancement of the strictpadi introduce more flex-
ibility in the policy enforcement. The proposal bases ondhservation that whether
or not some information can be released also depends ondhedure enacting the re-
lease. A process may access sensitive data and yet noeral@asensitive information.
Such a process should be allowed to bypass the restrictfdhs strict policy, thus rep-
resenting arexception On the other side, the information produced by a process may
be more sensitive than the information the process has Agegixception should in this
case restrict the write actions otherwise allowed by thHetgiplicy. Starting from these
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observations, Bertino et al. [14] allow procedures to betga exceptions to the strict
policy. The proposal is developed in the context of objetrded systems, where the
modularity provided by methods associated with objectsaadlusers to identify spe-
cific pieces oftrustedcode for which exceptions can be allowed, and thereforeigeov
flexibility in the application of the control. Exceptionsrche positive or negative. A
positive exception overrides a restriction imposed by thietspolicy, permitting an
information flow which would otherwise be blocked. A negatexception overrides a
permission stated by the strict policy forbidding an infation flow which would other-
wise be allowed. Two kinds of exceptions are supported byrtbeel.reply-exceptions
andinvoke-exceptionfkeply exceptions apply to the information returned by ahoét
Intuitively, positive reply exceptions apply when the infation returned by a method
is less sensitive than the information the method has reaplyRexceptions can waive
the strict policy restrictions and allow information rated by a method to be disclosed
to users not authorized to read the objects that the methodeld. Invoke exceptions
apply during a method’s execution, for write operations tha method requests. Intu-
itively, positive invoke exceptions apply to methods thattausted not to leak (through
write operations or method invocations) the informaticgythave acquired. The mech-
anism enforcing the control is based on the notiomafssage filtefirst introduced
by Jajodia and Kogan [46] for the enforcement of mandatoligies in object-oriented
systems. Thenessage filteis a trusted system component that acts as a reference moni-
tor, intercepting every message exchanged among the slijetransaction execution
to guarantee that no unsafe flow takes place. To check whatheite or create op-
eration should be blocked, the message filter in [14] keegsktof the information
transmitted between executions and of the users who ameealto know (read) it. A
write operation on objeat is allowed if, based on the ACLs of the objects read and on
the exceptions encountered, the information can be relgasal users who have read
privileges ono.

6 Discretionary access control policies

In Section 2 we introduced the basic concepts of the disaraty policy by illustrating
the access matrix (or HRU) model. Although the access matilixemains a frame-
work for reasoning about accesses permitted by a disceetigmolicy, discretionary
policies have developed considerably since the accessxmats proposed.

6.1 Expanding authorizations

Even early approaches to authorization specificationsvatiicconditionsto be associ-
ated with authorizations to restrict their validity. Cotiolns can make the authorization
validity dependent on the satisfaction of some system patels §ystem-dependent
conditions) like the time or location of access. For insggrec condition can be asso-
ciated with the bank-clerks’ authorization to access aotfyuestricting its application
only from machines within the bank building and in workingun®. Conditions can
also constraint access depending on the content of objaatshih the authorization

is defined ¢ontent-dependemnditions). Content-dependent conditions can be used
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Fig. 13. An example of user-group hierarchy

simply as way to determine whether or not an access to thetoslj@uld be granted
or as way to restrict the portion of the object that can be ssm@ (e.g., a subset of
the tuples in a relation). This latter option is useful whiea &uthorization object has a
coarser granularity than the one supported by the data nfig@lelOther possible con-
ditions that can be enforced can make an access decisiondlep@accesses previously
executedifistory dependerdonditions).

Another feature usually supported even by early approastiée concept ofiser
groups(e.g., Employees, Programmers, Consultants). Groups eare$ted and need
not be disjoint. Figure 13 illustrates an example of usewugrhierarchy. Support of
groups greatly simplifies management of authorizations;esa single authorization
granted to a group can be enjoyed by all its members. Laterteffnoved to the sup-
port of groups on all the elements of the authorizationér{pk., subject, object, and ac-
tion), where, typically, groups are abstractions hieraally organized. For instance, in
an operating system the hierarchy can reflect the logicady#éem tree structure, while
in object-oriented system it can reflect the class (is-ajanidy. Figure 14 illustrates
an example of object hierarchy. Even actions can be orgdrimgarchically, where
the hierarchy may reflect an implication of privileges (gvgite is more powerful than
read [70]) or a grouping of sets of privileges (e.g., a “vagtiprivileges” group can be
defined containing write, append, and undo [84]). Theseahtéical relationships can
be exploited) to support preconditions on accesses (e.g., in Unix a subgsts the
executex, privilege on a directory in order to access the files withjnar ii) to sup-
port authorization implication, that is, authorizatiopgsified on an abstraction apply
to all its members. Support of abstractions with implicatiprovides a short hand way
to specify authorizations, clearly simplifying authotipléa management. As a matter
of fact, in most situations the ability to execute privilsgiepends on the membership
of users into groups or objects into collections: transtathese requirements into ba-
sic triples of the form (user,object,action) that then htvbe singularly managed is a
considerable administrative burden, and makes it difficuihaintain both satisfactory
security and administrative efficiency. However, althotlgdre are cases where abstrac-
tions can work just fine, many will be the cases where excapt{oe., authorizations
applicable to all members of a group but few) will need to hepsurted. This observa-
tion has brought to the combined support of bptisitiveandnegativeauthorizations.
Traditionally, positive and negative authorizations hbeen used in mutual exclusion
corresponding to two classical approaches to access tamroely:
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Fig. 14. An example of object hierarchy

Closed policy: authorizations specify permissions for an access (likeertRU model).
The closed policy allows an access if there exists a posititieorization for it, and
denies it otherwise.

Open policy: (negative) authorizations specify denials for an accelss.dpen policy
denies an access if there exists a negative authorizatidt) &md allows it other-
wise.

The open policy has usually found application only in thosensrios where the
need for protection is not strong and by default access i tgranted. Most systems
adopt the closed policy, which, denying access by defanfiuees better protection;
cases where information is public by default are enforcet wipositive authorization
on the root of the subject hierarchy (e.g., Public).

The combined use of positive and negative authorizatiorsstherefore considered
as a way to conveniently support exceptions. To illustratgpose we wish to grant
an authorization to all members of a group composed of onestirtd users, except
to one specific member Bob. In a closed policy approach, wddwveave to express
the above requirement by specifying a positive authorator each member of the
group except BoB.However, if we combine positive and negative authorizatioe
can specify the same requirement by granting a positiveoaiztition to the group and
a negative authorization to Bob.

The combined use of positive and negative authorizationgbnow to the problem
of how the two specifications should be treated:

— what if for an access no authorization is specifidgd@dmpletenegs
— what if for an access there are both a negative and a positthe®@zation? ifrcon-
sistency

Completeness can be easily achieved by assuming that orithef the open or
closed policy operates asdefault and accordingly access is granted or denied if no
authorization is found for it. Note that the alternative wpkcitly requiring complete-
ness of the authorizations is too heavy and complicatesrastmition.

Conflict resolution is a more complex matter and does notllyshave a unique
answer [48,58]. Rather, different decision criteria coddadopted, each applicable
in specific situations, corresponding to different polictbat can be implemented. A

7 In an open policy scenario, the dual example of all usersatietv, who have to be denied an
access can be considered.



Access Control: Policies, Models, and Mechanisms 31

natural and straightforward policy is the one stating tliae‘most specific authoriza-
tion should be the one that prevails”; after all this is wha&t kad in mind when we
introduced negative authorizations in the first place (aangple about Bob). Although
the most-specific-takes-precedence principle is inwiéimd natural and likely to fit in
many situations, it is not enough. As a matter of fact, evemdafadopt the argument
that the most specific authorization always wins (and thig nat always be the case)
it is not always clear what more specific is:

— what if two authorizations are specified on non-disjoint, fian-hierarchically re-
lated groups (e.g., Citizens and CS-Dept in Figure 13)?

— what if for two authorizations the most specific relatiomshppear reversed over
different domains? For instance, consider authorizat{@$sFaculty, rea¢, mail)
and (CS-Dept, read, personal); the first has a more specific subject, while the
second has a more specific object (see Figures 13 and 14).

A slightly alternative policy on the same line as the mostcfffzepolicy is what
in [48] is calledmost-specific-along-a-path-takes-precedentes policy considers an
authorization specified on an elemenas overriding an authorization specified on a
more general elementonly for those elements that are membery dfecause ok.
Intuitively, this policy takes into account the fact thatea in the presence of a more
specific authorization, the more general authorizationstiéirbe applicable because of
other paths in the hierarchy. For instance, consider thegneerarchy in Figure 13 and
suppose that for an access a positive authorization is egiantPublic while a nega-
tive authorization is granted to CS-Dept. What should wadietor George? On the
one side, it is true that CS-Dept is more specific than Publicthe other side, how-
ever, George belongs to Eng-Dept, and for Eng-Dept memberpdsitive authoriza-
tion is not overridden. While the most-specific-takes-posmce policy would consider
the authorization granted to Public as being overridderGieorge, the most-specific-
along-a-path considers both authorizations as applidab&eorge. Intuitively, in the
most-specific-along-a-path policy, an authorization pigades down the hierarchy until
overridden by a more specific authorization [35].

The most specific argument does not always apply. For ingtaart organization
may want to be able to state that consultants should not lEngiecess to private
projects,no exceptions allowedHowever, if the most specific policy is applied, any
authorization explicitly granted to a single consultant ewerride the denial specified
by the organization. To address situations like this, soppraaches proposed adopt-
ing explicit priorities In ORION [70], authorizations are classified stiongor weak
weak authorizations override each other based on the mestfi policy, and strong
authorizations override weak authorizations (no matteir tspecificity) anccannot be
overridden Given that strong authorizations must be certainly obgiyey are required
to be consistent. However, this requirement may be not aveayenforceable. This is,
for example, the case where groupings are not explicitlyndefibut depend on the
evaluation of some conditions (e.g., “all objects owned bynT, “all objects created
before 1/1/01"). Also, while the distinction between sgand weak authorizations is
convenientin many situations and, for example, allows extress the organizational
requirement just mentioned, it is limited to two levels ofgpity, which may not be
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— Denials-take-precedencaiegative authorizations take precedence (satisfies tlilesdte
principle”)

— Most-specific-takes-precederit® authorization that is “more specific” w.r.t. a partiader
(i.e., hierarchy) wins

— Most-specific-along-a-path-takes-precedertbe: authorization that is “more specific” wins
only on the paths passing through it. Intuitively, an authaiion propagates down a hierar-
chy until overridden by a more specific authorization.

— Strong/weakauthorizations are classified as strong or weak: weak da#timms override
each other based on the most-specific policy, and strongadzdtions override weak au-
thorizations (no matter their specificity). Strong authations are therefore required to be
consistent.

— Priority level: each authorization is associated with a priority level, dbéhorization with
the highest priority wins.

— Positional: the priority of the authorizations depends on the order irctvithey appear in
the authorization list.

— Grantor-dependentthe priority of the authorizations depends on who grantedih

— Time-dependenthe priority of the authorizations depends on the time ay th&ve been
granted (e.g., more recent wins)

Fig. 15.Examples of conflict resolution policies

enough. Many other conflict resolution policies can be agplSome approaches, ex-
tending the strong and weak paradigm, proposed adopxplicit priorities however,
these solutions do not appear viable as the authorizatiecifggations may result not
always clear. Other approaches (e.qg., [84]) proposed rgakithorization priority de-
pendent on therder in which authorizations are listed.e., the authorizations that is
encountered first applies). This approach, however, hadréngback that granting or
removing an authorization requires inserting the auttaion in the proper place in the
list. Beside the administrative burden put on the admiaistr(who, essentially, has to
explicitly solve the conflicts when deciding the order), @fygéng authorizations im-
plies explicitly writing the ACL associated with the objeahd may impede delegation
of administrative privileges. Other possible ways of definpriorities, and therefore
solving conflicts, can make the authorization’s prioritpdadent on th&me at which
the authorizations was granted (e.g., more recent automis prevails) or on priori-
ties between thgrantors For instance, authorizations specified by an employee may
be overridden by those specified by his supervisor; the aatitimns specified by an
object’'s owner may override those specified by other usemshiom the owner has
delegated administrative authority.

As it is clear from this discussion, different approaches loa taken to deal with
positive and negative authorizations. Also, if it is truattsome solutions may appear
more natural than others, none of them represents “the giesfdution”. Whichever
approach we take, we will always find one situation for whickdes not fit. Also,
note that different conflict resolution policies are not oally exclusive. For instance,
one can decide to try solving conflicts with the most-spetiles-precedence policy
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first, and apply the denials-take-precedence principleherrémaining conflicts (i.e.,
conflicting authorizations that are not hierarchicallyated).

The support of negative authorizations does not come fet &ed there is a price to
pay in terms of authorization management and less clarith@bpecifications. How-
ever, the complications brought by negative authorizateme not due to negative au-
thorizations themselves, but to the different semantiasttie presence of permissions
and denials can have, that is, to the complexity of the difiereal world scenarios
and requirements that may need to be captured. There iddheeetrade-off between
expressiveness and simplicity. For this reason, most sussestems adopting negative
authorizations for exception support impose specific conlisolution policies, or sup-
port a limited form of conflict resolution. For instance, iretApache server [6], autho-
rizations can be positive and negative and an ordering ¢;ddow” or “allow,deny”)
can be specified dictating how negative and positive authtians are to be interpreted.
In the “deny,allow” order, negative authorizations areleated first and access is al-
lowed by default (open policy). Any client that does not naimegative authorization
or matches a positive authorization is allowed access. ért‘dllow,deny” order, the
positive authorizations are evaluated first and accessnieddy default (closed pol-
icy). Any client that does not match a positive authorizatio does match a negative
authorization will be denied access.

More recent approaches are moving towards the developnidlaxdle frame-
works with the support of multiple conflict resolution andcséon policies. We will
examine them in Section 8.

Other advancements in authorization specification andreafioent have been car-
ried out with reference to specific applications and dataeteodror instance, authoriza-
tion models proposed for object-oriented systems (e.g39271]) exploit theencap-
sulationconcept, meaning the fact that access to objects is alwagisda@ut through
methods (read and write operations being primitive methdagarticular, users granted
authorizations to invoke methods can be given the abilisutessfully complete them,
without need to have the authorizations for all the accedssthe method execution
entails. For instance, in OSQL, each derived function,(imethod) can be specified
as supportingtaticor dynamicauthorizations [2]. A dynamic authorization allows the
user to invoke the function, but its successful completeguires the user to have the
authorization for all the calls the function makes durirg éecution. With astatic
authorization, calls made by the function are checked at#ie creator of the func-
tion, instead of those of the calling user. Intuitively,t&tauthorizations behave like
the setuid (set user id) option, provided by the Unix opactasystem that, attached to
a program (e.g., lpr) implies that all access control checkso be performed against
the authorizations of the program’s owner (instead of thafsehe caller as it would
otherwise be). A similar feature is also proposed in [71]eveheach method is asso-
ciated with a principal, and accesses requested duringzoshexecution are checked
against the authorization of the method’s principal. Escégtion is also exploited by
the Java 2 security model [83] where authorizations can batgd to code, and re-
quests to access resources are checked against the aatiboszof the code directly
attempting the access.
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6.2 Temporal authorizations

Bertino et al. [13] propose extending authorizations wémporal constraints and ex-
tending authorization implication with time-based reasgnAuthorizations have as-
sociated a validity specified by a temporal expression ifléemg the instants in which
the authorization applies. The temporal expression is égrtyy aperiodic expression
(e.g.,9 am to 1 p.m on Wrking-days, identifying the periods from 9a.m. to
1p.m. in all days excluding weekends and vacations), @echaoral intervabounding
the scope of the periodic expression (e[.§/,1997, 8/ 1997], restricting the specified
periods to those between February and August 1997). Thelralboles also the spec-
ification of derivation rules, expressing temporal dep@eitss among authorizations,
that allow the derivation of new authorizations based onptesence or absence of
other authorizations in specific periods of time. For insgrit is possible to specify
that two users, working on the same project, must receivedhee authorizations on
given objects, or that a user should receive the authooizati access an object in cer-
tain periods, only if nobody else was ever authorized to sEtlee same object in any
instant within those periods. Like authorizations, dditarules are associated with
a temporal expression identifying the instants in whichrille applies. A derivation
rule is a triple( [ tp,te], P, A (OP) a), where interval t,,te] and period® represent
the temporal expressioA,is the authorization to be derived, a is boolean formula of
authorizations on which derivation is based, amwdis one of the following operators:
WHENEVER, ASLONGAS, UPON. The three operators correspond to different tempo-
ral relationships between authorizations on which deidwatan work, and have the
following semantics:

— WHENEVERderivesA for each instant if[ ty,tg] , P) for which 4 is valid.

— ASLONGASderivesA for each instant i [ tp,te] , P) such thata has been “contin-
uously” valid in([ tp,te] , P) .

— UPONderivesA from the first instant irf [ ty,te] , P) for which 4 is valid up tote.

A graphical representation of the semantics of the diffetemporal operators is
given in Figure 16. IntuitivelywHENEVER captures the usual implication of authoriza-
tions. For instance, a rule can state that summer-staff eath @ document for every
instance (i.e. WHENEVER) in the summer of year 2000 in which regular-staff can read
it. ASLONGASworks in a similar way but stops the derivation at the firstansin which
the boolean formula on which derivation works is not satikfieor instance, a rule can
state that regular-staff can read a document every workaygird year 2000 until the
first working day in which (i.e.ASLONGAS) summer-staff is allowed for that. Finally,
uPoNworks like a trigger. For instance, a rule can state that Aamread pay-checks
each working day starting from the first working day in yea®@ which (i.e.,uPON)
Tom can write pay-checks.

The enforcement mechanism is based on a translation of tain@athorizations
and derivation rules into logic programs (Datalog progravitls negation and periodic-
ity and order constraints). The materialization of the éqgiogram guarantees efficient
access. The model is focussed on time-based constrainteasohing and allows ex-
pressing authorization relationships and derivation weteed in other models. How-
ever, it does not address the enforcement of different mapiin and conflict resolution
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Fig. 16. Semantics of the different temporal operators [13]

policies (conflicts between permissions and denials akedaccording to the denials-
take-precedence policy).

6.3 A calculus for access control

Abadi et al. [1] present a calculus for access control thatlioes authentication (i.e.,
identity check) and authorization control, taking alsmiatcount possible delegation
of privileges among parties. The calculus is based on themof principals Principals
are sources of requests and make statements (e.g., “reaaiile Principals can be
either simple (e.g., users, machines, and communicatianrais) or composite. Com-
posite principals are obtained combining principals by mse# constructors that allow
to capture groups and delegations.a Principals can belaw$dll]:

— Usersandmachines

— Channelssuch as input devices and cryptographic channels.

— Conjunction of principalsof the formAA B. A request fromAA B is a request that
both A andB make (it is not necessary that the request be made in concert)

— Groups define groups of principals, membership of princifain group G; is
written B = G;. DisjunctionAV B denotes a group composed onlyfoandB.

— Principals inroles of the formA as R The principalA may adopt the rol&® and
act under the nameA'as R when she wants to diminish her powers, in particular
as protection against blundéts.

— Principalson behalfof principals, of the forn#A for B. The principalA may delegate
authority toB, andB can then act on her behalf, using the identfor A. In most

8 Note that there is a difference in the semantics assignealds in [1] and in role-based access
control model (see Section 7). In [1] a principal’s priviégsgalways diminish when the principal
takes on some role; also an implication relationship is eeft allowing a principaP to use
authorizations granted to any principal of the foPhas R
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casesA is a user delegating to a machiBe delegation can also occur between
machines.

— Principalsspeaking forother principals, of the forrdo B, denoting thaB speaks
on behalf ofA, but not necessarily with a proof thathas delegated authority B

The process of determining whether a request from a prihsipauld be granted or
denied is based on a modal logic that extends the algebranaiipals and serves as a
basis for different algorithms and protocols. Intuitivedyrequest on an object will be
granted if it is authorized according to the authorizatistased in the ACL of the object
and the implication relationships and delegations holdimgng principals.

6.4 Administrative policies

Administrative policies determine who is authorized to iifypthe allowed accesses.
This is one of the most important, and probably least undedstaspect of access
controls. In multilevel mandatory access control the afildvaccesses are determined
entirely on basis of the security classification of subjectd objects. Security levels
are assigned to users by the security administrator. Sgdevels of objects are deter-
mined by the system on the basis of the levels of the userirmgghem. The security
administrator is typically the only one who can change sicievels of subjects and
objects. The administrative policy is therefore very sieaiscretionary access control
permits a wide range of administrative policies. Some o$érere described below.

— Centralized:A single authorizer (or group) is allowed to grant and revakého-
rizations to the users.

— Hierarchical: A central authorizer is responsible for assigning adniaiste re-
sponsibilities to other administrators. The administratan then grant and revoke
access authorizations to the users of the system. Hiecat@dministration can be
applied, for example, according to the organization chart.

— Cooperative Special authorizations on given resources cannot be grégta sin-
gle authorizer but need cooperation of several authorizers

— Ownership:Each object is associated with an owner, who generally abésavith
the user who created the object. Users can grant and revdtkerenations on the
objects they own.

— DecentralizedExtending the previous approaches, the owner of an objedts(o
administrators) can delegate other users the privilegpedifying authorizations,
possibly with the ability of further delegating it.

Decentralized administration is convenient since it alosers to delegate adminis-
trative privileges to others. Delegation, however, coggiks the authorization manage-
ment. In particular, it becomes more difficult for users tefxérack of who can access
their objects. Furthermore, revocation of authorizatioesomes more complex. There
are many possible variations on the way decentralized ddiration works, which may
differ in the way the following questions are answered.

— what is the granularity of administrative authorizations?
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— can delegation be restricted, that is, can the grantor oflamrastrative authoriza-
tion impose restrictions on the subjects to which the recipcan further grant the
authorization?

— who can revoke authorizations?
— what about authorizations granted by the revokee?

In general, existing decentralized policies allow usergrent administration for a
specific privilege (meaning a given access on a given objéhgy do not allow, how-
ever, to put constraints on the subjects to which the regipiceiving administrative
authority can grant the access. This feature could, howsssult useful. For instance,
an organization could delegate one of its employees to igiaiccess to some re-
sources constraining the authorizations she can grant pdoges working within her
laboratory. Usually, authorizations can be revoked onlyi®yuser who granted them
(or, possibly, by the object’s owner). When an administeatiuthorization is revoked,
the problem arises of dealing with the authorizations $j@etby the users from whom
the administrative privilege is being revoked. For instrazippose that Ann gives Bob
the authorization to read File1 and gives him the privilebgranting this authorization
to others (in some systems, such capability of delegati@aliedgrant option[42]).
Suppose then that Bob grants the authorization to Chrissaselquently Ann revokes
the authorization from Bob. The question now is: what shdwalppen to the authoriza-
tion that Chris has received? To illustrate how revocatamwork it is useful to look at
the history of System R [42]. In the System R authorizatiomlelpusers creating a ta-
ble can grant other users access privileges on it. Authtisizaacan be granted with the
grant-option If a user receives the authorization for an access withthaetegpption she
can grant the access (and the grant option on it) to othdrstiely, this introduces a
chain of authorizations. The original System R policy, vihiee call(time-based) cas-
caderevocation, adopted the following semantics for revocatichen a user is revoked
the grant option on an access, all authorizations that sir@ept and could not have been
granted had the revoked authorization not been presentjcshtso be (recursively)
deleted. The revocation is recursive since it may, in tuanise other authorizations to
be deleted. More precisely, I80TH be the initial authorization state ai@l, ..., Gy
be a sequence of grant requests (history) that producedraation stateAUTH. The
revocation of a grar®y should result in authorization sta#®&JTH’ as if G had never
been granted, that is, resulting from histdsy, ..., Gx_1,CGk:1,-..,Gn. Enforcement
of this revocation semantics requires to keep track efho granted which authoriza-
tion, andii) the time at which the authorization was granted. To illustraonsider the
sequence of grant operations pictured in Figure 17(a)rnexfeo the delegation of a
specific privilege. Here, nodes represent users, and grossent the granting of a spe-
cific access from one user to another. The label associatkdive arc states the time at
which the authorization was granted and whether the grargropras granted as well.
For instance, Ann granted the authorization, with the geogion, to Bob at time 20,
and to Chris at time 30. Suppose now that Bob revokes the azdtion he granted
to David. According to the revocation semantics to be emdythe authorization that
David granted to Ellen must be deleted as well, since it wastgd at time 50 when,
had David not hold the authorizations being revoked, thatgexjuest would have been
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Fig. 17.Example of the original System-R, time-based cascade atiouc

denied. Consequently, and for the same reasoning, the tthorzations granted by
Ellen also need to be deleted, resulting in the authorinatiate of Figure 17(b).

Although the time-based cascade revocation has a cleamsiemit is not always
accepted. Deleting all authorizations granted in virtuammfwuthorization that is being
revoked is not always wanted. In many organizations, thieairations that users pos-
sess are related to their particular tasks or functionsimvitie organization. Suppose
there is a change in the task or function of a user (say, becafua job promotion).
This change may imply a change in the responsibilities otiger and therefore in her
privileges. New authorizations will be granted to the used aome of her previous
authorizations will be revoked. Applying a recursive reatien will result in the unde-
sirable effect of deleting all authorizations the revokesnged and, recursively, all the
authorizations granted through them, which then will neetd re-issued. Moreover,
all application programs depending on the revoked authtioas will be invalidated.
An alternative form of revocation was proposed in [15], wdreon-cascadeevocation
is introduced. Instead of deleting all the authorizatioranted by the revokee in virtue
of the authorizations being revoked, non-recursive retiocae-specifies them to be
under the authority of the revoker, which can then retairetgctively delete them. The
original time-based revocation policy of System R, was deato not consider time
anymore. In SQL:1999 [28] revocation can be requestidial or without cascadeCas-
cade revocation recursively deletes authorizations iféhrekee does not hold anymore
the grant option for the access. However, if the revokektsilts the grant option for
the access, the authorizations she granted are not deteteddless of time they were
granted). For instance, with reference to Figure 17(a),révecation by Bob of the
authorization granted to David, would only delete the aritation granted to David
by Bob. Ellen’s authorization would still remain valid se®avid still holds the grant
option of the access (because of the authorization fromsCHNith the non cascade
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option the system rejects the revoke operation if its emfimrent would entail deletion
of other authorizations beside the one for which revocatoaquested.

6.5 Integrity policies

In Section 4.4 we illustrated a mandatory policy (hamelysBitmodel) for protecting
information integrity. Biba’s approach, however, suffef$wo major drawbacks) the
constraints imposed on the information flow may result tarietive, andii) it only
controls integrity intended as the prevention of a flow obimfiation from low integrity
objects to high integrity objects. However, this notion ofeedirectional information
flow in a lattice captures only a small part of the data intggyfoblem [74].

Integrity is concerned with ensuring that no resource (iditlg data and prograrfjs
has been modified in amnauthorizedor improperway and that the data stored in the
system correctly reflect the real world they are intendecefrasent (i.e., that users
expect). Integrity preservation requires preventionafifts and errors, as the term “im-
proper” used above suggests: violations to data integritypfien enacted by legitimate
users executing authorized actions but misusing theirlpges.

Any data management system today has functionalities feurarg integrity [8].
Basic integrity services are, for examptmncurrency contro{to ensure correctness
in case of multiple processes concurrently accessing datitecoverytechnigues (to
reconstruct the state of the system in the case of violatioresrors occur). Database
systems also support the definition and enforcement of liilgegpnstraints, that de-
fine the valid states of the database constraining the valhagst can contain. Also,
database systems support the notiotrafisaction which is a sequence of actions for
which theACID properties must be ensured, where the acronym standAtfamicity
(a transaction is either performed in its entirety or noffgeened at all);Consistency
(a transaction must preserve the consistency of the daghsslation (a transaction
should not make its updates visible to other transactioni itiis committed); and
Durability (changes made by a transaction that has committed must bevest be-
cause of subsequent failures).

Although rich, the integrity features provided by datab@ssmagement systems are
not enough: they are only specified with respect to the datdteir semantics, and do
not take into account the subjects operating on them. Thexethey can only protect
against obvious errors in the data or in the system operadinh not against misuses
by subjects [23]. The task of a security policy for integigytherefore to fill this gap
and control data modifications and procedure executiorts rggpect to the subjects
performing them. An attempt in this respect is represeniethé Clark and Wilson’s
proposal [25], where the following four basic criteria farthéeving data integrity are
defined.

1. Authentication The identity of all users accessing the system must be fgope
authenticated (this is an obvious prerequisite for coness of the control, as well
as for establishing accountability).

9 Programs improperly modified can fool the access controltspass the system restrictions,
thus violating the secrecy and/or integrity of the data Geetion 3).
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C1: All IVPs must ensure that all CDIs are in a valid state whenl¥#is run.

C2: All TPs must be certified to be valid (i.e., preserve validifyCDIs’ state)

C3: Assignment of TPs to users must satisfy separation of duty

C4: The operations of TPs must be logged

C5: TPs execute on UDIs must result in valid CDIs

E1: Only certified TPs can manipulate CDIs

E2: Users must only access CDIs by means of TPs for which theyudhe@zed

E3: The identity of each user attempting to execute a TP must theaticated

E4: Only the agent permitted to certify entities can changeithef such entities associated
with other entities

Fig. 18.Clark and Wilson integrity rules

2. Audit Modifications should be logged for the purpose of maintajran audit log
that records every program executed and the user who exietute that changes
could be undone.

3. Well-formed transactions Users should not manipulate data arbitrarily but only
in constrained ways that ensure data integrity (e.g., doabtry bookkeeping in
accounting systems). A system in which transactions arefaehed ensures that
only legitimate actions can be executed. In addition, Vi@itned transactions should
provide logging and serializability of resulting subtraogons in a way that con-
currency and recovery mechanisms can be established.

4. Separation of duty The system must associate with each user a valid set of pro-
grams to be run. The privileges given to each user must gdlisf separation of
duty principle. Separation of duty prevents authorizedsiBem making improper
modifications, thus preserving the consistency of data Isyemng that data in the
system reflect the real world they represent.

While authentication and audit are two common mechanismefp access control
system, the latter two aspects are peculiar to the Clark atabkMproposal.

The definition of well-formed transaction and the enforcatwd separation of duty
constraints is based on the following concepts.

— Constrained Data Item&Dls are the objects whose integrity must be safeguarded.

— Unconstrained Data Item4JDIs are objects that are not covered by the integrity
policy (e.g., information typed by the user on the keyboard)

— Integrity Verification ProceduredVPs are procedures meant to verify that CDIs
are in a valid state, that is, the IVPs confirm that the datdarams to the integrity
specifications at the time the verification is performed.

— Transformation Procedure3Ps are the only procedures (well-formed procedures)
that are allowed to modify CDlIs or to take arbitrary user irgmd create new CDIs.
TPs are designed to take the system from one valid state tettte

Intuitively, IVPs and TPs are the means for enforcing thelfarimed transaction
requirement: all data modifications must be carried outthoT Ps, and the result must
satisfy the conditions imposed by the IVPs.
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Separation of duty must be taken care of in the definition tfi@nzed operations.
In the context of the Clark and Wilson’s model, authorizedmagpions are specified by
assigning to each user a set of well-formed transactiortsstiea can execute (which
have access to constraint data items). Separation of dgtyires the assignment to
be defined in a way that makes it impossible for a user to \@dla¢ integrity of the
system. Intuitively, separation of duty is enforced by tiplyjy operations in subparts,
each to be executed by a different person (to make fraudsudiffi For instance, any
person permitted to create or certify a well-formed tratieacshould not be able to
execute it (against production data).

Figure 18 summarizes the nine rules that Clark and Wilsosgmted for the en-
forcement of system integrity. The rules are partitioned tao types: certification (C)
and enforcement (E). Certification rules involve the eviiduaof transactions by an
administrator, whereas enforcement is performed by thtesys

The Clark and Wilson'’s proposal outlines good principlesdontrolling integrity.
However, it has limitations due to the fact that it is far fréonmal and it is unclear how
to formalize it in a general setting.

7 Role-Based Access Control Policies

Role-based access control (RBAC) is an alternative tottoadil discretionary (DAC)
and mandatory access control (MAC) policies that is atingcincreasing attention,
particularly for commercial applications. The main motiga behind RBAC is the ne-
cessity to specify and enforce enterprise-specific sgcpdlicies in a way that maps
naturally to an organization’s structure. In fact, in a mrgumber of business activities
a user’s identity is relevant only from the point of view ofcaantability. For access
control purposes it is much more important to know what a’'sisgganizational re-
sponsibilities are, rather than who the user is. The coiwealt discretionary access
controls, in which individual user ownership of data playstsan important part, are
not a good fit. Neither are the full mandatory access contiroishich users have secu-
rity clearances and objects have security classificatiRok-based access control tries
to fill in this gap by merging the flexibility of explicit authizations with additionally
imposed organizational constraints.

7.1 Named protection domain

The idea behind role-based access control is groupindeyis (i.e., authorizations).
The first work proposing collecting privileges for authatibn assignment is proba-
bly the work by Baldwin [9], where the concept ndmed protection domai(NPD)

is introduced as a way to simplify security management in @h-8ased framework.
Intuitively, a named protection domain identifies a set afifgges (those granted to the
NPD) needed to accomplish a well-defined task. For instancepank organization,
an NPDAccount s_Recei vabl e can be defined to which all the privileges needed to
perform the account-receivable task are granted. NPD caynébeted to users as well
as to other NPDs, thus forming a chain of privileges. The @nightion state can be
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Fig. 19. An example of NPD privilege graph [9]

graphically represented as a directed acyclic graph whedesicorrespond to privi-
leges, NPDs, and users, while arcs denote authorizatiognasents. An example of
privilege graph is illustrated in Figure 19, where three MR count s_Recei vabl e,
Account s_Payabl e, andAccount s_Super vi sor) and the corresponding privileges are
depicted. Users can access objects only by activating NBRigy privileges on them.
Users can only activate NPDs that have been directly oreatly assigned to them.
For instance, with reference to Figure B8p can activate any of three NPDs, thus ac-
quiring the corresponding privileges. To enfoteast privilege users are restricted to
activate only one NPD at the time. NPDs can also be used tpgrsers. For instance,
a NPD namednpl oyees can be defined which corresponds to the set of employees of
an organization. NPDs correspond to the current conceplegin SQL:1999 [28].

7.2 Role-based policies

Role-based policies regulate the access of users to theriafmn on the basis of the
organizational activities and responsibility that useasehin a system. Although dif-
ferent proposals have been made (e.qg., [3, 36, 45, 56, 680})6the basic concepts are
common to all approaches. Essentially, role based polieigsire the identification of
rolesin the system, where a role can be defined as a set of actionmegmohsibilities
associated with a particular working activity. The role t&nwidely scoped, reflecting
a user’s job title (e.g.secretary), or it can be more specific, reflecting, for exam-
ple, a task that the user needs to perform (@mder _pr ocessi ng). Then, instead of
specifying all the accesses each users is allowed to exeadess authorizations on
objects are specified for roles. Users are then given audttayns to adopt roles (see
Figure 20). The user playing a role is allowed to executeceases for which the role
is authorized. In general, a user can take on different mtedifferent occasions. Also
the same role can be played by several users, perhaps sienlisly. Some proposals
for role-based access control (e.qg., [76, 80]) allow a userxercise multiple roles at
the same time. Other proposals (e.g., [28,48]) limit the ts@nly one role at a time,
or recognize that some roles can be jointly exercised whilers must be adopted in



Access Control: Policies, Models, and Mechanisms 43

USERS ROLES OBJECTS

Fig. 20.Role-based access control

exclusion to one another. It is important to note the diffiessbetween groups (see Sec-
tion 6) and roles: groups define sets of users while roleselséts of privileges. There
is a semantic difference between them: roles can be “aetiVatnd “deactivated” by
users at their discretion, while group membership alwaydieg that is, users cannot
enable and disable group memberships (and correspondingreaations) at their will.
However, since roles can be defined which correspond to tg@mal figures (e.g.,
secretary, chair, andfacul ty), a same “concept” can be seen both as a group and
asarole.

The role-based approach has several advantages. Someaatiealiscussed below.

Authorization management Role-based policies benefit from a logical independence
in specifying user authorizations by breaking this task imto parts:i) assigne-
ment of roles to users, ang assignement of authorizations to access objects to
roles. This greatly simplifies the management of the secpoticy: when a new
user joins the organization, the administrator only needgant her the roles cor-
responding to her job; when a user’s job changes, the admnaitis simply has to
change the roles associated with that user; when a new appiicor task is added
to the system, the administrator needs only to decide whildsrare permitted to
execute it.

Hierarchical roles In many applications there is a natural hierarchy of rolesgll on
the familiar principles of generalization and special@at Figure 21 illustrates an
example of role hierarchy: each role is represented as a adi¢here is an arc
between a specialized role and its generalization. Thehhi@earchy can be ex-
ploited for authorization implication. For instance, awikations granted to roles
can be propagated to their specializations (e.g.sé#geet ary role can be allowed
all accesses grantedadmst af f ). Authorization implication can also be enforced
on role assignments, by allowing users to activate all gdizations of the roles
assigned to them (e.g., a user allowed to actigata et ary will also be allowed
to activate roledmst af f ). Authorization implication has the advantage of further
simplifying authorization management. Note however thataiways implication
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Fig. 21.An example of role hierarchy

may be wanted, as propagating all authorizations is contoathe least privilege
principle. The hierarchy has also been exploited in [77]tfa definition of ad-
ministrative privileges: beside the hierarchy of orgatizal roles, an additional
hierarchy of administrative roles is defined; each admiatiste role can be given
authority over a portion of the role hierarchy.

Least privilege Roles allow a user to sign on with the least privilege reqlfo the
particular task she needs to perform. Users authorizedteol roles do not need
to exercise them until those privileges are actually neg@leid minimizes the dan-
ger of damage due to inadvertent errors, Trojan Horsestirders masquerading
as legitimate users.

Separation of duties Separation of duties refer to the principle that no user khou
be given enough privileges to misuse the system on their &@ninstance, the
person authorizing a paycheck should not be the same persorcan prepare
them. Separation of duties can be enforced either statialldefining conflicting
roles, that is, roles which cannot be executed by the sanmparssdynamically (by
enforcing the control at access time). An example of dynasajgaration of duty
restriction is the two-person rule. The first user to exeeutwo-person operation
can be any authorized user, whereas the second user can ethoyized user
different from the first [79].

Constraints enforcement Roles provide a basis for the specification and enforcement
of further protection requirements that real world pokcieay need to express. For
instance, cardinality constraints can be specified, thsticethe number of users
allowed to activate a role or the number of roles allowed tereise a given priv-
ilege. The constraints can also be dynamic, that is, be ietbos roles activation
rather than on their assignment. For instance, while skuseas may be allowed to
activate rolechai r, a further constraint can require that at most one user ate ti
can activate it.

Role-based policies represent a promising direction arstuliparadigm for many
commercial and government organizations. However, theili some work to be
done to cover all the different requirements that real weddnarios may present. For
instance, the simple hierarchical relationship as intdrnideurrent proposals may not
be sufficient to model the different kinds of relationshipattcan occur. For example, a
secretary may need to be allowed to write specific docunmmitehalfof her manager,
but neither role is a specialization of the other. Diffeneai/s of propagating privileges
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(delegation) should then be supported. Similarly, adnaiize policies should be en-
riched. For instance, the traditional concept of ownershgy not apply anymore: a
user does not necessarily own the objects she created whagivan role. Also, users’
identities should not be forgotten. If it true that in mogganizations, the role (and not
the identity) identifies the privileges that one may execitiis also true that in some
cases the requestor’s identity needs to be considered dvem arole-based policy is
adopted. For instance, a doctor may be allowed to specifgnrents and access files
but she may be restricted to treatments and files for her otwans, where the doctor-
patient relationships is defined based on their identity.

8 Advanced access control models

Throughout the chapter we investigated different issues@ming the development
of an access control system, discussing security prirgiflelicies, and models pro-
posed in the literature. In this section we illustrate régenposals and ongoing work
addressing access control in emerging applications andoenarios.

8.1 Logic-based authorization languages

As discussed in Section 6, access control systems basedoortlye closed policy
clearly have limitations. The support of abstractions aatharization implications
along them and the support of positive and negative autéiioizs provide more flexi-
bility in the authorization specifications. As we have sesaveral access control poli-
cies can be applied in this context (e.g., denials-takequtence, most-specific-takes-
precedence, strong and weak) and have been proposed irettatulie. Correspond-
ingly, several authorization models have been formalizedl @ccess control mecha-
nisms enforcing them implemented. However, each modeljtarcbrresponding en-
forcement mechanism, implements a single specified palibich is in fact built into
the mechanism. As a consequence, although different policjces are possible in
theory, each access control system is in practice boundpedfi& policy. The major
drawback of this approach is that a single policy simply carmapture all the protec-
tion requirements that may arise over time. As a matter df faen within a single
system:

— different users may have different protection requirersient
— a single user may have different protection requirementifferent objects;
— protection requirements may change over time.

When a system imposes a specific policy on users, they havero within the
confines imposed by the policy. When the protection requereshof an application are
different from the policy built into the system, in most casthe only solution is to
implement the policy as part of the application code. Thiatian, however, is danger-
ous from a security viewpoint since it makes the tasks ofieation, modification, and
adequate enforcement of the policy difficult.

Recent proposals have worked towards languages and mdaeltoaexpress, in
a single framework, different access control policiesh® goal of providing a single
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mechanism able to enforce multiple policies. Logic-basedjlages, for their expres-
sive power and formal foundations, represent a good catedidae first work investi-
gating logic-languages for the specification of authonret is the work by Woo and
Lam [91]. Their proposal makes the point for the need of fldixytand extensibility in
access specifications and illustrates how these advartagdse achieved by abstract-
ing from the low level authorization triples and adoptingighhlevel authorization
language. Their language is essentially a many-sorteddfidgr language with a rule
construct, useful to express authorization derivatiomstharefore model authorization
implications and default decisions (e.g., closed or opdityjo The use of a very gen-
eral language, which has almost the same expressive pouiestajrder logic, allows
the expression of different kinds of authorization imptioas, constraints on authoriza-
tions, and access control policies. However, as a drawlaitkorization specifications
may result difficult to understand and manage. Also, theetiaiflbetween expressive-
ness and efficiency seems to be strongly unbalanced: theofamstrictions on the
language results in the specification of models which mayemeh be decidable and
therefore will not be implementable. As noted in [48], Woaddram’s approach is
based on truth in extensions of arbitrary default theoridsch is known, even in the
propositional case to be NP-complete, and in the first ordse cis worse than unde-
cidable.

Starting from these observations, Jajodia et al. [48] wibdkea proposal for a logic-
based language that attempted to balance flexibility antessjveness on the one side,
and easy management and performance on the other. The tpngli@avs the represen-
tation of different policies and protection requirememikijle at the same time provid-
ing understandable specifications, clear semantics (gtemiag therefore the behavior
of the specifications), and bearable data complexity. Tir@iposal for a Flexible Au-
thorization Framework (FAF) identifies a polynomial time {act quadratic time) data
complexity fragment of default logic; thus resulting etieely implementable. The lan-
guage identifies the following predicates for the specificadf authorizations. (Below
s,0, anda denote a subject, object, and action term, respectivelgrevh term is either
a constant value in the corresponding domain or a variablgimg over it).

cando(o,s({sign)a) represents authorizations explicitly inserted by the sgcadmin-
istrator. They represent the accesses that the administveghes to allow or deny
(depending on the sign associated with the action).

dercando(o,s{sign)a) represents authorizations derived by the system usingdbgi
rules of inference (modus ponens plus rules for stratifieghtien). Logical rules
can express hierarchy-based authorization derivatian, (eropagation of autho-
rizations from groups to their members) as well as diffeiglication relation-
ships that may need to be represented.

do(o,s{sign)a) definitely represents the accesses that must be grantedieddintu-
itively, do enforces the conflict resolution and access decision pglithat is, it
decides whether to grant or deny the access possibly saisting conflicts and
enforcing default decisions (in the case where no authiisizdas been specified
for an access).

done(o,s,r,a,t) keeps the history of the accesses executed. A fact of thedfame{ o, s, r, a, t)
indicates tha$ operating in role executed actioa on objecto at timet .
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error signals errors in the specification or use of authorizatigrean be used to en-
force static and dynamic constraints on the specifications.

In addition, the language considers predicates, calledpredicates, for the evalu-
ation of hierarchical relationships between the elemefhtisendata system (e.g., user’'s
membership in groups, inclusion relationships betweerat). The language also al-
lows the inclusion of additional application-specific predes, called el - predicates.
These predicates can capture the possible differentaakdtips, existing between the
elements of the data system, that may need to be taken inboatdiey the access con-
trol system. Examples of these predicates caomner ( user, obj ect), which models
ownership of objects by users, super vi sor (user 1, user 2), which models respon-
sibilities and controls between users according to therorgéional structure.

Authorization specifications are stated as logic rules ddfon the predicates of the
language. To ensure clean semantics and implementattitjormat of the rules is re-
stricted to guarantee (local) stratification of the resglfirogram (see Figure 22 The
stratification also reflects the different semantics giwethe predicates:ando will be
used to specify basic authorizatiodsrcando to enforce implication relationships and
produce derived authorizations, athal to take the final access decision. Stratification
ensures that the logic program corresponding to the rulsshaique stable model,
which coincides with the well founded semantics. Also, thisdel can be effectively
computed in polynomial time. The authors also present anaéitation technique for
producing and storing the model corresponding to a set a€dbgules. Materializa-
tion has been usually coupled with logic-based authoordinguages. Indeed, given
a logic program whose rules correspond to an authorizapenification in the given
language, one can assess a request to execute a partitidarogcan object by check-
ing if it is true in the unique stable model of the logic pragrdf so, the request is
authorized, otherwise it is denied. However, when impletingran algorithm to sup-
port this kind of evaluation, one needs to consider the ¥ahg facts:

— the request should be either authorized or denied verydast,
— changes to the specifications are far less frequent thasaoeguests.

Indeed, since access requests happen all the time, thatgeaohitecture should
optimize the processing of these requests. Thereforejidagd al. [48] propose imple-
menting their FAF with anaterialized view architecturavhich maintains the model
corresponding to the authorization specifications. Theehiscdcomputed on the initial
specifications and updated with incremental maintenamategies.

8.2 Composition of access control policies

In many real world situations, access control needs to coenl@strictions indepen-
dently stated that should be enforced as one, while retathigir independence and ad-
ministrative autonomy. For instance, the global policy &frge organization can be the

10 A program is locally stratified if there is no recursion amgmgdicates going through nega-
tion.



48 Pierangela Samarati and Sabrina De Capitani di Vimercati

Stratum |Predicate Rules defining predicate

0 hi e- predicategbase relations.
rel - predicateghase relations.
done base relation.
1 cando body may contairlone, hi e-
andr el - literals.
2 dercando body may contairando,dercando,done,

hi e-, andr el - literals. Occurrences of
dercando literals must be positive.

3 do in the case when head is of the form
do(, -, +a) body may contaircando,
dercando,done, hi e- andrel - literals.

4 do in the case when head is of the form
do(0,s,—a) body contains just one literal
—do(0,S,+a).

5 error body may contairo, cando,dercando,done,

hi e-, andrel - literals.

Fig. 22.Rule composition and stratification of the proposal in [48]

combination of the policies of its different departmentd divisions as well as of ex-
ternally imposed constraints (e.g., privacy regulatipeagh of these policies should be
taken into account while remaining independent and autausiy managed. Another
example is represented by the emerging dynamic coalitienaios where different
parties, coming together for a common goal for a limited timeed to merge their se-
curity requirements in a controlled way while retainingitteitonomy. Since existing
frameworks assume a single monolithic specification of titeéeaccess control pol-
icy, the situations above would require translating andyingrthe different component
policies into a single “program” in the adopted access abm@inguage. While exist-
ing languages are flexible enough to obtain the desired awedtbiehavior, this method
has several drawbacks. First, the translation process fdia being trivial; it must
be done very carefully to avoid undesirable side effectstduaterference between
the component policies. Interference may result in the doatbspecifications not re-
flecting correctly the intended restrictions. Second,rdfi@nslation it is not possible
anymore to operate on the individual components and mairniesm autonomously.
Third, existing approaches cannot take into account indetappolicies, where some
components are not (completely) known a priori (e.g., whamebody else is to pro-
vide that component). Starting from these observationsaBbet al. [20] make the
point for the need of a policy composition framework by whiifferent component
policies can be integrated while retaining their indeperwde They propose an algebra
for combining security policies. Compound policies arenfatated as expressions of
the algebra, constructed by using the following operators.

Addition merges two policies by returning their union. For instaricegn organiza-
tion composed of different divisions, access to the maie gah be authorized by
any of the administrator of the divisions (each of them knaewtéch users need
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access to reach their division). The totality of the acce#ismugh the main gate
to be authorized should then be the union of the statemermaadlf division. Intu-
itively, additions can be applied in any situation whereesses can be authorized
if allowed by any of the component policies.

Conjunction merges two policies by returning their intersection. Fatamce, con-
sider an organization in which divisions share certain doents (e.g., clinical
folders of patients). An access to a document may be allowddiball the au-
thorities that have a say on the document agree on it. Thiitli® corresponding
authorization triple belongs to the intersection of thailiges.

Subtraction restricts a policy by eliminating all the accesses in a seéqmiicy. Intu-
itively, subtraction specifies exceptions to statemendentyy a policy, and encom-
passes the functionality of negative authorizations istéxg approaches.

Closure closes a policy under a set of derivation (i.e., implicatinres, w.r.t. which
the algebra is parametric. Rules can be, for example, esgaesith a logic-based
language (e.g., [48]).

Scoping restriction restricts the application of a policy to a given set of sutgeab-
jects, and actions that satisfy certain properties (i€gry to a given class). It is
useful to enforce authority confinement (e.g., authorizettispecified in a given
component can be referred only to specific subjects and @bjec

Overriding replaces portion of a policy with another. For instance,betatory pol-
icy may impose authorizations granted by the lab tutors tovsridden by the
department policy (which can either confirm the author@atr not) for students
appearing in a blacklist for infraction to rules.

Template defines a partially specified (i.e., parametric) policy tbat be completed
by supplying the parameters. Templates are useful for septang policies where
some components are to be specified at a later stage. Faréesthe components
might be the result of further policy refinement, or might pedfied by a different
authority.

Enforcement of compound policies is based on a translat@mn policy expressions
into logic programs, which provide executable specificatioompatible with different
evaluation strategies (e.g., run time, materialized vigavtial evaluation). The logic
program simply provides an enforcement mechanism and nspgeaent to the users,
who can therefore enjoy the simplicity of algebra exprassidhe modularity of the
algebra, where each policy can be seen as a different compqmevides a convenient
way for reasoning about policies at different levels of edagtions. Also, it allows for
the support of heterogeneous policies and policies thatiakeown a priori and can
only be queried at access control time.

8.3 Certificate-based access control

Today'’s Globally Internetworked Infrastructure conneetsote parties through the use
of large scale networks, such as the World Wide Web. Exeswfactivities at vari-
ous levels is based on the use of remote resources and semceon the interaction
between different, remotely located, parties that may kfttle about each other. In
such a scenario, traditional assumptions for establishimenforcing access control
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regulations do not hold anymore. For instance, a server @egive requests not just
from the local community of users, but also from remote, fmesty unknown users.
The server may not be able to authenticate these users oe¢dysputhorizations for
them (with respect to their identity). The traditional segi@n betweeruthentication
andaccess controtannot be applied in this context, and alternative accessalso-
lutions should be devised. A possible solution to this peabis represented by the use
of digital certificates (or credentials), representingesteents certified by given enti-
ties (e.g., certification authorities), which can be useédtablish properties of their
holder (such as identity, accreditation, or authorizat)d89]. Trust-management sys-
tems (e.g., PolicyMaker [18], Keynote [17], REFEREE [24}daDL [57]) use cre-
dentials to describe specific delegation of trusts among k&gl to bind public keys
to authorizations. They therefore depart from the trad#dloseparation between au-
thentication and authorizations by granting authorizedidirectly to keys (bypassing
identities). Trust management systems provide an infageBamework for reasoning
about trust between unknown parties; however, assignitigpaaations to keys, may
result limiting and make authorization specifications difft to manage. A promising
direction exploiting digital certificates to regulate agsseontrol is represented by new
authorization models making the access decision of whethmsot a party may execute
an access dependent on properties that the party may haleaarmprove by present-
ing one or more certificates (authorization certificatesl®) peing a specific kind of
them). Besides a more complex authorization language antéinbere is however a
further complication arising in this new scenario, due ®@fidict that the access control
paradigm is changing. On the one side, the server may notdibtree information it
needs in order to decide whether or not an access should beedr@nd exploits cer-
tificates to take the decision). On the other side, howekierr¢questor may not know
which certificates she needs to present to a (possibly jusisriered) server in order
to get access. Therefore, the server itself should, up@pten of the request, return
the user with the information of what she should do (if pog3ito get access. In other
words the system cannot simply return a “yes/no” accessibecanymore. Rather, it
should return the information of the requisites that it ieegibe satisfied for the access
to be allowed. The certificates mentioned above are one fiygecess requisites. In ad-
dition, other uncertified declarations (i.e., not signedhy authority) may be required.
For instance, we may be requested our credit card numberflarpean electronic pur-
chase; we may be requested to fill in a profile when using pobkemipublic services
(e.g., browsing for flight schedules). The access controisiten is therefore a more
complex process and completing a service may require conaatimg information not
related to the access itself, but related to additionatiotisins on its execution, pos-
sibly introducing a form of negotiation [21, 72, 89]. Suclionmation communication
makes the picture even more complex, since it introducesevo protection require-
ments (in addition to the obvious need of protecting resesimanaged by the server
from unauthorized or improper access):

Client portfolio protection: the client (requestor) may not be always willing to release
information and digital certificates to other parties [&5)d may therefore impose
restrictions on their communication. For this purposeientimay—like a server—
require the counterpart to fulfill some requirements. Fstance, a client may be
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Fig. 23.Client/server interplay in [21]

willing to release a AAA membership number only to servepgpbying a credential
stating that the travel agent is approved by AAA.

Server’s state protection: the server, when communicating requisites for access to a

client, wants to be sure that possible sensitive infornmediloout its access control
policy is not disclosed. For instance, a server may requdigitally signed guar-
antee to specific customers (who appear blacklisted for temtitén some database
it has access to); the server should simply ask this signedrdent, it should not
tell the customer that she appears blacklisted.

The first proposals investigating the application of creé@éfased access control
regulating access to a server, were made by Winslett et3I88. Access control rules
are expressed in a logic language and rules applicable te@ss can be communi-
cated by the server to clients. The work was also extende8BirB3] investigating trust
negotiation issues and strategies that a party can appéldotsredentials to submit to
the opponent party in a negotiation. In particular, [88}idiguishes betweesagerand
parsimoniousredential release strategies. Parties applying the fiesiegy turn over
all their credentials if the release policy for them is dah without waiting for the
credentials to be requested. Parsimonious parties ordgiselcredentials upon explicit
request by the server (avoiding unnecessary releases). afu[83] present a prudent
negotiation strategy to the goal of establishing trust agnuarties, while avoiding dis-
closure of irrelevant credentials.

A credential-based access control is also presented bytBand Samarati in [21].
They propose a uniform framework for regulating serviceeascand information dis-
closure in an open, distributed network system like the Wi in previous proposals,
access regulations are specified as logical rules, where poedicates are explicitly
identified. Besides credentials, the proposal also alleweéason about declarations
(i.e., unsigned statements) and user-profiles that thesean maintain and exploit for
taking the access decision. Communication of requisitée teatisfied by the requestor
is based on a filtering and renaming process applied on ther&epolicy, which ex-
ploits partial evaluation techniques in logic programse Tittering process allows the
server to communicate to the client the requisites for aesg;avithout disclosing pos-
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sible sensitive information on which the access decisidaken. The proposal allows
also clients to control the release of their credentialssiiily making counter-requests
to the server, and releasing certain credentials only if twinter-requests are satisfied
(see Figure 23). Client-server interplay is limited to twiteractions to allow clients to
apply a parsimonious strategy (i.e., minimizing the senédimation and credentials
released) when deciding which set credentials/declaratielease among possible al-
ternative choices they may have.

While all these approaches assume access control rules égpvessed in logic
form, often the people specifying the security policiesaméamiliar with logic based
languages. An interesting aspect to be investigated coatiee definition of a language
for expressing and exchanging policies based on a high fewlulation that, while
powerful, can be easily interchangeable and both human actime readable. Insights
in this respect can be taken from recent proposals expgeasiess control policies as
XML documents [26, 27].

All the proposals above open new interesting directionkénaccess control area.
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