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Abstract

Although mandatory access control in database systems
has been extensively studied in recent years, and several
models and systems have been proposed, capabilities for
enforcement of mandatory constraints remain limited. Lack
of support for expressing and combating inference chan-
nels that improperly leak protected information remains a
major limitation in today’s multilevel systems. Moreover,
the working assumption that data are classified at insertion
time makes previous approaches inapplicable to the classifi-
cation of existing, possibly historical, data repositories that
need to be classified for release. Such a capability would be
of great benefit to, and appears to be in demand by, govern-
mental, public, and private institutions.

We address the problem of classifying existing data
repositories by taking into consideration explicit data clas-
sification as well as association and inference constraints.
Constraints are expressed in a unified, DBMS- and model-
independent framework, making the approach largely ap-
plicable. We introduce the concept of minimal classifica-
tion as a labeling of data elements that, while satisfying the
constraints, ensures that no data element is classified at a
level higher than necessary. We also describe a technique
and present an algorithm for generating data classifications
that are both minimal and preferred according to certain
criteria. Our approach is based on preprocessing, or com-
piling, constraints to produce a set of simple classification
assignments that can then be efficiently applied to classify
any database instance.
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1 Introduction

Information is today probably the most important and
demanded resource. We live in an internetworked society
that relies on the dissemination and sharing of information,
in the private as well as in the public and governmental sec-
tors. This situation is witnessed by a large body of research,
and extensive development and use of shared infrastructures
based on federated or mediated systems [27], in which or-
ganizations come together to selectively share their data.In
addition, governmental, public, and private institutionsare
increasingly required to make their data electronically avail-
able. This often involves large amounts of historical data,
once considered classified or accessible only internally, that
must be made available outside.

This information sharing and dissemination process is
clearly selective. Indeed, if on the one hand there is a
need to disseminate some data, there is on the other hand
an equally strong need to protect those data that, for var-
ious reasons, cannot be disclosed. Consider, for instance,
the case of a private organization making available vari-
ous data regarding its business (products, sales, etc.), but
at the same time wanting to protect more sensitive infor-
mation, such as the identity of its customers or plans for
future products. As another example, government agencies,
when releasing historical data, may require a sanitization
process to “blank out” information considered sensitive, ei-
ther directly or because of the sensitive information it would
allow the recipient to infer. Effective information sharing
and dissemination can take place only if the data holder has
some assurance that, while releasing information, disclo-
sure of private sensitive information is not a risk. Given the
possibly enormous amount of data to be considered, and
the possible inter-relationships between data, it is important
that the security specification and enforcement mechanisms
provide automatic support for the consideration of content-
dependent specification, rather than requiring explicit label-
ing of each piece of data, and for complex security require-



ments, such as those due to inference channels.

Mandatory policies, providing a simple (in terms of
specification and management) form of access control based
on data and subject classification, appear suitable for the
problem under consideration, where, in general, classes of
data need to be released to classes of users. Unfortunately,
capabilities of existing multilevel systems remain limited,
and little, if any, support for the features mentioned above
is provided. First, current DBMSs [2] work under the as-
sumption that data are classified upon insertion (by assign-
ing them the security level of the inserting subject) and
therefore provide no support for the classification of ex-
isting, possibly unclassified, databases, where a different
classification lattice and different classification criteria may
need to be applied. Second, despite the large body of lit-
erature on the topic, they provide little or no support for
expressing and combating inference channels [13]. In other
words, although the access control models and techniques
exist [2, 11, 14, 20, 29], deriving a correct and inference-
free assignment of security classifications to data remains
a major hurdle. This work represents a first step toward its
resolution.

In this paper we consider the problem of classifying
existing data repositories that are to undergo external re-
lease, where such release is governed by a mandatory pol-
icy. Our model provides support for explicit content-based
data classification as well as for association and inference
constraints. Association constraints express constraints on
the association between values of different attributes. For
instance, an association constraint can require the associ-
ation of employees’names andsalaries to be classi-
fied at a certain level. Inference constraints express con-
straints on the classification of information related by infer-
ence. There is an inference from a set of data elements to
another data element if knowledge of the values in the set
of data elements allows one to derive the value of the latter
data element (exact inference), or to reduce it to a subset of
possible values (inexact inference). For instance, there may
exist an inference channel fromrank anddepartment
tosalary, meaning that knowing the values forrank and
department would allow the recipient to infer the value
of salary. To avoid improper leakage of information,
only subjects cleared to seesalary should be cleared to
see bothrank anddepartment. Inference channels can
also involve only specific values of the attributes (partial
inference). For instance, the relationship above may hold
only for those employees working in a specific department
or in a given salary range. In our model, explicit classifi-
cation as well as association and inference constraints can
be expressed at the fine-grained element level, in a content-
dependent fashion. Moreover, constraints are expressed in
a unified, DBMS- and model-independent framework, mak-
ing the approach widely applicable.

We characterize the problem of enforcing constraints in
a way that minimizes information loss by ensuring that data
are not overclassified. That is, data will not be withheld
from release unless required for the satisfaction of the con-
straints. We introduce the concept of minimal classification
as a labeling satisfying this property. Because of the poten-
tially enormous amount of data to be classified (historical
data repositories can contain records on the order of mil-
lions), direct enforcement of the constraints on the data is
infeasible in practice. We therefore propose an approach
based on preprocessing of the classification constraints to
produce a set of simple classification assignments that can
then be efficiently (in one pass) applied to produce a classi-
fied database. The basis of this approach is the observation
that the number of attributes, and constraints, possibly with
associated conditions, is orders of magnitude smaller than
the number of elements recorded. In this way, the minimal
classification can be computed more efficiently, without the
need for accessing the data. The same assignments can then
be efficiently enforced on different database instances that
may need to be classified. We also describe a process for
performing this classification.

It is important to note that our work does not propose
a multilevel database model, nor is it intended as a sub-
stitute for current multilevel database systems and mod-
els [2, 11, 14, 20, 29]. Rather, it complements them with
new and powerful data content and inference-related clas-
sification capabilities. Actual access control enforcement
will require the support of a multilevel database. Classified
databases produced by our approach can then be fed into
any multilevel DBMS that will be responsible for enforcing
access control.

2 Preliminaries

We assume standard notions from the relational database
model. A relation schemeR is a finite set ofattributes.
A database schemaS is a finite set of relation schemes
{R1, . . . , Rn}. A tuple t is a mapping from a finite setA
of attributes to a (possibly infinite) setV of values, where
t[A] denotes the mapping for attributeA in t. A relation r

over relation schemeR is a finite set of tuples overR. A
databaseover schemaS = {R1, . . . , Rn} is a set of rela-
tions{r1, . . . , rn} where eachri is a relation overRi. Ri.A

denotes attributeA in Ri. Relation names may be omitted
when clear from the context.

A security latticeL is a finite lattice(L,�), whereL is
a finite set ofsecurity levels, and� is a partial order onL
called thedominance relation. The least and greatest ele-
ments ofL are denoted⊥ and⊤, respectively. Typical se-
curity levels are top secret (TS), secret (S), confidential (C),
and unclassified (U), whereTS � S � C � U. In this paper
we consider totally ordered security lattices. Examples will



refer to the levelsTS, S, C, andU.

A multilevel relation (with element-level labeling)over
relation schemeR and security latticeL is a pair (r, λ),
where r is a relation overR, and λ is a mapping from
elements inr to labels inL, such thatλ(t[A]) = l if
t ∈ r, A is an attribute inR, andt[A] is classified at level
l ∈ L. We denote bytλ the pair(t, λ). We use the nota-
tion rλ both as shorthand for the multilevel relation(r, λ)
and to denote the multilevel relation resulting from applica-
tion of a given mappingλ to an existing relationr. A mul-
tilevel database (with element-level labeling)over schema
S = {Ri, . . . , Rn} and latticeL is a set of multilevel re-
lations{rλ1

1 , . . . , rλn
n }, where eachrλi

i is a multilevel re-
lation overRi and L. We use the notationBλ both as
shorthand for a multilevel database{rλ1

1 , . . . , rλn
n }, where

λ =
⋃

1≤i≤n λi, and to denote the multilevel database re-
sulting from application of a given mappingλ to each rela-
tion in an existing databaseB. Figure 1 illustrates an exam-
ple of relationsr1 andr2 and corresponding multilevel re-
lationsrλ1

1 andrλ2
2 obtained by classifying all the elements

in them. Note that we are interested here only in the rela-
tions’ content with the corresponding classification and not
in how multilevel relations would be actually represented in
a specific DBMS. Depending on the specific DBMSs, some
data/tuples may be duplicated (e.g., polyinstantiation con-
straints) or rearranged (e.g., if only tuple or key/nonkey at-
tributes classification is supported). This transformation is
outside the scope of this paper. Rules determining the secu-
rity levels of data are assumed to be classified at a level at
least as high as the level they assign. Hence, it is not possi-
ble for users to infer information on the values of some data
by simply observing that the data are not visible to them
(i.e., they are classified at a higher level) with the rules that
lead to such a classification. However, if the fact that a piece
of data is not visible at a certain level, because it is classified
higher, can in itself leak information, a “fill in the blank”
process can be executed whereby null values in low-level
views are replaced by cover stories [7]. Note, however, that
we assume the information recipients not to have update
privileges (i.e., it is not possible for them to try to insert
some values to determine whether a null value is actually
a null value or is blanking out some protected data). Also,
this assumption rules out inference channels resulting from
classifying information at a level higher than the level of the
subject who inserted it.

3 Classification Requirements Specification

We give preliminary definitions and concepts used in the
remainder of the paper.

3.1 Classification constraints

Classification constraints define requirements that the
security levels assigned to data elements must satisfy.
We identify four different sources, and therefore possible
classes, of constraints.

• Basic classification constraintsexplicitly assign a se-
curity level to certain attributes, possibly depending
on some conditions, for instance, “attribute Salary is
secret”, “attribute Salary is secret when its value is
greater than $1000”, and “attribute Name is secret for
employees whose Salary is greater than $1000”.

• Association constraintsclassify the association be-
tween different attributes, possibly depending on some
conditions, for instance, “the association between
names and salaries is secret, when the Salary is greater
than $1000”.

• Inference constraintsput conditions on the classifica-
tion of attributes related by inference, for instance,
with reference to the example in the introduction, the
least upper bound of the security level ofrank and
department may be required to dominate the level
of salary.

• Classification integrity constraintsare constraints on
the classification of related attributes that are required
by the multilevel data model. Integrity constraints gen-
erally supported by multilevel databases require that
for each tuple the key attributes be uniformly classi-
fied and their classification be dominated by that of
the corresponding nonkey attributes (primary keycon-
straints), and that the classification of an attribute rep-
resenting a foreign key dominate the classification of
the attribute for which it is the foreign key (referential
integrityconstraints). The fact of considering integrity
constraints as input to the process ensures the general
applicability of our approach.

We capture these four classes of constraints in a sin-
gle general form of classification constraint consisting of
two parts: alabeling expressionand aselection condition.
The labeling expression specifies a minimum security level,
which may be expressed either as a level in the lattice (ab-
soluteconstraint) or as the level of another attribute (rela-
tiveconstraint), that the least upper bound (lub) of some set
of attribute elements must attain. The selection condition
specifies a value or range of values of elements over the at-
tributes to which the labeling expression applies.

Definition 3.1 (Labeling expression)Given a schemaS
and a security latticeL = (L,�), a labeling ex-
pressionover S and L is an expression of the form



r1
M N O P

a1 b1 5 e1

a2 b1 8 e2

a3 b2 27 e3

a4 b3 13 e4

a5 b4 2 e5

a6 b2 10 e6

a7 b5 11 e7

a8 b6 27 e8

r2
F G H

e1 3 10
e2 5 1
e3 1 7
e4 17 6
e5 0 14
e6 5 13
e7 2 87
e8 37 35

r
λ1
1

M λ1(M ) N λ1(N) O λ1 (O) P λ1(P)

a1 S b1 S 5 S e1 S

a2 S b1 S 8 S e2 S

a3 U b2 C 27 U e3 C

a4 U b3 C 13 S e4 S

a5 S b4 S 2 S e5 S

a6 S b2 S 10 S e6 S

a7 U b5 C 11 U e7 C

a8 U b6 S 27 U e8 C

r
λ2
2

F λ2 (F) G λ2(G) H λ2(H)

e1 C 3 C 10 TS

e2 C 5 S 1 TS

e3 C 1 C 7 TS

e4 C 17 S 6 TS

e5 C 0 C 14 C

e6 C 5 S 13 C

e7 C 2 C 87 C

e8 C 37 S 35 C

Figure 1. An example of relations r1, r2 and corresponding multilevel relations r
λ1

1
, r

λ2

2

lub{λ(A1), . . . , λ(An)} � X , wheren ≥ 1, Ai ∈ A,
i = 1, . . . , n, and X is either a security levell ∈ L or
is of the formλ(A), with A ∈ A. If n = 1, the expression
may be abbreviated asλ(A1) � X .

Definition 3.2 (Selection condition)Given a schemaS, a
selection conditionoverS is a conjunction of primitive con-
ditions of the formA op V , whereA ∈ A, op is one of
{=, <, >,≤,≥, 6=}, andV is either a constantV ∈ V or
an attributeA′ ∈ A.

Classification constraints can then be defined as follows.

Definition 3.3 (Classification constraint) Given a schema
S and a security latticeL, a classification constraintoverS
andL is a pair (e, s), wheree is a labeling expression over
S andL, ands is a selection condition overS.

Example 3.1 Figure 2 illustrates an example of classifica-
tion constraints on relationsr1 andr2 of Figure 1. Con-
straintsc1 throughc6 are basic classification constraints.
Constraintsc7 throughc11 express the primary key integrity
constraints (M is key ofr1 andF is key ofr2). Constraint
c12 expresses the referential integrity constraint (P is for-
eign key inr1 pointing to F in r2). Constraintsc13 and
c14 represent inference constraints, andc15 is an associa-
tion constraint. △

The consideration of selection conditions only as conjunc-
tions simplifies the treatment of constraints without loss of
expressiveness. A classification constraint requiring a label-
ing expression to apply depending on a disjunction of condi-
tions can be represented by multiple separate classification
constraints. Also, note that all our constraints have the form
� and security levels on the right-hand side only, that is,
they specify a lower bound of the classification (which can
be upgraded if needed for other protection requirements).
For instance, a constraint requiringsalary to be classi-
fied secret will be stated asλ(salary) � S, implying that
salary must be classifiedat leastsecret. This interpreta-
tion is a property of the problem under consideration, where
data classification may need to be upgraded to combat in-
ference channels and to solve association constraints. The
case where the classification of the attribute must beexactly
secret can be captured as a preference of the classification
process (Section 6).

c1 : λ(M) � S, O ≤ 10 c9 : λ(P ) � λ(M)
c2 : λ(N) � C, O > 10 c10 : λ(G) � λ(F )
c3 : λ(O) � S, O ≤ 10 c11 : λ(H) � λ(F )
c4 : λ(F ) � C c12 : λ(P ) � λ(F ), P = F

c5 : λ(G) � S, G ≥ 5 c13 : λ(P ) � λ(O)
c6 : λ(G) � C, G < 5 c14 : lub{λ(N), λ(O)} � λ(G), P = F

c7 : λ(N) � λ(M) c15 : lub{λ(G), λ(H)} � TS, H ≤ 12
c8 : λ(O) � λ(M)

Figure 2. An example of classification con-
straints

In the following, we userel(x) andattr(x) to denote
the relations and attributes appearing inx, wherex can be
a labeling expressione, its left-hand sidelhs(e), its right-
hand siderhs(e), or a selection conditions. Moreover, we
refer to classification constraints in which the left-hand side
of the labeling expression refers to a single attribute assim-
ple classification constraints. All other classification con-
straints arecomplex.

Classification constraints can be interpreted as SQL-
like integrity constraints over the multilevel relations re-
sulting from the classification process. Each constraint
(e, s) corresponds to the SQL-like integrity constraint
“e IN rλ1

1 , . . . , rλn
n WHEREs,” where {R1, . . . , Rn} is

rel(e) ∪ rel(s), and, for1 ≤ i ≤ n, rλi

i is a multilevel rela-
tion overRi. This can be read as “in the multilevel database
over schemaS and latticeL, the security levels assigned to
elements must be such that the labeling expressione holds
in all tuplest satisfying the selection conditions, written
t |= s.”

Classification constraints can be represented as a di-
rected graph containing a nodeλ(A) and a nodel for each
attributeA ∈ A and security levell ∈ L. Each constraint
(lub{λ(A1), . . . , λ(An)} � X, s) is represented by an edge
labeleds from nodeλ(A1), if n = 1, or hypernode contain-
ing λ(A1), . . . , λ(An), if n > 1, to nodeX . Figure 3 illus-
trates the graph representing the classification constraints
in Figure 2, where, for simplicity, nodes representing at-
tribute classification(λ(A)) are labeled only with the at-
tribute name(A). In the figure, circle nodes represent at-
tribute classification, square nodes represent security levels,
and dashed ellipses represent hypernodes.
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P P=F F
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O>10N
G<5

GP=F H<=12 TS

G
>=5

O<=10O<=10

M

Figure 3. An example of classification con-
straint graph

3.2 Requirements and restrictions on classifica-
tion constraints

For each database undergoing classification, a setC of
constraints is specified whose enforcement allows the deter-
mination of a suitable classification for each possible data
element in the database. To guarantee the possibility of
defining a suitable classification for each and every element
in the database, the set of classification constraints must be
completeandconsistent. A set of classification constraints
is complete if it defines a classification for each possible
element of the database. It is consistent if there exists an
assignment of levels to the elements, that is, a definition of
λ, that simultaneously satisfies all classification constraints.
Intuitively, consistency guarantees the satisfiability ofthe
classification constraints. Rather than requiring the Secu-
rity Administrator to guarantee completeness of the spec-
ifications, we ensure it by adding adefault classification
constraint “λ(A) � ⊥, true” for every attributeA in the
database. In the following, we assume that these default
classifications have already been added. Completeness is
therefore trivially satisfied.1 Consistency also is trivially
satisfied because of the particular form of our constraints,
whose labeling expression uses only the dominance rela-
tionship�, and where security levels may appear only on
the right-hand side. Thus, classification constraints requir-
ing the same data element to dominate different levels can
be satisfied simply by assigning to the data element thelub

of those levels. Analogously, two constraints requiring two
different data elements to mutually dominate each other, for
instance,λ(A) � λ(B) andλ(B) � λ(A), can be satisfied
by classifying both data elements at the same level. Given
this, without loss of generality, we can make the following
assumption.

Assumption 3.1 The input setC of classification con-

1Note that it is important that these default constraints be provided as
input to our classification process. It is easy to see that assigning default
classification⊥ at the end of the process to any element that did not get
classified may result in a classification that does not satisfy the constraints.

straints is complete and consistent.

Attributes appearing in a classification constraint may
belong to different relations. For instance, constraintc14

in Figure 2 requires thelub of the level ofN andO, be-
longing to relationr1, to dominate the level ofG, be-
longing to relationr2. When the level of the elements
of an attributeA in relationR depends on the value/level
of elements of attributes in other relationsR1, . . . , Rn, it
is important that the conditions associated with the con-
straints define how to associate tuples inR with those in
R1, . . . , Rn. To allow for our preprocessing and unambigu-
ous interpretation and enforcement of the classification con-
straints, we require this tuple association to be consistent
with respect to the condition evaluation. More precisely,
we require each tuple (element of) to be classified to as-
sociate with the others on which it depends such that the
result either satisfies or does not satisfy the conditions in
the constraints. (Intuitively, we rule out the case where a
tuple in a relation would associate with others resulting in
both tuples that satisfy a given condition and tuples that do
not satisfy it.) To express this requirement we first intro-
duce the concept of key connection between relations. A
key connectionkci,j betweenRi andRj is a conjunction
of conditions(Ri.AFK1 = Rj .AK1) ∧ . . . ∧ (Ri.AFKn

=
Rj .AKn

), where(AFK1 , . . . , AFKn
) is a foreign key ofRi

and (AK1 , . . . , AKn
) is the corresponding key in relation

schemeRj . For instance,P = F appearing in the con-
straints in Figure 2 represents a key connection betweenR1

andR2. Moreover, we introduce the definition of classifi-
cation and evaluation context of an attribute, which will be
used in the labeling process (see Section 7).

Definition 3.4 (Classification and evaluation context)
Let C be a set of constraints, andA be an attribute of a
relation R. Theclassification contextof A, written CA, is
the setCA ⊆ C defined as follows:

1. ∀(ei, si) ∈ C : A ∈ attr(lhs(ei)) ⇒ (ei, si) ∈ CA

2. ∀(ei, si) ∈ C : (∃(ej , sj) ∈ CA : attr(lhs(ei)) ∩
(attr(lhs(ej)) ∪ attr(rhs(ej))) 6= ∅) ⇒ (ei, si) ∈ CA

The evaluation contextof A, written EA, is the pair
(RA,KCA), whereRA =

⋃
(e,s)∈CA

rel(e) ∪ rel(s) and
KCA =

⋃
(e,s)∈CA

kc such thatkc appears ins.

Intuitively, the classification context ofA is the set of
constraints inC whose resolution affects the classification
of A. In terms of the graph,CA can be incrementally de-
fined by including the set of constraints corresponding to
edges leaving from A and hypernodes containing A, and
transitively including then all constraints corresponding to
edges leaving from a node/hypernode appearing in, con-
tained in, or intersecting any node/hypernode representing



a starting or arriving point of some edge in the context. The
corresponding evaluation context defines the set of relations
RA whose content may affectλ(A) and the key connection
condition by which the relationships are linked.

We can now translate the above requirement to the re-
quirement that each relation be uniquely key connected to
the relations in its evaluation context, as stated in the fol-
lowing assumption.

Assumption 3.2 Let C be a set of constraints,A be an at-
tribute of relationRi, andEA = (RA, KCA) its evaluation
context.∀Rj ∈ RA, Rj 6= Ri : ∃!sequence〈kci,1, kc1,2 . . . ,

kcn,j〉 in KCA.

Satisfaction of Assumption 3.2 ensures that each ele-
ment t[A] corresponds to exactly onet′[A] in the context
in which it is labeled, that is,σKCA

(r1 × . . . × rn), where
({R1, . . . , Rn},KCA) is the evaluation context ofA.

4 Goals and Requirements

We define the correspondence between a set of con-
straints and a labeling mapping on the database and intro-
duce the properties that the multilevel database and the la-
beling producing it are required to satisfy.

4.1 Correct and minimal classification

Given a databaseB, a security latticeL, and a set of
constraintsC, our goal is to produce a multilevel database
Bλ whose labeling mappingλ satisfies the specified con-
straints. Given a tuplet over attribute setA and valuesV , a
latticeL, a mappingλ from elements oft to levels inL, and
a labeling expressione = lub{λ(A1), . . . , λ(An)} � X

overA andL, tλ is said tosatisfye, denotedtλ |= e, if
and only if lub{λ(t[A1]), . . . , λ(t[An])} � X . A multi-
level databaseBλ over schemaS and latticeL is said tosat-
isfy a classification constraintc = (e, s), denotedBλ |= c,
if and only if every tuplet in the Cartesian product of all
relations inc matching the selection conditions satisfies
the labeling expressione. More formally,Bλ |= (e, s) ⇔
∀t ∈ r′ : tλ

′

|= e, where(r′, λ′) = σs(r
λ1
1 × · · · × rλn

n ),
rel(e) ∪ rel(s) is {R1, . . . , Rn}, and, for1 ≤ i ≤ n, rλi

i is
a multilevel relation over schemeRi and latticeL.2 Simi-
larly, Bλ satisfies a setC of classification constraints, writ-
tenBλ |= C, if and only if it satisfies every constraint inC.
A databaseBλ is said to becorrectly classifiedwith respect
to a setC of classification constraints if it satisfiesC, as
formalized by the following definition.

2The selection and Cartesian product operators on multilevel relations
are defined by assuming that the operations behave in the standard way (as
in the case of unclassified relations), and that each elementin the result
maintains its original security level.

Definition 4.1 (Correct classification) A multilevel
databaseBλ is correctly classifiedwith respect to a setC
of classification constraints if and only ifBλ |= C.

Given a databaseB and a setC of classification con-
straints, there may be many different assignments to the el-
ements of the database that satisfy the constraints, that is,
more than one suchλ can be defined corresponding to dif-
ferent and correctBλ. However, not all of them are equally
good. For instance, the labeling function that classifies all
elements of all relations at the highest level in the lattice(⊤)
trivially satisfies any possible set of constraints. Such strong
classification is clearly undesirable, unless required by the
classification constraints, as it produces unnecessary infor-
mation loss (not releasing information that could be safely
released). Although the notion of information loss is diffi-
cult to make both sufficiently general and precise, it is clear
that a first requirement in minimizing information loss is to
preventoverclassificationof data. That is, no database el-
ements should be assigned security levels higher than nec-
essary to satisfy the classification constraints. A database
whose classification assignments meet this requirement is
said to beminimally classified. Intuitively, a multilevel
databaseBλ is minimally classified with respect to a setC

of constraints iff there does not exist another classification
λ′, λ′ 6= λ that assigns a classification lower than or equal
to that assigned byλ to all the elements inB. This is for-
malized by the following definition.

Definition 4.2 (Minimal classification) LetBλ be a multi-
level database andC a set of constraints such thatBλ |= C.
Bλ is minimally classifiedwith respect toC iff ∀λ′ 6= λ :
Bλ′

|= C ⇒ ∃ri ∈ B, t ∈ ri, A ∈ Ri, λ(t[A]) 6� λ′(t[A]).

A labeling functionλ is minimal for a databaseB and with
respect to a setC of constraints, ifBλ is minimally classi-
fied with respect toC.

Example 4.1 Consider the classification constraints(λ(A)�
TS, true) and(lub{λ(A), λ(B)} � S, true). The mappings
{λ(A) 7→ TS, λ(B) 7→ U} and{λ(A) 7→ TS, λ(B) 7→ S},
are both solutions. However, the former is not minimal,
since it classifiesB at a level higher than necessary. △

4.2 Classification assignments

One possible approach to producing a minimally classi-
fied database from a given set of classification constraints
is to evaluate the constraints directly over each database in-
stance that needs to be classified, assigning security levels
iteratively until a fixed point is reached for the database.
Such an approach, however, is clearly inefficient, given the
implied need to access the same data multiple times during
the classification process, and to compute, store, and com-
pare all the different solutions to determine the one to be



preferred. This is clearly far too expensive and impractical
for general use.

Our approach to generating minimal classifications in-
volves processing the classification constraints to obtaina
set of much simpler classification assignments. These clas-
sification assignments can then be quickly applied to any
instance of the given database schema to produce a mini-
mally classified database. In effect, our process amounts to
a preprocessing, or compilation, operation on the classifi-
cation constraints. Classification constraints are processed
only once, and the labeling mapping produced can then be
efficiently reused for labeling multiple and large database
instances. Given a setC of classification constraints over
a database schemaS = {R1, . . . , Rn}, the product of our
classification method is a setCA of classification assign-
mentsof the form (λ(A) = l, s) that, when applied to a
given database instanceB = {r1, . . . , rn}, yield a correctly
and minimally classified multilevel databaseBλ. To this
end, the setCA of classification assignments must satisfy
the following four properties.

Property 1 (Completeness)For each database element,
there is a classification assignment specifying its security
level. Formally,∀ri ∈ B, t ∈ ri, A ∈ Ri, ∃(λ(A) = l, s) ∈
CA, t′ ∈ r1 × · · · × rn such thatt′ |= s andt[A] = t′[A].

Property 2 (Consistency) No two classification assign-
ments specify different security levels for the same database
element. That is,∀ri ∈ B, t ∈ ri, A ∈ Ri : (∃(λ(A) =
l, s), (λ(A) = l′, s′) ∈ CA, t′ ∈ r1×· · ·×rn such thatt′ |=
s, t′ |= s′ andt[A] = t′[A]) ⇒ l = l′.

Property 3 (Correctness) The database classified accord-
ing to the classification assignments is correctly classified
(Definition 4.1).

Property 4 (Minimality) The database classified accord-
ing to the classification assignments is minimally classified
(Definition 4.2).

Intuitively, Properties 1 and 2 guarantee the definition
of a Bλ, ensuring for every element inB the existence of
exactly one security level. Property 3 guarantees that the
database classified by the assignments satisfies the classifi-
cation constraints. Finally, Property 4 guarantees its mini-
mality. It is important to note that completeness and con-
sistency of the classification assignments is different from
the completeness and consistency of the classification con-
straints. While the latter is trivially satisfied (see Section 3),
the former is not — improper or naive processing of classi-
fication constraints could easily produce inconsistent classi-
fication assignments. The following sections provide a de-
tailed description of our approach for generating classifica-
tion assignments, or equivalently a labeling mapping, that
satisfy the required properties.

5 Classification Strategies

Complex classification constraints offer multiple choices
of attributes whose security levels must be constrained
(raised). In the assumption of a totally ordered lattice, each
complex constraint can be solved exactly by assigning the
required level to any one of the attributes involved in the
lub.3 However, the choice of which attribute should be as-
signed the required level can affect whether the resulting so-
lution is minimal. For instance, consider the two constraints
(λ(A) � TS, true) and (lub{λ(A), λ(B)} � S, true) of
Example 4.1. Solving thelub constraint by upgrading,
with respect to the lowest⊥ assigned as default,λ(B)
would produce the nonminimal solutionλ(A) = TS and
λ(B) = S. The lub should be then solved by pickingA.

We model the possible choices for solving a setC of
constraints by decomposing each constraint inC into a set
of simple constraints, where the decomposition of a simple
constraint is the simple constraint itself. Given a classifica-
tion constraintc = (lub{λ(A1), . . . , λ(An)} � X, s), the
decompositionof c, denotedDc, is the set of simple classi-
fication constraintsDc = {(λ(Ak) � X, s) | 1 ≤ k ≤ n}.
C can then be satisfied by choosing one simple constraint
from each set to arrive at one solution. Each possible com-
bination of simple constraints from the decompositions of
all constraints is called aclassification strategy, or simply a
strategy. The collection of strategies overC, denotedTC , is
the set of all such strategies, that is,TC = {{c′1, . . . , c

′
n} |

c′i ∈ Dci
, 1 ≤ i ≤ n}.

Example 5.1 Consider the classification constraints in Fig-
ure 2. The decomposition of(lub{λ(N), λ(O)} � λ(G),
P=F) is {(λ(N) � λ(G), P = F ), (λ(O) � λ(G), P =
F )}. The decomposition of(lub{λ(G), λ(H)} � TS, H ≤
12) is {(λ(G) � TS, H ≤ 12), (λ(H) � TS, H ≤ 12)}.
There are therefore four possible strategies:T1, T2, T3, and
T4. In the remainder of the paper we assume that the com-
plex constraints are solved by upgradingN andG in T1, O

andG in T2, N andH in T3, andO andH in T4. △

Note that although all strategies have in common all the
simple classification constraints, the effect of these con-
straints on the resulting classification may differ becauseof
their integration with the specific decomposition of complex
constraints. For instance, classification constraintλ(P ) �
λ(O) common to all the strategies has a different effect on
the classification ofP in each strategy, depending on how
the two complex constraints given as input are solved.

The set of classification constraints that must be satisfied
for a given element depends on what selection conditions
are satisfied for that element. Since we are interested in

3Note that, because the schema is fixed, association constraints must be
solved by explicitly upgrading some attribute (its values)appearing in the
association.



determining the minimal classification for all database el-
ements, we need to consider the possible combinations of
conditions. We capture these combinations through the no-
tion of condition pattern. Given a setS of selection con-
ditions over a schemaS, a condition patternp over S is
asatisfiableconjunction of selection conditions containing,
for each members ∈ S, eithers or its negation. Formally,
p = (

∧
s∈S s′), wheres′ ∈ {s,¬s} andp is satisfiable.

A patternp is satisfiable if there exists a database instance
for which the pattern is applicable (i.e., evaluates to true).
The satisfiability requirement, which, given the conjunc-
tive form of our constraints can be easily checked, allows
us to discard all the combinations of conditions that would
never apply. In the following, given a setC of classification
constraints, we consider the setPSC

of condition patterns
taken over the selection conditions, not including key con-
nections, occurring inC, denotedSC . Key connections are
excluded in this process since, by definition, they are al-
ways satisfiable.4 In addition, if a selection condition and
its negation (e.g.,O ≤ 10 andO > 10) both occur inC,
only one of them is included inSC . For any possible setC
of classification constraints, the condition patterns inPSC

are disjoint (no two may be simultaneously satisfiable) and
complete (every possible data context defined by the clas-
sification constraints is accounted for). Thus, each condi-
tion pattern can serve as an effective filter on the classifi-
cation constraints that yields the smallest set of constraints
that must be satisfied in a given context.

Example 5.2 Consider the classification constraints
C in Figure 2. The condition setSC is taken as
{O ≤ 10, G < 5, H ≤ 12}. The set of all condition
patternsPSC

has the following eight members:
p1 : O ≤ 10 ∧ G < 5 ∧ H ≤ 12 p5 : O ≤ 10 ∧ G < 5 ∧ H > 12
p2 : O ≤ 10 ∧ G ≥ 5 ∧ H ≤ 12 p6 : O ≤ 10 ∧ G ≥ 5 ∧ H > 12
p3 : O > 10 ∧ G < 5 ∧ H ≤ 12 p7 : O > 10 ∧ G < 5 ∧ H > 12
p4 : O > 10 ∧ G ≥ 5 ∧ H ≤ 12 p8 : O > 10 ∧ G ≥ 5 ∧ H > 12

△

For each condition pattern, there is (at least) one strategy
that leads to a minimal solution. However, the space of
possible strategies is independent of the condition patterns.
Thus, there is a natural separation of concerns in finding a
minimal solution, in which we can first identify the (largest)
constraint sets that must be satisfied for any strategy. Then,
for each condition pattern, we can consider which strategy
leads to a minimal solution for that pattern. The following
section illustrates an approach to this.

6 Strategy Solution

Finding a minimal solution for a set of simple classifi-
cation constraints, and hence for any particular strategy,is

4They will return in the relation labeling process (Section 7.2).

a relatively straightforward process. For each constrainton
a given attribute, one can determine the “chains” of con-
straints ending in a security-level constant. The conjunc-
tion of selection conditions occurring along a chain of con-
straints is the condition under which the security level of
an element over the attribute must dominate the level at the
end of the chain. In cases where the conditions along two
distinct chains from an attribute overlap, the level assigned
to any element over the attribute must dominate thelub of
the levels at the ends of the chains.

Taken together, the chains of constraints for an attribute,
and the conditions under which they apply, capture all the
relevant information for determining the minimal classifi-
cation, according to a given strategy of that attribute’s ele-
ments. Thus, they represent a kind of classificationtemplate
from which the minimal classifications for the specific strat-
egy under every condition pattern can be determined. The
following definition formalizes this notion.

Definition 6.1 (Attribute classification template) Given
a setC of classification constraints, a strategyT ∈ TC ,
and an attributeA, the attribute classification template
for A in T , denotedtemplateT [A], is a set of pairs of the
form (l, s) such that either(λ(A) � l, s) ∈ T or ∃c1 =
(λ(A) � λ(A1), s1), c2 = (λ(A1) � λ(A2), s2), . . . , cn =
(λ(An−1) � l, sn), with s = s1 ∧ · · · ∧ sn, ci ∈ T, i =
1, . . . , n, and wherei 6= j ⇒ ci 6= cj , i, j ∈ {1, . . . , n}.

Example 6.1 With reference to the constraints of Figure 2,
Figure 4 illustrates the template for each attribute and
each of the strategies of Example 5.1. For instance, the
attribute classification template for attributeG in T1 is
templateT1

[G] = {(TS, H ≤ 12), (S, G ≥ 5), (C, G <

5), (C, true)}. △

Given the attribute classification templates for a given
strategy, the minimum security level to be assigned to each
attribute under a given condition patternp, can be deter-
mined as thelub of all the levels whose associated condi-
tions is consistent withp. The set of such levels for all
attributes in the strategy is called aconditional solution.

Definition 6.2 (Conditional solution) Given a setC of
classification constraints, a strategyT ∈ TC , and a con-
dition patternp ∈ PSC

, the conditional solutionfor T

under p, denotedSol
p
T , is Sol

p
T =

⋃
A∈T (A,Sol

p
T [A]),

whereSol
p
T [A] = lub{l | (l, s) ∈ templateT [A] and(s ∧

p) is satisfiable}.

Example 6.2 Consider the classification constraints of Fig-
ure 2. Table 1 lists the set of all conditional solutions for all
possible strategies and condition patterns of Example 5.2.
EachSol

p
T corresponds to a column in the table. The cross-

ing of rowA with columnT of patternp indicates the level



templateT1
templateT2

templateT3
templateT4

M (S, O ≤ 10) (S, O ≤ 10) (S, O ≤ 10) (S, O ≤ 10)

N (TS, H ≤ 12),(S, O ≤ 10),(S, G ≥ 5), (S, O ≤ 10),(C, O > 10) (S, O ≤ 10), (S, G ≥ 5), (S, O ≤ 10),(C, O > 10)
(C, O > 10), (C, G < 5), (C, true) (C, O > 10), (C, G < 5), (C, true)

O (S, O ≤ 10) (TS, H ≤ 12),(S, O ≤ 10), (S, O ≤ 10) (S, O ≤ 10), (S, G ≥ 5)
(C, G < 5), (C, true),(S, G ≥ 5) (C, G < 5), (C, true)

P (S, O ≤ 10),(C, true) (TS, H ≤ 12),(S, O ≤ 10), (S, O ≤ 10),(C, true) (S, O ≤ 10), (S, G ≥ 5),
(S, G ≥ 5),(C, true), (C, G < 5) (C, G < 5), (C, true)

F (C, true) (C, true) (C, true) (C, true)

G (TS, H ≤ 12), (S, G ≥ 5),(C, G < 5), (TS, H ≤ 12),(S, G ≥ 5), (S, G ≥ 5), (C, G < 5), (C, true) (S, G ≥ 5),(C, G < 5), (C, true)
(C, true) (C, G < 5), (C, true)

H (C, true) (C, true) (TS, H ≤ 12),(C, true) (TS, H ≤ 12),(C, true)

Figure 4. Attribute classification templates for T1, T2, T3, and T4

l such that(A, l) ∈ Sol
p
T . For instance, the conditional so-

lution for strategyT1 and condition patternp5 is Sol
p5

T1
=

{(M, S), (N, S), (O, S), (P, S), (F, C), (G, C), (H, C)}. △

Conditional solutions are specific to a strategy. Each is
locally minimal within a given strategy (i.e., it upgrades
each attribute at the lowest possible level to satisfy the con-
straints), but in general, not all will beglobally minimal
across all strategies. For a given setC of classification con-
straints and condition patternp, a globally minimal solu-
tion for C with respect top can be found by comparing the
conditional solutions for all strategiesT underp. This is
captured by the following definition.

Definition 6.3 (Minimal conditional solution) LetC be a
set of classification constraints,T ∈ TC be a strategy over
C, and p ∈ PSC

be a condition pattern. A conditional
solutionSol

p
T for T underp is said to beminimal if and

only if ∀T ′ ∈ TC∃A ∈ C : Sol
p
T [A] 6� Sol

p
T ′ [A].

The collection of minimal conditional solutions over all
strategiesT ∈ TC underp, is denotedMinSol

p
C .

Example 6.3 All conditional solutions of Table 1, except
those marked with a bullet, are minimal.Sol

p3

T4
is not min-

imal since the security levels assigned to all the attributes
dominate the security levels assigned to all the attributesby
conditional solutionSol

p3

T3
. Analogously,Sol

p7

T2
andSol

p7

T4

cannot be minimal because they dominate bothSol
p7

T1
and

Sol
p7

T3
. △

A minimal overall solution consists of a set of mini-
mal conditional solutions, one for each condition pattern.
In general, however, it is not possible to select any arbi-
trary minimal conditional solution for each pattern, because
two distinct condition patterns may, in fact, coincide within
the classification context of a particular attribute. Multiple
strategies leading to distinct solutions for that attribute in
such patterns would therefore result in inconsistent classifi-
cations. For instance, patternsp1 andp3, which differ only
for conditionO ≤ 10, coincide for attributeG, whose clas-
sification is independent of the value ofO. The strategies
chosen as solutions forp1 andp3 must therefore agree on

the classification assigned toG. For example, choosing ei-
therT1 or T2 for eitherp1 or p3 rules out the possibility of
choosingT3 for the other. To capture this constraint in the
formal definition of minimal solution, we introduce the no-
tion of projection of a condition pattern on the classification
context of an attribute. Given a setC of classification con-
straints, a condition patternp ∈ PSC

and an attributeA, the
projectionof p on the classification context ofA, denoted
pA, is the conjunction of the conditionss in the pattern such
that eithers or¬s appears in the classification context ofA.
Then, a minimal solution is a set of minimal conditional so-
lutions, one for each condition pattern, such that, for each
attribute, if any two condition patterns coincide within the
classification context for that attribute, the corresponding
conditional solutions, that is, levels assigned by them, agree
on that attribute.

Definition 6.4 (Minimal solution) Given a setC of clas-
sification constraints, aminimal solution for C is a set
of n pairs 〈p1,Sol

p1

Ti1
〉, . . . , 〈pn,Sol

pn

Tin
〉, whereSol

pj

Tij
∈

MinSol
pj

C , 1 ≤ j ≤ n, and∀x, y ∈ {1, . . . , n}, ∀A ∈ C :

px
A = py

A ⇒ Sol
px

Tix
[A] = Sol

py

Tiy
[A].

The collection of minimal solutions overC is denoted by
MinSolC .

Example 6.4 Consider the set of classification constraints
shown in Figure 2 and the conditional solutions in Table 1.
A minimal solution for these constraints, producing the
multilevel relations of Figure 1, is
{〈p

1
,Sol

p1
T3
〉, 〈p

2
,Sol

p2
T3
〉, 〈p

3
,Sol

p3
T3
〉, 〈p

4
,Sol

p4
T4
〉, 〈p

5
,Sol

p5
T4
〉,

〈p
6
,Sol

p6
T2
〉, 〈p

7
,Sol

p7
T3
〉, 〈p

8
,Sol

p8
T1
〉}. △

In general, more than one minimal solution to a set of
classification constraints may exist. Which solution is to
be chosen may depend on specific criteria or preferences of
the data holder/recipient. Possible preference criteria may
be specified in terms of the cost of the classification, com-
puted by associating a numeric value (cost) to each security
level, summing the costs of the security levels returned by
a solution, and preferring then the solution with the low-
est cost [24]. Cost computation may also take into con-
sideration weights of attributes (weighted cost) to express



p1 p2 p3 p4 p5 p6 p7 p8
T1 T2 T3 T4 T1 T2 T3 T4 T1 T2 T3 T4 T1 T2 T3 T4 T1 T2 T3 T4 T1 T2 T3 T4 T1 T2 T3 T4 T1 T2 T3 T4

M S S S S S S S S U U U U U U U U S S S S S S S S U U U U U U U U
N TS S S S TS S S S TS C C C TS C S C S S S S S S S S C C C C S C S C

R1 O S TS S S S TS S S U TS U C U TS U S S S S S S S S S U C U C U S U S
P S TS S S S TS S S C TS C C C TS C S S S S S S S S S C C C C C S C S
F C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C

R2 G TS TS C C TS TS S S TS TS C C TS TS S S C C C C S S S S C C C C S S S S
H C C TS TS C C TS TS C C TS TS C C TS TS C C C C C C C C C C C C C C C C

• • •

Table 1. Conditional solutions for T1, T2, T3, and T4

the fact that not all attributes have the same importance for
the release. Regardless of costs and weights, other possible
policies may be those of upgrading the minimum possible
number of attributes (maximum concentration), distributing
the upgrading requirements over the maximum number of
attributes (maximum flattening), maximizing the view at a
certain level, accounting for explicit upgrading priorities,
and requiring classification of a given attribute to be domi-
nated by specified levels. This list is obviously not complete
and other preference policies can be imagined, all applica-
ble in different situations.

7 Determination and Enforcement of Classi-
fication Assignments

We describe an algorithm (Classification Assignment)
that, given a setC of classification constraints over a
schemaS and a security latticeL, derives a set of classifi-
cation assignments satisfying the four properties discussed
in Section 4.2. We also describe a procedure for labeling
databases according to the generated assignments.

7.1 Classification Assignment algorithm

Figure 5 illustrates our Classification Assignment algo-
rithm. The algorithm begins by determining the set of
condition patterns (step 1), the simple constraint decom-
position (step 2), and the setTC of all possible strategies
(step 3). Step 4 computes the attribute classification tem-
plate for each attribute in the different strategies. The sim-
ple constraints common to all strategies are evaluated only
once, producing abasic-templatethat is then updated for
each strategy according to the constraints specific to the
strategy. Computation of templates is performed by call-
ing compute-tmpl. Given a set of constraints, and possi-
bly an existentbasic-template, compute-tmpl returns the
template (Definition 6.1) for each attribute classified by the
constraints. By keeping track of dependencies between at-
tributes and levels as they are found (reachability informa-
tion in graphical terms) and updating them whenever a new
constraint is evaluated, the procedure performs the compu-
tation by evaluating each constraint exactly once. Depen-
dencies are maintained in a structuretmpl[A] for each at-
tribute A, indicating the attributes/levels on whichA de-

pends (i.e., reachable fromA). Upon evaluation of each
constraint(λ(A) � X, s), the template ofA, and those of
each attributeY depending onA are updated as follows.
If X is a security level,tmpl[A] is updated by adding to
it the pair(X, s) and tmpl[Y ] is updated by adding to it a
pair (X, s ∧ s′) for each(A, s′) appearing in it. IfX is
an attribute levelλ(B), tmpl[A] is updated by adding to it
the pair(Z, s′ ∧ s) for each(Z, s′) in tmpl[B]; tmpl[Y ] is
updated by adding a pair(Z, s′′ ∧ s ∧ s′) for each(A, s′′)
appearing in it and(Z, s′) appearing intmpl[B]. These new
pairs express the dependencies ofA due to the combination
of the constraint with the dependencies ofB and the de-
pendencies ofY resulting by bridging those onA and those
from B with the new constraint. After all constraints of a
strategyT have been evaluated, each settemplateT [A] in
step 4, which contains all the levels and attributes reachable
from A, is updated by taking only the pairs(l, s), wherel is
a security level (reachability of attributes was needed only
in the computation process and is not needed for the classifi-
cation). Hence, step 5 computes the solutionSol

p
T for each

condition patternp and strategyT , and produces the set
MinStrp of minimal solutions forp. Then, step 6 considers
a classification pattern at a time and determines a preferred
solution among the possible ones. Preferred solutions are
determined by calling procedureprefer, omitted here for
space constraints, that simply evaluates the different solu-
tions according to the preference criteria specified. Every
time a solution is chosen for a patternp, the setMinStrpi

of possible solutions over patternspi coinciding withp is
updated by eliminating those solutions that would result in
inconsistent assignments (Section 6).

Example 7.1 Figure 6 is an example of classification as-
signments corresponding to the minimal solution of Exam-
ple 6.4. For simplicity, multiple classification assignments
defined for the same attribute and level are represented as a
single assignment whose condition is the disjunction of all
the condition patterns in the considered assignments.△

7.2 Labeling process

Once the classification assignments have been generated,
applying them to an existing database can be done effi-
ciently. We outline here a straightforward approach to ap-
plying the classification assignments that requires just one



Algorithm 7.1 Classification Assignment algorithm

INPUT: A setC = {c1, . . . , cn} of classification constraints over
schemaS and security latticeL

OUTPUT: A setCAof classification assignments such that their
application on a databaseB over schemaS and latticeL
produces a minimally classified multilevel databaseBλ

with Bλ |= C

METHOD:
1. /* Determine the setPSC

of condition patterns */
Let SC be the condition set associated withC.
PSC

:= {p ≡ (
∧

s∈SC
s′) | s′ ∈ {s,¬s} andp is satisfiable}

2. /* Decompose each constraintci∈C into a setDci of simple constraints */
Let SCC be the set of simple constraints inC andCCC be the set of
complex constraints inC. Let ci = (lub{λ(A1), . . . , λ(An)} � X, s).
Dci := {(λ(Ak) � X, s) | 1 ≤ k ≤ n}

3. /* Determine the setTC of strategies overC */
TC := {{c′

1
, . . . , c′n} | c′i ∈ Dci , 1 ≤ i ≤ n}

4. /* Compute the attribute classification template for eachstrategy */
Let AC be the set of attributes inC
For eachA ∈ AC : basic-template[A] := {(A, true)}
compute-tmpl(SCC ,basic-template)
For each strategyT ∈ TC :

Let TC be the set of constraints inT resulting from the
decomposition of complex constraintsCCC

templateT := basic-template
compute-tmpl(TC ,templateT )
For eachA ∈ AC :

templateT [A] := {(l, s) | (l, s) ∈ templateT [A], l ∈ L}
5. /* Compute the minimal solutions for each pattern */

For eachp ∈ PSC
:

For each strategyT ∈ TC :
For eachA ∈ AC :
Sol

p

T
[A] := lub{l | (l, s) ∈ templateT [A] and(s ∧ p)

is satisfiable}
Sol

p

T
:= Sol

p

T
∪ {(A, Sol

p

T
[A])}

MinStrp := {T | ∀T ′ ∈ TC∃A ∈ AC : Sol
p

T
[A] 6� Sol

p

T ′ [A]}
6. /* Determine a setCAof classification assignments */

Group all attributes inAC into disjoint setsASj such that eachASj

contains all attributesA with the similar condition setSCA

For eachp ∈ PSC
:

pref-solp := prefer(MinStrp ,preference)
CA := CA∪ {(λ(Ai) = l, p) | (Ai, l) ∈ pref-solp}
MinSolC := MinSolC ∪ pref-solp
For eachASj :

For eachpi 6= p s. t.p
ASj

i
= pASj∧ pref-solpi

6∈ MinSolC :
MinStrpi

:= MinStrpi
\ {T | T ∈ MinStrpi

,∃Ak ∈ AS j :
(Ak, l′) ∈ Sol

pi

T
, (Ak, l) ∈ pref-solp , l′ 6= l}

Procedurecompute-tmpl(Constraints,tmpl)
For each(λ(A) � X, s) ∈ Constraints:

CaseX of
X ∈ L :tmpl[A] := tmpl[A] ∪ {(X, s)}

For eachY , Y 6= A such that∃(A, s′) ∈ tmpl[Y ]:
tmpl[Y ] := tmpl[Y ] ∪ {(X, s′ ∧ s) | (A, s′)∈tmpl[Y] }

X=λ(B) :tmpl[A] := tmpl[A] ∪ {(Z, s′ ∧ s) | (Z, s′) ∈ tmpl[B]}
For eachY , Y 6= A, Y 6= B, s. t.∃(A, s′′) ∈ tmpl[Y ]:

tmpl[Y ] := tmpl[Y ] ∪ {(Z, s′′ ∧ s ∧ s′) |
(Z, s′) ∈ tmpl[B], (A, s′′) ∈ tmpl[Y ]}

Figure 5. Classification Assignment algo-
rithm

λ(M) = U, p3∨p4∨p7∨p8 λ(P ) = S, p1∨p2∨p4∨p5∨ p6

λ(M) = S, p1∨p2∨p5∨p6 λ(F ) = C, true

λ(N) = C, p3∨p4∨p7 λ(G) = C, p1∨p3∨p5∨p7

λ(N) = S, p1∨p2∨p5∨p6∨ p8 λ(G) = S, p2∨p4∨p6∨p8

λ(O) = U, p3∨p7∨p8 λ(H) = C, p5∨p6∨ p7∨p8

λ(O) = S, p1∨p2∨p4∨p5∨ p6 λ(H) = TS, p1∨p2∨p3∨p4

λ(P ) = C, p3∨p7∨p8

Figure 6. Example of classification assign-
ments

classification pass through each relation to be classified.
The first step in the labeling process is the determination
of the evaluation context of each attribute, that is, the setof
relations to be accessed (joined) to determine the attribute’s
level and the joining conditions. Figure 7 presents an al-
gorithm for that process. The actual labeling process is
facilitated by constructing adecision treethat captures all
possible ways of classifying elements of one or more at-
tributes that might occur in any database instance. It is nei-
ther strictly necessary nor desirable to construct a separate
decision tree for each attribute of a relation. A single de-
cision tree suffices for a set of attributes in a relation if the
evaluation context (Definition 3.4) of each attribute in the
set is contained in that of another attribute in the set, since
the largest such evaluation context ensures the availability
of all data from other relations to be evaluated. To this end,
attributes are partitioned in sets such that all attributesin
the same setX can share the same decision tree. In the fol-
lowing, we denote withSX the selection conditions for the
attributes inX , that is,SX =

⋃
A∈X SCA

. For each setX
so determined, a decision treeDTX is defined as follows.
Consider the conditions inSX = {s1, . . . , sn} in any order.
For eachi from 1 to n, create2i−1 nodes labeledsi. Then,
for eachi from 1 to n − 1, connect each node labeledsi

to two distinct nodes labeledsi+1, with one edge labeledT
(true) and the other labeledF (false). Create2n leaf nodes.
Connect each node labeledsn to two distinct leaf nodes,
with one edge labeledT and the other labeledF. For ev-
ery root-to-leaf path, label the leaf node with{p1, . . . , pk}
for each condition patternpj such that every edge(si, si+1)
along the path is labeledT (F) when selection conditionsi

occurs positively (negatively) inpj , j = 1, . . . , k. Finally,
for each attributeA ∈ X , a classification assignment of the
form λ(A) = l is placed at leaf{p1, . . . pk} if and only if
(λ(A) = l, pj) ∈ CA, j = 1, . . . , k. Note that the fact that
all patterns appearing in the leaf produce the same classifi-
cation for attributes inX is guaranteed by the Classification
Assignment algorithm (step 6). Figure 8 illustrates the de-
cision tree for (all attributes of) relation schemasR1 andR2

of our running example.

Once the decision trees for all attributes of a relation
schemeR have been constructed, any relationr over R



Algorithm 7.2 Evaluation Context algorithm

INPUT: A setC = {c1, . . . , cn} of classification constraints
over schemaS and security latticeL

OUTPUT: The evaluation contextEA = (RA,KCA) and the
condition setSCA

for each attributeA in C

METHOD:
Let AC be the set of attributes inC

1. For eachA ∈ AC : RA:=∅; KCA :=∅; SCA
:=∅; Affect[A]:=A

2. For each constraint(lub{λ(A1), . . . , λ(An)} � X, s):
/* Determine the setRelof relations to be added toRAi

;
key connections to be added toKCAi

;
selection conditions to be added toSCAi

; and the setAffect[Ai]

of attributes whose value affectsAi’s level */
2.1.CaseX of

X ∈ L : Rel := rel(s)
Key := {kc| kc is a key connection ins}
Sel:= {s′ | s′ is a selection condition ins and

s′ is not a key connection}
Affect:= ∪n

i=1
Affect[Ai]

X=λ(B): Rel := rel(s) ∪ RB

Key := {kc| kc is a key connection ins}∪KCB

Sel:= {s′ | s′ is a selection condition ins and
s′ is not a key connection}∪SCB

Affect:= (∪n
i=1

Affect [Ai]) ∪ Affect [B]
2.2.For eachi = 1, . . . , n:

RAi
:= RAi

∪ Rel

KCAi
:= KCAi

∪ Key

SCAi
:= SCAi

∪ Sel

Affect[Ai] := Affect

2.3.For eachY 6∈ {A1, . . . , An} s. t.∃Ai ∈ {A1, . . . , An},
Ai ∈ Affect[Y ]:

RY := RY ∪ Rel

KCY := KCY ∪ Key

SCY
:= SCY

∪ Sel

Affect[Y ] := Affect [Y ] ∪ Affect

Figure 7. Evaluation Context algorithm

can be efficiently classified by traversing the decision tree
DTX for eacht[X ], with t ∈ r. The Relation Labeling
algorithm, illustrated in Figure 9, works as follows. Step 1
initializes the labeling mappingλi. Step 2 computes, for
each attribute setXj, a relationcontextj containing all data
necessary to select the proper classification assignment for
any tuple overXj . Intuitively, contextj is the join of all re-
lations in the evaluation context ofXj with join conditions
of the key connections in the evaluation context. Note that
contextj is incrementally computed to ensure not only the
correct association of join conditions with the relations,but
also that whenever a conditionkcx,y is applied, relationrx

is already included incontextj . Step 3 constructs the ac-
tual labeling mapping for the relation,ri. For each tuple
ti ∈ ri and each attribute setXj , the (unique) tuplet′ from
contextj corresponding toti is selected and used to traverse
the decision treeDTXj

from root to leaf. For eachnode in
the tree,nodeT (nodeF) denotes the next node reached by
following the edge labeledT (F). Upon reaching the leaf,
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Figure 8. Classification decision tree for R1

(a) and for R2 (b)

the classification for each element of the tuple segment is
generated according to the security levels specified at the
leaf. Step 4 simply returns the resulting multilevel relation.

We conclude this section by noting that the decision tree
construction outlined here can be optimized for space effi-
ciency by using well-known techniques, such as BDDs [1]
to produce a more compact representation.

8 Correctness, Complexity Evaluation, and
Optimization

The correctness of our approach relies on the fact that (1)
the classification assignments generated by Algorithm 7.1
satisfy the completeness, consistency, correctness, and min-
imality requirements, and (2) that the labeling process (Al-
gorithm 7.3) correctly enforces them. This is stated by
the following theorems, whose proofs are omitted here for
space constraints.

Theorem 8.1 The setCA of classification assignments pro-
duced by Algorithm 7.1 satisfies Property 1 (completeness),
Property 2 (consistency), Property 3 (correctness), and
Property 4 (minimality).

Theorem 8.2 Algorithm 7.3 correctly enforces the classifi-
cation assignments produced by Algorithm 7.1.

The computational cost of our approach derives from
two main factors: the number of strategies|TC | and the
number of condition patterns|PSC

|, since the classification
assignment algorithm computes|TC | · |PSC

| sets of classi-
fication assignments (each of sizeAC , whereAC is the set
of all attributes inC). Each such set of assignments is com-
puted in time polynomial in the size of the input.5 In the
worst case, the number of different strategies is the product
of the number of attributes in the left-hand sides of all label-
ing expressions. That is, ifC = {(ei, si) | 1 ≤ i ≤ n}, then

5The size of the input includes not only the number of classification
constraints, but also the sizes of the labeling expressionsand selection con-
ditions in them.



Algorithm 7.3 Relation Labeling algorithm

INPUT: A databaseB = {r1, . . . , rn} over a schema
S = {R1, . . . , Rn}, a designated relationri ∈ B over
schemeRi ∈ S, a partition{X1, . . . , Xk} of the
attributes ofRi,and a decision treeDTXj

for each
Xj , 1 ≤ j ≤ k

OUTPUT: A multilevel relation(ri, λi), whereλi is the labeling
mapping defined by the set of classification
assignments from which eachDTXj

was constructed
METHOD:
1. λi := ∅
2. For j := 1 to k

/* Compute the data for the evaluation context ofXj . */
Let (RXj

, KCXj
) be the evaluation context ofXj

contextj := ri

K := {kci,x | kci,x ∈ KCXj
}

While K 6= ∅
Selectanykcx,y ∈ K

contextj := contextj ⊲⊳kcx,y
ry

KCXj
:= KCXj

− kcx,y

K := (K − kcx,y) ∪ {kcy,z | kcy,z ∈ KCXj
}

3. For eachtn ∈ ri

For eachXj , 1 ≤ j ≤ k

Let t ∈ contextj be the tuple such thatt[Xj ] = tn[Xj ]
/* Walk down the decision tree. */
node := root ofDTXj

While node is not a leaf
s := label ofnode

if t |= s then node := nodeT

elsenode := nodeF

/* Generate level mapping for each element in the tuple */
λi := λi ∪ {tn[A] 7→ lA | A ∈ Xj}, wherelA is the security
level specified forA at the leaf

4. return (ri, λi)

Figure 9. Relation Labeling algorithm

|TC | ≤
∏

1≤i≤n |lhs(ei)|. On the other hand, the number of
condition patterns|PSC

| can be as high as2n. Although
|TC | can be quite large (possibly exceeding2n) if C con-
sists mostly of complex constraints, we expect that|PSC

|
will usually be the dominant factor in practice. The classifi-
cation assignment process can then be optimized by reduc-
ing the number of selection conditions (and thus, the num-
ber of classification constraints) that must be considered to-
gether, since the number of distinct selection conditions de-
termines the number of condition patterns. Reducing the
number of condition patterns in this way will also tend to
reduce the number of different strategies that must be con-
sidered. Along these lines we identify two approaches to
reducing the cost of computing classification assignments:
constraint partitioningandincremental solution.

Constraint partitioning consists of partitioning any input
set of classification constraints into separately processable
sets. To this end we observe that, if for two attributesA and
B, neitherλ(A) depends (directly or indirectly) onλ(B),

nor λ(B) depends onλ(A), then the processes determin-
ing their classification are completely independent. In other
words, the classification constraints pertaining to the two
attributes can be solved independently. Thus, if an input
set of constraints contains several such independent sets
of attributes, it is possible to reduce one large constraint-
solving problem to several smaller problems that can be
solved more efficiently.

Incremental solution requires a more sophisticated evalu-
ation of constraints, in which the attributes (and their asso-
ciated constraints) are viewed as being ordered according to
a level of dependency (of classification) on other attributes.
For example, consider the constraints in Figure 2. The clas-
sification of attributeM does not depend on the classifica-
tion of any other attribute, and thus, its constraints would
be at the lowest dependency level. On the other hand, the
classification ofO depends directly on that ofM and indi-
rectly on that ofN (via a lub constraint), and thus, its con-
straints would have a higher dependency level. Attribute
classifications are then determined incrementally, from the
lowest dependency level to the highest. This allows shar-
ing of the computation performed in deriving classification
assignments. More important, the incremental solution en-
ables us to effectively “factor out” common portions in con-
dition patterns, so that the enumeration of condition patterns
becomes less of a concern, and furthermore the consistency
checking across different strategies among coincident con-
dition patterns is avoided.

9 Related Work

Our work has points in common with two main classes
of work. The first is the work on view-based classifi-
cation [4, 6, 18, 28], related to our support of content-
dependent specification of classification. Unlike [4, 6, 28],
consistent with the fact that we rely on existing DBMSs for
access control enforcement, we consider content-dependent
classifications as a means to determine the labeling to be
associated with the data rather than to actually enforce ac-
cess control. Denning et al., in the SeaView project [4, 14],
first recognized the need for content-dependent classifica-
tion constraints. Constraints are, however, checked only
upon insert and update operations and only on the data be-
ing inserted (intuitively one tuple at a time), and not on the
database itself, whose labeling may at some point not sat-
isfy the constraints [5]. As already discussed, this insertion-
based approach is not applicable to the problem under con-
sideration. Like us, Qian [18] uses content-dependent spec-
ifications to provide data labeling. However, [18] consid-
ers only explicit data classification constraints and does not
provide any support for inference constraints, assumes only
tuple-level classification, and, as noticed by the author, may
overclassify data.



The second class is the work on inference, related to
our support of inference constraints. Most inference re-
search addresses inference channels at the database de-
sign phase [3, 10, 19, 22, 26] or at query processing
time [8, 17, 21, 25]. The proposals in the first category
analyze the database schema to locate inference channels
and eliminate them by upgrading selected schema compo-
nents or redesigning the schema. The proposals in the sec-
ond category evaluate database transactions to determine
whether they lead to illegal inferences and, if so, disallow
the query. Neither approach is applicable to the problem
under consideration. Other inference work concerns the
analysis of the database content, and possibly external in-
formation, to point out the existence of relationships among
data that can introduce inference channels [9, 15, 16, 30].
These approaches are complementary to our work, and the
inference relationships they determine can be provided as
input to our process. The work closest to ours is repre-
sented by the work of Meadows [12], of Su and Ozsoyo-
glu [24] and of Stickel [23]. Meadows [12] proposes an
approach to prevent leakage of high information due to re-
lease of data whose association is more sensitive than the
pieces of data individually taken. While we solve this prob-
lem by explicitly upgrading individual data, the proposal
in [12] keeps a history recording all the data released to an
“environment” and denies the release of further data if their
combination with data previously released would result in
a security violation. To prevent easy bypassing of the con-
straints, the concept of environment encompasses both user
and site identifiers. In addition, history logging and data
association control crosses session boundaries. The con-
straints considered in [12] are a subset of the constraints
considered by us, where the right-hand side is always an ex-
plicit security level and no conditions can be associated with
the constraints (attribute-level classification is assumed). Su
and Ozsoyoglu [24] consider the problem of upgrading data
to block inference channels due to functional and multival-
ued dependencies. Their approach to the consideration of
functional dependencies, given as input a set of attributes
together with a proposed classification for them and a set
of functional dependencies assumed to cause inference, re-
turns an alternative inference channel-free classification for
the attributes, obtained by upgrading the one provided as
input. The approach by Su and Ozsoyoglu remains limited.
The major limitations are that they assume attribute-level
classification (i.e., classification can be specified only atthe
column level), consider only constraints within a single re-
lation (and only due to functional dependencies), and base
optimality of the result simply on assignments of weights
to security values. Stickel [23] provides a formulation of
the problem in terms of finding solutions using the Davis-
Putnam theorem prover and discusses its modeling. This
work, however, has the same limitations as [24].

10 Conclusions

Governmental, public, and private institutions are more
and more frequently required to make data available for ex-
ternal release in a selective and secure fashion. Unfortu-
nately, this ever-increasing need finds very little, if any,sup-
port in existing models and systems. The work presented in
this paper aims to fill this gap by providing a framework
for the specification and enforcement of classification con-
straints taking into consideration, at a fine-grained level,
explicit data classification as well as association and in-
ference constraints. The work reported represents only a
starting point and leaves space for further developments.
Future work, some of which we are currently investigat-
ing, includes the consideration of partially ordered lattices,
the consideration of dynamic databases (i.e., subject to up-
dates), the enrichment of the constraints, and the investiga-
tion of more efficient techniques for determining solutions,
possibly guided by heuristics whenever preferences are not
an issue.
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