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Governmental, public, and private organizations are more and more frequently
required to make data available for external release in a selective and secure
fashion. Most data are today released in the form of microdata, reporting
information on individual respondents. The protection of microdata against
improper disclosure is therefore an issue that has become increasingly impor-
tant and will continue to be so. This has created an increasing demand on
organizations to devote resources for adequate protection of microdata.

In this chapter, we first characterize the microdata protection problem (in
contrast to macrodata protection), discussing the disclosure risks at which
microdata are exposed. We survey the main techniques that have been pro-
posed to protect microdata from improper disclosure by distinguishing them
in masking techniques (which protect data by masking or perturbing their
values), and synthetic data generation techniques (which protect data by re-
placing them with plausible, but made up, values). We conclude the chapter
with observations on measures for assessing disclosure risk and information
loss brought by the application of protection techniques.

1 Introduction

The increased power and interconnectivity of computer systems available to-
day provide the ability of storing and processing large amounts of data, re-
sulting in networked information accessible from anywhere at any time. This
information sharing and dissemination process is clearly selective. Indeed, if
on the one hand there is a need to disseminate some data, there is on the
other hand an equally strong need to protect those data that, for various
reasons, should not be disclosed. Consider, for example, the case of a private
organization making available various data regarding its business (products,
sales, and so on), but at the same time wanting to protect more sensitive
information, such as the identity of its customers or plans for future products.
As another example, government agencies, when releasing historical data, may
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require a sanitization process to “blank out” information considered sensitive,
either directly or because of the sensitive information it would allow the recip-
ient to infer. Effective information sharing and dissemination can take place
only if the data holder has some assurance that, while releasing information,
disclosure of sensitive information is not a risk.

Many techniques have been developed for protecting data released publicly
or semi-publicly from improper disclosure. These techniques depend on the
method in which such data are released. In the past, data were principally
released in tabular form (macrodata) and through statistical databases [1].
Macrodata are aggregate information (statistics) on users or organizations
usually presented as two-dimensional tables while a statistical database is
a database whose users may retrieve only aggregate statistics. Macrodata
protection techniques are based on the selective obfuscation of sensitive cells.
Techniques for protecting statistical databases follow two main approaches.
The first approach restricts the statistical queries that can be made (e.g.,
queries that identify a small/large number of tuples) or the data that can be
published. The second approach provides protection by returning to the user
a modified result. The modification can be enforced directly on the stored
data or run time in the process of computing the result to be returned to the
user.

However, many situations require today that the specific stored data them-
selves, called microdata, be released. The advantage of releasing microdata
instead of specific pre-computed statistics is an increased flexibility and avail-
ability of information for the users. To protect the anonymity of the entities,
called respondents, to which information refers, data holders often remove
or encrypt explicit identifiers such as names, addresses, and phone numbers.
De-identifying data, however, provides no guarantee of anonymity. Released
information often contains other data, such as race, birth date, sex, and ZIP
code, that can be linked to publicly available information to reidentify respon-
dents and inferring information that was not intended for disclosure [7, 20, 22].
Disclosure can be categorized as: identity disclosure, attribute disclosure, and
inferential disclosure. Identity disclosure occurs when using a combination of
identifying attributes (e.g., social security number, name, and address), an in-
dividual’s identity can be reconstructed. Attribute disclosure occurs when us-
ing a combination of indirect identifying attributes, a given attribute value (or
restricted set thereof) can be associated with an individual. Inferential disclo-
sure occurs when information can be inferred with high probability from statis-
tical properties of the released data. A first step in protecting the privacy of the
respondents (individuals, organizations, associations, business establishments,
and so on) to which the data refer, consists in releasing data that are gener-
ally “sanitized” by removing all explicit identifiers such as names, addresses,
and phone numbers. Although apparently anonymous, the de-identified data
may contain other data, such as race, birth date, sex, and ZIP code, which
uniquely or almost uniquely pertain to specific respondents and make them
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stand out from others [22]. By linking these identifying characteristics with
publicly available databases (e.g., databases maintained and released by the
Department of Motor Vehicles, Health Maintenance Organizations, insurance
companies, public offices, commercial organizations, and so on) associating
these characteristics to the respondent’s identity, the data recipients can de-
termine to which respondent some pieces of released data refer, or restrict
their uncertainty to a specific subset of individuals. This has created an in-
creasing demand to devote resources for an adequate protection of sensitive
data. As we will see, the microdata protection techniques usually applied to
protect sensitive data follow two main strategies. The first strategy consists in
reducing the information content of the data provided to the data recipients.
The second strategy consists in changing the data before their release in such
a way that the information content is maintained as much as possible.

In this chapter, we survey the main microdata disclosure protection tech-
niques. Section 2 provides a brief overview of the difference between macrodata
and microdata (this latter being the focus of this chapter). Section 3 provides
a characterization of the main microdata disclosure protection techniques.
Sections 4 and 5 describe masking techniques and synthetic data generation
techniques, respectively. Section 6 provides a discussion on possible measures
to evaluate how much the released microdata are protected and, at the same
time, informative. Finally, Sect. 7 gives our conclusions.

2 Macrodata Versus Microdata

Data are collected and shared in many different forms. A broad classifica-
tion can distinguish release in two main classes: macrodata and microdata.
Macrodata consist of data that have been aggregated (e.g., the population of
a county is an aggregate of the populations of the cities), while microdata are
the base information reporting data on single respondents. In this section, we
briefly discuss the major characteristics of macrodata versus microdata.

2.1 Macrodata

Macrodata represent estimated values of statistical characteristics concerning
a given population. A statistical characteristic is a measure that summarizes
the values of one or more properties/attributes (variables, in statistical termi-
nology) of respondents. An example of a statistical characteristic can be the
average age of people living in each continent. Macrodata can be represented
as tables, where each cell of the table is the aggregate value of a quantity over
the considered properties. For instance, Figs. 1(a)-(c) illustrates macrodata ta-
bles that contain measures computed over properties Sex (M,F) and Disease
(hypertension, obesity, chest pain, and short breath). Macrodata tables can
be classified into the following three groups (types of tables).
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Hypertension Obesity Chest Pain Short Breath Tot

M 1 2 2 1 6
F 1 2 0 2 5

Tot 2 4 2 3 11

(a) number of respondents with a disease

Hypertension Obesity Chest Pain Short Breath Tot

M 9.1 18.2 18.2 9.1 54.6
F 9.1 18.2 0 18.2 45.4

Tot 18.2 36.4 18.2 27.2 100

(b) percentage of respondents with a disease

Hypertension Obesity Chest Pain Short Breath Tot

M 2 8.5 23.5 3 37
F 3 30.5 0 5 38.5

Tot 5 39 23.5 8 75.5

(c) average number of days spent in the hospital by respondents with a disease

Fig. 1. An example of count (a), frequency (b), and magnitude (c) macrodata
tables

• Count. Each cell of the table contains the number of respondents that have
the same value over all attributes of analysis associated with the table. For
instance, the table in Fig. 1(a) contains the number of males and females
for each given disease.

• Frequency. Each cell of the table contains the percentage of respondents,
evaluated over the total population, that have the same value over all the
attributes of analysis associated with the table. For instance, the macro-
data table in Fig. 1(b) contains the percentage of males and females for
each given disease.

• Magnitude. Each cell of the table contains an aggregate value of a quantity
of interest over all attributes of analysis associated with the table. For
instance, the macrodata table in Fig. 1(c) contains the average number
of days that males and females have spent in the hospital for each given
disease.

Several macrodata protection techniques have been developed to guaran-
tee the confidentiality of the data, that is, the assurance that information
about single respondents cannot be derived from macrodata. The first step
in protecting a macrodata table consists in discovering sensitive cells, that is,
cells that can be easily associated with a specific respondent. The strategies
for discovering and consequently protecting sensitive cells vary depending on
the type of macrodata (count and frequency tables versus magnitude tables).
For count and frequency tables, the most important strategy used to detect
sensitive cells is the threshold rule, according to which a cell is sensitive if the
number of respondents is less than a given threshold. As an example, consider
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the macrodata table in Fig. 1(a) and suppose that the threshold is 2. The
first cell and the last cell in the first tuple, and the first cell and the third cell
in the second tuple are sensitive because their value is below the threshold.
Some of the most important strategies for protecting sensitive cells are cell
suppression, rounding , roll up categories, sampling, and the controlled tabular
adjustment function (CTA) [9, 22, 28]. Cell suppression is a well-known tech-
nique that consists in protecting sensitive cells by removing their values. These
suppressions are called primary suppressions. However, a problem can arise
when also the marginal totals of the table are published. In this case, even if
it is not possible to exactly recalculate the suppressed cell, it can be possible
to calculate an interval that contains the suppressed cell. If the size of such an
interval is small, then the suppressed cell can be estimated rather precisely.
To block such inferences, additional cells may need to be suppressed (sec-
ondary suppression) to guarantee that the intervals are sufficiently large. To
minimize the number of cells to be suppressed, linear programming techniques
have been proposed. Such techniques are suitable for small tables, although
they are usually not applicable to more complex structures [6, 8, 13, 22, 28].
Rounding consists in choosing a base number and in modifying the original
value of sensitive cells by rounding it up or down to a near multiple of the base
number. Roll up categories reduces the size of the table: instead of releasing
a table with N tuples and M columns, a less detailed table (e.g., a table with
N − 1 tuples and M − 1 columns) is released. Sampling means that the table
is obtained with a sample survey rather than a census. The CTA technique is
based on the selective adjustment of cell values. In other words, the value of
sensitive cells is replaced by a safe value, that is, a value that satisfies the rule
chosen to detect sensitive cells, and then uses linear programming to adjust
the values of the nonsensitive cells to restore the additivity property.

For magnitude macrodata, there are many rules that can be used to detect
sensitive cells. For instance, the (n,k)-rule states that a cell is sensitive if less
than n respondents contribute to more than k% of the total cell value. As
an example, consider the macrodata table in Fig. 1(c) and suppose to apply
the (1,50)-rule. A cell is therefore sensitive if one respondent contributes to
more than 50% of its value. The first cell and the last cell in the first tuple
as well as the first cell in the second tuple are sensitive because, according to
the macrodata table in Fig. 1(a), there is only one male and one female with
hypertension and one male with short breath and therefore their contribution
to these cells is 100%. Other similar rules are the p-percentage rule and the pq-
rule [22]. The p-percentage states that a cell is sensitive if the total value t of
the cell minus the largest reported value v1 minus the second largest reported
value v2 is less than (p/100)·v1. Intuitively, this rule means that a user can
estimate the reported value of some respondent too accurately. In the pq-rule,
q represents how accurately respondents can estimate another respondent’s
value (p < q < 100). Note that some of the techniques used for protecting
count and frequency tables can also be used for protecting magnitude tables
(e.g., cell suppression, roll up categories, and CTA).
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SSN Name Race DoB Sex ZIP MarStat Disease DH Chol Temp

Asian 64/09/27 F 94139 Divorced Hypertension 3 260 35.2
Asian 64/09/30 F 94139 Divorced Obesity 1 170 37.7
Asian 64/04/18 M 94139 Married Chest pain 40 200 38.1
Asian 64/04/15 M 94139 Married Obesity 7 280 37.4
Black 63/03/13 M 94138 Married Hypertension 2 190 35.3
Black 63/03/18 M 94138 Married Short breath 3 185 38.2
Black 64/09/13 F 94141 Married Short breath 5 200 36.5
Black 64/09/07 F 94141 Married Obesity 60 290 39.8
White 61/05/14 M 94138 Single Chest pain 7 170 37.6
White 61/05/08 M 94138 Single Obesity 10 300 40.1
White 61/09/15 F 94142 Widow Short breath 5 200 36.9

Fig. 2. An example of de-identified medical microdata table

2.2 Microdata

Microdata contain a set of attributes relating to single respondents in a sam-
ple or in a population. Microdata can be represented as tables composed of
tuples (records) with values from a set of attributes. Figure 2 illustrates an
example of microdata table with 11 tuples and with attributes SSN (social
security number), Name, Race, DoB (date of birth), Sex, ZIP code, MarStat
(marital status), Disease, DH (days in hospital), Chol (cholesterol), and Temp
(temperature).1 In the remainder of this chapter, we refer our examples to
this microdata table.

The attributes in an initial microdata table are usually classified as follows.

• Identifiers. Attributes that uniquely identify a microdata respondent. For
instance, attribute SSN uniquely identifies the person with which is asso-
ciated.

• Quasi-identifiers. Attributes that, in combination, can be linked with ex-
ternal information to reidentify, all or some of the respondents to whom
information refers or reduce the uncertainty over their identities. For in-
stance, attributes DoB, ZIP, and Sex are quasi-identifiers: they can be
linked to external public information to reveal the name and address of
the corresponding respondents or to reduce the uncertainty to a specific
set of respondents.

• Confidential attributes. Attributes of the microdata table that contain sen-
sitive information. For instance, attribute Disease can be considered sen-
sitive.

1 Note that in this table data have been de-identified by suppressing names and
social security numbers so not to directly disclose the identities of the respondents
to whom the data refer (see Sect. 3 for more details).
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• Non confidential attributes. Attributes that the respondents do not con-
sider sensitive and whose release do not cause disclosure. For instance,
attribute Race can be considered non confidential.

In general, protecting microdata from reidentification of respondents is a
more difficult task than protecting macrodata from disclosure because each
tuple of the microdata table contains actual data of single respondents. In the
remainder of this chapter, we will focus on the microdata disclosure protection
techniques (data protection techniques, for short).

3 Classification of Microdata Disclosure Protection
Techniques

Disclosure control of microdata is an important practical issue in the pri-
vate as well as in the public and governmental sectors. Microdata protection
techniques have two apparently contrasting objectives. On the one side, they
should avoid reidentification that happens whenever the information of a re-
spondent appearing in a microdata table is identified, that is, is associated
with the identity of the corresponding respondent. On the other side, the ap-
plication of such techniques should preserve the key statistical properties of the
original data that data recipients have indicated as important. More precisely,
given a microdata table T , a data protection technique should transform this
original table into another microdata table T ′ in a way that: i) the risk that a
malicious user can use T ′ to determine confidential information or to identify
a respondent should be low; ii) the statistical analysis over T and over T ′

should produce similar results.
In general, the following main factors contribute to disclosure risks [22].

• The existence of high visibility tuples (i.e., tuples with unique character-
istics such as a high income).

• The possibility of matching the microdata table with external information.
For instance, suppose that a public voter list includes names, social security
numbers, sex, birth dates, and addresses. Attributes DoB, ZIP, and Sex in
Fig. 2 can then be linked to the voter list to reveal the names and social
security numbers.

• The existence of a high number of common attributes between the micro-
data table and the external sources, which may increase the possibility of
linking or make it more precise.

By contrast, the main factors that decrease the disclosure risks can be
summarized as follows.

• A microdata table often contains a subset of the whole population. This
implies that the information of a specific respondent, which a malicious
user may want to know, may not be included in the microdata table.
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Fig. 3. Classification of microdata protection techniques (MPTs)

• The information specified in microdata tables released to the public are
not always up-to-date (often at least one or two-year old). This means
that the values of the attributes of the corresponding respondents may
have been changed in the meanwhile. In addition, the age of the external
sources of information used for linking may be different from the age of
the information contained in the microdata table.

• A microdata table and the external sources of information naturally con-
tain noise that decreases the ability to link the information.

• A microdata table and the external sources of information can contain data
expressed in different forms thus decreasing the ability to link information.

In general, to limit the disclosure risk of a microdata table it is first neces-
sary to suppress explicit and implicit identifiers (e.g., SSN and Name in Fig. 2).
This process is also known as de-identification. Note that de-identification
does not necessarily make a tuple anonymous [44, 47], as it may be possible
to reidentify the tuple using external information. For instance, consider the
microdata in Fig. 2, where all the identifiers have been removed and sup-
pose to link the information in this table with the voter list that is a public
non-anonymous dataset. The microdata table contains, for the last tuple, a
unique combination of values for attributes DoB, Sex, ZIP, and MarStat. This
combination, if unique in the voter list as well, uniquely identifies the corre-
sponding tuple in the microdata table as pertaining to a specific respondent.
In addition, it is necessary to limit geographical details as well as the number
of attributes in microdata tables to reduce the probability of reidentification
of respondents.

Several microdata disclosure protection techniques have been proposed
in the literature. Basically, these techniques are based on the principle that
reidentification can be counteracted by reducing the amount of released infor-
mation, masking the data (e.g., by not releasing or by perturbing their values),
or by releasing plausible but made up values instead of the real ones. Accord-
ing to this principle, the microdata protection techniques can be classified
into two main categories: masking techniques, and synthetic data generation
techniques (see Fig. 3).
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• Masking techniques. The original data are transformed to produce new
data that are valid for statistical analysis and such that they preserve the
confidentiality of respondents. Masking techniques can be classified as:
– non-perturbative, the original data are not modified, but some data are

suppressed and/or some details are removed;
– perturbative, the original data are modified.

• Synthetic data generation techniques. The original set of tuples in a mi-
crodata table is replaced with a new set of tuples generated in such a way
to preserve the key statistical properties of the original data. The genera-
tion process is usually based on a statistical model and the key statistical
properties that are not included in the model will not be necessarily re-
spected by the synthetic data. Since the released microdata table contains
synthetic data, the reidentification risks is reduced. Note that the released
microdata table can be entirely synthetic (i.e., fully synthetic) or mixed
with the original data (i.e., partially synthetic).

Another important feature of microdata protection techniques is that they
can operate on different data types. In particular, data types can be catego-
rized as follows.

• Continuous. An attribute is said to be continuous if it is numerical and
arithmetic operations are defined on it. For instance, attributes date of
birth and temperature are continuous attributes.

• Categorical. An attribute is said to be categorical if it can assume a limited
and specified set of values and arithmetic operations do not have sense
on it. Note that an order relationship can be defined over a categorical
attribute. For instance, attributes marital status and race are categorical
attributes.

In the following, we describe the principal microdata protection techniques
indicating also whether they are applicable to continuous data, categorical
data, or both.

4 Masking Techniques

We present some of the most popular non-perturbative and perturbative mask-
ing techniques. Figure 4 and Fig. 5 lists the techniques indicating whether they
are applicable (yes) or not (no) to continuous or categorical data types.

4.1 Non-Perturbative Techniques

Non-perturbative techniques produce protected microdata by eliminating de-
tails from the original microdata. We discuss these techniques illustrating as
examples their application to the protection of the table in Fig. 2. The result
of the application of the techniques is illustrated in Fig. 7.
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Technique Continuous Categorical

Sampling yes yes
Local suppression yes yes
Global recoding yes yes
Top-coding yes yes
Bottom-coding yes yes
Generalization yes yes

Fig. 4. Applicability of non-perturbative masking techniques to the different data
types

Technique Continuous Categorical

Resampling yes no
Lossy compression yes no
Rounding yes no
PRAM no yes
MASSC no yes
Random noise yes yes
Swapping yes yes
Rank swapping yes yes
Micro-aggregation yes yes

Fig. 5. Applicability of perturbative masking techniques to the different data types

Sampling [22]

The protected microdata table is obtained as a sample of the original micro-
data table. In other words, the protected microdata table includes only the
data (tuples) of a sample of the whole population. Since there is an uncer-
tainty about whether or not a specific respondent is in the sample, the risk
of reidentification in the released microdata decreases. For instance, we can
decide to publish only the even tuples of the original microdata table. This
technique operates on categorical attributes only.

Local Suppression [5, 44]

It suppresses the value of an attribute (i.e., it i replaces it with a missing value)
thus limiting the possibilities of analysis. Basically, this technique blanks out
some attribute values (sensitive cells) that are likely to contribute significantly
to the disclosure risk of the tuple involved. For instance, we can suppress
attributes ZIP and MarStat in the last tuple.

Global Recoding (or Recoding into Intervals) [17, 18, 49]

The domain of an attribute is partitioned into disjoint intervals, usually of
the same width, and each interval is associated with a label. The protected
microdata table is obtained by replacing the values of the attribute with the
label associated with the corresponding interval. Intuitively, global recoding
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decreases the details in the microdata table and therefore it should reduce
the risk of reidentification. For instance, suppose that the values of attribute
Temp are partitioned into three intervals: [35.0,36.9] with label no fever (nf);
[37.0,38.9] with label fever (f); and [39.0,40.9] with label high fever (hf). The
value in the first tuple is then replaced by label “nf”; the second, third, and
fourth value are replaced by label “f”; and so on. Note that if the original
domain of the considered attribute is continuous, it becomes discrete after
the application of this technique.

Two particular global recoding techniques are the top-coding and the
bottom-coding described in the following.

Top-Coding [17, 18]

It is based on the definition of an upper limit, called top-code, for each at-
tribute to be protected. Any value greater than this value is replaced with the
top-code. For instance, consider attribute DH and suppose that the top-code
is 30. In this case, rather than publishing the third and eighth tuple showing
a number of days in a hospital equal to 40 and 60, respectively, these two tu-
ples may only show that the number of days is “> 30”. The idea is that long
periods in the hospital can be easily associated with specific respondents. Top-
coding can be applied to categorical attributes that can be linearly ordered
as well as to continuous attributes.

Bottom-Coding [17, 18]

It is similar to top-coding. It consists in defining a lower limit, called bottom-
code, for each attribute to be protected. Therefore, any value lower than this
limit is not published and is replaced with the bottom-code. For instance,
consider attribute Chol and suppose that the bottom-code is 195. The sec-
ond, fifth, sixth, and ninth tuples are modified in such a way that the value
published for attribute Chol is “< 195”. Basically, since low cholesterol values
for people having obesity or hypertension problems are uncommon, they have
to be obfuscated to avoid a possible reidentification. Like for top-coding, this
technique can be applied to categorical attributes that can be linearly ordered
as well as to continuous attributes.

Generalization [44]

It consists in representing the values of a given attribute by using more general
values. This technique is based on the definition of a generalization hierarchy ,
where the most general value is at the root of the hierarchy and the leaves
correspond to the most specific values. A generalization process therefore pro-
ceeds by replacing the values represented by the leaf nodes with one of their
ancestor nodes at a higher level. Different generalized microdata tables can
be built, depending on the number of generalization steps applied on the con-
sidered attribute. For instance, consider attribute ZIP and the corresponding
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Fig. 6. Generalization hierarchy for attribute ZIP

SSN Name Race DoB Sex ZIP MarStat Disease DH Chol Temp

Asian 64/09/27 F 9413* Divorced Hypertension 3 260 nf
Asian 64/09/30 F 9413* Divorced Obesity 1 <195 f
Asian 64/04/18 M 9413* Married Chest pain >30 200 f
Asian 64/04/15 M 9413* Married Obesity 7 280 f
Black 63/03/13 M 9413* Married Hypertension 2 <195 nf
Black 63/03/18 M 9413* Married Short breath 3 <195 f
Black 64/09/13 F 9414* Married Short breath 5 200 nf
Black 64/09/07 F 9414* Married Obesity >30 290 hf
White 61/05/14 M 9413* Single Chest pain 7 <195 f
White 61/05/08 M 9413* Single Obesity 10 300 hf
White 61/09/15 F Short breath 5 200 nf

Fig. 7. Microdata table of Fig. 2 obtained by applying the non-perturbative tech-
niques listed in Fig. 4

generalization hierarchy in Fig. 6. Each generalization step consists in sup-
pressing the least significant digit in the ZIP code. In this case, if we choose
to apply one generalization step, values 94138, 94139, 94141, and 94142 are
generalized to 9413* and 9414*. This technique is applicable on both contin-
uous and categorical attributes. Note also that the global recoding technique
can be seen as a particular case of generalization.

Figure 7 contains the protected microdata table obtained from the microdata
table of Fig. 2 by applying, as discussed, the top-coding technique on attribute
DH, the bottom-coding technique on attribute Chol, the global recoding tech-
nique on attribute Temp, the local suppression technique on the last tuple, and
one generalization step on attribute ZIP.

4.2 Perturbative Techniques

With perturbative techniques, the microdata table is modified for publication.
Modifications can make unique combinations of values in the original table
disappear as well as introduce new combinations.
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S1 S2 S3 S4

260 220 170 210
170 280 290 190
200 210 220 230
280 310 270 200
190 290 185 185
185 180 300 260
200 285 250 220
290 265 260 290
170 150 190 230
300 270 270 310
200 298 200 170

(a) Initial samples

S1 S2 S3 S4 Average

170 150 170 170 165
170 180 185 185 180
185 190 190 190 188.75
190 210 200 200 200
200 220 220 210 212.5
200 265 250 220 233.75
200 270 260 230 240
260 280 270 230 260
280 285 270 260 273.75
290 290 290 290 290
300 310 300 310 305

(b) Ordered samples

Original value (S1) Released value

260 260
170 165
200 212.5
280 273.75
190 200
185 188.75
200 233.75
290 290
170 180
300 305
200 240

(c) Released data

Fig. 8. An example of resampling over attribute Chol

Resampling [14, 17]

This technique consists in replacing the values of a sensitive continuous at-
tribute with the average value computed over a given number of samples taken
from the original population. More precisely, let N be the number of tuples
in a microdata table and S1, . . . , St be t samples of size N . Each sample is
independently ranked (using the same ranking criterion for all samples) and
the average of the j-th ranked values in S1, . . . , St is computed. The obtained
averages are then re-ordered by taking into consideration the order of original
values; the first average value then replaces the first original value, the second
average replaces the second original value, and so on. For instance, suppose
that attribute Chol is protected by applying this technique and that we choose
t = 4 samples. Figure 8 illustrates the different steps in protecting attribute
Chol. Note that the first sample (column S1) corresponds to the Chol values
in the original microdata table.



14 V. Ciriani, S. De Capitani di Vimercati, S. Foresti, and P. Samarati

Lossy Compression [16, 17]

It is a recent technique that exploits image compression algorithms. A contin-
uous microdata table is interpreted as an image, and a lossy compression algo-
rithm (e.g., jpeg) is applied on it. The result is the protected microdata table.
Depending on the lossy compression algorithm used, it is necessary to detect
an appropriate correspondence between attribute ranges and color scales. This
technique can only be applied on continuous data and the compression rate
coincides with the obfuscation parameter: the higher the compression rate,
the more protected the data.

Rounding [13]

It is similar to the homonymous technique used for protecting macrodata
and is applicable only on continuous attributes. It replaces the original values
of the considered attribute with rounded values. Rounded values are chosen
among a set of rounding points pi each of which defines a rounding set . As
an example, the rounding points could be chosen as multiples of a base value
b, that is, pi+1 − pi = b, and the rounding sets could be defined as [pi −
b/2, pi + b/2), i = 2. . . r − 1, [0, p1 + b/2), and [pr − b/2, Xmax] (Xmax is the
largest possible value for attribute X) for p1 and pr, respectively. An original
value v of X is then replaced by the rounding point corresponding to the
rounding set where v lies. For instance, consider attribute Temp, b = 1, and
the rounding points 36, 37, 38, and 39. The corresponding rounding sets are:
[0, 36.5); [36.5, 37.5); [37.5, 38.5); and [38.5, 40.1], respectively. The value 35.2
in the first tuple is replaced by 36, the second value 37.7 is replaced by 38, and
so on. Note that this rounding technique is usually performed on one attribute
at a time (univariate rounding); although multivariate rounding operating on
whole tuples is also possible [53].

PRAM (Post RAndomized Method) [18, 29, 35]

It consists in replacing the categorical value for one or more attributes in each
tuple with another categorical value based on some probability mechanism.
For instance, a Markov matrix P = [pij ] (i.e., a real n × n matrix, where all
elements pij are greater than or equal to 0 and

∑n
j=1 pij = 1, i = 1, . . . , n) can

contain the probability to replace categories in the original microdata table
with other categories. In other words, pij is the probability that category
ci in the original microdata is substituted by category cj in the protected
microdata.
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MASSC (Micro-Agglomeration, Substitution, Sub-sampling
and Calibration) [46]

It is a technique that consists of four steps that work as follows.

• Micro-agglomeration. Tuples in the original microdata table are parti-
tioned into different groups characterized by a similar risk of disclosure.
Each group is formed on the basis of their quasi-identifier. Intuitively, tu-
ples with rare combinations of values for quasi-identifier attributes are at
a higher risk and should be in the same group.

• Substitution. Original data are perturbed by following an optimal proba-
bilistic strategy.

• Sub-sampling. Some cells or whole tuples are suppressed according to an
optimal probabilistic subsampling strategy.

• Optimal calibration. The sampling weights, used in the previous step, are
calibrated to preserve a certain statistical property. In particular, this cal-
ibration involves attributes that are to be used by data recipients for sur-
veys.

This technique has been originally proposed for reducing the disclosure
risk due to the linkage of categorical attributes with external sources. It is
therefore not suitable for tables that contain continuous attributes.

Random Noise [22]

It perturbs a sensitive attribute by adding or by multiplying it with a random
variable with a given distribution. The additive noise [3, 17] is more frequently
used than multiplicative noise and can be formally expressed as follows. Let Xj

be the j-th column of the original microdata table corresponding to a sensitive
attribute and suppose that there are N tuples. Each value xij , i = 1, . . . , N ,
is replaced by xij + εij , where εj is a vector of normally distributed errors
drawn from a random variable with mean equals to zero and, in general,
with a variance that is proportional to those of the original attributes (i.e.,
εj ≈ N(0, σ2

εj
) and σ2

εj
= α ·σ2

Xj
, where α is the proportional coefficient). This

method, also called uncorrelated additive noise, preserves the mean and the co-
variance of the original data while variances and correlation coefficients are not
preserved. Correlated additive noise is another technique that preserves the
mean and can allow preservation of correlation coefficients. The difference with
the previous method is that the co-variance matrix of the errors is proportional
to the co-variance matrix of the original data.

In general, masking by correlated additive noise produces masked data
with higher analytical validity than masking by uncorrelated additive noise.
However, additive noise is seldomly used by itself because of the low level
of protection it provides [50, 51]. Rather, it is often combined with linear
(for continuous attributes [34]) or non linear (for categorical attributes [48])
transformations. This means that the microdata obtained after the application
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Original value Error Released value

3 +2 5
1 +1 2
40 −10 30
7 +3 10
2 +5 7
3 +8 11
5 +4 9
60 −11 49
7 −2 5
10 −3 7
5 +3 8

Fig. 9. An example of uncorrelated additive noise over attribute DH

of the additive noise technique are then linearly (or non linearly) transformed
before release. Such an additional transformation must preserve mean and co-
variance. Note that the parameters used in the linear transformation should
not be revealed because their knowledge allows the inversion of the function
used: the released microdata would have the same degree of protection as
if they were protected only by additive noise. The additive noise technique
is suitable to protect continuous data since no assumption on the possible
values of sensitive attributes can be made, and because no exact matching
with external sources of information is possible. Additive noise is usually not
suitable to protect categorical data.

To illustrate, consider attribute DH and suppose to protect such an at-
tribute by applying uncorrelated additive noise. We first need to compute the
mean and the variance of the original attribute: σ2

DH = 328.36 and µDH = 13.
We then set α to 0.1 and obtain that σ2

εj
∼= 33. We now draw the error vector

(ε) from the normal distribution N = (0, 33), that is, a distribution with mean
equals to zero and variance equals to 33. Figure 9 illustrates the original val-
ues, the error, and the released values. Note that the mean of the released data
is equal to the mean of the original one, while the variance is not preserved.

Swapping [10, 13, 33]

It consists in modifying a subset of the tuples in a microdata table by swapping
the values of a set of sensitive attributes, called swapped attributes, between
selected pairs of tuples (the pairs are selected according to a well-defined cri-
teria). Intuitively, this technique reduces the risk of reidentification because
it introduces uncertainty about the true value of a respondent’s data. As an
example, suppose that the swapped attributes are Disease, DH, Chol, and
Temp and that the selected pairs of tuples must have a matching on attributes
Sex and MarStat. Figure 10 illustrates the table obtained by swapping tuple
t3 with t5, t7 with t8, and t9 with t10 (the swapped values are reported in
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SSN Name Race DoB Sex ZIP MarStat Disease DH Chol Temp

Asian 64/09/27 F 94139 Divorced Hypertension 3 260 35.2
Asian 64/09/30 F 94139 Divorced Obesity 1 170 37.7
Asian 64/04/18 M 94139 Married Hypertension 2 190 35.3
Asian 64/04/15 M 94139 Married Obesity 7 280 37.4
Black 63/03/13 M 94138 Married Chest pain 40 200 38.1
Black 63/03/18 M 94138 Married Short breath 3 185 38.2
Black 64/09/13 F 94141 Married Obesity 60 290 39.8
Black 64/09/07 F 94141 Married Short breath 5 200 36.5
White 61/05/14 M 94138 Single Obesity 10 300 40.1
White 61/05/08 M 94138 Single Chest pain 7 170 37.6
White 61/09/15 F 94142 Widow Short breath 5 200 36.9

Fig. 10. Microdata table of Fig. 2 protected through swapping over attributes
Disease, DH, Chol, and Temp

italic). Although this technique is easy to apply, in general it has the disad-
vantage of not preserving statistical properties on subdomains. The original
technique has been presented for categorical attributes only. However, in [42]
data swapping has been extended to continuous data.

Rank Swapping [17, 30, 55]

It is a variation of swapping that can be applied to continuous and categorical
attributes with an order relationship. Basically, the values of an attribute X
are ranked in ascending order, and each value is swapped with another value
in such a way that the swapped tuples are guaranteed to be within a specified
rank-distance of one another (i.e., the swapped values should be in a range
of p% of the total range). For instance, suppose to apply this technique on
attribute Temp and assume p = 10%. The range of this attribute is [35.2,40.1]
and therefore the difference between the swapped values should be equal to o
lesser than ((40.1−35.2)·10)/100 = 0.49. We can then, for instance, swap the
value in the first tuple with the value in the fifth tuple; the value in the second
tuple with the value in the fourth tuple; and so on. Figure 11 illustrates the
resulting microdata table.

Micro-Aggregation (or Blurring) [12, 17]

It consists in grouping individual tuples into small aggregates of a fixed di-
mension k: the average over each aggregate is published instead of individual
values. Groups are formed by using maximal similarity criteria. Although dif-
ferent functions can be defined to measure the similarity, it can be difficult to
find an optimal grouping solution [39] and recently some heuristic algorithms
have been proposed to maximize similarity [12].

There are different variations of micro-aggregation. For instance, the av-
erage can substitute the original value only for a tuple in the group or for
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SSN Name Race DoB Sex ZIP MarStat Disease DH Chol Temp

Asian 64/09/27 F 94139 Divorced Hypertension 3 225 35.3
Asian 64/09/30 F 94139 Divorced Obesity 1 260 37.4
Asian 64/04/18 M 94139 Married Chest pain 40 185 38.2
Asian 64/04/15 M 94139 Married Obesity 7 260 37.7
Black 63/03/13 M 94138 Married Hypertension 2 225 35.2
Black 63/03/18 M 94138 Married Short breath 3 195 38.1
Black 64/09/13 F 94141 Married Short breath 5 195 36.9
Black 64/09/07 F 94141 Married Obesity 60 260 40.1
White 61/05/14 M 94138 Single Chest pain 7 185 37.6
White 61/05/08 M 94138 Single Obesity 10 260 39.8
White 61/09/15 F 94142 Widow Short breath 5 195 36.5

Fig. 11. Microdata table of Fig. 2 protected through rank-swapping over attribute
Temp and micro-aggregation over attribute Chol

all of them; different attributes can be protected through micro-aggregation
using the same or different grouping; and the group size may be fixed or vari-
able with a fixed minimum size. As an example, consider attribute Chol, and
suppose to group tuples according to their value over attribute Disease and
that the size of each group is variable (while the minimum size is set to 2).
The groups are: {t1, t5}, {t2, t4, t8, t10}, {t3, t9}, and {t6, t7, t11}. Figure 11
illustrates the resulting table. Note that micro-aggregation was first proposed
only to protect continuous attributes, but recently some variants for categor-
ical data have been studied. These solutions are based on existing clustering
and aggregation definitions such as the c-means [52].

5 Synthetic Data Generation Techniques

The generation of synthetic data is an alternative option for protecting mi-
crodata. The basic principle on which such techniques are based is that since
the statistical content of the data is not related with the information provided
by each respondent, a model well representing the data could in principle re-
place the data themselves [4]. An important requirement for the generation
of synthetic data, which makes the generation process a complicate issue, is
that the synthetic and original data should present the same quality of sta-
tistical analysis. The main advantage of this class of techniques is that the
released synthetic data are not referred to any respondent and therefore their
release cannot lead to reidentification. These techniques allow the data holders
to pose their attention on the quality of the released data instead of posing
attention on the reidentification problem.

In the remainder of this section we describe the main synthetic data gener-
ation techniques. Figure 12 and Fig. 13 lists the techniques indicating whether
they are applicable (yes) or not (no) to continuous or categorical data types.
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Technique Continuous Categorical

Bootstrap yes no
Cholesky decomposition yes no
Multiple imputation yes yes
Maximum entropy yes yes
Latin Hypercube Sampling yes yes

Fig. 12. Applicability of fully synthetic techniques to the different data types

Technique Continuous Categorical

IPSO yes no
Hybrid masking yes no
Random response no yes
Blank and impute yes yes
SMIKe yes yes
Multiply imputed partially synthetic dataset yes yes

Fig. 13. Applicability of partially synthetic techniques to the different data types

The techniques are divided into two categories: fully synthetic techniques and
partially synthetic techniques. The first category contains techniques that gen-
erate a completely new set of data, while the techniques in the second category
merge the original data with synthetic data.

5.1 Fully Synthetic Techniques

We describe some significant fully synthetic generation techniques that release
only synthetic data.

Bootstrap [24]

Given a microdata table with p attributes, this technique first computes the
corresponding p-variate cumulative distribution function F . A p-variate cumu-
lative distribution function is a function that completely describes the proba-
bility distribution of a set of p real-valued random variables (e.g., the Gaussian
function). The parameters that characterize F can be determined by using
the bootstrap technique. Basically, bootstrap estimates each parameter of the
population by using a set of synthetic samples, obtained from the original
sample through a resampling with replacement. Once the parameters have
been estimated, the corresponding function F on the population is modified
to obtain a similar function F ′. This new function is then sampled to obtain
a set of synthetic data. The modifications on function F should however pre-
serve the statistical properties of the original data. Note that this technique
can be applied only on continuous attributes because it is not possible to
compute function F on categorical data.
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Cholesky Decomposition [38]

This technique, which operates only on continuous attributes and in time
linear in the sample size, preserves mean, variance, and co-variance of the
original data and is based on the Cholesky matrix decomposition method.
Given a microdata table T , that can be represented as a matrix of N ×
M elements, where rows are tuples and columns are attributes, it is first
necessary to compute the co-variance matrix C over T . The next step consists
in generating a random matrix, denoted as R, of size N ×M , such that the
identity matrix I is the co-variance matrix. Then, the Cholesky decomposition
U of C is determined, where C = U t × U . The synthetic microdata matrix is
then computed as R ·U , and it has exactly the same co-variance matrix as T .

Multiple Imputation [41, 43]

Given a microdata table with N tuples (i.e., a sample of N respondents)
obtained from a much larger population of M individuals, attributes in the
table are partitioned into three sets: a set A of background attributes (e.g.,
age, address), a set B of non confidential attributes, and a set C of confidential
attributes. The values of attributes in A are known for the whole population
while the values of attributes in B and C are known for the sample only. The
multiple imputation method consists of the following three steps.

• Starting from the sample, a multiple imputed population of size M is con-
structed.2 Such a population contains the N tuples of the microdata table
plus p matrices of (B,C) data (p is the multiply-imputed parameter) for
the M −N individuals that do not belong to the sample.

• Starting from the known values in A, a set of couples (B,C) is predicted.
In this way, the whole population has a value (original or imputed) for A,
B, and C. Couples (B,C) are generated using a prediction model.

• A sample of N tuples on the multiply-imputed population is then drawn.
This step is repeated p times to create p replicates of (B,C) values. As
a result, we obtain p multiply-imputed synthetic datasets. To avoid the
inclusion of the original sample (i.e., the N tuples in the microdata table),
the samples can be drawn from the multiply-imputed population excluding
the N original tuples from it.

This technique operates on both continuous and categorical attributes.

2 Imputation is the practice of filling in missing data with plausible values. Multiple
imputation means that the missing values are replaced with p simulated values,
where p usually varies between 3 and 10.
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Maximum Entropy [4, 40]

It is based on the consideration that by knowing the exact distribution of
actual data, it is possible to generate an optimal sample by correctly tuning
the parameters of the distribution function and randomly drawing tuples from
it. However, the main problem is that since the exact distribution function
is not known, it has to be estimated on the basis of the original sample.
Therefore, we need to detect the family of distribution functions to which the
original data distribution belongs. Then, a specific function is chosen from the
family as the one having the maximum entropy distribution (such a function
exists and is unique). Entropy is defined as the measure of data conformity
to a set of constraints. The main task for the data holder is to find out a
suitable set of constraints. Typically, constraints are defined on the value of
certain statistics, that is, the release synthetic data preserve on average some
selected sample characteristics. This technique operates on both continuous
and categorical attributes.

Latin Hypercube Sampling (LHS) [25, 32]

It produces a synthetic microdata sample reproducing the univariate (i.e., re-
lated to a single attribute) statistics of interest, which usually are mean and
variance of the values of an attribute. This technique can be applied to a
single attribute or to a set of uncorrelated attributes. Recent refinements of
this technique reproduce, on synthetic data, the rank correlation structure of
the original sample. To this aim, if the sample is composed of a number of
attributes or if there are different observations on the same attributes for the
same sample of respondents, it is necessary to iteratively refine the rank cor-
relation matrix used to minimize the difference between the rank correlation
of the original and the synthetic data. If the rank correlation matrix is well
tuned, the rank correlation between subsets of attributes is better preserved.
The main drawback is that it is computationally expensive to produce the
synthetic sample and such a complexity depends on the number of statistics
to preserve in the synthetic sample and on their value. The technique can be
used on both continuous and categorical data.

5.2 Partially Synthetic Techniques

Since it may be difficult to generate plausible synthetic data for all attributes,
techniques that generate partially synthetic datasets have also been consid-
ered. Basically, these techniques produce a mix of synthetic and original val-
ues. We now describe the main partially synthetic techniques.
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IPSO (Information Preserving Statistical Obfuscation) [4]

It is based on the distinction of two categories of attributes: public data Y
and specific survey data X. It releases a subset of the original sample after
a perturbation operation performed only over public attributes, thus obtain-
ing a new set of values Y ′. Since the main purpose of this technique is to
release as many values as possible collected in the specific survey, preventing
reidentification, only some information in Y is released to preserve the most
important statistics S on these data. More precisely, set Y ′ is generated in
such a way to preserve X unaltered and to maintain the set S of statistics over
Y . At the end, the new sample (X, Y ′) is released. This technique operates
on continuous attributes only.

Hybrid Masking [11]

This class of techniques combines original data with synthetic data. In par-
ticular, after the generation of a simulated sample, each tuple in the original
microdata table is matched with a tuple in the simulated one. Then, all the
paired tuples are linearly combined, by adding or multiplying their values,
and the values obtained are published. These techniques have the advantage
of preserving data analytical validity. They operate on continuous attributes
only.

Random Response [2, 13]

It is used in situations where sensitive data are collected from a population
and there is the possibility that individuals do not respond truthfully. For
instance, if an individual has to respond to the question: “Have you ever
taken drugs for depression?,” the individual may lie and may respond “NO”.
To avoid this problem, a set of questions is prepared, where some of them are
sensitive and some others are not. An individual is requested to respond to
one of these questions without indicating what question has been chosen. In
this way, if the distribution of the answers to the non sensitive questions is
known, the percentage of positive responses on the sensitive question can be
deducted from the number of positive answers. Since this technique can only
be applied if the distribution of answers is known and if the questions have
the same set of possible answers, it is usually adopted for boolean attributes
only.

Blank and Impute [22]

It is a technique also used for protecting macrodata and consists in randomly
choosing a set of tuples, either sensitive or not, deleting their original values
for a given pre-determined set of attributes, and replacing them with a value
computed using a suitable function (e.g., the average). For instance, suppose
we choose to blank and impute attributes DH, Chol, and Temp, and that the
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SSN Name Race DoB Sex ZIP MarStat Disease DH Chol Temp

Asian 64/09/27 F 94139 Divorced Hypertension 3 260 35.2
Asian 64/09/30 F 94139 Divorced Obesity 1 170 37.7
Asian 64/04/18 M 94139 Married Chest pain 24 228 37.7
Asian 64/04/15 M 94139 Married Obesity 7 280 37.4
Black 63/03/13 M 94138 Married Hypertension 2 216 36.7
Black 63/03/18 M 94138 Married Short breath 3 185 38.2
Black 64/09/13 F 94141 Married Short breath 5 200 36.5
Black 64/09/07 F 94141 Married Obesity 20 216 37.2
White 61/05/14 M 94138 Single Chest pain 7 170 37.6
White 61/05/08 M 94138 Single Obesity 10 300 40.1
White 61/09/15 F 94142 Widow Short breath 4 223 37.2

Fig. 14. Microdata table of Fig. 2 protected through blank and impute over at-
tributes DH, Chol, and Temp

randomly selected tuples are the third, the fifth, the eighth, and the eleventh.
The new values for attribute DH are computed as the average over patients
having the same health problem; the new values for Chol are computed as the
average over patients of the same race; the new values for Temp are computed
as the average over patients that were born in the same month and year. Fig-
ure 14 illustrates the resulting microdata table; the new values are reported in
italic. This technique operates on both continuous and categorical attributes.

SMIKe (Selective Multiple Imputation of Keys) [36]

It releases multiple sets of modified data rather than just one set. Let X
be the set of quasi-identifiers in the original microdata table, and Y be the
set of the other attributes (either sensitive or not). First, it is necessary to
introduce the concept of sensitive case. If the number of tuples with a specific
combination on attributes X is lesser that a predefined sensitive threshold,
that combination is a sensitive case. SMIKe executes the following four steps
before data publication.

• Each sensitive tuple t is associated with the non sensitive tuples closest to
it, where the distance is computed on the basis of the values of attributes
in Y . These tuples are inserted in the i-th mixing set Mi, where i is the
i-th sensitive case of tuple t. The mixing sets for different sensitive cases
may overlap.

• Let M be the union of sensitive cases and selected non sensitive cases. A
completely random imputation model (i.e., a model that generates impu-
tations for the missing values) for X is built. X ′ is the value imputed to
X.

• A randomly set of tuples is chosen, where attribute values in X will be
imputed synthetically, and randomly draws the new values from the dis-
tribution X ′ just defined.
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• The quality of the synthetic sample is evaluated and, if it is too low, the
process restarts from the beginning, trying to better tune the size of Mi.

This technique imputes only quasi-identifiers and substitutes a subset of
the sensitive tuples with simulated tuples. It operates on both continuous and
categorical attributes.

Multiply Imputed Partially Synthetic Dataset [27]

This class of techniques is based on the assumption that only sensitive at-
tributes are to be protected through simulation, while other attributes can be
published as in the original microdata table. The sensitive attributes can be
simulated by using the multiple imputation technique above-mentioned.

In addition to the techniques here described for data generation, which
can be applied to any kind of data, there are also some techniques for the pro-
tection of specific categories of data. For instance, specific regression models
have been studied for the correct release of business microdata collected by
census agencies [4]. Also, since the microdata release problem has become of
great importance, different software solutions have been developed to protect
microdata. For instance, µ-ARGUS is a software that exploits global recoding,
local suppression, PRAM, additive noise, and micro-aggregation [31].

6 Measures for Assessing Microdata Confidentiality
and Utility

As discussed in the previous sections, there is a broad choice of techniques
for protecting microdata. A microdata protection technique has to be chosen
in such a way to balance two contrasting needs: the need for data and the
need for confidentiality protection. To this purpose, the performance of any
protection technique is usually measured in terms of information loss and
disclosure risk . Information loss is the amount of information that exists in
the original microdata and because of the protection technique does not occur
in protected microdata. Disclosure risk is the risk that a disclosure will be
encountered if protected microdata are released. Two extreme solutions for
releasing microdata are:

• the encryption of the original data (no disclosure risk and maximal infor-
mation loss);

• the release of the original data (maximal disclosure risk and no information
loss).

On the other hand, the application of any of the techniques presented
in this chapter can provide means to balance the two. In the following, we
describe some of the most important methods used for quantifying disclosure
risk and information loss.
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6.1 Disclosure Risk

In general, there are two types of disclosure: identity disclosure and attribute
disclosure [21]. Identity disclosure means that a specific identity can be linked
to a tuple in the microdata table. Attribute disclosure means that information
has been disclosed about an attribute of an individual. In general, two factors
may have an impact on identity disclosure:

• population uniqueness means that the probability of identifying a respon-
dent who is the unique respondent with a specific combination of attributes
is high if those attributes are present in the microdata table;

• reidentification means that the released microdata is linked to another
published table, where the identifiers have not been removed.

Different methods have been proposed to measure the disclosure risk of
released microdata. For instance, the minimum unsafe combination of at-
tributes [49] returns the number of attributes with a unique combination
in a specific microdata tuple. This method can be adopted only with non-
perturbative masking techniques and the higher such a value, the lower the
disclosure risk. Other specific methods have been proposed in [4, 55]. In the
remainder of this section we focus on the main methods for measuring the risk
of identity disclosure, which are uniqueness and record linkage, and the main
method to measure attribute disclosure, which is interval disclosure [15, 17].

Uniqueness

Whenever a sample unique is also a population unique, identity disclosure
becomes much more likely. There are different methods for evaluating the
uniqueness risk and all the methods rely on probability evaluations.

The first method measures the probability of population uniqueness (PU ),
that is, the probability that there is only an individual in the population
having a certain combination of values over a certain set of attributes. This
probability is measured as: Pr(PU ) =

∑
j I(Fj = 1)/N , where N is the

population size, Fj is the number of individuals in the population with the
j-th combination over the considered attributes, and I() is a function where
I(A) is equal to 1 if A is true; 0 otherwise.

The second method measures the probability that a sample unique
(SU ) is also a population unique (PU ). This probability is measured as:
Pr(PU |SU )=

∑
j I(fj = 1, Fj = 1)/

∑
j I(fj = 1), where fj is the number

of individuals in the sample with the j-th combination over the considered at-
tributes. These two methods are called file-level measures because assign the
same risk to all tuples [47]. Tuple-level disclosure risk measure is the proba-
bility that the identity of a specific individual is disclosed [26]. This measure
has been introduced because the risk of reidentification is not homogeneous
over the whole microdata table. Suppose that there are K different combina-
tions of quasi-identifier values in a population. These combinations produce a
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partition both on the population and on the sample. Let Fk be the frequency
of the k-th partition, the disclosure risk for a tuple in the sample with the
k-th combination is 1/Fk. The problem of this method is that Fk is generally
not known for the population. Since the sample distribution frequencies fk

are known, the distribution of frequencies Fk, given fk, is considered (Fk|fk

can be modeled as a negative binomial).
Note that uniqueness can be used as a measure of disclosure risk only

if the microdata have been protected through a non-perturbative masking
technique. Perturbative techniques change data values and therefore it is not
possible to establish correctly the frequency of a value in the released sample
because new unique combinations may be introduced and original unique
combinations may disappear.

Record Linkage

Record linkage consists in finding a matching between a tuple in the protected
microdata table and a tuple in a public and non anonymous external source
of information (e.g., a voter list that contains the registry of all the electors
of a region or a town). Since it is not possible to know a priori all the exter-
nal sources of information that can be used by a possible malicious user, a
probabilistic check on the protected microdata is performed. Different record
linkage methods have to be adopted depending on whether or not the micro-
data table and the external information have common attributes. If there are
common attributes, it is first necessary to adopt a unique representation for
the common attributes. For instance, different abbreviations in the name of
a person would lead to the conclusion that two tuples are not related, while
actually they refer to the same respondent. It is then possible to adopt a strat-
egy for record linkage [17, 18, 23]. Record linkage methods can be partitioned
into three broad categories: deterministic, probabilistic, and distance-based .

• Deterministic. It looks for an exact match on one or more attributes be-
tween tuples in different datasets. The main disadvantage of this method
is that it does not take into consideration the attribute relevance in finding
a link.

• Probabilistic. Given two datasets, D1 and D2, the set of all possible pairs
of tuples (d1i, d2j) is computed, where d1i ∈ D1 and d2j ∈ D2. Each
pair is associated with a probability that represents whether the pair is a
real match. If the probability is lower than a fixed threshold T1, the pair is
discarded because the tuples are considered not linked; if the probability is
greater than a second fixed threshold T2 the pair is considered a real match;
if the probability is between T1 and T2, it is needed a human evaluation to
verify whether it represents a match or not. Such a probability is computed
considering different weights for different attributes and the agreement or
partial agreement over the attribute values. The weights associated with
the attributes and the two thresholds T1 and T2 are established by the
data holder.
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• Distance-based. Given two datasets, D1 and D2, each tuple d1i ∈ D1 is
matched to the nearest tuple d2j ∈ D2. This method requires the defini-
tion of a distance function f between couples of tuples. For instance, the
definition of f can exploit distance functions defined on attributes and may
assign different weights to each attribute, depending on its importance in
the linking process. An example of distance function is the Euclidean Dis-
tance that considers each tuple as a vector and assigns the same weight
to each attribute. This record linkage method is not suitable for categor-
ical attributes, because it is difficult to define the distance between two
categories, in particular if their domain is not ordered.

Other methods are used when there are datasets without common at-
tributes. In these cases, the reidentification is more difficult. One method
recently proposed is based on clustering [19]. Basically, a clustering method
is applied on the considered datasets. The result is a set of clusters of tuples
and each cluster within a dataset is mapped onto a cluster within the other
dataset. Such a mapping is performed by using a similarity function.

Note that although record linkage is considered a threat, there are many
situations where it can be useful. Record linkage can be used in the man-
agement of large databases to extract important information about the same
subject. This is particularly useful when data are distributed on different
servers (e.g., the medical information of the population is usually distributed
on different systems and a record linkage technique can be exploited for re-
constructing the information associated with a given individual) [45].

Interval Disclosure

The interval disclosure measure is computed in different ways, depending on
the data type of the attribute (continuous or categorical). In case of a cate-
gorical attribute, for each tuple in the microdata table, ranked intervals are
constructed as follows. Each attribute is independently ranked and a rank
interval is defined around the value assumed by the attribute in each tuple
t. The ranks of values within the interval constructed around tuple t should
differ less than p%, of the total number of tuples. Also, the rank in the cen-
ter of the interval should correspond to the value assumed by the considered
attribute in tuple t. The disclosure risk is then the proportion of the original
values that fall into the interval centered around the corresponding protected
value. If such a proportion is equal to 100%, a potential attacker is sure that
the original value lies in the interval around the protected value. In case of con-
tinuous data, the method is similar to the previous one. The main difference
is how ranked intervals are constructed: it is not possible to exploit ranking
and the construction is based on the standard deviation of the attribute.
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6.2 Information Loss

The information loss measure is strictly connected to the purpose for which the
information will be used. Since the purposes may be different and not known
a priori, it is not possible to establish a general information loss measure
based on purpose. The methods used are therefore based on the concepts of
analytically valid and analytically interesting , which are defined as follows [54]:

• a protected microdata table is analytically valid if it approximately pre-
serves statistical analyzes (e.g., mean and co-variance) that can be pro-
duced with the original microdata;

• a protected microdata table is analytically interesting if it contains a suf-
ficient number of attributes that can be validly analyzed.

In general, there are two strategies for computing information loss: i) di-
rectly comparing the tuples of the protected microdata with the tuples in the
original microdata; ii) comparing the statistics computed on the protected
microdata with the same statistics evaluated on the original microdata. We
now describe the basic idea of some of the most common information loss
measures that are partitioned into two categories according to the data type
of the attributes. Other methods have been proposed, both for specific micro-
data protection techniques and for generic cases [4, 55].

Continuous Data

To measure information loss, the statistic of interest (e.g., co-variance ma-
trices, correlation matrices, or variants of them) is evaluated on both the
original and protected data, the difference between the two values is com-
puted. The discrepancies between the two statistics can be evaluated in three
different ways: mean square error , mean absolute error , and mean variation.
In addition to statistical measures, data can be compared, before and after
the application of a microdata protection technique, by computing again the
difference using one of the three methods above-mentioned.

It is important to note that the value of information loss should have a
maximal value (e.g., 100 if a percentage notation is used) to compare different
methods having the same scale for information loss computation [15, 16, 17,
37].

Categorical Data

The information loss measures briefly introduced for continuous attributes are
not directly applicable for categorical attributes. In this case, there are three
main measures [16]: direct comparison, contingency tables comparison, and
entropy measure. The direct comparison of the values of categorical attributes
requires the definition of a distance function between the categories. In case
of non ordered categories, the distance between category c1 in the original
microdata and the corresponding category c2 in the protected microdata is
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equal to 0, if the two categories are the same; 1, otherwise. By contrast, if
there is an ordering between the categories, the distance between categories
c1 and c2 is equal to the number of categories between c1 and c2 divided by
the total number of categories. The contingency tables comparison measure
consists in comparing the corresponding contingency tables. An entropy-based
measure [35, 53] can be used whenever a microdata table has been protected
by applying the local suppression, global recoding, or PRAM techniques. The
idea is that the information loss can be measured using the Shannon Entropy
because the masking process is modeled as the noise added to the original
microdata when transmitted through a noisy channel. The information loss
measure uses the conditional probability (the probability of a value in the
original microdata, once the value in the protected microdata is given).

6.3 Disclosure Risk and Information Loss Combination

The microdata protection techniques described in this chapter have a different
impact on data utility and disclosure risk. To be able to assess alternative
microdata protection techniques, we first need a framework for assessing how
good a protection technique is. Disclosure risk and information loss therefore
need to be combined. A simple method consists in computing the average
of the 2 values and choosing the technique (and the parameter setting) that
has the highest score value [17]. Another method is the R-U confidentiality
maps [20], which is a graph where the measure of data utility (the inverse of
information loss) is reported on the x axis, and the disclosure risk is reported
on the y axis. For each microdata protection technique, a line is drawn on the
Cartesian plane with a point for each parameter setting. On the basis of the
graphic obtained, it is possible to compare the various protection techniques
and choose the most suitable. Once a protection technique has been chosen,
the R-U confidentiality maps can also be used for selecting the parameters. It
is important to note that a R-U map is only a method for correlating disclosure
risk and information loss and such measures have to be computed using one
of the methods above-mentioned.

Another approach for balancing data utility and disclosure risk is repre-
sented by the concept of k-minimal table with the k-anonymity (see Chap.
“k-anonymity” and [44]). k-anonymity establishes a lower bound threshold of
disclosure risk for a table, by ensuring that every tuple in the table cannot
be related to fewer than k respondents. The k-anonymity approach aims at
finding (by applying generalization and suppression techniques) a k-minimal
table, that is, one that does not generalize more than it is needed to reach
the threshold k. In other words, a k-minimal table is one that minimizes in-
formation loss.

The measures described should be used before releasing the data to verify
whether the protection is adequate to the respondents’ requests of confiden-
tiality and to the data recipients’ needs of information. After the application
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of a protection technique, the protected microdata can be checked and re-
leased only if they present a certain degree of protection. These measures can
also be used by the data recipient to evaluate respondents’ identity protection
and data utility.

7 Conclusions

Today’s globally networked society places great demand on the dissemina-
tion and sharing of information. While in the past released information was
mostly in tabular and statistical form, many situations call today for the re-
lease of specific microdata. To address this issue, a wide variety of protection
techniques have been proposed. In this chapter, we have described the basic
microdata disclosure protection techniques, classifying them as masking tech-
niques and synthetic data generation techniques. Masking techniques protect
data by transforming their values. Synthetic data generation techniques pro-
tect data by replacing them with new data that preserve the original statistical
properties. We have also illustrated the main measures usually adopted for
assessing data confidentiality and data utility of the protected microdata.
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