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DTI - Università degli Studi di Milano
Via Bramante 65 - 26013 Crema, Italy

pierangela.samarati@unimi.it

phone: +39-0373-898061, fax: +39-0373-898010

Abstract

Existing approaches for protecting sensitive information outsourced at external “honest-but-curious”

servers are typically based on an overlying layer of encryption applied to the whole database, or on the

combined use of fragmentation and encryption. In this paper, we put forward a novel paradigm for preserving

privacy in data outsourcing, which departs from encryption. The basic idea is to involve the owner in storing

a limited portion of the data, while storing the remaining information in the clear at the external server. We

analyze the problem of computing a fragmentation that minimizes the owner’s workload, which is represented

using different metrics and corresponding weight functions, and prove that this minimization problem is NP-

hard. We then introduce the definition of locally minimal fragmentation that is used to efficiently compute

a fragmentation via a heuristic algorithm. The algorithm translates the problem of finding a locally minimal

fragmentation in terms of a hypergraph 2-coloring problem. Finally, we illustrate the execution of queries on

fragments and provide experimental results comparing the fragmentations returned by our heuristics with

respect to optimal fragmentations. The experiments show that the heuristics guarantees a low computation

cost and is able to compute a fragmentation close to optimum.
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1 Introduction

Data outsourcing is today a well known paradigm that allows individuals and small/medium organizations

to outsource their data to external servers and to delegate to them the responsibility of data storage and

management. External servers, while typically relied upon for ensuring availability of data, might be trusted

neither to access the content nor to fully enforce privacy protection requirements (honest-but-curious servers).

In the last few years, the problem of outsourcing possibly sensitive data to an external honest-but-curious

server has raised considerable attention and various research activities have been carried out, providing the

foundation for a large future deployment of the proposed solutions. A common practice that guarantees the

protection of outsourced data also from the server’s eyes consists in encrypting the data before outsourcing

them [16, 21]. Recent proposals are, instead, based on the observation that often what is sensitive is the

association among data, and not the individual data themselves, and that therefore encrypting the whole data

may be an overdue [1, 10, 12, 14]. In these proposals, the outsourced data are modeled as a relational table,

which can be vertically partitioned, thus splitting sensitive associations among two or more servers instead

of encrypting the involved attributes thus minimizing the use of encryption. In [1], the authors present an

approach where the original relation containing the sensitive information to be outsourced is split into two

fragments stored at two non communicating servers , which must not be known to each other. This limitation

on the number of fragments implies that it is not always possible to protect the confidentiality of information

by simply splitting attributes between the two fragments and therefore encryption may need to be applied.

Furthermore, the query evaluation process requires the data owner to interact with both servers for joining (if

needed) the two fragments and to decrypt the attributes possibly encrypted that need to be accessed by the

query. In [10, 12, 14], the authors remove the limit on the number of fragments and present an approach where

the relation to be outsourced can be split into two or more unlinkable fragments, which can even be stored all

at the same server. Encryption is only used for protecting individual attributes whose release is not permitted.

Furthermore, for query execution efficiency, attributes that are not represented in the clear within a fragment

are represented in encrypted form, providing the nice property that each fragment completely represents the

original relation. The consequence of this design choice is that to evaluate a query, it is sufficient to access a

single fragment, thus avoiding join operations, which are quite expensive. This solution still requires the owner

to possibly decrypt the attributes appearing in encrypted form in the fragment for evaluating a condition on

them or for returning them to the user.

A common assumption of all the solutions above is that encryption is an unavoidable price to be paid to

protect the information. However, although cryptographic tools enjoy today, in most computing platforms, a

limited cost and an affordable computational complexity, encryption still carries the burden of managing keys,
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which is a complex and expensive task. For instance, if the client is a lightweight device, with limited compu-

tation and storage resources, encryption and key management can be considered too expensive. In addition,

even for scenarios where the cost of encryption/decryption operations and key management are considered ac-

ceptable, the execution of queries on encrypted data greatly increases the computational effort required to the

DBMS, considerably impacting its applicability for real-world applications.

In this paper, we propose a paradigm shift for solving the problem of protecting outsourced data, which

completely departs from encryption, thus freeing the owner from the burden of its management. In exchange,

we assume that the owner, while outsourcing the major portion of the data at one or more external servers,

is willing to locally store a limited amount of data. Obviously, from the information stored on the external

server it should not be possible to reconstruct a sensitive association (confidentiality constraint) since otherwise

privacy would be violated. Since we do not want to remove the assumption that the external servers are all

honest-but-curious, the owner is the only entity in the system that can manage sensitive data. Like recent

solutions, we therefore exploit data fragmentation to break sensitive associations; but, in contrast to them, we

assume the use of fragmentation only. Basically, the owner maintains a small portion of the data, just enough

to protect sensitive values or their associations. In [11, 13], we presented an early version of our proposal

that here is extended by introducing a different modeling (based on a hypergraph coloring problem) of the

problem and an original heuristics for the computation of a fragmentation that minimizes the workload of the

owner. In addition, we formally analyze the correctness and computational complexity of our heuristics. We

also present a set of experiments, aimed at comparing our heuristics with the exhaustive search of the optimum,

to assess its efficiency, in terms of computational time, and its effectiveness, in terms of the quality of the

computed fragmentation. The experimental results prove that the fragmentations computed by our heuristics

well approximate the optimal solutions. We also provide a characterization of the existing paradigms for data

outsourcing in the presence of confidentiality constraints.

The remainder of this paper is organized as follows. Section 2 introduces some basic concepts. Section 3

illustrates the rationale of our approach, also discussing it with respect to the previous proposals. Section 4

introduces the problem of computing a minimal fragmentation. Section 5 discusses different metrics with

respect to which the workload of the owner could be minimized. Section 6 proves the NP-hardness of the

minimal fragmentation problem and proposes a definition of local minimality which is used in the computation

of a fragmentation. Section 7 reformulates the minimization problem as a hypergraph 2-coloring problem and

presents a heuristic algorithm for its solution. Section 8 describes how queries can be executed on fragmented

data. Section 9 illustrates the experimental results comparing our heuristic algorithm to an exhaustive approach.

Section 10 discusses related work. Finally, Section 11 draws our conclusions.
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Patient

SSN Name DoB ZIP Job Illness Treatment HDate

123-45-6789 A. White 1980/12/09 22030 employee gastritis antacid 2010/01/01
987-65-4321 B. Taylor 1975/01/18 22034 nurse latex allergy antihistamine 2010/01/02
963-85-2741 C. Hellman 1990/05/27 22032 manager asthma antihistamine 2010/01/09
147-85-2369 D. Ripley 1995/11/30 22031 employee flu antibiotic 2010/01/14

(a)

c0={SSN}
c1={Name}
c2={DoB,ZIP,Illness}
c3={DoB,ZIP,Treatment}
c4={Job,Illness}
c5={Illness,Treatment}

(b)

Figure 1: An example of relation (a) and of confidentiality constraints over it (b)

2 Basic concepts

We consider a scenario where, consistently with other proposals (e.g., [1, 10, 15]), the data to be protected are

represented with a single relation r over a relation schema R(a1, . . . , an). We use the standard notations of the

relational database model. Also, when clear from the context, we use R to denote either the relation schema R

or the set of attributes in R .

Protection requirements are represented by confidentiality constraints , which express restrictions on the

separate or joint visibility (association) of attributes in R, and are formally defined as follows [1, 10].

Definition 2.1 (Confidentiality constraint) Let R(a1, . . . , an) be a relation schema, a confidentiality con-

straint c over R is a subset of attributes in R, that is, c ⊆ R.

While simple, confidentiality constraints of this form allow the representation of different protection require-

ments that may need to be expressed. A singleton constraint states that the values assumed by an attribute

are considered sensitive and therefore cannot be made known to an external party. A non-singleton constraint

(association constraint) states that the association among values of given attributes is sensitive and therefore

cannot be made known to an external party.

Example 2.2 Figure 1(a) illustrates relation Patient of a hospital. Figure 1(b) illustrates the set of con-

fidentiality constraints defined over the relation: c0 and c1 are two singleton constraints indicating that the

lists of SSNs and Names of patients are considered sensitive; c2 . . . c5 are association constraints stating that the

associations among the values assumed by the specified attributes should not be disclosed. Constraints c2 and

c3 derive from the fact that attributes DoB and ZIP together could be exploited to retrieve the name of patients

(i.e., they can work as a quasi-identifier [15]) and therefore they cannot be released in association with sensitive

attributes, that is, Illness and Treatment. Constraints c4 and c5 protect the sensitive associations between

Job and Illness and between Illness and Treatment, respectively.

The satisfaction of a constraint ci clearly implies the satisfaction of any constraint cj such that ci⊆cj . We

assume set Cf = {c1, . . . , cm} to be well defined , that is, Cf does not contain a constraint that is a subset of
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another constraint. Formally, ∀ci, cj ∈ Cf : i %= j ⇒ ci %⊂ cj . For instance, since Name is a sensitive attribute,

no constraint needs to be applied in Example 2.2 with respect to the association between Name and sensitive

attributes (i.e., Illness and Treatment).

To satisfy confidentiality constraints, we consider an approach based on data fragmentation. Fragmenting

R means splitting its attributes into different vertical fragments (i.e., different subsets of attributes) in such a

way that only attributes in the same fragment are visible in association [1, 10]. For instance, splitting Job and

Illness into two different fragments offers visibility of the two lists of values, but not of their association. A

fragment is said to violate a constraint if it contains all the attributes in the constraint. For instance, a fragment

containing both Job and Illness violates constraint c4.

3 Classification of solutions and rationale of our approach

Existing approaches for enforcing confidentiality constraints on data to be outsourced typically assume the joint

application of fragmentation and encryption, and may consider additional assumptions such as the impossibility

of external servers to communicate with each other. In this paper, we put forward a novel approach departing

from data encryption and from the assumption that external servers do not communicate with each other. The

rationale for departing from encryption is that encryption is sometimes considered a too rigid tool, delicate in its

configuration, and requiring careful management to fulfill its potential. Systems protecting sensitive information

based on an extensive use of encryption suffer consequences due to possible compromises of keys (disclosure of

data) or their loss (denial of service). In the real world, key management, particularly the operations at the

human side, is a difficult and delicate process, and this causes a preference of many ICT administrators towards

designs that avoid to excessively rely on encryption. Also, while the computational cost of symmetric encryption

for modern computer architectures is usually negligible, the presence of encryption often causes an increase in

the computational load. This increase is due to the limitations in the access to the data, which do not allow

the server to efficiently and effectively evaluate generic predicates on the data. Our solution involves the data

owner in storing (and managing) a small portion of the data, while delegating the management of all other data

to external servers. We consider the management of a small portion of the data to be an advantage with respect

to the encryption management and computation that would otherwise be required. Figure 2 presents the basic

idea of our paradigm in contrast to the two previous main lines of work [1, 10]. In the figure, Ei represents the

set of attributes that are encrypted and Ci represents the set of attributes stored in the clear in fragment F i.

• Non-communicating pair of servers [1]. This approach distributes the data to two external servers. It

resorts to encryption whenever it is not possible to distribute the attributes among the two servers satisfy-

ing all the confidentiality constraints. In particular, all sensitive attributes are encrypted; other attributes
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Scenario Data representation

non-communicating pair of servers [1]

E C 1 

E C 2 Owner 

External Server 

External Server 

E ∪ C1 ∪ C2 = R
C1 ∪C2 ⊆ R

multiple fragments [10, 12, 14]

E 1 C 1 E 2 C 2 E n C n 
... 

Owner External Server 

E1 ∪ C1 = . . . = En ∪Cn = R
C1 ∪ . . . ∪ Cn ⊆ R
∀i, j, i $= j, Ci ∩ Cj = ∅

no encryption [11, 13]

C 2 

C 1 

Owner External Server 

C1 ∪C2 = R

Legend Ci: plaintext attributes in F i

Ei: encrypted attributes in F i

Figure 2: Data protection paradigms

are encrypted if placing them in any of the two fragments would violate at least one constraint. The main

shortcoming of this approach is that confidentiality relies, besides on encryption, on the assumption of

complete absence of communication between the two external servers, and therefore on the trust in the

fact that such a communication will never happen. Such an assumption appears difficult to enforce in real

scenarios.

• Multiple fragments [10, 12, 14]. Like [1], this approach stores all data at external servers. However, it

allows data to be split among more than two fragments. Hence, associations can always be protected by

placing the involved attributes in different fragments. For each fragment, all the attributes of the original

relation R that do not appear in the clear in the fragment are stored in encrypted form. Protection against

joining of fragments is guaranteed by the absence of common attributes in the different fragments. There is

no restriction on the communication among external servers, since the complete visibility of all fragments

cannot violate confidentiality constraints. As a matter of fact, all fragments could even be stored at a

single server.

• No encryption [11, 13]. Completely departing from encryption, in this approach we assume that the owner

maintains some of the data, so to avoid exposing sensitive attributes or associations externally. Sensitive
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Fo

tid SSN Name DoB Job Treatment

1 123-45-6789 A. White 1980/12/09 employee antacid
2 987-65-4321 B. Taylor 1975/01/18 nurse antihistamine
3 963-85-2741 C. Hellman 1990/05/27 manager antihistamine
4 147-85-2369 D. Ripley 1995/11/30 employee antibiotic

Fs

tid ZIP Illness HDate

1 22030 gastritis 2010/01/01
2 22030 latex allergy 2010/01/02
3 22034 asthma 2010/01/09
4 22031 flu 2010/01/14

Figure 3: An example of physical fragments for relation Patient in Figure 1(a)

attributes are maintained at the owner side. Sensitive associations are protected by ensuring that not

all attributes in an association are stored externally. In other words, for each sensitive association, the

owner should locally store at least one of the involved attributes. With this fragmentation, the original

relation R is split into two fragments, called F o and F s, stored at the data owner and at the server

side, respectively. To guarantee the reconstruction of the content of the original relation R (lossless join

property), at the physical level the two fragments F o and F s must have a common key attribute. We

assume F o and F s to have a common tuple id (attribute tid as in Figure 3) that can be either: 1) the

key attribute of the original relation, if it is not sensitive, or 2) an attribute that does not belong to the

schema of the original relation R and that is added to F o and F s during the fragmentation process. We

consider this a physical-level property and ignore the common attribute in the fragmentation process.

4 Minimal fragmentation

Given a set Cf of confidentiality constraints over relation R , our goal is to split R into two fragments: F o, stored

at the owner side, and F s, stored at the server side, in such a way that all sensitive data and associations are

protected (i.e., they are not visible at the external server). It is easy to see that, since there is no encryption,

singleton constraints can only be protected by storing the corresponding attributes at the owner side. Therefore,

each singleton constraint c={a} is enforced by inserting a into F o and by not allowing a to appear in F s.

Association constraints are enforced via fragmentation, that is, by splitting the attributes involved in the

constraint between F o and F s. A fragmentation F=〈F o,F s〉 should satisfy the following two conditions: 1) all

attributes in R should appear in at least one fragment, to avoid loss of information; 2) the external fragment F s

should not violate any confidentiality constraint. Note that the second condition applies only to F s, since F o is

stored at the owner side and remains under the owner control. F o can therefore contain sensitive data and/or

associations. In addition to the two conditions above, we require the fragmentation to be non-redundant,

that is, each attribute is stored at only one fragment. Besides preventing usual replication problems, this

condition intuitively avoids unnecessary storage at the data owner (there is no need to locally maintain the

information that is outsourced). We therefore include it in our definition of correct fragmentation, with a note
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that non-redundancy is not needed for satisfying the constraints and could therefore be relaxed. Fragmentation

correctness is formally defined as follows.

Definition 4.1 (Fragmentation correctness) Let R(a1, . . . , an) be a relation schema, Cf={c1, . . . , cm} be

a well defined set of confidentiality constraints over R, and F=〈F o,F s〉 be a fragmentation for R, where F o is

stored at the owner and F s is stored at a server. F is a correct fragmentation for R, with respect to Cf , iff: 1)

F o∪F s=R (completeness); 2) ∀c∈Cf , c %⊆F s (confidentiality); 3) F o∩F s=∅ (non-redundancy).

Given a relation schema R(a1, . . . , an) and a set Cf of confidentiality constraints, our goal is to produce a

correct fragmentation that minimizes the owner’s workload. For instance, a fragmentation where F o=R and

F s=∅ is clearly correct, but it is also undesirable (unless required by the confidentiality constraints), as it leaves

to the owner the burden of storing all information and of managing all possible queries.

The owner’s workload may be a difficult concept to capture, since different metrics might be applicable in

different scenarios (see Section 5). Regardless of the metrics adopted, we model the owner’s workload as a

weight function w:P(R) × P(R)→R+ that takes a pair 〈F o,F s〉 of fragments as input and returns the storage

and/or the computational load at the owner side due to the management of F o. Assume the weight function w

to be monotonic with respect to the set containment relationship on F o. Formally, given two fragmentations,

F=〈F o,F s〉 and F ′=〈F ′
o,F

′
s〉: F o⊆F ′

o ⇒ w(F) ≤ w(F ′). The monotonicity of the weight function is a natural

property of different metrics, since the owner’s workload increases whenever new attributes are added to F o. A

fragmentation that minimizes the owner’s workload is formally defined as follows.

Definition 4.2 (Minimal fragmentation) Let R(a1, . . . , an) be a relation schema, Cf={c1, . . . , cm} be a

well defined set of confidentiality constraints over R, w:P(R)×P(R)→R+ be a monotonic weight function, and

F=〈F o,F s〉 be a fragmentation for R, where F o is stored at the owner and F s is stored at a server. F is a

minimal fragmentation for R, with respect to Cf and w, iff: 1) F is correct (Definition 4.1) and 2) !F ′ such

that w(F ′)<w(F) and F ′ is correct.

Given a relation schema R , a set Cf of confidentiality constraints, and a weight function w, different minimal

fragmentations may exist and our goal is to compute one of them, as stated by the following problem definition.

Problem 4.3 (MF problem) Given a relation schema R(a1, . . . , an), a well defined set Cf={c1,. . . ,cm} of

confidentiality constraints over R, and a monotonic weight function w, determine a minimal fragmentation

F=〈F o,F s〉 for R, with respect to Cf and w (Definition 4.2).

Before proceeding on the investigation of the problem, we present some possible fragmentation metrics and

the corresponding weight functions.
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Problem Metrics Weight function w(F)

Storage
Min-Attr Number of attributes card(Fo)

Min-Size Size of attributes

∑

a∈Fo

size(a )

Computation/traffic
Min-Query Number of queries

∑

q∈Q

freq(q) s.t. Attr(q )∩Fo #=∅

Min-Cond Number of conditions

∑

q∈Q

∑

co∈Co(q )

freq(q) s.t. Attr(co )∩Fo #=∅

Figure 4: Classification of the weight metrics and minimization problems

5 Fragmentation metrics

In the outsourcing scenario, storage and computational resources offered by the external server are considered

less expensive than the resources of the data owner. The owner has then a natural incentive to rely as much

as possible, for storage and computation, on the external server. In the absence of confidentiality constraints,

all data would then be remotely stored and all queries would be computed by the external server. In the case

of confidentiality constraints, the owner internally stores some attributes, and consequently is involved in some

computation.

In this section, we discuss several metrics (and corresponding weight functions to be minimized) that could

be used to characterize the owner’s workload for a fragmentation, and therefore to determine which attributes

are stored at the owner and which attributes are outsourced at the external server. The different metrics may

be applicable to different scenarios, depending on the owner’s preferences and/or on the specific knowledge (on

the data or on the query workload) available at design time. We consider four possible scenarios, in increasing

level of required knowledge. The first two scenarios measure storage, while the latter two scenarios measure

computation. The scenarios and corresponding weight functions are summarized in Figure 4.

• Min-Attr . Only the relation schema (set of attributes) and the confidentiality constraints are known.

The only applicable metric aims at minimizing the storage required at the owner side by minimizing

the number of attributes in F o. The weight wa(F) of a fragmentation F is the number of attributes

in F o, that is: wa(F)=card(F o). For instance, given fragmentation F=〈{SSN,Name,DoB,Job,Treatment},

{ZIP,Illness,HDate}〉 illustrated in Figure 3, wa(F)=5.

• Min-Size. Besides the mandatory knowledge of the relation schema and of the confidentiality constraints

on it, the size of each attribute is known. In this case, it is possible to produce a more precise estimate of

the storage required at the owner side, aiming at minimizing the physical size of F o, that is, the actual

storage required by its attributes. The weight ws(F) of a fragmentation F is the physical size of the

attributes in F o, that is: ws(F)=
∑

a∈Fo
size(a ), where size(a ) denotes the physical size of attribute a .
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Attribute a size(a )

SSN 9
Name 20
DoB 8
ZIP 5
Job 18
Illness 15
Treatment 40
HDate 8

(a)

Query q freq(q ) Attr(q ) Co(q )

q1 4 Name, DoB (Name > ‘F’), (DoB < 1980/01/01)
q2 14 Name, Job (Name < ‘G’), (Job = ‘employee’)
q3 1 Name, Illness (Name > ‘C’), (Illness = ‘asthma’)
q4 1 DoB, Illness (DoB ≥ 1960/01/01), (Illness = ‘measles’)
q5 15 ZIP, Illness (ZIP = 22030), (Illness = ‘flu’)
q6 4 Job, Illness (Job = ‘nurse’), (Illness = ‘latex allergy’)
q7 3 DoB, Illness, Treatment (DoB < 1970/01/01), (Illness = ‘hypertension’), (Treatment = ‘diet’)
q8 6 DoB, HDate, Treatment (HDate − DoB ≥ 18y), (Treatment = ‘antihistamine’)
q9 5 HDate (HDate ≥ 1990/01/01)

(b)

Figure 5: An example of data (a) and query workload (b) knowledge for relation Patient in Figure 1(a)

For instance, given fragmentation F=〈{SSN,Name,DoB,Job,Treatment}, {ZIP,Illness,HDate}〉 illustrated

in Figure 3 and the data workload in Figure 5(a), ws(F) = size(SSN) + size(Name) + size(DoB) + size(Job)

+ size(Treatment) = 95.

• Min-Query. In addition to the relation schema and the confidentiality constraints, a representative profile

of the expected query workload is known. The profile defines, for each query, the expected frequency

with which the query is executed and the set of attributes appearing in the conditions in the query. The

query workload profile is modeled as a set of triples Q={(q1, freq(q1),Attr(q1)), . . . , (q l, freq(q l)Attr(q l))},

where for each (qi,freq(q i),Attr(qi)), i = 1, . . . , l, qi is the query to be executed, freq(q i) is the expected

execution frequency of q i, and Attr(qi) are the attributes appearing in the where clause of qi. The first

three columns of Figure 5(b) illustrate a possible workload profile for relation Patient in Figure 1(a).

Knowledge on the workload allows the adoption of a metric evaluating the computational work required

to the owner for executing queries. Intuitively, the goal is to minimize the number of query executions

that require processing at the owner, producing immediate benefits in terms of reduced use of the more

expensive, and less powerful, computational services available at the owner. The weight wq(F) of a

fragmentation F is then the number of times that the owner needs to be involved in evaluating queries,

that is, the sum of the frequencies of queries whose set of attributes in the where clause contains at

least an attribute in F o. Formally, wq(F)=
∑

q∈Q freq(q ) s.t. Attr(q ) ∩ F o %= ∅. For instance, given

fragmentation F=〈{SSN,Name,DoB,Job,Treatment}, {ZIP,Illness,HDate}〉 illustrated in Figure 3 and the
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query workload in Figure 5(b), wq(F) = freq(q1) + freq(q2) + freq(q3) + freq(q4) + freq(q6) + freq(q7)

+ freq(q8) = 33.

• Min-Cond . In addition to the relation schema and the confidentiality constraints, a complete profile of

the expected query workload is known. The complete profile reports the specific conditions appearing in

each query and not only the set of attributes appearing in the where clause of the query. We assume

select-from-where SQL queries of the form q=“select A from R where C”, where A is a subset

of the attributes in R , and C=
∧

i coi is a conjunction of basic conditions coi of the form (ai op v),

(ai op aj), or (ai in {v1, . . . , vk}), with ai and aj attributes in R , {v,v1, . . . , vk} constant values in the

domain of ai, and op a comparison operator in {=, >, <, ≥, ≤, %=}. The query workload profile is then

a set of triples Q={(q1, freq(q1),Co(q1)), . . . , (q l, freq(q l)Co(q l))}, where for each (qi,freq(q i),Co(qi)),

i = 1, . . . , l, qi is the query to be executed, freq(q i) is the expected execution frequency of q i, and Co(qi)

is the set of basic conditions appearing in the where clause of query qi. In the following, for simplicity,

we use Attr(co) to denote the attributes on which a condition co operates. The first, second, and fourth

columns of Figure 5(b) illustrate a possible workload profile for relation Patient in Figure 1(a). The

precise characterization of the workload allows the definition of a metric to minimize the number of

conditions that require processing at the owner. The weight wc(F) of a fragmentation F is the number

of times that the owner needs to be involved in evaluating conditions in the query execution. Intuitively,

this corresponds to the number of times the execution of queries requires the evaluation of a condition

involving an attribute in F o. Note that conditions are considered separately, hence the evaluation of n

different conditions coi,. . . ,con of a query q that involve some attributes in F o will contribute to the

weight for n · freq(q ) (whereas in the Min-Query scenario the weight would be freq(q ), since Min-Query

evaluates only whether the owner participates in a query evaluation regardless of the number of conditions

it has to evaluate). Formally, wc(F)=
∑

q∈Q

∑
co∈Co(q ) freq(q ) s.t. Attr(co)∩F o %=∅. For instance, given

fragmentation F=〈{SSN,Name,DoB,Job,Treatment}, {ZIP,Illness,HDate}〉 illustrated in Figure 3 and the

query workload in Figure 5(b), wc(F) = 2·freq(q1) + 2·freq(q2) + freq(q3) + freq(q4) + 2·freq(q6) +

freq(q7) + freq(q8) = 60. Note that the frequencies of queries q1, q2, and q6 are considered twice in the

computation of wc(F), since these queries include two conditions operating on attributes in F o.

Note that the minimization of the set of conditions executed at the owner side has a direct relationship

with the minimization of the traffic needed for receiving results to the queries outsourced to the external

server. As a matter of fact, minimizing the conditions executed by the owner is equivalent to maximizing

the conditions outsourced to the external server, and therefore delegating to it as much computation as

possible. Since the result of evaluating a condition on a relation is a smaller relation, the greater the
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number of conditions outsourced to the external servers, the smaller will be the corresponding results to

be received in response.1

It is easy to see that the four metrics described above are monotonic with respect to the set containment

relationship on F o. As a matter of fact, given two fragmentations F=〈F o,F s〉 and F ′=〈F ′
o,F

′
s〉, where F o⊆F ′

o,

the weight of F ′ is necessarily greater than or equal to the weight of F , since the weight of a fragmentation F

is additive in the number of attributes, in the size of attributes, in the frequency of queries, or in the frequency

of conditions that include at least an attribute in F o, which are all positive values.

The different metrics above translate into different instances of Problem 4.3, by substituting w with the cor-

responding weight function. In synthesis, the resulting instances of the problem aim at minimizing, respectively:

the number of attributes in F o (Min-Attr problem); the physical size of fragment F o (Min-Size problem); the

number of times queries requiring access to F o need to be evaluated (Min-Query problem); the number of times

conditions on F o need to be evaluated (Min-Cond problem). Figure 4 summarizes the different instantiations

of Problem 4.3, corresponding to the metrics previously discussed.

6 Problem analysis

We now analyze the complexity of the MF problem and of its instances, and then we characterize the solution

space of the MF problem.

6.1 Complexity of the problems

The general MF problem as well as its instances Min-Attr, Min-Size, Min-Query, and Min-Cond are NP-hard,

as formally stated by the following theorem.

Theorem 6.1 The MF problem and its instances Min-Attr, Min-Size, Min-Query, and Min-Cond are NP-hard.

Proof: We now give the proof of the NP-hardness of the Min-Attr, Min-Size, Min-Query, and Min-Cond

instances.

Min-Attr. This problem directly corresponds to the classical NP-hardMinimum Hitting Set (MHS) problem [20],

which can be formulated as follows: Given a finite set A and a collection C of subsets of A, find a subset H

(hitting set) of A such that H contains at least one element from each subset in C and |H | is minimum. The

Min-Attr problem can be transformed into the MHS problem by taking R as the finite set A and C as the

1To minimize the traffic caused by a given fragmentation, it is necessary to define a metric and a relative weight function
representing a query cost model that should take into consideration also the selectivity of the queries, such as the metric introduced
in [12].
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collection C. A hitting set H corresponds to the set of attributes in F o. This correspondence follows from

the observation that any solution of the Min-Attr problem must insert in F o at least one attribute for each

constraint in C, to guarantee fragmentation correctness (Definition 4.1). The Min-Attr problem is therefore

NP-hard.

Min-Size. The instance of this problem, where attribute size is 1 for each attribute a∈R (i.e., size(a )=1),

corresponds to the Min-Attr problem, which can be transformed into the NP-hard MHS problem. Since this

specific instance of the Min-Size problem is NP-hard, also the general Min-Size problem is NP-hard.

Min-Query. The instance of this problem, where the workload consists of one query with frequency 1 for

each attribute a∈R (i.e., a query q with Attr(q )={a}), corresponds to the Min-Attr problem, which can be

transformed into the NP-hard MHS problem. Since this specific instance of the Min-Query problem is NP-hard,

also the general Min-Query problem is NP-hard.

Min-Cond. The instance of the Min-Cond problem where all conditions operate on one attribute only (i.e.,

conditions are of the form “ax op v”, with v a constant value), can be formulated as an instance of the Min-Size

problem, where the size of each attribute is the number of times that conditions on it need to be evaluated.

Such a specific instance of the Min-Cond problem is therefore NP-hard. Consequently, the general Min-Cond

problem is NP-hard. !

6.2 Solution space

The solution space F of the MF problem is represented by all the fragmentations F=〈F o,F s〉 of R such that

F o∪F s=R and F o∩F s=∅ (i.e., complete and non-redundant fragmentations). Since our definition of minimal

fragmentation depends on a weight function w that is monotonic with respect to the set containment relationship

on F o, we can define the following partial order relationship on fragmentations, based on the set containment

of F o.

Definition 6.2 (Dominance) Let R(a1, . . . , an) be a relation schema. A fragmentation F=〈F o,F s〉 for R

dominates a fragmentation F ′=〈F ′
o,F

′
s〉 of R, denoted F1F ′, iff F o ⊇ F ′

o. F strictly dominates F ′, denoted

F3F ′, iff F1F ′ and F %=F ′.

Since F o and F s cannot have common attributes, a fragmentation F=〈F o,F s〉 directly dominates a fragmen-

tation F ′=〈F ′
o,F

′
s〉 if F can be obtained from F ′ by moving an attribute from F ′

s to F ′
o. For instance, considering

relation Patient in Figure 1(a), fragmentation F=〈{SSN,Name,DoB,Job,Treatment}, {ZIP,Illness,HDate}〉 di-

rectly dominates fragmentation F ′=〈{SSN,Name,DoB,Job}, {Treatment,ZIP,Illness,HDate}〉 (i.e., F3F ′), since

F can be obtained from F ′ by moving Treatment from F ′
s to F ′

o.
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Figure 6: An example of a fragmentation lattice

The set F of all possible complete (i.e., F o ∪ F s = R) and non-redundant (i.e., F o ∩ F s = ∅) fragmentations

along with the dominance relationship form a lattice.

Definition 6.3 (Fragmentation lattice) Let R(a1, . . . , an) be a relation schema. The fragmentation lattice

for R is a pair (F,1), where F is the set of all complete and non-redundant fragmentations for R and 1 is the

dominance relationship defined in Definition 6.2.

The top element of the lattice represents a fragmentation where all the attributes are stored at the data

owner, that is, F o=R and F s=∅. The bottom element of the lattice represents a fragmentation where all the

attributes are outsourced to the server, that is F o=∅ and F s=R. Figure 6 illustrates an example of fragmentation

lattice defined for a relational schema obtained projecting relation Patient in Figure 1(a) over the set {DoB,

ZIP, Job, Illness} of attributes. In the figure, attributes are represented with their initials (i.e., D, Z, J ,

and I) and fragments F o and F s are separated by a comma. It is interesting to note that, if a fragmentation

F=〈F o,F s〉 violates some constraints, such constraints are also violated by any fragmentation F ′=〈F ′
o,F

′
s〉 such

that F1F ′. In fact, if a constraint c is violated by F , then c⊆F s. If F1F ′, then F o⊇ F ′
o and F s⊆F ′

s (since all

fragmentations in F are complete). Hence, c⊆F ′
s, and F ′ violates c . For instance, consider again the relational

schema obtained projecting relation Patient in Figure 1(a) over the set {DoB, ZIP, Job, Illness} of attributes.

In this case, the confidentiality constraints that need to be enforced are constraints c2 and c4 in Figure 1(b).

Fragmentation F=〈{DoB,ZIP}, {Job,Illness}〉 is not correct since constraint c4 is violated. Analogously, all the

fragmentations dominated by F , that is, F ′
1=〈{DoB}, {ZIP,Job,Illness}〉, F ′

2=〈{ZIP}, {DoB,Job,Illness}〉,

and F ′
3=〈{}, {DoB,ZIP,Job,Illness}〉, violate (at least) c4. In the fragmentation lattice in Figure 6, correct

fragmentations are framed by solid boxes, while fragmentations that violate at least one constraint are framed

by dotted boxes.

Since the number of fragmentations populating the solution space is exponential in the number of attributes

composing R , and the minimal fragmentation problem is NP-hard (see Theorem 6.1), we propose a definition of
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local minimality, which can be used to find a correct fragmentation via an efficient heuristics (see Section 7.2).

Before defining a locally minimal fragmentation, it is interesting to note that the weight of the fragmentations

decreases along each path from the top to the bottom element of the fragmentation lattice (i.e., given a fragmen-

tation F and a fragmentation F ′: F3F ′ ⇒ w(F)≥w(F ′)). This property, proved by the following proposition,

is a direct consequence of the fact that we assume the weight function to be monotonic with respect to the set

containment of F o.

Proposition 6.4 Let R(a1, . . . , an) be a relation schema, Cf be a well defined set of confidentiality constraints

over R, w:P(R)×P(R)→R+ be a monotonic weight function, and F and F ′ be two fragmentations for R such

that F3F ′. We have that w(F)≥w(F ′).

Proof: Let F=〈F o,F s〉 and F ′=〈F ′
o,F

′
s〉 be two complete and non-redundant fragmentations such that

F3F ′. By Definition 6.2 we have that F o⊃F ′
o. Since the weight function w is monotonic with respect to the

set containment relationship on F o, we have that w(F) ≥ w(F ′). !

Our definition of local minimality is based on the monotonicity property of the weight function over the

fragmentation lattice, as defined in the following.

Definition 6.5 (Locally minimal fragmentation) Let R(a1, . . . , an) be a relation schema, Cf be a well de-

fined set of confidentiality constraints, w:P(R) × P(R)→R+ be a monotonic weight function, and F=〈F o,F s〉

be a fragmentation for R. F is a locally minimal fragmentation for R, with respect to Cf and w iff: 1) F is

correct (Definition 4.1) and 2) !F ′ such that F3F ′ and F ′ is correct.

According to this definition, a solution is locally minimal if all the solutions that it dominates are not correct,

that is, it is not possible to obtain a correct fragmentation moving some attribute from F o to F s. For instance,

consider the fragmentation lattice in Figure 6. The correct fragmentations 〈DJ,ZI〉, 〈ZJ,DI〉, and 〈I,DZJ〉

are locally minimal (i.e., all the fragmentations dominated by them are not correct), since moving any attribute

from F o to F s would violate at least a constraint. The problem that now we need to solve consists in finding a

locally minimal fragmentation.

Problem 6.6 (LMF problem) Given a relation schema R(a1, . . . , an), a well defined set Cf of confidential-

ity constraints over R, and a monotonic weight function w:P(R) × P(R)→R+, determine a locally minimal

fragmentation F=〈F o,F s〉 for R, with respect to Cf and w (Definition 6.5).

In the following, we first model the LMF problem as a hypergraph coloring problem that captures, as special

cases, all the weight functions defined in Section 5. We then illustrate a heuristic algorithm for its solution.
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7 Graph modeling of the problem and heuristic algorithm

In this section, we present a modeling of the MF and of the LMF problems as a hypergraph 2-coloring problem.

We also introduce a heuristic algorithm that uses such a modeling.

7.1 Hypergraph coloring problem

Before illustrating how to compute a locally minimal fragmentation, we analyze the weight functions discussed

in Section 5. We first observe that we can model the data and query workload as a set T of weighted subsets of

R . We will refer to each subset of the attributes in the original relation R , which is characterized by a weight,

as a weighted target t∈T . Each metric evaluates the intersection between F o and the weighted targets in T

describing the considered workload: the basic idea is that the workload of the owner raises with the increase of

the number of weighted targets that have a non empty intersection with F o. For each weight function introduced

in Section 5, the corresponding set of weighted targets is defined as follows.

• wa: each attribute a∈R corresponds to a target t={a} whose weight is 1.

• ws: each attribute a∈R corresponds to a target t={a} whose weight is the size of the attribute.

• wq: each set Attr(qi) of attributes characterizing a query qi corresponds to a target t=Attr(qi) whose

weight is sum of the frequencies of all queries qi characterized by the same set Attr(qi).

• wc: each setAttr(co) of attributes representing the attributes on which a condition co operates corresponds

to a target t=Attr(co) whose weight is the frequency of condition co (i.e., the sum of the frequencies of

the queries including a condition operating on Attr(co) in the where clause).

In the following, function wT : T → R+ determines the weight of each target t in T . The weight of

a fragmentation F is then computed as the sum of the weights of the targets hit by F o, that is, having

a non empty intersection with F o:
∑

t∈T wT (t ) s.t. t ∩ F o %= ∅. As an example, consider fragmentation

F=〈{SSN,Name,DoB,Job,Treatment}, {ZIP,Illness,HDate}〉 in Figure 3 and the workload profile in Figure 5(b).

The set of weighted targets is T ={Attr(q1), . . . ,Attr(q9)}={{Name,DoB}, {Name, Job}, {Name, Illness}, {DoB,

Illness}, {ZIP, Illness}, {Job, Illness}, {DoB, Illness, Treatment}, {DoB, HDate, Treatment}, {HDate}}.

We have that wq(F)=wT (Attr(q1)) + wT (Attr(q2)) + wT (Attr(q3)) + wT (Attr(q4)) + wT (Attr(q6)) +

wT (Attr(q7)) + wT (Attr(q8)) = 4 + 14 + 1 + 1 + 4 + 3 + 6 = 33. Figure 7 summarizes the definition

of the set T of targets and wT for the different weight functions considered.

The inputs to the LMF problem (as well as to the MF problem) can now be modeled as a hypergraph as

follows.
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Weight function Target T wT (t ) ∀t∈T

wa(F) T = {{a}|a∈R} wT (t )=1

ws(F) T = {{a}|a∈R} wT (t )=size(a ) s.t. {a}=t

wq(F) T = {Attr(q )|q∈Q} wT (t )=
∑

q∈Q

freq(q ) s.t. Attr(q )=t

wc(F) T = {Attr(co)|∃q∈Q, co∈Co(q )} wT (t )=
∑

q∈Q

∑

co∈Co(q )

freq(q ) s.t. Attr(co)=t

Figure 7: Weight functions and their targets

Definition 7.1 (CT-hypergraph) Given a relation schema R(a1, . . . , an), a well defined set Cf={c1, . . . , cm}

of confidentiality constraints over it, and a monotonic weight function w:P(R)×P(R)→R+ characterized by a set

T of weighted targets with weight function wT : T → R+, we define a corresponding undirected CT-hypergraph

H(A, C ∪ T ,wT ), where:

• A = R is the set of vertices of the hypergraph;

• C = Cf is the set of non-weighted hyperedges (C-edges in the following) of the hypergraph;

• T is the set of weighted hyperedges (T -edges in the following) and corresponds to the set T of targets

associated with w;

• wT is the weight function defined over T .

As an example, consider relation Patient, its confidentiality constraints in Figure 1, and the data and

workload profiles in Figure 5. Figure 8 illustrates the CT-hypergraphs modeling the instances of the MF

problem, considering the different metrics and corresponding weight functions (i.e., Min-Attr, Min-Size, Min-

Query, and Min-Cond). In the figure, each vertex contains the initial of the attribute that it represents, T -edges

are reported at the top of the figure along with their weights, and C-edges are reported at the bottom of the figure

in boldface. Given a CT-hypergraph H(A, C ∪ T ,wT ), we define a 2-coloring function color: A→{Own,Srv} as

a function that produces a 2-coloring of the hypergraph: all vertices v ∈ A such that color(v)=Own are called

Own-vertices , and all vertices v ∈ A such that color(v)=Srv are called Srv-vertices . The weight of a colored

CT-hypergraph can then be defined as the sum of the weights of the T -edges incident to at least an Own-vertex

(i.e., weight(H ,color)=
∑

t∈T wT (t ) s.t. ∃v ∈ t , color(v)=Own).

A correct fragmentation F=〈F o,F s〉 for R can now be interpreted as a coloring function over the CT-

hypergraph such that the Own-vertices are those representing attributes in F o and the Srv-vertices are those

representing attributes in F s. Analogously, a coloring function color can be interpreted as a correct fragmenta-

tion if no C-edge in the hypergraph is incident to only Srv-vertices, as formally stated in the following.
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Figure 8: CT-hypergraph representation of the instances of the different problems

Definition 7.2 (Correct coloring) Let H(A, C ∪ T ,wT ) be a CT-hypergraph and color : A→{Own,Srv} be

a corresponding 2-coloring function. Function color is a correct coloring for H with respect to C, iff ∀ e ∈ C:

∃v ∈ e such that color(v)=Own.

It is easy to see that a correct function color induces a correct fragmentation F such that F o contains all

attributes corresponding to Own-vertices and F s contains all attributes corresponding to Srv-vertices. The
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Figure 9: An example of a solution to the Min-Att problem

resulting fragmentation F satisfies all conditions in Definition 4.1. In particular,

1. completeness is guaranteed by the fact that the domain of function color is A (i.e., every attribute belongs

either to F o or to F s);

2. confidentiality is guaranteed by imposing that ∀e ∈ C: ∃v ∈ e such that color(v)=Own (i.e., for each

constraint, at least one of the involved attributes is in F o);

3. non-redundancy is guaranteed by the fact that function color assigns no more than one color to each vertex

in A (i.e., no attribute belongs to both F o and F s).

As an example, Figure 9 illustrates a colored CT-hypergraph for the Min-Att problem, where Own-

vertices are gray and Srv-vertices are white. The coloring of this CT-hypergraph is correct since

each C-edge is incident to at least an Own-vertex and therefore induces a correct fragmentation

F=〈{SSN,Name,DoB,Illness},{ZIP,Job,Treatment,HDate}〉.

Given the correspondence between the hypergraph coloring and a correct fragmentation, the definition of

minimal fragmentation (Definition 4.2) can be reformulated as a minimal coloring of the CT-hypergraph as

follows.

Definition 7.3 (Minimal coloring) Let H(A, C ∪ T ,wT ) be a CT-hypergraph and color : A→{Own,Srv}

be a 2-coloring function defined on the vertices of H. Function color is a minimal coloring for H, with

respect to C and wT , iff: 1) color is correct (Definition 7.2) and 2) !color′ : A→{Own,Srv} such that

weight(H,color′)<weight(H,color) and color′ is correct.

The MF problem directly corresponds to the problem of computing a minimal coloring for H . Analogously,

the definition of a locally minimal fragmentation can be reformulated in terms of the color function as follows.

Given two fragmentations F and F ′ and the corresponding coloring functions color and color′, respectively, if

F3F ′, then the set of Own-vertices induced by color is a superset of the set of Own-vertices induced by color′.

Fragmentation F with coloring function color is then locally minimal if it is correct and there does not exist
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INPUT
H = (A, C ∪ T ,wT ) /* the CT-hypergraph*/

*/
OUTPUT
Own /* the set of Own-vertices */

MAIN
C′ := C
Own := ∅ /* initialization of the solution */
for each v ∈ A do /* insert into Own the vertices corresponding to attributes in singleton constraints */

if ∃e′ ∈ C : e′ = {v} then
Own := Own ∪ {v} /* update the solution */
for each e ∈ C incident to v /* delete the C-edges incident to v */

C := C \ {e}
for each e ∈ T incident to v /* delete the T -edges incident to v */

T := T \ {e}
A := A \ {v} /* delete v from H */

let v be a vertex in A with minimum w(v)/c(v)
while (v #=null) ∧ (c(v)#=0) do /* there are still constraints to be solved */

Own := Own ∪ {v} /* update the solution */
for each e ∈ C incident to v /* delete the C-edges incident to v */

C := C \ {e}
for each e ∈ T incident to v /* delete the T -edges incident to v */

T := T \ {e}
A := A \ {v} /* delete v from H */
let v be a vertex in A with minimum w(v)/c(v)

for each v∈Own do /* scan vertices in reverse order of insertion in Own */
if !e ∈ C′ : e∩Own={v} then /* check if v is redundant*/

Own := Own \ {v}
return(Own)

Figure 10: Algorithm that computes a locally minimal fragmentation

another correct fragmentation F ′ with coloring function color′ such that the set of Own-vertices resulting from

function color′ is a subset of the set of Own-vertices resulting from function color. The definition of a locally

minimal fragmentation can then be reformulated through the following definition of locally minimal coloring.

Definition 7.4 (Locally minimal coloring) Let H(A, C ∪ T ,wT ) be a CT-hypergraph and color :

A→{Own,Srv} be a 2-coloring function defined on the vertices of H. Function color is a locally minimal

coloring for H, with respect to C and wT , iff: 1) color is correct (Definition 7.2) and 2) !color′: A→{Own,Srv}

such that {a ∈ A | color′(a )=Own} ⊂ {a ∈ A | color(a )=Own} and color′ is correct.

The LMF problem directly corresponds to the problem of computing a locally minimal coloring for H . The

heuristic algorithm illustrated in Section 7.2 uses this correspondence to compute a fragmentation F that is

locally minimal with respect to C and w, where w is a monotonic weight function associating a weight with each

target t in T .

7.2 Heuristic algorithm

Our heuristic algorithm, illustrated in Figure 10, takes as input the CT-hypergraph H = (A, C ∪ T ,wT )

modeling an instance of the locally minimal fragmentation problem and returns the set Own of Own-vertices in

the hypergraph, which corresponds to the set of attributes composing F o.

Given a vertex v , let w(v) be the sum of the weights of its incident T -edges, and let c(v) be the number of

C-edges incident to v (which corresponds to the number of constraints that include the attribute represented
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by v). The ratio w(v)/c(v) reflects the relative cost of including vertex v into Own, obtained as the weight to

pay divided by number of constraints that would be solved by including the attribute represented by v into F o.

At initialization, the set of constraints and weighted targets are those given in input to the problem, and the

set Own of Own-vertices is empty.

We first note that any correct fragmentation must include in F o all the attributes appearing in singleton

constraints. Therefore, vertices representing attributes appearing in singleton constraints must be inserted

into Own. Given this observation, the first for each loop of the algorithm identifies singleton C-edges (i.e.,

C-edges incident to one vertex only) and removes from the hypergraph the vertices to which these C-edges are

incident. The removed vertices are inserted into Own. Moreover, the algorithm removes all the C-edges and

T -edges incident to a vertex that has been removed (i.e., constraints and targets including attributes appearing

in singleton constraints). In particular, the T -edges are removed since these targets are incident to at least an

Own-vertex and therefore there is no further weight to consider for them.

The algorithm then performs a while loop that, at each iteration, chooses a vertex v among the vertices with

the lowest w(v)/c(v) ratio (i.e., a vertex that maximizes the relative cost for constraint satisfaction), and inserts

it into Own. Vertex v and all its incident hyperedges are then removed from the hypergraph. The inclusion of

v into Own brings to satisfaction all the constraints in which the attribute represented by v is involved (which

therefore need not to be considered anymore). Therefore, the number of constraints c(v ′) in which the attribute

represented by a vertex v ′ that appears with v in at least one C-edge must be updated. Also, the weight of

all the targets in which the attribute represented by v is involved is added to the weight of the solution. The

total weight w(v ′) of T -edges incident to a vertex v ′ that appears with v in at least one T -edge must then

be updated. The while loop terminates if either the hypergraph is empty (i.e., all vertices are in Own) or all

vertices v in A have c(v)=0 (i.e., all constraints have been solved).

The set Own obtained at the end of the while loop may not represent a locally minimal fragmentation since

the inclusion of a vertex with higher ratio might have made unnecessary the inclusion of a vertex, with lower

ratio, previously inserted into Own. Hence, the algorithm iteratively considers vertices in Own in reverse order

of insertion and, for each considered vertex v , it determines if each C-edge in the original hypergraph H , is still

incident to at least a vertex in Own\{v} (i.e., the fragmentation implied by Own still satisfies all the constraints

of the problem). If it does, v is removed from Own. Note that it is sufficient to check each vertex once (i.e., only

one scan of Own needs to be performed). Indeed, if a vertex v belonging to Own is necessary for the satisfaction

of all the confidentiality constraints, the removal of another vertex v′ from Own cannot make v unnecessary

(since v would have been unnecessary before the removal of v′ from Own).

The resulting fragmentation F = 〈F o,F s〉 is then obtained by inserting all the attributes represented by

vertices in Own into F o, and by setting F s = R \ F o.
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Note that the heuristic algorithm proposed basically visits the fragmentation lattice (F,1), starting from

the bottom element in (F,1) and following a path until it reaches a correct fragmentation F . Since F might

not be locally minimal, the algorithm then follows a path back to the bottom element, visiting only correct

fragmentations. It terminates at the first correct fragmentation F ′ that only dominates non correct fragmenta-

tions, and returns F ′, which is, by definition, locally minimal. The experimental evaluation in Section 9 shows

that the fragmentations computed by our heuristics well approximate optimal solutions.

Example 7.5 Figure 11 illustrates the execution, step by step, of the heuristic algorithm to solve the Min-Query

problem on relation Patient and the set of confidentiality constraints in Figure 1, and the query workload in

Figure 5(b). For the sake of readability, each vertex v has w(v) and c(v) indicated at the right-top and right-

bottom of the vertex, respectively.

The algorithm removes from the hypergraph and inserts into Own vertices S and N , which represent attributes

SSN and Name, respectively, since they are involved in singleton constraints c0 and c1. It then removes the edges

incident to S and N , that is, the C-edges representing constraints c0 and c1 and the T -edges representing queries

q1, q2, and q3. The vertices and edges removed from the hypergraph are represented with a dotted line, while

vertices already inserted into Own (and therefore removed from the hypergraph) are gray and the weight w(v),

with which they contribute to the weight of the solution, is represented at the right top of the vertex. The weights

w(D), w(J), and w(I) of the vertices representing attributes involved in a query together with SSN or with Name

are updated according to the set of hyperedges removed from the hypergraph.

At each iteration of the while loop, a vertex with lowest w(v)/c(v) ratio is inserted into Own and the C-edges

and T -edges incident to it are removed from the hypergraph. Vertex J therefore becomes an Own-vertex, and

C-edge {J, I} (corresponding to c4) and T -edge {J, I} (corresponding to q6) are removed from the hypergraph.

The subsequent steps proceed in analogous way, inserting into Own vertices T and D. When inserting D into

Own, the set C of C-edges becomes empty, meaning that all constraints are satisfied and the algorithm terminates.

The computed solution is minimal, since removing any attribute from fragment F o, represented by Own, would

violate at least a constraint. The resulting fragmentation, represented by the 2-colored hypergraph in Figure 12,

is: F o={SSN,Name,DoB,Job,Treatment}; F s={ZIP,Illness,HDate}, whose weight is wq(F)=33 (obtained as

the sum of the weights w(v) of vertices S, N , D, J , and T in the last hypergraph in the figure).

The execution of the algorithm produces the following results:

• Min-Attr: F o={SSN,Name,DoB,Illness}, F s={ZIP,Job,Treatment,HDate}, wa(F)=4;

• Min-Size: F o={SSN,Name,ZIP,Illness}, F s={DoB,Job,Treatment,HDate}, ws(F)=49;

• Min-Cond: F o={SSN,Name,Illness,Treatment}, F s={DoB,ZIP,Job,HDate}, wc(F)=52.
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Figure 11: An example of algorithm execution

We can observe that the dynamic computation of the ratios can be adequately managed with a priority

queue containing the current vertices of the hypergraph. The priority of the vertices in the queue is dictated by

the value of the ratio w(v)/c(v): vertices with lower ratio have higher priority. Each time the value w(v)/c(v)

23



4 14 1 1 15 4 3 6 5 

H T I J Z D N S 

Figure 12: An example of a solution to the Min-Query problem

of a vertex v is dynamically updated (due to the removal of some of its incident hyperedges), the vertex v is

removed and inserted again in the queue with the new ratio value. Assuming implementation of the dynamic

computation of the ratios through a priority queue, the proposed heuristic algorithm has a polynomial time

complexity and correctly computes a locally minimal fragmentation, as proved by the following theorems.

Theorem 7.6 Given a CT-hypergraph H = (A, C ∪ T ,wT ), the computational complexity of the algorithm in

Figure 10 is O(n+ (
∑

t∈T |t|+
∑

c∈C |c|) log (n)) in time, where n = |A|.

Proof: The construction of the priority queue costs O(n). The first for each loop and the while loop

cost O(n + (
∑

t∈T |t|+
∑

c∈C |c|) log (n)), since: i) each attribute is visited at most once, ii) each hyperedge is

considered only once for each attribute to which it is incident, and iii), in the worst case, each vertex is removed

and inserted in the queue every time its incident hyperedges are updated. The deletion and the insertion in

a priority queue can be performed in log(n) time. Also the extraction of the element with highest priority

can be performed in log(n) time. The last for each loop verifies whether removing a vertex from Own, all

the hyperedges in C include at least a vertex in Own. This control is performed for each vertex in Own, and

again each hyperedge is considered at most once for each vertex to which it is incident. The cost of this step is

therefore O(n+
∑

c∈C |c|). !

Theorem 7.7 (Correctness) Given a relation schema R(a1, . . . , an), a well defined set C={c1,. . . ,cm} of

confidentiality constraints over R, a set T ={t1,. . . ,t l} of targets over R, a weight function wT : T → R+,

and the solution Own computed by the algorithm in Figure 10; the algorithm in Figure 10 terminates and the

fragmentation F=〈F o,F s〉, defined as F o=Own and F s=R\F o, is locally minimal (Definition 6.5).

Proof: LetOwn be the solution computed by the algorithm in Figure 10 and F=〈F o,F s〉 be the corresponding

fragmentation. To prove that F represents a locally minimal fragmentation, we need to prove that both the

conditions in Definition 6.5 are satisfied.

1. To prove that F is correct we show that: i) F o∪F s=R, ii) ∀c∈C, c %⊆F s, and iii) F o∩F s=∅. Satisfaction

of conditions i) and iii) immediately follows from the fact that F s is computed as R\F o. Let us then
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prove that condition ii) is satisfied. Suppose, by contradiction, that there exists a constraint c ∈ C violated

by F s, that is, such that c⊆F s. This is in contradiction with the fact that each attribute appearing in

a singleton constraint is in F o and the while loop ends only when the hypergraph is empty or, for all

vertices v, c(v) = 0, meaning that all C-edges have been removed from the hypergraph. Moreover, the

last for each loop removes vertices from Own only if all the edges in C′ (representing the original set of

constraints) are incident to at least a vertex in Own (i.e., if the constraints are not violated).

2. The fact that there exists a correct fragmentation F ′ such that F3F ′ is guaranteed by the last for each

loop. In fact, if F3F ′, then F o⊃F ′
o. The last loop verifies whether removing a vertex from Own, each

C-edge is incident to at least a vertex in Own (i.e., F satisfies all the confidentiality constraints in C). The

loop checks each vertex v in Own and, if its removal from Own does not violate any constraint, removes

v from Own. Since the number of vertices in Own that are incident to C-edges can only decrease, it is

sufficient to perform a single loop to guarantee the property.

The algorithm terminates since all the for each loops iterate on finite sets, that is, the set A of vertices, the

set C of C-edges, the set T of T -edges, and the set Own of Own-vertices (which is a subset of A). Also, at

each iteration of the while loop, a vertex is removed from the hypergraph. In the worst case, the while loop

is iterated n times. !

8 Query execution

Users formulate queries referring to the original relation schema R , without worrying about whether or not R

has been fragmented. However, at the physical level, R is stored by means of the two fragments F o and F s

resulting from the fragmentation process described in the previous sections. Therefore, queries submitted by

authorized users and referring to R need to be translated into equivalent queries operating on F o and/or F s.

We consider select-from-where SQL queries of the same form as the queries populating the workload

profiles (see Section 5), that is, q=“select A from R where C”, where A is a subset of the attributes in R ,

and C=
∧

i coi is a conjunction of basic conditions of the form (ai op v), (ai op aj), or (ai in {v1, . . . , vk}), with

ai and aj attributes in R , {v,v1, . . . , vk} constant values in the domain of ai, and op a comparison operator in

{=, >, <, ≥, ≤, %=}. We now describe the query translation process.

8.1 Classification of conditions

Condition C =
∧

i coi in the where clause of a query can be split into three conditions, namely C o, C s, and

C so, depending on the attributes involved in the subexpression and that determine the party (owner and/or
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external server) responsible for its evaluation.

• C o =
∧

i coi : Attr(coi) ⊆ F o is the conjunction of the conditions in C that can be evaluated only by the

owner , independently from the server, since they involve only attributes stored at the owner.

• C s =
∧

i coi : Attr(coi) ⊆ F s is the conjunction of the conditions in C that can be evaluated by the

external server , independently from the owner, since they involve only attributes stored at the server.

Note that, since the attributes stored at the server can be safely communicated to the owner, C s could

also be evaluated by the owner. However, this last option is highly impractical and should be avoided,

because it requires to send to the owner the projection over F s of the attributes Attr(coi), for each coi in

C s.

• C so =
∧

i coi : Attr(coi) ∩ F o %= ∅ ∧ Attr(coi) ∩ F s %= ∅ is the conjunction of conditions in C of the

form (ai op aj), where ai∈F o and aj∈F s or viceversa. Therefore, these conditions require to evaluate

information at the server and at the owner, since they involve both attributes stored at the owner and

attributes stored at the server. Note that the conditions in C so involve attributes of F o that cannot be

released to the external server, since they would possibly violate confidentiality constraints. Therefore,

C so can be evaluated only by the owner.

Example 8.1 Consider the fragmentation in Figure 3 and the query retrieving the Names and Illnesss of

patients living in area 22030 or 22034, treated with antihistamine, and that were at least eighteen when they

have been hospitalized:

select Name, Illness

from Patient

where (ZIP in {22030, 22034}) and (Treatment=“antihistamine”) and (HDate−DoB≥18y)

C o = {Treatment = “antihistamine”}, since attribute Treatment belongs to F o; C s = {ZIP in {22030, 22034}},

since attribute ZIP belongs to F s; and, C so = {HDate−DoB≥18y}, since attributes DoB∈F o and HDate∈F s.

8.2 Query evaluation strategies

The evaluation process of a query q on R can follow two different strategies, depending on the order in which

conditions C o, C s, and C so are evaluated. The Server-Owner strategy first evaluates C s at the server side

and then evaluates both C o and C so at the owner side. The Owner-Server strategy first evaluates C o at the

owner side, then evaluates C s at the server side, and finally checks C so at the owner side again. The left-hand

side of Figure 13 illustrates the two algorithms implementing the Server-Owner and Owner-Server strategies,
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Algorithm Example
Server-Owner strategy

1. Let q = select A
from R
where C

2. Split C into subexpressions Co, Cs,
and Cso

3. Aqs
:=(Fs∩A)∪{a∈Fs|∃co∈Cso,a∈Attr(co )}

4. Send q
s
= select tid, Aqs

from Fs

where Cs

to the external server
5. Receive the result Rs of q

s
from the server

6. Execute qso = select A
from Fo join Rs

on Fo.tid=Rs.tid
where Co ∧ Cso

7. Return the result Rq of qso to the user

q = select Name, Illness
from Patient

where (ZIP in {22030,22034}) and

(Treatment = “antihistamine”) and

(HDate−DoB≥18y)
Co={Treatment=“antihistamine”}; Cs={ZIP in {22030,22034}};
Cso={HDate−DoB≥18y}
Aqs

= {Illness,HDate}
q
s
= select tid,Illness,HDate

from Fs

where ZIP in {22030,22034}

qso = select Name, Illness
from Fo join Rs

on Fo.tid=Rs.tid
where (Treatment = “antihistamine”)

and (HDate−DoB≥18y)

Owner-Server strategy

1. Let q = select A
from R
where C

2. Split C into subexpressions Co, Cs,
and Cso

3. Aqs
:=(Fs∩A)∪{a∈Fs|∃co∈Cso,a∈Attr(co )}

4. Execute q
o
= select tid

from Fo

where Co

5. Send the result Ro of q
o
to the external server

6. Send q
s
= select tid, Aqs

from Fs join Ro

on Fs.tid=Ro.tid
where Cs

to the external server
7. Receive the result Rs of q

s
from the server

8. Execute qso = select A
from Fo join Rs

on Fo.tid=Rs.tid
where Cso

9. Return the result Rq of qso to the user

q = select Name, Illness
from Patient

where (ZIP in {22030,22034}) and

(Treatment = “antihistamine”) and

(HDate−DoB≥18y)
Co={Treatment=“antihistamine”}; Cs={ZIP in {22030,22034}};
Cso={HDate−DoB≥18y}
Aqs

= {Illness,HDate}
q
o
= select tid

from Fo

where Treatment = “antihistamine”

q
s
= select tid,Illness,HDate

from Fs join Ro

on Fs.tid=Ro.tid
where ZIP in {22030,22034}

qso = select Name, Illness
from Fo join Rs

on Fo.tid=Rs.tid
where HDate−DoB≥18y

Figure 13: Algorithm for evaluating query q on fragmentation F and an example of its execution

respectively, executed by the owner for translating and evaluating q . In the following, we briefly illustrate the

working of the two algorithms.

• Server-Owner strategy. The basic idea is that first the server evaluates the conditions in C s on F s, and

then the owner refines the result by filtering out the tuples that satisfy neither C o nor C so.

The owner receives from the user the query q (step 1) to be evaluated. For the evaluation of q , she splits

the condition C in the where clause of q into three subexpressions, C o, C s, and C so, as illustrated in

Section 8.1 (step 2), and identifies the set Aq
s
of attributes that belong to F s, but that she needs for

completing the evaluation of q (i.e., that belong to A or appear in a basic condition in C so) (step 3). The

owner then defines and sends to the server the query q s, operating on F s and evaluating condition C s

(step 4). The select clause of this query is composed of Aq
s
and attribute tid, which is necessary to join
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the result of q s with F o. The server evaluates q s and sends its result Rs back to the owner (step 5). The

owner defines and executes the query qso operating on the join between Rs and F o and evaluating both

C o and C so (step 6). The result of the evaluation of query qso corresponds to the result of the original

query q and is then returned to the user (step 7).

• Owner-Server strategy. The basic idea is that first the owner evaluates the conditions in C o on F o, the

server then refines the result by filtering out the tuples that do not satisfy C s, and finally the owner

discards the tuples that do not satisfy C so. The first three steps performed by the owner are the same

as for strategy Server-Owner. She then defines and executes query q o, operating on F o and evaluating

condition C o (step 4). The select clause of this query is composed of attribute tid only, which is the

only attribute that can be communicated to the server (step 5) and is needed to perform the join. The

owner sends to the server the query q s, operating on the join between Ro and F s and evaluating condition

C s, for execution (step 6). The select clause of query q s (as for Server-Owner strategy) is composed

of Aq
s
and attribute tid. The server evaluates q s and returns its result Rs to the owner (step 7), who

defines and executes query qso operating on the join between Rs and F o and evaluating C so (step 8). The

relation resulting from the evaluation of query qso, corresponding to the result of the original query q , is

returned to the user (step 9).

Example 8.2 Consider relation Patient in Figure 1(a), its fragmentation in Figure 3, and the query q in-

troduced in Example 8.1. Aq
s
= {Illness,HDate}, since Illness belongs to the select clause of the original

query, while HDate is involved in a condition in C so. The right-hand side of Figure 13 illustrates the queries gen-

erated by the algorithm for translating q into a set of equivalent queries operating on F , with the Server-Owner

and Owner-Server strategies.

The choice between the Server-Owner and Owner-Server strategies depends on the possible leakage of infor-

mation that the Owner-Server strategy may cause. If the external server is supposed to know or can infer query

q , the Owner-Server strategy cannot be adopted as it would cause leakage of information. In fact, the external

server would learn that the tuples in Ro are all and only the tuples that satisfy C o. As an example, consider

query q = “select Illness from Patient where DoB>1985/12/31 and ZIP=22031” over relation Patient.

If we adopt the Owner-Server strategy, q o= “select tid from F o where DoB>1985/12/31” returns only two

tuples tuple with tid=3 and tid=4. The external server then evaluates query q s= “select tid, Illness from

F s join Ro on F s.tid=Ro.tid where ZIP=22031”, which returns only one tuple, with tid=4. Knowing q ,

the external server can, from the result, reconstruct the sensitive associations among DoB, ZIP, and Illness

(violating c2) for the tuple with tid=4. We also note that, also assuming that the server does not know q , it

knows that the tuples in Ro are all and only the tuples in R that satisfy a given condition. By observing a long
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enough series of queries, the server could possibly infer information about the content of R (and reconstruct

sensitive associations).2

If the server does not know and cannot infer q , both the Server-Owner and Owner-Server strategies can

be adopted without privacy violations. In this case, the choice between the two strategies can only be based

on performance. In other words, following the criterion usually adopted by distributed database systems, the

most selective condition is evaluated first (i.e., the sub-query with the smallest result is anticipated). Therefore,

if C o is more selective than C s, the Owner-Server strategy is adopted; if C s is more selective than C o, the

Server-Owner strategy is adopted.

9 Experimental results

We have implemented our heuristic algorithm to assess its efficiency and effectiveness, in terms of both the quality

of the returned solution and the execution time for its computation. For comparing the solution obtained by

the heuristics with the optimum, we also implemented an exhaustive algorithm visiting the whole fragmentation

lattice and solving the MF problem (Problem 4.3). The experiments have been carried out on a server machine

with 2 Intel Xeon Quad 2.0GHz L3-4MB, 12GB RAM, 4 drives Western Digital SATA II 1TB, 7200 RPM, 32

MB cache, and a Linux Ubuntu 9.04 operating system (kernel 2.6.28-11-server).

The relation schema considered in the experiments is composed of 50 attributes. The experiments have

considered configurations with an increasing number of attributes, from 5 to 50. For each configuration of n

attributes, we randomly generated a well defined set of confidentiality constraints composed of a number of

constraints varying from 2 to 0.85 · n, each including a number of attributes ranging between 1 and 0.5 · n.

Analogously, for each configuration of n attributes, we randomly generated a query workload characterized by a

number of queries varying from 2 to n, each operating on a number of attributes ranging between 1 and 0.5 · n,

and with frequency ranging between 1 and 10. The results illustrated in the following are computed as the

average of the values obtained with 30 runs for each configuration of n attributes.

As for the execution time, the heuristic algorithm considerably outperforms the exhaustive search. For

all the runs, execution times of the heuristic algorithm remained below the measurement threshold of 1 ms.

Consistent with the fact that the MF problem is NP-hard (see Theorem 6.1), the exhaustive algorithm requires

exponential time in the number of attributes, and takes more than one day to compute a solution when the

number of attributes reaches 37. As a consequence, we run the exhaustive algorithm only for configurations with

37 attributes at most and, based on the observed results, estimated the trend for larger numbers of attributes.

2To avoid information leakage, the owner can add noise to the result of query qo, by artificially inserting the id of some tuples
that do not satisfy C o. In this case, query qso should evaluate both C so and C o, to remove from the final result the tuples
artificially added to Ro.
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Figure 14: Execution time of the heuristic and the exhaustive search algorithm
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Figure 15: Weight of the fragmentations computed by the heuristic and by an exhaustive search

Figure 14 reports the computational time of the heuristic algorithm, the computational time of the exhaustive

algorithm for configurations with up to 37 attributes, and the estimated trend of the computational time of the

exhaustive algorithm for configurations with more than 37 attributes.

In terms of the quality of the solution, the weight of the fragmentation computed by the heuristic algorithm

is, for the values observed, always close to the optimum obtained with the exhaustive search. Figure 15 reports

the weight of the solution computed by both our heuristic and the exhaustive search algorithm. On average,

the error observed over all the configurations considered is 6.22%. However, the results highlight that, in many

configurations, our heuristics computes a locally minimal fragmentation that is also a minimal fragmentation.
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10 Related work

Work most closely related to our is in the area of data outsourcing [21, 23]. The works proposed in this scenario

mainly differ from the proposal illustrated in this paper since they are based on the assumption that data are

entirely encrypted to protect their privacy. As a consequence, such proposals focus mainly on the design of

techniques allowing efficient query evaluation on encrypted data. In [21, 23], the authors first propose a solution

based on the definition of indexing information, stored together with the encrypted database, to be used by the

DBMS to evaluate equality conditions on the encrypted data. The first support for range queries is illustrated

in [16] and is based on the traditional index structure used by relational DBMSs to support range conditions,

that is, B+ trees. In [16] the authors also propose a hash-based indexing technique for equality conditions. An

indexing method that guarantees the efficient evaluation of both range and equality queries has been introduced

in [27]. This solution uses B-trees and produces an almost flat distribution of the frequencies of index values, to

limit the risk of inference exposure [8]. Different proposals (e.g., [2, 22, 28]) have been studied for providing a

better support of SQL clauses, minimizing the burden for the requesting client in the query evaluation process.

The first proposal suggesting the storage of plaintext data, while enforcing confidentiality constraints, is

presented in [1]. The solution introduced in [1] breaks sensitive associations by storing on two remote servers

the attributes that should not be publicly visible together. The servers are assumed to belong to two different

service providers, which never exchange information. The sensitive associations that cannot be split between

the two servers are protected by resorting to encryption. That is, one of the attributes belonging to the sensitive

association is encrypted, the encrypted attribute is stored on one server, and the encryption key on the other.

The work presented in [10, 12, 14] proposes a solution that permits storing multiple fragments on a single server,

thus removing the trust in the fact that the servers do not communicate. This proposal is based on the combined

use of fragmentation and encryption and aims at leaving in plaintext all the attributes whose values are not

considered sensitive per se (i.e., attributes that do not appear in singleton constraints). The fragmentation

process is guided by a definition of minimality, aimed at reducing either the number of fragments [10] or the

cost of query evaluation over fragmented data [12].

The first solution completely departing from encryption for confidentiality constraint satisfaction is presented

in [13]. This proposal is based on the assumption that the data owner is willing to store a limited portion of

the information. As a consequence, privacy constraints are enforced by fragmenting the data such that sensitive

associations are broken (or completely stored at the owner site). The query evaluation process to adopt in this

scenario is described in [11]. The solution proposed in this paper extends the works in [11, 13], since we propose

a new modeling (and therefore a different algorithm) for the fragmentation problem, which is conveniently

formulated as a hypergraph 2-coloring problem.
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A different, but related, line of work is represented by the proposals in [4, 5, 6], where the authors exploit

functional dependencies to the aim of correctly enforcing access control policies. In [5] the authors propose a

policy based classification of databases to guarantee the confidentiality of sensitive data. To this purpose, the

solution proposed first determines a set of classification instances, representing the combinations of values that

need to be protected. Classification instances are then used to determine if the result of the evaluation of a

query contains a combinations of values that is considered sensitive and therefore access to the query result

should not be permitted. In [4] the authors propose a method for the definition of privacy constraints, based on

the reduction of the problem of protecting the data from inference to the problem of enforcing of access control

in relational databases. In [6] the authors propose a model for the modification of the database instance visible

to the user, guaranteeing both data confidentiality (as specified by the data owner’s policy) and consistency

with user’s prior knowledge.

The problem of fragmenting relational databases while maximizing query efficiency has already been studied

in the literature and some approaches have been proposed [25, 26]. However, these techniques are not applica-

ble to our problem, since they are only aimed at performance optimization and do not take into consideration

protection requirements. Also, the classical proposals introduced for the management of queries both in central-

ized and distributed systems [3, 7, 24] cannot be applied in our context since they do not take confidentiality

constraints into consideration.

The work presented in this paper has some affinity with the work in [17]. Although this approach shares with

our problem the common goal of enforcing confidentiality constraints on data, it is concerned with retrieving

a data classification (according to a multilevel mandatory policy) that ensures sensitive information is not

disclosed. Also, it does not consider the possibility of fragmenting data.

11 Conclusions

The paper presented a model and an efficient technique for enforcing confidentiality constraints defined on data

that are outsourced to an external honest-but-curious server. Our approach departs from encryption and is

based on the availability at the owner of local trusted storage, which can be efficiently used to store a limited

set of data, just enough to guarantee privacy protection. We introduced the problem of computing a minimal

fragmentation with respect to different metrics expressing the workload at the owner side, and provided a

formulation of the problem in terms of a 2-coloring of a hypergraph. We also presented a heuristics that solves

the hypergraph 2-coloring problem and experimentally proved that our heuristics returns a solution close to the

optimum. Several open issues still remain to be addressed such as the development of sophisticated metrics for

evaluating the workload of the owner that take into consideration the selectivity of queries and of alternative
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solutions for guaranteeing that the outsourced data do not reveal sensitive associations. Another interesting

aspect that deserves investigation concerns dynamic scenarios, that is, when either the workload of the data

owner or the confidentiality constraints may change. Incremental approaches can be devised to compute a

new fragmentation starting from the existing one thus avoiding complete recomputation and improper exposure

due to independent views (as simply producing a new independent solution could enable the server to merge

attribute views at different times and breach confidentiality constraints).
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