
Measuring Inference Exposure in Outsourced
Encrypted Databases

E. Damiani, S. De Capitani di Vimercati, S. Foresti, P. Samarati, M. Viviani

Università deli Studi di Milano
Dipartimento di Tecnologie dell’Informazione

Via Bramante, 65 – 26013 Crema (CR) – Italia
{damiani, decapita, foresti, samarati, viviani}@dti.unimi.it

Abstract. Database outsourcing is becoming increasingly popular in-
troducing a new paradigm, called database-as-a-service, where an en-
crypted client’s database is stored at an external service provider. Ex-
isting proposals for querying encrypted databases are based on the as-
sociation, with each encrypted tuple, of additional indexing information
obtained from the plaintext values of attributes that can be used in the
queries. However, the relationship between indexes and data should not
open the door to inference and linking attacks that can compromise the
protection granted by encryption.
In this paper, we present a simple yet robust indexing technique and in-
vestigate quantitative measures to model inference exposure. We present
different techniques to compute an aggregate measure from the infer-
ence exposure associated with each single index. Our approach can take
into account the importance of plaintext attributes associated with in-
dexes and/or can allow the user to weight the inference exposure values
supplied in relation to their relative ordering.

1 Introduction

In most organizations databases hold sensitive information that has to be pro-
tected form unauthorized accesses. As the size of these databases is increasing
very quickly, organizations may choose if to add data storage to their systems
at a high rate or to outsource data to external providers. The main advan-
tage of outsourcing is related to the costs of in-house versus outsourced hosting:
outsourcing provides significant cost savings and service benefits, and promises
higher availability and more effective disaster protection than in-house opera-
tions. However, database outsourcing is not free from problems: since sensitive
data are not under the direct control of their owner, data confidentiality and
even integrity may be put at risk. These problems are traditionally addressed by
means of encryption [5]. By encrypting the information, the client is guaranteed
that it alone can access the data. However, since decryption must be executed
only client-side for security reasons, the remote DBMS cannot execute any query
because it has not access to plaintext data. Therefore, the whole relation involved
in a query would be sent back to the client for query execution, thus nullifying
the advantages of outsourcing.

Sara
Line

Fig. 1. DAS Scenario

A first proposal toward the solution of this problem was presented in [3, 4,
9–11] where the authors proposed storing, together with the encrypted database,
additional indexing information. The scenario just described, called database-as-
a-service (DAS), involves mainly three entities (see Figure 1):

– User : human entity that presents requests (queries) to the system (1);
– Client : front-end that transforms the user queries into queries on the en-

crypted data stored on the server (2) and decrypt the result of a query (4);
– Server : an organization that receives the encrypted data from a data owner

and executes queries on them (3).

Two conflicting requirements need to be taken into consideration in the index
construction: on the one side, the indexing information should be related with the
data well enough to provide for an effective query execution mechanism; on the
other side, the relationship between indexes and data should not open the door
to inference and linking attacks that can compromise the protection granted by
encryption [6]. To balance query execution efficiency and data protection from
inference, it is important to provide indexing techniques able to balance these
two requirements.

In this paper, after a brief explanation of data organization in the DAS
scenario, we investigate quantitative measures to model inference exposure. We
present different techniques to compute an aggregate measure from the inference
exposure associated with each single index. The proposed techniques allow us to
compute the inference exposure associated with a whole relation. The remainder
of this paper is organized as follows. Section 2 describes the DAS scenario. Sec-
tion 3 describes the abstract models used to compute the exposure coefficient
in different scenarios. Section 4 illustrates different aggregation operators that
can be used to combine the exposure coefficients associated with single indexes.
Finally, Section 5 concludes the paper.

Employees

Id Name Age Marital Status Job

A1 Alice 30 Married Manager
A2 Bob 26 Married Director
B1 Alice 30 Married Employee
B3 Carol 26 Single Manager
B2 David 21 Single Employee
A3 Alice 40 Divorced Employee
B4 Bob 30 Single Manager

(a)

Employeesk

Count Etuple I1 I2 I3 I4 I5

1 r*tso/yui+ π α δ µ λ
2 hai4de-0q1 π β ε µ λ
3 nag+q8*L ρ α δ µ γ
4 K/ehim*13- σ α ε η λ
5 3gia*ni+aL π β ε η γ
6 F0/rab1DW* ρ α ε µ γ
7 Bid2*k1-l0 σ β δ η λ

(b)

Fig. 2. An example of plaintext (a) and encrypted (b) relation

2 Data Organization

We consider a relational DBMS where data are organized in tables (e.g., table
Employees in Figure 2(a)); the underlined attribute represents the primary key
of the table. In principle, database encryption may be performed at different
levels of granularity: relation level, attribute level, tuple level, and element level.
Both relation level and attribute level imply the communication to the user of
the whole relation involved in a query. On the other hand, encrypting at element
level would require an excessive workload for clients in encrypting/decrypting
data. For balancing the client workload and query execution efficiency, we as-
sume that the database is encrypted at tuple level.
The main effort of current research in this scenario is the design of a mechanism
that makes it possible to directly query an encrypted database [9]. The existing
proposals are based on the use of indexing information associated with each rela-
tion in the encrypted database [4, 11]. Such indexes can be used by the server to
select the data to be returned in response to a query. More precisely, the server
stores an encrypted table with an index for each attribute on which a query
can include a condition. Each plaintext relation is represented in the encrypted
database as a relation with an attribute for the encrypted tuple and as many
attributes as indexes to be supported. Formally, each relation ri over schema
Ri(Ai1, Ai2, . . ., Ain) in a plaintext database DB is mapped onto a relation rki over
schema Rki(Count, Etuple, I1, I2, . . ., In) in the encrypted database DBk where,
Count is the primary key; Etuple is an attribute for the encrypted tuple whose
value is obtained using an encryption function Ek (k is the key); Ii is the index
associated with the i-th attribute.1 For instance, given relation Employees in
Figure 2(a), the corresponding encrypted relation Employeesk is represented in
Figure 2(b). As it is visible from this table, the encrypted table has the same
number of rows as the original one. Let us now discuss how to represent indexing
information. A trivial approach to indexing would be to use the plaintext value
of each cell. This approach is obviously not suitable as plaintext data would
be disclosed. An alternative approach providing the same fine-grained selection
capability without disclosing plaintext values is to use the individual encrypted

1 For the sake of simplicity, we assume that each attribute of the original relation has
an index in the encrypted one.

values as index. Then, for each indexed cell the outcome of an invertible en-
cryption function over the cell value is used. Formally, t[Ii] = Ek(t[Ai]). This
solution has the advantage of preserving plaintext distinguishability, together
with precision and efficiency in query execution, as all the tuples returned be-
long to the query set of the original query. As a drawback, however, encrypted
values reproduce exactly the plaintext values distribution with respect to values’
cardinality (i.e., the number of distinct values of the attribute) and frequencies.

A third alternative approach is to use as index the result of a secure hash
function over the attribute values rather than straightforwardly encrypting the
attributes; this way, the attribute values’ distribution can be flattened by the
hash function. A flexible characteristic of a hash function is the cardinality of its
co-domain B, which allows us to adapt to the granularity of the represented data.
When B is small compared with the cardinality of the attribute, the hash func-
tion can be interpreted as a mechanism that distributes tuples in | B | buckets;
a good hash function (and a secure hash has to be good) distributes uniformly
the values in the buckets. For instance, the Employees table in Figure 2(a) can
be indexed considering two buckets, α and β, for attribute Name, and mappings
Alice and Carol in α and Bob and David in β (see Figure 2(b)).2 With respect
to direct encryption, hash-based indexing provides more protection as different
plaintext values are mapped onto the same index (see Section 3). By contrast,
when hashing is used, the query results will often include spurious tuples (all
those belonging to the same bucket of the index) that will have to be removed
by the front end receiving it.

As indexes constructed using hash or encryption functions do not preserve the
domain order of the original attributes, they cannot support range queries. To
this purpose, a fourth indexing approach based on B+-trees has been proposed
in [4]. In the following sections, we will describe how to compute the inference
exposure coefficient when a direct encryption method or an hash based method
are used to compute the indexes.

3 Exposure Coefficient Measures

As discussed in the Introduction, it is important to be able to evaluate quanti-
tatively the level of exposure associated with the publication of certain indexes
and to determine the proper balance between index efficiency and protection.
To this purpose, two different scenarios can be considered that differ in the as-
sumption about the attacker’s prior knowledge [4]. In the first scenario, called
Freq+DBk, the attacker is aware of the exact (or approximate) distribution of
plaintext values in the original database in addition to knowing the encrypted
database. In the second scenario, called DB+DBk, the attacker has both the
encrypted and the plaintext database. Note however that the computation of
the exposure coefficient E depends also on the method adopted for indexing the
database, that is, direct encryption or hashing. Figure 3 summarizes the abstract

2 Here, the result of the hash function is represented as a Greek letter.

Direct encryption Hashing

Freq + DBk Quotient table Multiple subset sum problem

DB + DBk RCV-graph RCV line graph

Fig. 3. Abstract models supporting computation of exposure in the four attack sce-
narios

models that we used to obtain an indication of the exposure that characterizes
generic databases. We now briefly describe the rationale behind these abstract
models (we refer the reader to [2, 4] for a complete description of these models).

3.1 Direct Encryption Exposure

In the Freq+DBk scenario, although the attacker does not know which index
corresponds to which plaintext attribute, she can determine the actual corre-
spondence by comparing their occurrence profiles. Intuitively, values with the
same number of occurrences are indistinguishable to the attacker. The exposure
of an encrypted relation to indexing inference can then be thought of in terms
of an equivalence relation where indexes (and plaintext values) with the same
number of occurrences belong to the same equivalence class. The measure of ex-
posure for a single cell in the table is then equal to the inverse of the cardinality
of the equivalence class to which it belongs. Consequently, the probability of
disclosing a specific association (a tuple is a specific association) is the product
of the inverse of the cardinalities of its cells. The exposure of the whole relation
can then be estimated as the average exposure of each tuple as follows:

E =
1
n

n∑

i=1

k∏

j=1

ICi,j

Here, i ranges over the tuples and j ranges over the columns, and ICi,j denotes
the exposure of value j in tuple i. The exposure coefficient can be computed in
O(n · k), where n is the number of tuples and k is the number of attributes.

In the DB+DBk scenario, the model of the attack is based on the definition
of RCV-graphs. Given a relational table, the corresponding 3-colored undirected
graph G = (V, E), called the RCV-graph (i.e., the row-column-value–graph), is
a graph where the set V of vertexes contains one vertex for every attribute, one
vertex for every tuple, and one vertex for every distinct value in each of the
attributes; if the same value appears in different attributes, a distinct vertex is
introduced for every attribute in which the value appears. The set E of edges
contains both edges connecting each vertex representing a value with the vertex
representing the column in which the value appears and edges connecting each
vertex representing a value with the vertexes representing tuples in which the
value appears. This graph has an important property, that is, the RCV-graph
built starting from a plaintext table is identical to the RCV-graph built starting

from the corresponding encrypted table. The identification of the correspondence
between plaintext and index values requires then to establish a correspondence
between the encrypted vertex labels and the plaintext values. This correspon-
dence is strongly related to the presence of automorphisms in the RCV-graph.
We used the Nauty algorithm [13] to produce a concise representation of all the
automorphisms. The automorphisms over a graph constitutes a group that, for
undirected graphs, can be described by the coarsest equitable partition [13] of
the vertexes, where each element of the partition (each subset appearing in the
partition) contains vertexes that can be considered interchangeable in an auto-
morphism. The Nauty algorithm starts, for the group definition, from a partition
on the vertexes that can be immediately derived grouping all the vertexes with
the same color and connected by the same number of edges. This partition is
then iteratively refined. From the structure of the partition (C1 . . . Ci), it derives
that the vertexes appearing in the generic partition element Cj are equivalently
substitutable in all the automorphisms, as they have exactly the same charac-
teristics. From this observation, it derives that the probability pi of a correct
identification of a vertex vi ∈ Cj is equal to the inverse of the cardinality of
Cj . Then, given | Cj | vertexes in the partition element Cj , n elements in the
equitable partition, and a total number m of vertexes, the exposure coefficient
of the table is:

E =
m∑

i=1

pi/m =
n∑

j=1

∑

vi∈Cj

pi/m =
n∑

j=1

∑

vi∈Cj

1/(| Cj | m) =
n∑

j=1

1/m = n/m

The exposure coefficient can be computed in O(n2 log n), where n is the
number of vertexes in the RCV-graph.

3.2 Hashing Exposure

It is important to note that collisions due to hashing increase protection from
inference. The hash function is then characterized by a collision factor denoting
the number of attribute values that on average collide on the same index value.
As an example, consider the relation in Figure 2. Here, Alice and Carol are
mapped on the same value α. The abstract models used for the computation
of the inference exposure consider separately each attribute of the table; the
inference exposure for the whole table can be obtained by aggregating the values
associated with each single attribute (see Section 4). Note that while direct
encryption indexing methods preserve the association of values of attributes
within the tuples, the hash based methods do not preserve this association and
therefore a potential intruder cannot use such information. Consequently, the
exposure index computation is performed at attribute level and then each single
value is aggregated to derive the exposure associated with the whole table.

In the Freq+DBk scenario, the goal of the attacker is to find a mapping
from plaintext values to indexing values that satisfies the constraints given by
the attacker’s prior knowledge which is represented by the occurrences of each
plaintext value and each hashed one. The exposure coefficient is then computed

as follows. We first enumerate the different mappings by using an adaptation of
Pisinger’s algorithm for the subset sum problem. We then compute the exposure
coefficient for each mapping and we take the average of these exposure coeffi-
cients. The exposure coefficient can be computed in O(nk), where n and k are
values related to the number of different items in the index domain and their
frequency in the encrypted table.

In the DB+DBk scenario, the exposure coefficient is computed by extending
the RCV-graph described in the previous section. As before, identifying the
correct correspondence between plaintext and hash values requires finding a
matching between each vertex of the plaintext RCV-graph and a vertex of the
corresponding encrypted RCV-graph. When collisions occur, the two graphs are
not identical, as different vertexes of the plaintext RCV-graph may collapse to
the same encrypted RCV-graph vertex. We can observe that the number of edges
connecting row vertexes to value vertexes in the plaintext and encrypted RCV-
graph is the same. Therefore, the problem can be viewed as finding a correct
matching between the edges of the plaintext RCV-graph and the edges of the
encrypted RCV-graph. Following this observation, we compute the exposure
coefficient as the average of the exposure coefficients associated with an attribute
in correspondence of each matching. The exposure coefficient can be computed
in O(n!n), where n is the number of nodes in the graph.

4 Exposure Coefficient Measures based on Aggregation
Operators

The aggregation operators are mathematical objects that have the function of
combining a set of numbers into a unique representative (or meaningful) number.
As specified in the previous section, we are interested in computing the exposure
coefficient associated with a whole table when indexes have been obtained by
applying a hash-based method. To this purpose, it is possible to use one of the
many operators that satisfy the definition of aggregation operator [14]. Formally,
an aggregation operator is defined as follows.

Definition 1. An operator A : ∪n∈IN[0, 1]n → [0, 1] is an aggregation operator
on the unit interval if the following conditions hold:

Identity property: A(x) = x,3

Boundary conditions: A(0, . . . , 0) = 0 and A(1, . . . , 1) = 1,
Monotonicity: A(x1, . . . , xn) ≤ A(y1, . . . , yn) if (xi ≤ yi) ∀i = 1, . . . , n .

Note that additional properties (mathematical and behavioral) may also be
added [7, 8]. Although many aggregation operators [18] satisfy these proper-
ties, we consider the Weighted Mean (WM) [1, 16] and the Ordered Weighted
Averaging operator (OWA) [19]. These two operators combine the input values
according to a single set of weights. Therefore, to apply these operators, we first
3 This property is required when the argument of the aggregation operator is a unary

vector.

need to associate a weight (or set of weights) with each attribute of a relational
table. The determination of these weights is usually done in an heuristic way
(after trial and error) or asking an expert to supply them. We now describe the
use of these operators more in details.

4.1 Weighted Mean

The Weighted Mean allows the system to compute an aggregate value from the
ones corresponding to the exposure coefficient associated with each single index
of a given table. This operator can take into consideration the risk connected to
the disclosure of an attribute due to the inference from the corresponding index.
The formal definition of a Weighted Mean operator is as follows.

Definition 2. Let p = [p1 p2 ... pn] be a weighting vector of dimension n such
that: pi ∈ [0, 1];

∑n
i pi = 1. A mapping fWM : IRn → IR is a Weighted Mean

(WM) operator of dimension n if

fWM(a1, a2, . . . , an) =
∑

i

piai . (1)

The weighting vector p is here used to reflect the sensitivity of the attributes
in the original table. More precisely, an attribute is considered more “sensitive”
than another attribute if its disclosure puts more at risk the outsourced database.
As above-mentioned, there are several ways to choose the weights and we assume
that a domain expert provides a vector depending on the context. This vector
multiplied by the values of the exposure coefficients permits the evaluation of
the robustness of the indexing method: a higher protection of the most sensitive
attributes (a low exposure coefficient for the connected index) leads to a lower
global exposure coefficient value; on the contrary, a lower protection of the most
sensitive attributes leads to a higher global exposure coefficient value. The main
advantage of using a weighted mean with respect to the classical mean is that
it allows to make a distinction among the attributes of a table. For instance, if
the exposure coefficients associated with the indexes computed from the more
sensitive attributes is low, we would expect a low global exposure coefficient. Vice
versa, if the exposure coefficients associated with the indexes computed from
the more sensitive attributes is high, we would expect a high global exposure
coefficient. If we use the classical mean operator, it is possible that a similar
global exposure coefficient is obtained in both situations because it considers
the attributes equivalent.

Example 1. Consider the tables in Figure 2 and suppose that the most sensitive
attribute is Name followed by Age, Marital Status, Job, and Id. A possible
weighting vector reflecting the sensitivity of the attributes is, for example, p=
[.05 .40 .30 .15 .10]. Suppose now that the exposure coefficient associated with
each index is computed as discussed in Section 3.2: EI = [1/7! 1/36 1/36 1/8 1/8].
According to the WM definition, the global exposure coefficient is:

(
1
7!

)
(.05) +

(
1
36

)
(.40) +

(
1
36

)
(.30) +

(
1
8

)
(.15) +

(
1
8

)
(.10) ∼= .0507

If the exposure coefficients associated with indexes are EI =
[1/7! 1/8 1/8 1/36 1/36], we would obtain E ∼= .0944 and we can con-
clude that the protection is worse than the first case because sensitive attributes
are less protected.

It is important to note that the primary key of a table is always well protected
because its values are indistinguishable. For this reason, in the above example,
the weight associated with the primary key Id is very low.

4.2 Ordered Weighted Averaging Operator

The OWA operator allows the user to weight the input values in relation to their
relative ordering. In this way a system can give more importance to a subset of
the input values than to another subset. The OWA operator is formally defined
as follows.

Definition 3. Let w = [w1 w2 ... wn] be a weighting vector of dimension n such
that: wi ∈ [0, 1]; and

∑n
i wi = 1. A mapping fOWA : IRn → IR is an Ordered

Weighted Averaging (OWA) operator of dimension n if

fOWA(a1, a2, ..., an) =
∑

i

wiaσ(i) (2)

where {σ(1), σ(2), ..., σ(n)} is a permutation of {1, 2, ..., n} such that aσ(i−1) ≥
aσ(i) for all i = 2, ..., n.

The exposure coefficient associated with an index reflects how the corresponding
attribute is protected. An higher exposure coefficient (always a value between 0
and 1) indicates that a particular attribute has a low protection and vice versa.
Using an OWA operator, it is therefore possible to highlight this fact by choosing
an appropriate weighting vector w. In particular, there are two strategies that
the data owner may adopt:

– Maximal protection: a table is considered protected only if all attributes are
well protected (low exposure coefficient). Even a single not well protected
attribute may cause a poor evaluation of the hash function adopted. In this
case, it is necessary that the highest exposure coefficients have an higher
weight to amplify their contribution to the final result (w has to be decreas-
ing).

– Minimal protection: a table is considered protected even if just one of its at-
tributes is well protected. In this case, it is necessary that the lowest exposure
coefficients have an higher weight (w has to be increasing).

There are also many other intermediate strategies between these two ones, de-
pending on the policy that the data owner has decided to adopt.

In summary, by comparing these two aggregation operators (WM and OWA),
it is easy to see that in the weighted mean, weights measure the importance of an
attribute with independence of the corresponding exposure coefficient. On the
other hand, in the OWA operator weights measure the importance of an exposure
coefficient (in relation to other values), independently from the attribute with
which it is associated.

Example 2. Consider the table in Figure 2 and the exposure coefficients EI =
[1/7! 1/36 1/36 1/8 1/8]. We first order these coefficients thus obtaining the
permutation: EIσ = {1/8, 1/8, 1/36, 1/36, 1/7!}. If the data owner wants to apply
a maximal protection strategy, she has to define a decreasing weighting vector
such as w = [.30 .30 .20 .15 .05]. In this case the exposure coefficient for the
whole table is:

(
1
8

)
(.30) +

(
1
8

)
(.30) +

(
1
36

)
(.20) +

(
1
36

)
(.15) +

(
1
7!

)
(.05) ∼= .0848

On the contrary, if the data owner wants to apply a minimal protection strategy
she has to choose an increasing weighting vector such as w = [.05 .15 .20 .30 .30].
In this case, the exposure coefficient for the whole table is: E ∼= .03894 and is
lower than the previous one, as the low value in EIσ has an high weight.

5 Conclusions and Future Work

We presented different measures for evaluating the robustness of indexing tech-
niques against inference attacks. Issues to be investigated will include the anal-
ysis of more complex operators for the computation of the exposure coefficient
of a whole table such as non linear operators and the WOWA operator.

References

1. Aczél, J.: On Weighted synthesis of judgments. Aequationes Math. 27 (1984) 288–
307

2. Ceselli, A., Damiani, E., De Capitani di Vimercati, S., Jajodia, S., Paraboschi, S.,
Samarati, P.: Modeling and assessing inference exposure in encrypted databases.
ACM Transactions on Information and System Security (TISSEC) 8(1) (February
2005) 119–152

3. Damiani, E., De Capitani di Vimercati, S., Finetti, M., Paraboschi, S., Samarati,
P., Jajodia, S.: Implementation of a storage mechanism for untrusted DBMSs. In
Proc. of the Second International IEEE Security in Storage Workshop, Washington
DC, USA (May 2003)

4. Damiani, E., De Capitani di Vimercati, S., Jajodia, S., Paraboschi, S., Samarati,
P.: Balancing confidentiality and efficiency in untrusted relational DBMSs. In Proc.
of the 10th ACM Conference on Computer and Communications Security, Wash-
ington, DC, USA (October 2003)

5. Davida, G.I., Wells, D.L., Kam, J.B.: A database encryption system with subkeys.
ACM Transactions on Database Systems 6(2) (June 1981) 312–328

6. Denning, D.E.: Cryptography and Data Security. Addison-Wesley (1982)
7. Fodor, J., Marichal, J.L., Roubens, M.: Characterization of the Ordered Weighted

Averaging Operators. IEEE Transactions on Fuzzy Systems 3(2) (1995) 236–240
8. Grabisch, M.: Fuzzy integral in multicriteria decision making. Fuzzy Sets and Sys-

tems 69 (1995) 279–298
9. Hacigümüs, H., Iyer, B., Mehrotra, S.: Providing database as a service. In Proc. of

the 18th International Conference on Data Engineering, San Jose, California, USA
(February 2002)

10. Hacigümüs, H., Iyer, B., Mehrotra, S.: Ensuring integrity of encrypted databases
in database as a service model. In Proc. of the IFIP Conference on Data and
Applications Security, Estes Park Colorado (August 2003)

11. Hacigümüs, H., Iyer, B., Mehrotra, S., Li, C.: Executing SQL over encrypted data
in the database-service-provider model. In Proc. of the ACM SIGMOD’2002, Madi-
son, Wisconsin, USA (June 2002)

12. Hore, B., Mehrotra, S., Tsudik, G.: A privacy-preserving index for range queries.
In Proc. of the 30th VLDB Conference, Toronto, Canada (2004)

13. McKay, B.D.: Practical graph isomorphism. Congressus Numerantium, 30 (1981)
45–87

14. Mesiar, R., Komorńıková, M.: Aggregation Operators. Proceeding of the XI Con-
ference on applied Mathematics PRIM’ 96, Herceg D., Surla K. (eds.), Institute of
Mathematics, (1997) 193–211

15. Mykletun, E., Narasimha, M., Tsudik, G.: Authentication and integrity in out-
sourced database. In Proc. of the 11th Annual Network and Distributed System
Security Symposium, San Diego, California, USA (February 2004)

16. Torra, V.: The weighted OWA operator. International Journal of Intelligent Sys-
tems 12(2) (1997) 153–166

17. Torra, V.: On the learning of weights in some aggregation operators: the weighted
mean and the OWA operators. Mathware and Soft Computing 6 (1999) 249–265

18. Xu, Z.S., Da, Q.L.: An Overview of Operators for Aggregating Information. Iter-
national Journal of Intelligent Systems 18 (2003) 953–969

19. Yager, R.: On ordered weighted averaging aggregation operators in multicriteria de-
cision making. IEEE Transactions on Systems, Man and Cybernetics 18(1) (1988)
183–190

	copyright: © Springer US, Advances in Information Security, (2006)http://www.springerlink.com/content/f0705222v56032x4/fulltext.pdf

