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Abstract 1 Introduction

Although mandatory access control in database systems o )
has been extensively studied in recent years, and several Information is today probably the most important and
models and systems have been proposed, capabilities fof€manded resource. We live in an internetworked society
enforcement of mandatory constraints remain limited. Lack that relies on the dissemination and sharing of information
of support for expressing and combating inference chan-in the private as We_II asin the public and governmental sec-
nels that improperly leak protected information remains a tors This situation is witnessed by a large body of research
major limitation in today’s multilevel systems. Moreover, and extensive development and use of shared infrastrcture

the working assumption that data are classified at insertion Pased on federated or mediated systems [27], in which or-
time makes previous approaches inapplicable to the classifi 9anizations come together to selectively share their data.
cation of existing, possibly historical, data repositarthat ~ a@ddition, governmental, public, and private institutiene
need to be classified for release. Such a capability would beincreasingly required to make their data electronicalbjilav

of great benefit to, and appears to be in demand by, govern-able. This often involves large amounts of historical data,

mental, public, and private institutions. once considered classified or accessible only internaiy, t
We address the problem of classifying existing data Must be made available outside.
repositories by taking into consideration explicit datas This information sharing and dissemination process is

sification as well as association and inference constraints clearly selective. Indeed, if on the one hand there is a
Constraints are expressed in a unified, DBMS- and model-need to disseminate some data, there is on the other hand
independent framework, making the approach largely ap- an equally strong need to protect those data that, for var-
plicable. We introduce the concept of minimal classifica- ious reasons, cannot be disclosed. Consider, for instance,
tion as a labeling of data elements that, while satisfyirgy th the case of a private organization making available vari-
constraints, ensures that no data element is classified at aous data regarding its business (products, sales, etc.), bu
level higher than necessary. We also describe a techniqueat the same time wanting to protect more sensitive infor-
and present an algorithm for generating data classification mation, such as the identity of its customers or plans for
that are both minimal and preferred according to certain future products. As another example, government agencies,
criteria. Our approach is based on preprocessing, or com- when releasing historical data, may require a sanitization
piling, constraints to produce a set of simple classificatio process to “blank out” information considered sensitive, e
assignments that can then be efficiently applied to classifyther directly or because of the sensitive information it \slou
any database instance. allow the recipient to infer. Effective information shagin
and dissemination can take place only if the data holder has
— ) ) ) ) some assurance that, while releasing information, disclo-
un d;h;;"r’]‘t’régg_sgffnggé;eirﬂ E?/%%’F;Bi/gix’géﬂaigggfyiwﬁ sure of private sensitive information is not a risk. Givee th
tract F30602-96-C-0337. possibly enormous amount of data to be considered, and
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tional, Computer Science Laboratory, supported in partheyNational  that the security specification and enforcement mechanisms

Science Foundation under grant ECS-94-22688. : : : :
£On leave from Universita di Milano. Author's permanent : provide automatic support for the consideration of content

Universita di Milano, Polo Didattico e di Ricerca di Crenvia Bramante erendent SPeCiﬁcaﬁon' rather than requiring explibiela _
65, 26013 Crema - Italy; e-mail: samarati@dsi.unimi.it. ing of each piece of data, and for complex security require-




ments, such as those due to inference channels. We characterize the problem of enforcing constraints in
Mandatory policies, providing a simple (in terms of a way that minimizes information loss by ensuring that data
specification and management) form of access control base@'€ Not overclassified. That is, data will not be withheld
on data and subject classification, appear suitable for theTOm release unless required for the satisfaction of the con
problem under consideration, where, in general, classes oftraints. We introduce the concept of minimal classifigatio
data need to be released to classes of users. Unfortunatel S & labeling satisfying this property. Because of the poten
capabilities of existing multilevel systems remain liite ~ tally @normous amount of data to be classified (historical
and little, if any, support for the features mentioned above dat@ repositories can contain records on the order of mil-
is provided. First, current DBMSs [2] work under the as- lions), direct enforcement of the constraints on the data is
sumption that data are classified upon insertion (by assign-nfeasible in practice. We therefore propose an approach
ing them the security level of the inserting subject) and based on preprocessing of th_g clgssﬁwat_lon constraints to
therefore provide no support for the classification of ex- Produce a set of simple classification assignments that can
isting, possibly unclassified, databases, where a differen then be efficiently (in one pass) applied to produce a classi-
classification lattice and different classification cisemay ~ (1€d database. The basis of this approach is the observation
need to be applied. Second, despite the large body of lit-that the number of attributes, and constraints, possilly wi
erature on the topic, they provide little or no support for associated conditions, is orders of magnitude smaller than
expressing and combating inference channels [13]. In otherth® number of elements recorded. In this way, the minimal
words, although the access control models and technique§|ass'f'cat'°” can be computed more efficiently, without the
exist [2, 11, 14, 20, 29], deriving a correct and inference- need for accessing the data. The same assignments can then
free assignment of security classifications to data remaing2€ €fficiently enforced on different database instancess tha

a major hurdle. This work represents a first step toward its M@y need to be classified. We also describe a process for
resolution. performing this classification.

. . L It is important to note that our work does not propose
_In_thls paper we c9n5|der the problem of classifying a multilevel database model, nor is it intended as a sub-
existing data repositories that are to undergo external "stitute for current multilevel database systems and mod-
lease, where such release is governed by a mandatory po els [2, 11, 14, 20, 29]. Rather, it complements them with

|dcy. Olljr m.cf>.del_prowdes Tlqu?rt for expllqt contgr)t—fbased new and powerful data content and inference-related clas-
ata classification as well as for association and inferenceg;sc 4o capabilities. Actual access control enforcemen

constraints. Association constraints express constramt require the support of a multilevel database. Clasgifie

the association between values of different attributes. Fo databases produced by our approach can then be fed into

Instance, an association constraint can require the asS0Clany multilevel DBMS that will be responsible for enforcing
ation of employeeshanes andsal ari es to be classi- access control

fied at a certain level. Inference constraints express con-

straints on the classification of information related byeinf o .

ence. There is an inference from a set of data elements t&& Preliminaries

another data element if knowledge of the values in the set

of data elements allows one to derive the value of the latter We assume standard notions from the relational database
data element (exact inference), or to reduce it to a subset ofmodel. Arelation schemeR is a finite set ofattributes
possible values (inexact inference). For instance, theng m A database schem& is a finite set of relation schemes
exist an inference channel fromank anddepart ment {R1,...,R,}. Atupletis a mapping from a finite set
tosal ar y, meaning that knowing the values foank and of attributes to a (possibly infinite) s&t of values where
depar t ment would allow the recipient to infer the value t¢[A] denotes the mapping for attributein ¢. A relationr

of sal ary. To avoid improper leakage of information, over relation schem& is a finite set of tuples oveR. A
only subjects cleared to seal ar y should be cleared to databaseover schema& = {R;,...,R,} is a set of rela-
see bothr ank anddepar t nent . Inference channels can tions{ry,...,r,} where each, is arelation oveR;. R;.A
also involve only specific values of the attributes (partial denotes attributel in R;. Relation names may be omitted
inference). For instance, the relationship above may holdwhen clear from the context.

only for those employees working in a specific department A security latticeL is a finite lattice(Z, =), whereL is

or in a given salary range. In our model, explicit classifi- a finite set ofsecurity levelsand>- is a partial order ori.
cation as well as association and inference constraints carcalled thedominance relation The least and greatest ele-
be expressed at the fine-grained element level, in a contentments of are denoted. and T, respectively. Typical se-
dependent fashion. Moreover, constraints are expressed irurity levels are top secret§), secret$), confidential (),

a unified, DBMS- and model-independentframework, mak- and unclassified{), whereTS = S > C = U. In this paper
ing the approach widely applicable. we consider totally ordered security lattices. Exampldk wi



refer to the leveld'S, S, C, andU.

A multilevel relation (with element-level labelingyer
relation schemeR and security latticeC is a pair (r, \),
wherer is a relation overR, and A\ is a mapping from
elements inr to labels in£, such thatA(t[A]) = [ if
t € r, Ais an attribute inR, andt¢[A] is classified at level
I € L. We denote by* the pair(¢, \). We use the nota-
tion »* both as shorthand for the multilevel relatién \)

and to denote the multilevel relation resulting from apglic

tion of a given mapping to an existing relatiom. A mul-

tilevel database (with element-level labelirm)er schema
S = {R;,...,R,} and latticeL is a set of multilevel re-
lations {r7",..., 7\ }, where each-) is a multilevel re-

lation over R, and £. We use the notatio8* both as
shorthand for a multilevel databage]", ..., "}, where

A = U;<;<, Ni» and to denote the multilevel database re-

sulting from application of a given mappingto each rela-

tion in an existing databag® Figure 1 illustrates an exam-
ple of relations; andr, and corresponding multilevel re-
lationsr! andr)? obtained by classifying all the elements
in them. Note that we are interested here only in the rela-
tions’ content with the corresponding classification antl no
in how multilevel relations would be actually represented i

a specific DBMS. Depending on the specific DBMSs, some
data/tuples may be duplicated (e.g., polyinstantiatiom co
straints) or rearranged (e.g., if only tuple or key/nonkey a

tributes classification is supported). This transfornmrats

outside the scope of this paper. Rules determining the secu-
rity levels of data are assumed to be classified at a level at
least as high as the level they assign. Hence, it is not possi-
ble for users to infer information on the values of some data
by simply observing that the data are not visible to them
(i.e., they are classified at a higher level) with the rules th
lead to such a classification. However, if the fact that agiec

of data is not visible at a certain level, because it is cl&sbi

higher, can in itself leak information, a “fill in the blank”
process can be executed whereby null values in low-level
views are replaced by cover stories [7]. Note, however, that
we assume the information recipients not to have update
privileges (i.e., it is not possible for them to try to insert

3.1 Classification constraints

Classification constraints define requirements that the
security levels assigned to data elements must satisfy.
We identify four different sources, and therefore possible
classes, of constraints.

e Basic classification constrainexplicitly assign a se-
curity level to certain attributes, possibly depending
on some conditions, for instance, “attribute Salary is
secret”, “attribute Salary is secret when its value is
greater than $1000”, and “attribute Name is secret for

employees whose Salary is greater than $1000".

e Association constraintglassify the association be-
tween different attributes, possibly depending on some
conditions, for instance, “the association between
names and salaries is secret, when the Salary is greater
than $1000".

¢ Inference constraintput conditions on the classifica-
tion of attributes related by inference, for instance,
with reference to the example in the introduction, the
least upper bound of the security level oink and
depart ment may be required to dominate the level
ofsal ary.

¢ Classification integrity constraintare constraints on
the classification of related attributes that are required
by the multilevel data model. Integrity constraints gen-
erally supported by multilevel databases require that
for each tuple the key attributes be uniformly classi-
fied and their classification be dominated by that of
the corresponding nonkey attributgsi(nary keycon-
straints), and that the classification of an attribute rep-
resenting a foreign key dominate the classification of
the attribute for which it is the foreign keyeferential
integrity constraints). The fact of considering integrity
constraints as input to the process ensures the general
applicability of our approach.

We capture these four classes of constraints in a sin-

some values to determine whether a null value is actually gje general form of classification constraint consisting of
a null value or is blanking out some protected data). Also, g parts: aabeling expressiomnd aselection condition
this assumption rules out inference channels resulting fro - The |apeling expression specifies a minimum security level,

classifying information at a level higher than the levelrod t
subject who inserted it.

3 Classification Requirements Specification

We give preliminary definitions and concepts used inthe and a security latticel =

remainder of the paper.

which may be expressed either as a level in the latate (
soluteconstraint) or as the level of another attributeld-

tive constraint), that the least upper bouht] of some set

of attribute elements must attain. The selection condition
specifies a value or range of values of elements over the at-
tributes to which the labeling expression applies.

Definition 3.1 (Labeling expression)Given a schemaS
(L,=), a labeling ex-
pressionover S and £ is an expression of the form
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Figure 1. An example of relations  rq, rp and corresponding multilevel relations rf“, rgz

lub{A(41),...,\(A4,)} = X, wheren > 1, 4, € A,

i =1,...,n, and X is either a security level € L or 21 f :\\E]\N/[))Eg’gfllg 29 -Aifc))i/\)(\](\;[?))
is of the form\(A), with A € A. If n = 1, the expression Ci :M0)=S,0< 10 cif NH) = A(F)
may be abbreviated a5 A4;) = X. ca: AF) = C c12 : AMP) = A\(F),P=F

cs: MG)=S,G>5  c13: A(P) = A\(O)
Definition 3.2 (Selection condition) Given a schem&, a c6: MG) = C,G<5 ci4 : lub{A(N), A(O)} = \(G),P=F
selection conditiomvers is a conjunction of primitive con- 7 : AWV) = A(M) c15 : b{MG), M(H)} = TS, H < 12
ditions of the formA op V, whereA € A, op is one of cs 1 MO) Z A(M)
{=,<,>,<,>,#}, andV is either a constant’ € V or
an attributeA’ € A. Figure 2. An example of classification con-
Classification constraints can then be defined as follows. straints
Definition 3.3 (Classification constraint) Given a schema
S and a security latticeC, a classification constrairverS In the following, we userel(z) and attr(z) to denote
andL is a pair (e, s), wheree is a labeling expression over  the relations and attributes appearingsinwherez can be
S and/, ands is a selection condition oves. a labeling expression, its left-hand siddhs(e), its right-

hand sidehs(e), or a selection condition. Moreover, we
refer to classification constraints in which the left-haiués
of the labeling expression refers to a single attributsias
ple classification constraints. All other classification con-
straints areeomplex

Classification constraints can be interpreted as SQL-
like integrity constraints over the multilevel relations-r
sulting from the classification process. Each constraint
(e,s) corresponds to the SQL-like integrity constraint
“eIN7, ... .m>» WHEREs,” where {Ry,...,R,} is

Example 3.1 Figure 2 illustrates an example of classifica-
tion constraints on relations andr, of Figure 1. Con-
straintsc; throughcg are basic classification constraints.
Constraints:; throughcey; express the primary key integrity
constraints {/ is key ofr; andF' is key ofry). Constraint
c12 expresses the referential integrity constraifti¢ for-
eign key inry pointing to F' in r3). Constraintsc;3 and
c14 represent inference constraints, ang is an associa-
tion constraint. A
r'n
The consideration of selection conditions only as conjunc- rel(e) U rel(s), and, forl < i < n, 7" is a multilevel rela-
tions simplifies the treatment of constraints without loks o tion overR;. This can be read as “in the multilevel database
expressiveness. A classification constraintrequirinpalla  over schem& and latticel, the security levels assigned to
ing expression to apply depending on a disjunction of condi- elements must be such that the labeling expressioolds
tions can be represented by multiple separate classificatio in all tuplest satisfying the selection conditiofn written
constraints. Also, note that all our constraints have theafo ¢ = s.”
= and security levels on the right-hand side only, thatis, Classification constraints can be represented as a di-
they specify a lower bound of the classification (which can rected graph containing a nodéA) and a nodé for each
be upgraded if needed for other protection requirements).attribute A € 4 and security level € L. Each constraint

For instance, a constraint requiris@l ary to be classi-  (lub{A(41),...,A(A,)} = X, s) isrepresented by an edge
fied secret will be stated agsal ary) > S, implying that labeleds from node\(A;), if n = 1, or hypernode contain-
sal ary must be classifiedt leastsecret. This interpreta- ingA(A41),...,A(4,), if n > 1, to nodeX. Figure 3 illus-

tionis a property of the problem under consideration, where trates the graph representing the classification consdrain
data classification may need to be upgraded to combat inin Figure 2, where, for simplicity, nodes representing at-
ference channels and to solve association constraints. Théribute classification(A\(A)) are labeled only with the at-
case where the classification of the attribute musbaetly tribute name(A). In the figure, circle nodes represent at-
secret can be captured as a preference of the classificatiotribute classification, square nodes represent secuvdyde
process (Section 6). and dashed ellipses represent hypernodes.



straints is complete and consistent.

Attributes appearing in a classification constraint may
belong to different relations. For instance, constraint
in Figure 2 requires th&b of the level of N and O, be-
longing to relationr;, to dominate the level of7, be-
longing to relationr,. When the level of the elements
of an attributeA in relation R depends on the value/level

of elements of attributes in other relatioRs, ..., R,, it

is important that the conditions associated with the con-
Figure 3. An example of classification con- straints define how to associate tuplesHnwith those in
straint graph Ry,...,R,. To allow for our preprocessing and unambigu-

ous interpretation and enforcement of the classification co

straints, we require this tuple association to be condisten
with respect to the condition evaluation. More precisely,

we require each tuple (element of) to be classified to as-
sociate with the others on which it depends such that the
result either satisfies or does not satisfy the conditions in
the constraints. (Intuitively, we rule out the case where a
tuple in a relation would associate with others resulting in

3.2 Requirements and restrictions on classifica-
tion constraints

For each database undergoing classification, &’'set
constraints is specified whose enforcement allows the-deter

m||nat|0? .Of ; su(;tatbls classlltlcatlon fo: ea;? poss'b:fl_datiboth tuples that satisfy a given condition and tuples that do
element in the database. To guarantee the possibility of, satisfy it.) To express this requirement we first intro-

.de:‘;]nm dg ?sbwtabltehclas?ﬂ;:altlon _l;qr etgch and tevgri/ elem?gtduce the concept of key connection between relations. A
In the database, the set of classification constraints naus key connectiorke; ; betweenR; and R; is a conjunction

_completeand_cqnsist_entA set of g:l_ass_ification constrainf[s of conditions(R;. Arx, = Rj.Ax,) A ... A (RiApk, =

is complete if it defines a clf_;133|f|ca_t|0n fo_r each po_SS|bIe R;.Ax, ), where(Arg,, ... Apx, ) is a foreign key off;
element of the database. It is consistent !f there _e>$|_sts an, - (As,,..., Ax.) is the corresponding key in relation
assignment of levels to the elements, that is, a definition OfschemeRj. For instance,? — F appearing in the con-
A th.a.lt S|multan<_eously satisfies all cIassﬁma_tpn c_qnstsal straints in Figure 2 represents a key connection betu&gen
IntU|t|_v_er,_ conS|stenc_y guarantees the satls_ﬁ_ablhtythﬂ and R,. Moreover, we introduce the definition of classifi-
c_IaSS|f|ca_1t|_0n constraints. Rather than requiring the Secu cation and evaluation context of an attribute, which will be
_r|_ty Admmlstrator to ggarantee _completeness (_)f_ thg SPEC-ysed in the labeling process (see Section 7).

ifications, we ensure it by adding d@efault classification

constraint A(A) = L, true” for every attributeA in the  pefinition 3.4 (Classification and evaluation context)
database. In the fO||0WIng, we assume that these defaultLet C be a set of ConstraintS, and be an attribute of a

classifications have already been added. Completeness igs|ation R. Theclassification contexdf A, written C4, is
therefore trivially satisfied. Consistency also is trivially  the setC', C C defined as follows:

satisfied because of the particular form of our constraints,

whose labeling expression uses only the dominance rela- 1. V(e;,s;) € C : A € attr(lhs(e;)) = (ei, 8;) € Ca

tionship =, and where security levels may appear only on

the right-hand side. Thus, classification constraintsirequ 2. V(ei,si) € O (3(ej,85) € Ca = attr(lhs(ei)) N

ing the same data element to dominate different levels can (attr(lhs(e;)) U attr(rhs(e;))) # 0) = (ei, si) € Ca

be satisfied simply by assigning to the da_ta eleme_n_tuhe The evaluation contextof A, written F 4, is the pair

of those levels. Analogously, two constraints requiring tw

different data elements to mutually dominate each other, fo (A KCa), Where Ra = Uy g cc, rel(e) U rel(s) and
y ) !

instance\(A) = A(B) andA(B) = A(A), can be satisfied <4 = Ue.s)ec, ke such thatke appears ins.

by classifying both data elements at the same level. Given

this, without loss of generality,

assumption.

. Intuitively, the classification context ofl is the set of
we can make the following . nstraints i whose resolution affects the classification
of A. In terms of the graph(’4 can be incrementally de-
Assumption 3.1 The input setC' of classification con-  fined by including the set of constraints corresponding to
- — _ _ edge_s_ IeaV|_ng frqm A and hypernoo_les containing A, and
_“Note that it is important that these default constraints iwiged as 4.5 sitively including then all constraints correspordio
input to our classification process. It is easy to see thagrisg default

classification.L at the end of the process to any element that did not get ques _IeaVin_g from a node/hypernode appearing in, con-
classified may result in a classification that does not satfief constraints.  tained in, or intersecting any node/hypernode represgntin




a starting or arriving point of some edge in the context. The Definition 4.1 (Correct classification) A

corresponding evaluation context defines the set of relatio
R 4 whose content may affea{ A) and the key connection
condition by which the relationships are linked.

We can now translate the above requirement to the re-
qguirement that each relation be uniquely key connected to

the relations in its evaluation context, as stated in the fol
lowing assumption.

Assumption 3.2 Let C be a set of constraints} be an at-
tribute of relationR;, andE4 = (R4, KC,) its evaluation
contextvVR; € Ra, R; # R, : 3'sequencéc; 1,kcia. ..,
kcn,j> in KCa.

multilevel
database3” is correctly classifiedvith respect to a sef’
of classification constraints if and onlyf# = C.

Given a databasg and a seiC of classification con-
straints, there may be many different assignments to the el-
ements of the database that satisfy the constraints, that is
more than one such can be defined corresponding to dif-
ferent and corred8”. However, not all of them are equally
good. For instance, the labeling function that classifiés al
elements of all relations at the highest level in the latfite
trivially satisfies any possible set of constraints. Suobrg}
classification is clearly undesirable, unless requirednay t
classification constraints, as it produces unnecessay-inf

Satisfaction of Assumption 3.2 ensures that each ele-mation loss (not releasing information that could be safely

ment t[A] corresponds to exactly ot A] in the context
in which it is labeled, that is;xc , (11 X ... X 1), where
({R1,..., Ry}, KC,) is the evaluation context of.

4 Goals and Requirements

released). Although the notion of information loss is diffi-
cult to make both sufficiently general and precise, it isiclea
that a first requirement in minimizing information loss is to
preventoverclassificatiorof data. That is, no database el-
ements should be assigned security levels higher than nec-
essary to satisfy the classification constraints. A datbas
whose classification assignments meet this requirement is

We define the correspondence between a set of consaid to beminimally classified Intuitively, a multilevel
straints and a Ial_aelmg mapping on the database and introyatabaseés* is minimally classified with respect to a g6t
duce the properties that the multilevel database and the laof constraints iff there does not exist another classificati

beling producing it are required to satisfy.
4.1 Correct and minimal classification

Given a databasB, a security latticel, and a set of
constraints”, our goal is to produce a multilevel database
B* whose labeling mapping satisfies the specified con-
straints. Given a tupleover attribute sefd and valueg’, a
lattice £, a mapping\ from elements of to levels inZ, and
a labeling expression = lub{A\(A41),...,A(4,)} = X
over A and £, t* is said tosatisfye, denotedt* k= e, if
and only if lub{\(t[A1]), ..., A(t[A.])} = X. A multi-
level databasB* over schem& and latticel is said tosat-
isfy a classification constraint= (e, s), denoted3* = c,
if and only if every tuplet in the Cartesian product of all
relations inc matching the selection conditionsatisfies
the labeling expression More formally,B* |= (e, s) <
vier N = e where(r’,N) = o,(r x .- x ),
rel(e) Urel(s) is{R1,..., Ry}, and, forl <i <n,r;"is
a multilevel relation over schem®; and lattice£.2 Simi-
larly, B* satisfies a sef’ of classification constraints, writ-
tenB* |= C, if and only if it satisfies every constraint {@!.
A databasés” is said to becorrectly classifiedvith respect
to a setC' of classification constraints if it satisfi&s, as
formalized by the following definition.

2The selection and Cartesian product operators on multitel@tions
are defined by assuming that the operations behave in theesthway (as
in the case of unclassified relations), and that each elemehge result
maintains its original security level.

N, X # X that assigns a classification lower than or equal
to that assigned by to all the elements i8. This is for-
malized by the following definition.

Definition 4.2 (Minimal classification) Let3* be a multi-
level database an@ a set of constraints such th&t |= C.
B is minimally classifiedwith respect taC' iff Y\ # X :
BN = C = 3r; € Bt € 13, A € Ry, Mt[A]) # N (t[A]).

A labeling function) is minimalfor a databas® and with
respect to a sef’ of constraints, if3* is minimally classi-
fied with respect ta’.

Example 4.1 Consider the classification constraifMg$ A) =
TS, true) and(lub{\(A), A\(B)} = S, true). The mappings
{AMA) — TS, A\(B) — U} and{A(A4) — TS, A(B) — S},
are both solutions. However, the former is not minimal,
since it classified3 at a level higher than necessary. A

4.2 Classification assignments

One possible approach to producing a minimally classi-
fied database from a given set of classification constraints
is to evaluate the constraints directly over each datalmase i
stance that needs to be classified, assigning securityslevel
iteratively until a fixed point is reached for the database.
Such an approach, however, is clearly inefficient, given the
implied need to access the same data multiple times during
the classification process, and to compute, store, and com-
pare all the different solutions to determine the one to be



preferred. This is clearly far too expensive and imprattica 5 Classification Strategies
for general use.

Our approach to generating minimal classifications in-  Complex classification constraints offer multiple choices
volves processing the classification constraints to okdain of attributes whose security levels must be constrained
set of much simpler classification assignments. These clas{raised). In the assumption of a totally ordered latticehea
sification assignments can then be quickly applied to any complex constraint can be solved exactly by assigning the
instance of the given database schema to produce a minirequired level to any one of the attributes involved in the
mally classified database. In effect, our process amounts tqub.2 However, the choice of which attribute should be as-

a preprocessing, or compilation, operation on the classifi- signed the required level can affect whether the resulting s

cation constraints. Classification constraints are pisezks

lution is minimal. For instance, consider the two constisain

only once, and the labeling mapping produced can then be()\(A) = TS, true) and (lub{\(A4),\(B)} = S,true) of
efficiently reused for labeling multiple and large database Example 4.1. Solving théub constraint by upgrading,

instances. Given a sét of classification constraints over
a database schenta= {R;,..., R,}, the product of our
classification method is a sétA of classification assign-
mentsof the form (A\(A) = [, s) that, when applied to a
given database instanf®e= {r1,...,r,}, yield a correctly
and minimally classified multilevel databage. To this
end, the seCA of classification assignments must satisfy
the following four properties.

Property 1 (Completeness)For each database element,
there is a classification assignment specifying its segurit
level. Formallyvr; € Bt € r;; A € R;,3(MA) =1,5) €
CA,t' € ry x -+ X ry, such that’ = s andt¢[A] = t'[4].

Property 2 (Consistency) No two classification assign-
ments specify different security levels for the same da@ba
element. Thatisyr; € B,t € r;,A € R, : 3(A\(A) =
l,s),(MA) =1,s") e CA,t' € rix---xr, suchthat’ =
s,t' E s andt[A] =t'[A]) =1 =1

Property 3 (Correctness) The database classified accord-
ing to the classification assignments is correctly clasifie
(Definition 4.1).

Property 4 (Minimality) The database classified accord-
ing to the classification assignments is minimally clasgifie
(Definition 4.2).

Intuitively, Properties 1 and 2 guarantee the definition
of a B*, ensuring for every element ifi the existence of

with respect to the lowest assigned as default\(B)
would produce the nonminimal solutiox(4) = TS and
A(B) = S. The lub should be then solved by pickidg

We model the possible choices for solving a 6ebf
constraints by decomposing each constrainf'imto a set
of simple constraints, where the decomposition of a simple
constraint is the simple constraint itself. Given a clasaffi
tion constraint = (lub{\(A1),...,A(4,)} = X,s), the
decompositionf ¢, denotedD,, is the set of simple classi-
fication constraintd, = {(A(4x) = X,s) | 1 < k < n}.
C can then be satisfied by choosing one simple constraint
from each set to arrive at one solution. Each possible com-
bination of simple constraints from the decompositions of
all constraints is called eassification strategyor simply a
strategy The collection of strategies ovéY, denoted/¢, is
the set of all such strategies, that¥%; = {{c|,...,c,} |
ci € De;,1 <i<n}.

Example 5.1 Consider the classification constraints in Fig-
ure 2. The decomposition dfub{\(N), A\(O)} = A(G),
P=F) is {(A(N) = AG), P = F),(AO) = AG), P =

F)}. The decomposition diub{\(G), \(H)} = TS, H <

12) is {(AM(G) = TS,H < 12),(\(H) = TS, H < 12)}.
There are therefore four possible strategigs:T», 75, and

Ty. In the remainder of the paper we assume that the com-
plex constraints are solved by upgradiNgandG in Ty, O
andG inT,, N andH in T3, andO and H in Ty. A

Note that although all strategies have in common all the

exactly one security level. Property 3 guarantees that thesimple classification constraints, the effect of these con-
database classified by the assignments satisfies the elassifstraints on the resulting classification may differ becanfse

cation constraints. Finally, Property 4 guarantees its-min

mality. It is important to note that completeness and con-

sistency of the classification assignments is differennfro

their integration with the specific decomposition of conxple
constraints. For instance, classification constraiift) =
A(O) common to all the strategies has a different effect on

the completeness and consistency of the classification conthe classification o in each strategy, depending on how

straints. While the latter is trivially satisfied (see Sent8),

the former is not — improper or naive processing of classi-

fication constraints could easily produce inconsisterssita

fication assignments. The following sections provide a de-

tailed description of our approach for generating classific

the two complex constraints given as input are solved.

The set of classification constraints that must be satisfied
for a given element depends on what selection conditions
are satisfied for that element. Since we are interested in

3Note that, because the schema is fixed, association corstraiist be

tion assignments, or equivalently a labeling mapping, that soived by explicitly upgrading some attribute (its valuagpearing in the

satisfy the required properties.

association.



determining the minimal classification for all database el- a relatively straightforward process. For each consti@int
ements, we need to consider the possible combinations ofa given attribute, one can determine the “chains” of con-
conditions. We capture these combinations through the no-straints ending in a security-level constant. The conjunc-
tion of condition pattern Given a setS of selection con-  tion of selection conditions occurring along a chain of con-
ditions over a schem&, a condition patterrp over S is straints is the condition under which the security level of
asatisfiableconjunction of selection conditions containing, an element over the attribute must dominate the level at the
for each membeg € S, eithers or its negation. Formally, end of the chain. In cases where the conditions along two
p = (Nseg8'), wheres’ € {s,—s} andp is satisfiable.  distinct chains from an attribute overlap, the level assin

A patternp is satisfiable if there exists a database instanceto any element over the attribute must dominatelteof

for which the pattern is applicable (i.e., evaluates to)true the levels at the ends of the chains.

The satisfiability requirement, which, given the conjunc-  Taken together, the chains of constraints for an attribute,
tive form of our constraints can be easily checked, allows and the conditions under which they apply, capture all the
us to discard all the combinations of conditions that would relevant information for determining the minimal classifi-
never apply. In the following, given a s€tof classification cation, according to a given strategy of that attributess el
constraints, we consider the sBt_ of condition patterns  ments. Thus, they represent a kind of classificatinplate
taken over the selection conditions, not including key con- from which the minimal classifications for the specific strat
nections, occurring i', denotedSc. Key connections are  egy under every condition pattern can be determined. The
excluded in this process since, by definition, they are al- following definition formalizes this notion.

ways satisfiablé. In addition, if a selection condition and

its negation (e.g.Q0 < 10 andO > 10) both occur inC, Definition 6.1 (Attribute classification template) Given
only one of them is included i§¢. For any possible se&t a setC of classification constraints, a stratedy € 7¢,
of classification constraints, the condition patterngi, and an attribute A, the attribute classification template

are disjoint (no two may be simultaneously satisfiable) and for A in T, denotedtemplate[A], is a set of pairs of the
complete (every possible data context defined by the clas-form (I, s) such that eithe(A\(A) > I,s) € T or 3¢e; =
sification constraints is accounted for). Thus, each condi- (A(A) = A(A1),s1),¢c2 = (A(A1) = A(A2),82),...,¢n =
tion pattern can serve as an effective filter on the classifi- (A\(A,—1) = [,s,), Withs = s1 A -+ A sp,¢; € T,i =
cation constraints that yields the smallest set of com#gai 1,...,n, and where # j = ¢; # ¢j,i,5 € {1,...,n}.
that must be satisfied in a given context.

Example 6.1 With reference to the constraints of Figure 2,
Example 5.2 Consider the classification constraints Figure 4 illustrates the template for each attribute and
C in Figure 2. The condition sefS- is taken as  each of the strategies of Example 5.1. For instance, the
{0 < 10,G < 5,H < 12}. The set of all condition  attribute classification template for attributg in T3 is
patternsPs, has the following eight members: templater, [G] = {(TS,H < 12),(5,G > 5),(C,G <
p:O<I0AG<5AH<12 ps:O<10AG <5AH>12 5), (C, true)}. A
Pyt O<10AG>5AH<12 pg:O<I0AG>5AH>12

p3:O>10AG<5AH<12 p;:0O>10AG<5AH > 12 , , I .
Py OS10AG>5AH<12 py:0>10AG>5AH > 12 Given the attribute classification templates for a given

A strategy, the minimum security level to be assigned to each
attribute under a given condition pattepn can be deter-
For each condition pattern, there is (at least) one strategymined as theub of all the levels whose associated condi-
that leads to a minimal solution. However, the space of tjons is consistent witlp. The set of such levels for all

possible strategies is independent of the condition peter  attributes in the strategy is calledanditional solution
Thus, there is a natural separation of concerns in finding a
minimal solution, in which we can first identify the (largest  Definition 6.2 (Conditional solution) Given a setC of
constraint sets that must be satisfied for any strategy. , Thenclassification constraints, a stratedy € 7¢, and a con-
for each condition pattern, we can consider which strategydition patternp e Ps.., the conditional solutionfor T
leads to a minimal solution for that pattern. The following under p, denotedSolf., is Soly. = |,cr(A, Solf[A]),
section illustrates an approach to this. whereSolf.[A] = lub{l | (,s) € template[A] and (s A

p) is satisfiablé.
6 Strategy Solution _ o _ _
Example 6.2 Consider the classification constraints of Fig-
ure 2. Table 1 lists the set of all conditional solutions fibr a
possible strategies and condition patterns of Example 5.2.
EachSol?. corresponds to a column in the table. The cross-
4They will return in the relation labeling process (SectioB)7 ing of row A with columnT of patternp indicates the level

Finding a minimal solution for a set of simple classifi-
cation constraints, and hence for any particular stratisgy,




| | 1emp|ate1~1 | 1emp|ate1~2 | lemplalef,g | lemplalef4
M | (5,0 < 10) (5,0 < 10) (5,0 < 10) (5,0 < 10)
N (TS, H < 12),(5, 0 < 10).(5, G = 5), (5,0 < 10).(C, O > 10) (5,0 < 10), (5, G = 5), (5,0 < 10).(C, O > 10)
(C,0 > 10), (C, G < 5), (C, true) (C,0 > 10), (C, G < 5), (C, true)
9] 5,0 < 10) (TS, H < 12),5, O < 10), G, 0 < 10) G, 0<10), (5, G = 5)
(C, G < 5), (C, true),(S, G > 5) (C, G < 5), (C, true)
P (S, 0 < 10).(C, true) (TS, H < 12).(5, 0 < 10), (5,0 < 10),(C, true) (5,0 < 10), (5, G > 5),
(S, G >5),(C, true), (C, G < 5) (C, G < 5), (C, true)
F (C, true) (C, true) (C, true) (C, true)
G (TS, H < 12), (5, G = 5).(C, G < 5), (TS, H < 12),(5, G = 5), 5, G = 5), (G, G < 5), (C, true) (5, G > 5).(C, G < 5), (C, true)
(C, true) (C, G < 5), (C, true)
H (C, true) (C, true) (7S, H < 12).(C, true) (7S, H < 12).(C, true)

Figure 4. Attribute classification templates for

I such that(4,1) € Solk.. For instance, the conditional so-
lution for strategy’; and condition patterp; is Sol%’
{(M,S),(N,S),(0,S),(P,S),(F,C),(G,QC),(H,C)}. A

Conditional solutions are specific to a strategy. Each is
locally minimal within a given strategy (i.e., it upgrades
each attribute at the lowest possible level to satisfy the co
straints), but in general, not all will bglobally minimal
across all strategies. For a given 6eof classification con-
straints and condition pattern a globally minimal solu-
tion for C' with respect tgy can be found by comparing the
conditional solutions for all strategiés underp. This is
captured by the following definition.

Definition 6.3 (Minimal conditional solution) LetC be a
set of classification constraint§, € 7~ be a strategy over
C, andp € Ps. be a condition pattern. A conditional
solution Sol?. for T" under p is said to beminimal if and
only if VI" € 7Tc3A € C : Soll.[A] # Sol%, [A].

The collection of minimal conditional solutions over all
strategied’ € 7¢ underp, is denotedV/inSol7,.

Example 6.3 All conditional solutions of Table 1, except
those marked with a bullet, are minimaflol?? is not min-
imal since the security levels assigned to all the attribute
dominate the security levels assigned to all the attribloyes
conditional solutionSol7?. Analogously,Sol7 and Sol7;
cannot be minimal because they dominate bk and
SOZ;Z. A
A minimal overall solution consists of a set of mini-
mal conditional solutions, one for each condition pattern.
In general, however, it is not possible to select any arbi-
trary minimal conditional solution for each pattern, besmau
two distinct condition patterns may, in fact, coincide with
the classification context of a particular attribute. Mulki
strategies leading to distinct solutions for that attrébirt
such patterns would therefore result in inconsistent iflass
cations. For instance, patternsandps, which differ only
for conditionO < 10, coincide for attribut&r, whose clas-
sification is independent of the value 6f The strategies
chosen as solutions fgr, andps must therefore agree on

Tq1, Ty, T3, and Ty

the classification assigned €. For example, choosing ei-
therTy or Ty for eitherp, or p3 rules out the possibility of
choosingl’; for the other. To capture this constraint in the
formal definition of minimal solution, we introduce the no-
tion of projection of a condition pattern on the classifioati
context of an attribute. Given a s€tof classification con-
straints, a condition pattegne Pg, and an attributet, the
projectionof p on the classification context of, denoted
p4, is the conjunction of the conditionsn the pattern such
that eithers or —s appears in the classification contextAf
Then, a minimal solution is a set of minimal conditional so-
lutions, one for each condition pattern, such that, for each
attribute, if any two condition patterns coincide withireth
classification context for that attribute, the correspagdi
conditional solutions, that is, levels assigned by themeag
on that attribute.

Definition 6.4 (Minimal solution) Given a set” of clas-

sification constraints, aninimal solutionfor C' is a set

of n pairs <p1,Sol’}?l>, -y, Solbr ), whereSoll) €
y in i

MinSolpcj,l <j<m,andVz,y € {1,...,n},VA e C:
p.t =p,* = Solfy [A] = Sol%’ [A].

The collection of minimal solutions ove¥ is denoted by
MinSolc.

Example 6.4 Consider the set of classification constraints
shown in Figure 2 and the conditional solutions in Table 1.
A minimal solution for these constraints, producing the
multilevel relations of Figure 1, is

{(p1, S0l ), (pa, Soli2), (py, Solk2), (pa, Sl ), (ps, Soliy),
<p675011;2>,<p7,SOl§;>7<p87SOZ§~?>}. AN

In general, more than one minimal solution to a set of
classification constraints may exist. Which solution is to
be chosen may depend on specific criteria or preferences of
the data holder/recipient. Possible preference criteag m
be specified in terms of the cost of the classification, com-
puted by associating a numeric value (cost) to each security
level, summing the costs of the security levels returned by
a solution, and preferring then the solution with the low-
est cost [24]. Cost computation may also take into con-
sideration weights of attributes (weighted cost) to expres
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Table 1. Conditional solutions for Ty, Tp, T3, and Ty

the fact that not all attributes have the same importance forpends (i.e., reachable from). Upon evaluation of each
the release. Regardless of costs and weights, other pssiblconstraint(A(4) > X, s), the template of4, and those of
policies may be those of upgrading the minimum possible each attributet” depending ond are updated as follows.
number of attributes (maximum concentration), distribgti  If X is a security leveltmpl[A] is updated by adding to
the upgrading requirements over the maximum number ofit the pair (X, s) andtmpl[Y] is updated by adding to it a
attributes (maximum flattening), maximizing the view at a pair (X,s A s’) for each(4, s’) appearing in it. 1fX is
certain level, accounting for explicit upgrading priogi an attribute level\(B), tmpl[A] is updated by adding to it
and requiring classification of a given attribute to be domi- the pair(Z, s’ A s) for each(Z, s’) in tmpl[B]; tmpl[Y] is
nated by specified levels. This list is obviously not complet updated by adding a pafeZ, s A s A s') for each(A, s”)
and other preference policies can be imagined, all applica-appearing initandZ, s’) appearing inmpl[B]. These new
ble in different situations. pairs express the dependenciesiafue to the combination
of the constraint with the dependencies®fand the de-
pendencies oY resulting by bridging those oA and those
from B with the new constraint. After all constraints of a
strategyl” have been evaluated, each setplate[A] in
step 4, which contains all the levels and attributes redehab
We describe an algorithmC(assification Assignment  from A, is updated by taking only the paif’ s), wherel is
that, given a seiC' of classification constraints over a ga security level (reachability of attributes was needed onl
schemas and a security lattic&, derives a set of classifi-  jn the computation process and is not needed for the classifi-
cation assignments satisfying the four properties disliss cation). Hence, step 5 computes the solutioit, for each
in Section 4.2. We also describe a procedure for labeling condition patternp and strategyl’, and produces the set

7 Determination and Enforcement of Classi-
fication Assignments

databases according to the generated assignments. MinStr, of minimal solutions forp. Then, step 6 considers
a classification pattern at a time and determines a preferred
7.1 Classification Assignment algorithm solution among the possible ones. Preferred solutions are

determined by calling procedupe ef er , omitted here for

Figure 5 illustrates our Classification Assignment algo- space constraints, that simply evaluates the different-sol
rithm. The algorithm begins by determining the set of tions according to the preference criteria specified. Every
condition patterns (step 1), the simple constraint decom-time a solution is chosen for a pattepnthe setMinStr,,
position (step 2), and the s@t of all possible strategies Of possible solutions over patterps coinciding withp is
(step 3). Step 4 computes the attribute classification tem-updated by eliminating those solutions that would result in
plate for each attribute in the different strategies. The-si  inconsistent assignments (Section 6).
ple constraints common to all strategies are evaluated only
once, producing dasic-templatehat is then updated for ~Example 7.1 Figure 6 is an example of classification as-
each strategy according to the constraints specific to theSignments corresponding to the minimal solution of Exam-
strategy. Computation of templates is performed by call- ple 6.4. For simplicity, multiple classification assignrten
ing compute-tmpl. Given a set of constraints, and possi- dgfined for the same attribute ap_d Ieyel are _represgnted as a
bly an existenbasic-templatecompute-tmpl returns the ~ Single assignment whgse conqun is the dI.SJunCtIOI’] of all
template (Definition 6.1) for each attribute classified by th  the condition patterns in the considered assignments,
constraints. By keeping track of dependencies between at-
tributes and levels as they are found (reachability informa 7.2 Labeling process
tion in graphical terms) and updating them whenever a new
constraint is evaluated, the procedure performs the compu- Once the classification assignments have been generated,
tation by evaluating each constraint exactly once. Depen-applying them to an existing database can be done effi-
dencies are maintained in a structtmeplA] for each at- ciently. We outline here a straightforward approach to ap-
tribute A, indicating the attributes/levels on which de- plying the classification assignments that requires just on



Algorithm 7.1 Classification Assignment algorithm

INPUT: AsetC = {ci,...,cn} of classification constraints over
schemaS and security latticeC

OUTPUT: A setCAof classification assignments such that their
application on a databadgover schema and latticeC
produces a minimally classified multilevel datab#se
with B* = C

METHOD:

1. /* Determine the sePs,, of condition patterns */

Let S be the condition set associated with
Ps,:={p= (/\SESC s') | s’ € {s,~s} andp is satisfiablé

. I* Decompose each constraini=C' into a setD..; of simple constraints */

Let SCo be the set of simple constraints@andCC¢ be the set of
complex constraints i. Letc; = (lub{A\(A1),...,A\(An)} = X, s).
De, = {(MAr) = X,5) | 1 <k <n}

. I* Determine the sef of strategies ove€ */

To = {{c},....ch} | ¢ € D, 1 < i <}

. I* Compute the attribute classification template for estcategy */

Let A be the set of attributes i@
For eachA € Ac: basic-template4] := {(A, true)}
compute-tmpl(SC- ,basic-templatg
For each strateg{” € 7¢:
Let T be the set of constraints A resulting from the
decomposition of complex constrairt~
template- := basic-template
compute-tmpl(7¢ template-)
For eachA € A¢:
templater[A] == {(l,s) | (I,s) € templatep[A],l € L}

. I* Compute the minimal solutions for each pattern */

For eachp € Ps,:
For each strateg{” € 7¢:
For eachA € Ac:
Sol% [A] := lub{l | (I, 5) € templater[A] and(s A p)
is satisfiablé
Solll, .= Soll. U {(A, Sol%,[A])}
MinStry, := {T | VT’ € TcIA € Ac : Soll[A] ¥ Sollj, [A]}

. I* Determine a se€CA of classification assignments */

Group all attributes iM ¢ into disjoint setsAS; such that eaciAS;
contains all attributes! with the similar condition sef¢ ,
For eachp € Ps,:
pref-sol, := pr ef er (MinStr, preference
CA:=CAU{(M(A4:) =1,p) | (A4,1) € pref-sol,}
MinSolc := MinSolc U pref-soL
For eachAS;:
For eachp, # p s. t.p,L.ASj = pA5i A pref-sop,, ¢ MinSolc:
MinStry, := MinStr,, \{T | T € MinStr,,,3A, € AS;:
(A, ') € Sollyi, (Ag, 1) € pref-sol,, I # 1}

Procedure compute-tmpiConstraintgmpl)
For each(A(A) > X, s) € Constraints

CaseX of
X € L :tmplA4] :=tmpl[A] U {(X, s)}
For eachY,Y # A such thaB(A, s’) € tmpl[Y]:
tmpl[Y] := tmpl[Y] U {(X, s’ A s) | (4,s")etmplY] }
X=X\(B) tmplA] :=tmpllA]U{(Z,s' Ns) | (Z,s") € tmp|B]}
ForeachY,Y # A,Y # B,s. t.3(4,s”) € tmpl[Y]:
tmpllY] :=tmpl[Y] U {(Z,s" AsAS) |
(Z.s') € mpl[B], (A, s) € tmpl[Y]}

Figure 5. Classification Assignment algo-
rithm

A(P) =S, p1VpaVpaVpsV pg
A(F) = C, true

A(M) = U, p3Vp,Vp;Vpg )
) )

AG) =C,p1Vp3VpsVpy
)

AM) =S,pVpyVpsVpg
A(N) = C,p3Vp,Vpy
)

A(N) =S, p1VpaVpsVpgV pg A(G) =S, paVp Vg Vg
A(O) = U, p3Vp,Vpg AH) = C,p5VpgV p7Vpg
A(O) =S,p1VpaVp VsV g A(H) =TS, pVpaVpsVpy
A(P) =C, p3Vp,Vpg

Figure 6. Example of classification assign-
ments

classification pass through each relation to be classified.
The first step in the labeling process is the determination
of the evaluation context of each attribute, that is, theofet
relations to be accessed (joined) to determine the atérbut
level and the joining conditions. Figure 7 presents an al-
gorithm for that process. The actual labeling process is
facilitated by constructing decision treethat captures all
possible ways of classifying elements of one or more at-
tributes that might occur in any database instance. It is nei
ther strictly necessary nor desirable to construct a separa
decision tree for each attribute of a relation. A single de-
cision tree suffices for a set of attributes in a relation & th
evaluation context (Definition 3.4) of each attribute in the
set is contained in that of another attribute in the set,esinc
the largest such evaluation context ensures the avaiiabili
of all data from other relations to be evaluated. To this end,
attributes are partitioned in sets such that all attribines
the same seX can share the same decision tree. In the fol-
lowing, we denote witht'x the selection conditions for the
attributes inX, that is,Sx = J . x Sc.. For each seX

so determined, a decision tré&l" x is defined as follows.
Consider the conditions ifix = {s1, ..., s, } in any order.
For eachi from 1 to n, create2:—! nodes labeled;. Then,

for each: from 1 to n — 1, connect each node labelegd

to two distinct nodes labeled , ;, with one edge labeled
(true) and the other labeldd (false). Creat@™ leaf nodes.
Connect each node labeleg to two distinct leaf nodes,
with one edge labele® and the other labeleR. For ev-

ery root-to-leaf path, label the leaf node with,, ..., p,}

for each condition patterp; such that every edg®;, s;+1)
along the path is labele®t (F) when selection conditiosy;
occurs positively (negatively) ip;,j = 1,..., k. Finally,

for each attributed € X, a classification assignment of the
form A(A) = lis placed at lea{p,, ... p,} if and only if
(A(A) =1,p;) € CA,j =1,...,k. Note that the fact that
all patterns appearing in the leaf produce the same classifi-
cation for attributes ifX is guaranteed by the Classification
Assignment algorithm (step 6). Figure 8 illustrates the de-
cision tree for (all attributes of) relation schenfasandR;

of our running example.

Once the decision trees for all attributes of a relation
schemeR have been constructed, any relatiorover R



Algorithm 7.2 Evaluation Context algorithm

INPUT: AsetC = {ci,...,cn} of classification constraints
over schem& and security latticeC

OUTPUT: The evaluation contedf4 = (R4, KC 4) and the
condition setS¢ , for each attributed in C

METHOD:

Let Ac be the set of attributes i@
1. For eachA € Ac: Ra:=0; KC4:=0; S, :=0; Affec{A]:=A
2. For each constrainflub{\(A1),...,A\(An)} = X, s):
* Determine the seRelof relations to be added tB 4, ;
key connections to be addedKe& 4, ;
selection conditions to be addedS@Ai ; and the sefffec{A;]
of attributes whose value affects;’s level */
2.1.CaseX of
X e€L: Rel=rel(s)
Key:= {kc| kcis a key connection in}
Sel:={s’ | s’ is a selection condition ia and
s’ is not a key connectign
Affect:= U7, Affect[A;]
Rel:=rel(s) U Rp
Key:= {kq| kcis a key connection is}UKC g
Sel:={s’ | s’ is a selection condition ia and
s’ is not a key connectidtuSc
Affect:= (U, Affect[A;]) U Affect[B]
2.2.Foreachi =1,...,n:
Ra, := Ra, U Rel
KCa, := KCa, UKey
SCAi = SCAi U Sel
Affec{A;] := Affect
2.3.For eachY ¢ {Aq,..
A; € Affect[Y]:
Ry := Ry U Rel
KCy := KCy U Key
SCy = SCy U Sel
AffeclY’] := Affect[Y] U Affect

X=X(B):

L AnYs. t.3A; € {A1, ..., An},

Figure 7. Evaluation Context algorithm

Figure 8. Classification decision tree for
(a) and for Ry (b)

Ry

the classification for each element of the tuple segment is
generated according to the security levels specified at the
leaf. Step 4 simply returns the resulting multilevel redati

We conclude this section by noting that the decision tree
construction outlined here can be optimized for space effi-
ciency by using well-known techniques, such as BDDs [1]
to produce a more compact representation.

8 Correctness, Complexity Evaluation, and
Optimization

The correctness of our approach relies on the fact that (1)
the classification assignments generated by Algorithm 7.1
satisfy the completeness, consistency, correctness, emd m
imality requirements, and (2) that the labeling process (Al
gorithm 7.3) correctly enforces them. This is stated by
the following theorems, whose proofs are omitted here for
space constraints.

Theorem 8.1 The setCA of classification assignments pro-
duced by Algorithm 7.1 satisfies Property 1 (completeness),

can be efficiently classified by traversing the decision tree Property 2 (consistency), Property 3 (correctness), and

DT x for eacht[X], with ¢ € r. TheRelation Labeling
algorithm, illustrated in Figure 9, works as follows. Step 1
initializes the labeling mapping;. Step 2 computes, for
each attribute seX;, a relationcontext ; containing all data

Property 4 (minimality).

Theorem 8.2 Algorithm 7.3 correctly enforces the classifi-
cation assignments produced by Algorithm 7.1.

necessary to select the proper classification assignment fo

any tuple overX ;. Intuitively, context; is the join of all re-
lations in the evaluation context &f; with join conditions

The computational cost of our approach derives from
two main factors: the number of strategigi:| and the

of the key connections in the evaluation context. Note that n'umber of condition patterri$s.. |, since the classification

context; is incrementally computed to ensure not only the
correct association of join conditions with the relatiooist,
also that whenever a conditidm,. , is applied, relation,

is already included irvontext;. Step 3 constructs the ac-
tual labeling mapping for the relatiom;. For each tuple

t; € r; and each attribute séf;, the (unique) tuple’ from
context; corresponding to; is selected and used to traverse
the decision tre®T'x; from root to leaf. For eachode in
the tree,noder (noder) denotes the next node reached by
following the edge labele® (F). Upon reaching the leaf,

assignment algorithm computgg-| - | Ps,, | sets of classi-
fication assignments (each of side:, whereA¢ is the set

of all attributes inC'). Each such set of assignments is com-
puted in time polynomial in the size of the inputin the
worst case, the number of different strategies is the prioduc
of the number of attributes in the left-hand sides of all labe
ing expressions. Thatis,@ = {(e;, s;) | 1 < < n}, then

5The size of the input includes not only the number of classifin
constraints, but also the sizes of the labeling expressindselection con-
ditions in them.



Algorithm 7.3 Relation Labeling algorithm

INPUT: A databasé3 = {r1,...,r,} over a schema
S ={Ri,...,Rn}, adesignated relation, € 15 over
schemeR; € S, a partition{ X1, ..., X} of the
attributes ofR;,and a decision tre® T X for each
X;,1<5<k
A multilevel relation(r;, A; ), where); is the labeling
mapping defined by the set of classification
assignments from which eathXj was constructed
METHOD:
1N\ =0
2.Forj:=1tok
I* Compute the data for the evaluation contextof. */
Let (RX]. , KCX].) be the evaluation context of ;
contextj :=r;
K :={kciz | kciz € KCX].}
While K # 0
Selectanykcz,y € K
context; := context; >Mkey y Ty
KCx, = KCx,; — kca,y
K = (K —kce,y) Ufkey, | key,- € KCx, }
3. For eacht,, € r;
ForeachX;,1<j <k
Lett € context; be the tuple such thafX ;] = ¢, [X}]
/* Walk down the decision tree. */
node := root OfDTXj
While node is not a leaf
s := label of node
if ¢t |= s then node := noder
elsenode := nodep
/* Generate level mapping for each element in the tuple */
Ai i= X U{tn[A] — 14 | A € X;}, wherel 4 is the security
level specified forA at the leaf
4.return (r;, A;)

OUTPUT:

Figure 9. Relation Labeling algorithm

|7c| < [1 <i<n |Ihs(e;)|. On the other hand, the number of
condition pattern$Ps.| can be as high ag8". Although
|7¢| can be quite large (possibly exceedifd if C con-
sists mostly of complex constraints, we expect tha,. |
will usually be the dominant factor in practice. The classifi

cation assignment process can then be optimized by reduc

ing the number of selection conditions (and thus, the num-
ber of classification constraints) that must be considered t
gether, since the number of distinct selection conditiaas d

termines the number of condition patterns. Reducing the

number of condition patterns in this way will also tend to
reduce the number of different strategies that must be con
sidered. Along these lines we identify two approaches to
reducing the cost of computing classification assignments
constraint partitioningandincremental solution

Constraint partitioning consists of partitioning any input
set of classification constraints into separately prod#ssa
sets. To this end we observe that, if for two attributeand
B, neither\(A) depends (directly or indirectly) ok(B),

nor \(B) depends om(A), then the processes determin-
ing their classification are completely independent. Ireoth
words, the classification constraints pertaining to the two
attributes can be solved independently. Thus, if an input
set of constraints contains several such independent sets
of attributes, it is possible to reduce one large constraint
solving problem to several smaller problems that can be
solved more efficiently.

Incremental solution requires a more sophisticated evalu-
ation of constraints, in which the attributes (and theioass
ciated constraints) are viewed as being ordered according t
a level of dependency (of classification) on other attribute
For example, consider the constraints in Figure 2. The clas-
sification of attributel does not depend on the classifica-
tion of any other attribute, and thus, its constraints would
be at the lowest dependency level. On the other hand, the
classification ofO depends directly on that @ff and indi-
rectly on that ofN (via a lub constraint), and thus, its con-
straints would have a higher dependency level. Attribute
classifications are then determined incrementally, froen th
lowest dependency level to the highest. This allows shar-
ing of the computation performed in deriving classification
assignments. More important, the incremental solution en-
ables us to effectively “factor out” common portions in con-
dition patterns, so that the enumeration of condition paste
becomes less of a concern, and furthermore the consistency
checking across different strategies among coincidert con
dition patterns is avoided.

9 Related Work

Our work has points in common with two main classes
of work. The first is the work on view-based classifi-
cation [4, 6, 18, 28], related to our support of content-
dependent specification of classification. Unlike [4, 6,,28]
consistent with the fact that we rely on existing DBMSs for
access control enforcement, we consider content-dependen
classifications as a means to determine the labeling to be
associated with the data rather than to actually enforce ac-
cess control. Denning et al., in the SeaView project [4, 14],
first recognized the need for content-dependent classifica-
tion constraints. Constraints are, however, checked only
upon insert and update operations and only on the data be-
ing inserted (intuitively one tuple at a time), and not on the
database itself, whose labeling may at some point not sat-
isfy the constraints [5]. As already discussed, this ingeft
based approach is not applicable to the problem under con-
sideration. Like us, Qian [18] uses content-dependentspec
ifications to provide data labeling. However, [18] consid-
ers only explicit data classification constraints and dags n
provide any support for inference constraints, assumes onl
tuple-level classification, and, as noticed by the authag m
overclassify data.



The second class is the work on inference, related to1l0 Conclusions
our support of inference constraints. Most inference re-
search addresses inference channels at the database de- Governmental, public, and private institutions are more

sign phase [3, 10, 19, 22, 26] or at query processing and more frequently required to make data available for ex-
time [8, 17, 21, 25]. The proposals in the first category ternal release in a selective and secure fashion. Unfortu-
analyze the database schema to locate inference channe|$ate|y' this ever-increasing need finds very little, if asup-

and eliminate them by upgrading selected schema compoport in existing models and systems. The work presented in
nents or redesigning the schema. The pro_posals in the S€Cthis paper aims to fill this gap by providing a framework
ond category evaluate database transactions to determingy the specification and enforcement of classification con-
whether they lead to illegal inferences and, if so, disallow straints taking into consideration, at a fine-grained level
the query. Neither approach is applicable to the problem eypjicit data classification as well as association and in-
under consideration. Other inference work concerns thefgerence constraints. The work reported represents only a
analysis of the database content, and possibly external in’starting point and leaves space for further developments.
formation, to point out the existence of relationships aghon gy tyre work, some of which we are currently investigat-
data that can introduce inference channels [9, 15, 16, 30]-ing, includes the consideration of partially ordered ¢t
These approaches are complementary to our work, and thene consideration of dynamic databases (i.e., subject+o up
inference relationships they determine can be provided aYates), the enrichment of the constraints, and the inastig
input to our process. The work closest to ours is repre- ion of more efficient techniques for determining solutions

sented by the work of Meadows [12], of Su and Ozsoyo- nossibly guided by heuristics whenever preferences are not
glu [24] and of Stickel [23]. Meadows [12] proposes an gz issue.

approach to prevent leakage of high information due to re-
lease of data whose association is more sensitive than th
pieces of data individually taken. While we solve this prob-
lem by explicitly upgrading individual data, the proposal
in [12] keeps a history recording all the data released to an [1] R.E. Bryant. Symbolic Boolean Manipulation with
“environment” and denies the release of further data ifrthei Ordered Binary-Decision Diagram&CM Computing
combination with data previously released would result in Surveys24(3):293-318, 1992.

a security violation. To prevent easy bypassing of the con- o )
straints, the concept of environment encompasses both userl2] S- Castano, M.G. Fugini, G. Martella, and P. Samarati.
and site identifiers. In addition, history logging and data Database SecurityAddison-Wesley, 1995.

assgmatlon gontrol crosses session boundaries. The pon-[s] H.S. Delugach and T.H. Hinke. Wizard: A Database
straints considered in [12] are a subset of the constraints ) :
Inference Analysis and Detection SystemlEEE

considered by us, where the right-hand side is always an ex- Trans. on Knowledge and Data Engineeriggl):56—
plicit security level and no conditions can be associatal wi 66 Fébruary 1996 ’ '

the constraints (attribute-level classification is assiim8u ’ '
and Ozsoyoglu [24] consider the problem of upgrading data [4] D.E. Denning, S.G. AKkl, M. Heckman, T.F. Lunt,
to block inference channels due to functional and multival- M. Morgenstern, P.G. Neumann, and R.R. Schell.
ued dependencies. Their approach to the consideration of  \jews for Multilevel Database SecurityEEE Trans.
functional dependencies, given as input a set of attributes on Software Engineeringl3(2):129-140, February

??eferences

together with a proposed classification for them and a set 1987.

of functional dependencies assumed to cause inference, re-
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