
Authorization Enforcement in Distributed Query Evaluation∗

Sabrina De Capitani di Vimercati,1 Sara Foresti,1 Sushil Jajodia,2 Stefano Paraboschi,3 Pierangela Samarati1

1DTI - Università degli Studi di Milano - 26013 Crema, Italy
firstname.lastname@unimi.it

2CSIS - George Mason University - Fairfax, VA 22030-4444
jajodia@gmu.edu

3DIIMM - Università degli Studi di Bergamo - 24044 Dalmine, Italy
parabosc@unibg.it

Corresponding author : Pierangela Samarati
DTI - Università degli Studi di Milano
Via Bramante 65 - 26013 Crema, Italy

pierangela.samarati@unimi.it

phone: +39-0373-898061, fax: +39-0373-898010

Abstract

We present a simple, yet powerful, approach for the specification and enforcement of authorizations

regulating data release among data holders collaborating in a distributed computation, to ensure that query

processing discloses only data whose release has been explicitly authorized. Data disclosure is captured

by means of profiles, associated with each data computation, that describe the information carried by

a base or a derived (i.e., computed by a query) relation. We present an algorithm that, given a query

plan, determines whether it can be safely executed and produces a safe execution strategy for it. For each

operation in a safe query plan, the algorithm determines the server(s) responsible for the execution, based on

the entailed information flows, considering different strategies for the execution of joins. Finally, we discuss

the architecture of a distributed database system based on the proposed model, illustrating possible design

choices and their impact.

keywords : Distributed query evaluation, authorized views, safe query planning

∗A preliminary version of this paper appeared under the title “Controlled Information Sharing in Collaborative Distributed Query
Processing,” in Proc. of the 28th International Conference on Distributed Computing Systems(ICDCS 2008), Beijing, China, June
17-20, 2008 [11].

1

Sara Foresti

Sara Foresti
© IOS Press, (2011). This is the author's version of the work. It is posted here by permission of IOS Press for your personal use.
Published in Journal of Computer Security (JCS), Volume 19, Issue 4, Pag 751-794, 2011.

Sara Foresti

1 Introduction

More and more emerging scenarios require different parties, each withholding large amounts of independently

managed information, to cooperate with other parties in a large distributed system to the aim of sharing

information and perform distributed computations. Such scenarios range from traditional distributed database

systems, where a centrally planned database design is then distributed to different locations; to federated

systems, where independently developed databases are merged together; to dynamic coalitions and virtual

communities, where independent parties may need to selectively share part of their knowledge towards the

completion of common goals. Regardless of the specific scenario, a common point of such a merging and sharing

process is that it is selective: if on one hand there is a need to share some data and cooperate, there is on the

other hand an equally strong need to protect those data that, for various reasons, should not be disclosed.

The correct definition and management of protection requirements is therefore a crucial point for an effective

collaboration and integration of large-scale distributed systems. The problem calls for a solution that must

be expressive to capture the different data protection needs of the cooperating parties as well as simple and

consistent with current mechanisms for the management of distributed computations, to be seamlessly integrated

in current systems. To this aim and for the sake of concreteness, in this paper we address the problem with

specific consideration to distributed database systems. While noting that our approach can be extended to other

data models, we also note that the emphasis on relational databases must not be considered a limitation. First,

relational database technology currently dominates the management of data in most scenarios where collections

of sensitive information have to be integrated over a network; even if a system offers access to the data using

Web technology, the data offered by the system are extracted from a relational database and a description of

the access policy in terms of the underlying relational structure offers a high degree of flexibility. Second, for

integration solutions based on Web technology, and in particular systems relying on the use of Web services,

it is always possible to model the structure of the exported data in terms of a relational representation. In

this situation a description of the access policy according to our model, in contrast to a policy description on

service invocations, typically provides a more robust and flexible identification of the security requirements of

the application.

We consider a scenario where relations are distributed at different servers, query execution may require

cooperation, and data are exchanged among the different servers involved in the query. Each server is responsible

for the definition of the access policy on its resources. We propose an authorization model to regulate the view

that each server can have on the data and ensure that query computation exposes to each server only data

that the server can view. In our approach, authorizations regulate not only the data on which parties have

explicit visibility, but also the visibility of possible associations that such data convey. Our simple authorization

2

form essentially corresponds to generic view patterns, thus nicely meeting both expressiveness and simplicity

requirements. A novel aspect of the model is the definition of distinct authorization profiles for different parties in

the system and the explicit support for cooperative query evaluation. This is an important feature in distributed

settings, where the minimization of data exchanges and the execution of a query step in locations where it can

be less costly is a crucial factor in the identification of an execution strategy characterized by good performance.

In [11] we presented an early version of our proposal that here has been extended to possibly consider a third

party (belonging to the system) as responsible for the execution of one or more operations composing a query

plan, when none of the involved parties has the authorizations necessary for their computation. We then revise

both the definition of safe executor assignment and of feasible query plan. The algorithm originally proposed

in [11], which determines whether and how a given query plan can be safely executed, has been changed to

compute a safe executor assignment eventually involving a third party. In addition, we formally analyze the

correctness and computational complexity of the novel algorithm and describe the architecture of a distributed

database system that adopts the proposed model. The description of the architecture focuses on the possible

design choices and their impact.

The remainder of the paper is organized as follows. Section 2 introduces preliminary concepts of the dis-

tributed data model and distributed query evaluation. Section 3 illustrates our security model. Section 4

discusses query planning and how protection requirements stated by authorizations must be considered in the

query execution to ensure that data are properly protected within the distributed computation. Section 5 pro-

poses an algorithm for determining whether a query plan can be executed in the respect of the authorizations

and, if it exists, producing a safe assignment of tasks to the distributed cooperating parties for the execution of

the query plan. Section 6 describes the architecture of a distributed database system implementing our security

model. Section 7 discusses related work. Finally, Section 8 draws our conclusions. The proofs of the theorems

are reported in Appendix A.

2 Preliminary concepts

We consider a distributed system composed of different servers, storing different relations. Each relation is

represented as R(A1, . . . ,An), where R is the name of the relation and A1, . . . ,An are its attributes. At the

instance level, a relation is a set of tuples, where each tuple associates with each attribute in the relation a value

in the attribute’s domain. The primary key of a relation is the attribute, or set of attributes, that uniquely

identifies each tuple in the relation. For the sake of simplicity, we assume all relations to have distinct names and

all attributes in the different relations to have distinct names. While simplifying the notation, this assumption

does not limit in any way our approach since relations/attributes with the same name can be made distinct by

3

Patient Disease Physician

Hospital
S H

Citizen HealthAid
Nat_registry

S N Illness Treatment

Disease_list

S D

Holder Plan

Insurance
S I

Figure 1: Schema of a distributed system

using the usual dot notation (server.relation.attribute).

A fundamental operation in the relational model is the join (!") between relations. A join combines tuples

belonging to two different relations based on specified conditions. We consider equi-joins, that is, joins whose

conditions are conjunctions of expressions of the form Al=Ar, where Al is an attribute of the relation appearing

as left operand and Ar an attribute of the relation appearing as right operand. In the following, we denote a

conjunction of equi-join conditions simply as a pair 〈Jl, Jr〉, where Jl (Jr, resp.) is the list of attributes of the

left (right, resp.) operand. Different join operations can be used to combine tuples belonging to more than two

relations. The following definition introduces a join path as a sequence of equi-join conditions.

Definition 2.1 (Join path). A join path over a sequence of relations R1, . . . ,Rn is a sequence of n−1 equi-joins

J1, . . . , Jn−1, with Ji = 〈Jli , Jri〉, i = 1, . . . , n− 1, where Jri is a list of attributes of relation Ri+1 and Jli a list

of attributes of a relation Rk, with k ≤ i.

Example 2.1. Figure 1 represents a distributed system managing medical data. The system is composed of

four relations each stored at a different server: Insurance stored at server SI ; Hospital stored at server SH ;

Nat registry stored at server SN , and Disease list stored at server SD. Underlined attributes denote primary

keys, while lines represent possible joins. An example of join path is {〈Holder,Patient〉, 〈Disease,Illness〉},

combining tuples of relations Insurance, Hospital, and Disease list to retrieve the insurance plan of patients

using a given treatment.

We consider simple select-from-where queries of the form: “select A from Joined relations where C”,

corresponding to the algebra expression πA(σC(R1 !"J1 . . . !"Jn−1 Rn)), where A is a set of attributes, C is

the selection conditions, and R1 !"J1 . . . !"Jn−1 Rn are the joins in the from clause. Each query execution

can be represented as a binary tree, called query tree plan, and denoted T (N ,E), where leaves correspond to

the physical relations accessed by the query (appearing in the from clause), each non-leaf node is a relational

4

q1: q2:

select Patient , Physician, Plan, HealthAid
from Insurance join Nat registry on Holder=Citizen

join Hospital on Citizen=Patient

select Patient , Physician, Plan
from Insurance join Hospital on Holder=Patient
where Disease = “hypertension”

n0 πPatient,Physician,Plan,HealthAid

n1 "#Citizen=Patient

!!
!!

!!
!

"""
"""

""

n2 "#Holder=Citizen

!!
!!

!!
!

##
##
#

n3 πPatient,Physician

n4 Insurance n5 Nat registry n6 Hospital

n0 πPatient,Physician,Plan

n1 "#Holder=Patient

$
$
$
$
$
$
$
$
$
$
$
$

%%
%%

%

n2 σDisease=“hypertension”

n3 Insurance n4 Hospital

Figure 2: Two examples of query tree plan on the schema of Figure 1

operator receiving in input the result produced by its children and producing a relation as output, and the root

corresponds to the last operation and returns the result of the query evaluation. For simplicity and without loss

of generality, we assume the query plan to satisfy the usual minimization criteria. In particular, projections are

“pushed down” the tree to eliminate unnecessary attributes as soon as possible in the query execution. While

usually adopted for efficiency, this assumption is also important for security purposes, as it permits to discard

(i.e., not make visible) attributes not needed for the computation.

Example 2.2. Figure 2 illustrates two examples of queries, namely q1 and q2, corresponding to the relational

algebra expressions πPatient,Physician,Plan,HealthAid (Insurance !"Holder=Citizen Nat registry !"Citizen=Patient

Hospital), and πPatient,Physician,Plan (σDisease=“hypertension” (Insurance !"Holder=Patient Hospital)), respec-

tively. On the left-hand side of Figure 2 there is a query tree plan for query q1, where the projection on attributes

Patient and Physician of relation Hospital has been pushed down. On the right-hand side of Figure 2 there is

a query tree plan for query q2, where the selection on attribute Disease of relation Hospital has been pushed

down.

In the following, given an operation involving a relation stored at a server, we will use the term operand

to refer indistinguishably to either the relation or the server storing it, when the semantics is clear from the

context.

5

3 Security model

We first present our simple, while expressive, authorizations, regulating how data can be released to each server.

We then introduce the concept of relation profile that characterizes the information content of a relation.

3.1 Authorizations

Consistently with standard security practice, we assume a “closed policy”, where data can be made visible only

to parties explicitly authorized for that.1 Authorizations have the following form.

Definition 3.1 (Authorization). An authorization is a rule of the form [Attributes, Join Path]→Server where:

1. Attributes is a set of attributes belonging to one or more relations;

2. Join Path is a join path including (at least) all the relations with attributes in Attributes, that is, whose

release is authorized (the join path can be empty when all the attributes in Attributes belong to the same

relation);

3. Server is a server in the distributed system.

The semantics of an authorization is that Server can be released (i.e., is authorized to view) the set Attributes

of attributes of tuples resulting from the join operation described by Join Path. This form of authorizations,

with the specification of the join path as a separate element, is quite expressive, yet simple and easily usable by

DBAs.

Note that the join path may also include attributes appearing in relations that do not have any attribute in

Attributes . This may be due to two different reasons.

1. Connectivity constraints . The additional relations are needed to build a correct association among the

attributes of other relations (i.e., the relations that are in the join path). For instance, in authorization 3

in Figure 3 attribute Patient in Hospital appears in the join path to establish the association between

insurance holders and their treatments, but none of the attributes of Hospital are released. Note how the

authorization allows the insurance company (server SI) to view the treatment of its subscribers without

need of knowing their illness.

2. Instance-based restrictions . The additional relations are needed to restrict the values of attributes to

be released to only those values appearing in tuples that can be associated with such relations. For

instance, authorization 15 in Figure 3 allows server SN to view the illnesses of all the citizens appearing

1While we assume a closed policy, we note that our approach can be adapted to an “open policy” scenario, where data are
visible by default and negative rules specify restrictions on the visibility that parties may have on the data [22].

6

Attributes Join Path Server

1 {Holder, Plan} SI

2 {Holder, Plan, Patient, Physician} {〈Holder,Patient〉} SI

3 {Holder, Plan, Treatment} {〈Holder,Patient〉, 〈Disease,Illness〉} SI

4 {Patient, Disease, Physician} SH

5 {Patient, Disease, Physician, Holder, Plan} {〈Patient,Holder〉} SH

6 {Patient, Disease, Physician, Citizen, HealthAid} {〈Patient,Citizen〉} SH

7 {Patient, Disease, Physician, Holder, Plan, Citizen, HealthAid} {〈Patient,Citizen〉, 〈Citizen,Holder〉} SH

8 {Citizen, HealthAid} SN

9 {Holder, Plan} SN

10 {Patient, Disease} SN

11 {Citizen, HealthAid, Patient, Disease} {〈Citizen,Patient〉} SN

12 {Citizen, HealthAid, Holder, Plan} {〈Citizen,Holder〉} SN

13 {Patient, Disease, Holder, Plan} {〈Patient,Holder〉} SN

14 {Citizen, HealthAid, Patient, Disease, Holder, Plan} {〈Citizen,Patient〉, 〈Citizen,Holder〉} SN

15 {Citizen, Illness} {〈Citizen,Patient〉, 〈Disease,Illness〉} SN

16 {Illness, Treatment} SD

Figure 3: Examples of authorizations for the distributed system in Figure 1

in the National Registry (i.e., tuples in Nat registry satisfying Citizen=Patient and Disease=Illness

conditions) but not of those patients who are not registered. Note how instance-based restrictions can

also be used to support situations where some information can be released only if explicit input is requested

(the input is viewed in this case as a relation to be joined). For instance, with reference to the example

just mentioned, providing the citizen identifier, server SN can retrieve the corresponding illness.

It is important to note that the presence of a join path in an authorization implies the release of fewer

tuples (only those for which the conditions in the join path are satisfied), but it does not imply the release of

less information. Indeed, releasing a tuple implicitly gives information on the fact that the tuple satisfies the

join path, that is, that its values have an association with another relation (which might not be released). For

instance, authorization 2 in Figure 3 gives SI not only the values of attribute Physician for its subscribers, but

also the additional information about the fact that the subscriber has been hospitalized. We will come back to

this observation when discussing access control evaluation.

Note also that, while expressive, our authorizations remain at the schema level, that is, they do not allow

restricting access only to certain tuples, depending on the satisfaction of some conditions (apart from joins).

The reason for this is that including selection conditions in the authorizations would increase the complexity

and reduce the applicability of the model.

7

Profile

Operation Rπ R"# Rσ

R := πX(Rl) X R"#
l

Rσ
l

R := σX (Rl) Rπ
l R"#

l Rσ
l ∪X

R :=Rl"#jRr Rπ
l ∪R

π
r R"#

l ∪R"#
r ∪j Rσ

l ∪R
σ
r

Figure 4: Profiles resulting from relational operations

3.2 Profiles and authorized views

Authorizations restrict the data (views) that can be released to each server. To determine whether a release

should be authorized or not, we first need to capture the information content of a relation, either base or derived

(i.e., computed by a query). To this purpose, we introduce the concept of relation profile.

Definition 3.2 (Relation profile). Given a relation R, the relation profile of R is a triple [Rπ,R"#,Rσ], where:

Rπ is the set of attributes in R (i.e., R’s schema); R"# is the, possibly empty, join path used in the def-

inition/construction of R; Rσ is a, possibly empty, set of attributes involved in selection conditions in the

definition/construction of R.

According to the definition above, the relation profile of a base relation R(A1, . . . ,An) is [{A1, . . . ,An}, ∅,∅].

Also, according to the semantics of the relational operators, the profile resulting from a relational operation,

summarized in Figure 4,2 is as follows.

• Projection (π). It returns a subset of the attributes of the operand. Hence, R"# and Rσ of the resulting

relation R are the same as the ones of the operand, while Rπ contains only those attributes being projected.

• Selection (σ). It returns a subset of the tuples of the operand. Hence, R"# and Rπ of the resulting relation

R are the same as the ones of the operand, while Rσ needs to include also the attributes appearing in the

selection condition.

• Join (!"). It returns a relation that contains the association of the tuples of the operands , thus capturing

the information in both operands as well as the information on their association (conditions in the join).

Hence, Rσ and Rπ of the resulting relation R are the union of those of the operands, while R"# is the

union of the join paths of the operands and the one of the operation.

A generic query of the form “select A from Joined Relations where C” then produces a derived relation

whose profile is [A,Jq,AttC], where A is the set of projected attributes, Jq is the join path connecting the

relations in the from clause of the query, and AttC are the attributes appearing in the where clause. In the

2For the sake of simplicity, with a slight abuse of notation, we write σX(R) as a short hand for any expression σcondition (R),
where X is the set of attributes of R involved in condition.

8

following, when clear from the context, we use the term relation to refer to either a base relation or a derived

relation.

According to the semantics of authorizations and of profiles, the visibility on the different relations by a

server is regulated as follows.

Definition 3.3 (Authorized view). Given a set A of authorizations, a relation R with profile [Rπ, R"#, Rσ],

and a server S, we say that S is authorized to view R iff ∃ [A, J]→S ∈ A such that both the following conditions

hold: 1) Rπ ∪ Rσ ⊆ A, and 2) R"# = J .

Definition 3.3 states that a relation can be released to a server only if there is an authorization permitting

the release of (at least) all the attributes, either explicitly contained in the relation or appearing in the selection

condition in its definition, and which has exactly the same join path as the relation. The reason for the subset

in the first condition is that an authorization to view a superset of attributes implies the authorization to view a

subset of them. One could think that a similar implication could also hold for join paths, and therefore that an

authorization containing a join path could also authorize all relations that simply include the path (as the addi-

tion of further conditions simply restricts the set of tuples in the result). However, this implication cannot hold.

In fact, while decreasing the set of tuples belonging to the result, any additional join condition adds information

on the fact that the tuples join with (i.e., have values appearing in) other tuples of relations whose content should

not be released. For instance, consider the relation obtained as “select Illness , Treatment from Disease list

join Hospital on Illness=Disease”, characterized by profile [{Illness ,Treatment},{〈Illness ,Disease〉},∅]. SD

cannot access such a relation because its only authorization for the attributes (authorization 16) does not have

the join path that appears in the relation profile. While including only some of the tuples of the Disease list

relation, the query result bears also the information of which illnesses have a correspondence in the Hospital

relation, which SD is not authorized to view.

While we check each data release with respect to individual authorizations, we note that a server could be

authorized to view some data in the case where, even if not explicitly authorized for the specific data view, it

holds the authorizations for all the underlying relations and therefore would be able to independently compute

the view. For instance, with reference to the example just mentioned, suppose SD has, besides authorization

16 allowing it to view relation Disease list, also the authorization to view relation Hospital. The two

authorizations clearly imply the (derived) authorization for the query above, which represents a view on them.

Derived authorizations can be obtained by means of a “chase” procedure that computes all the authorizations

implied directly or indirectly by those explicitly specified. Such closing process goes beyond the functionalities

of the SQL standard, but is based on known results [2, 10]. Its treatment is outside the scope of the paper; we

therefore do not discuss it further, and assume that authorizations are closed with respect to these derivations.

9

Oper. [m,s] Operation/Flow Views(Sl) Views(Sr) View profiles

πX(Rl) [Sl,null] Sl: πX(Rl)

σX(Rl) [Sl,null] Sl: σX(Rl)

Rl"#Jlr
Rr [Sl,null] Sr : Rr→Sl Rr [Rπ

r ,R
"#
r ,Rσ

r]
Sl: Rl"#Jlr

Rr

[Sr,null] Sl: Rl→Sr Rl [Rπ
l ,R

"#
l ,Rσ

l]
Sr : Rl"#Jlr

Rr

[Sl,Sr] Sl: RJl
:= πJl

(Rl)
Sl: RJl

→Sr πJl
(Rl) [Jl,R"#

l ,Rσ
l]

Sr : RJlr := RJl
"#Jlr

Rr

Sr : RJlr → Sl πJl
(Rl)"#Jlr

Rr [Jl∪Rπ
r ,R

"#
l ∪R"#

r ∪Jlr,Rσ
l ∪R

σ
r]

Sl: RJlr "# Rl

[Sr,Sl] Sr : RJr := πJr (Rr)
Sr : RJr →Sl πJr (Rr) [Jr,R"#

r ,Rσ
r]

Sl: RlJr :=Rl"#Jlr
RJr

Sl: RlJr →Sr Rl"#Jlr
(πJr (Rr)) [Rπ

l ∪Jr,R
"#
l ∪R"#

r ∪Jlr,Rσ
l ∪R

σ
r]

Sr : RlJr "#Rr

Figure 5: Execution of operations and required views with corresponding profiles

4 Safe query planning

Goal of this work is to determine whether and how the query can be computed without violating the defined

authorizations. A necessary condition for the query execution is clearly that the requester be authorized to

view the profile associated with the relation corresponding to the query result. As a matter of fact, there is

no need of determining a plan for a query execution if its result cannot be made visible to the requester. In

the following, we therefore consider queries whose profile can be viewed by the requester (queries for which

such condition does not hold are discarded upfront). The definition of a plan for the query execution requires

determining the data releases that each execution step entails, so that only executions implying authorized

releases are performed. Since we can assume each server to be authorized to view the relation it holds, each

unary operation (projection and selection) can be executed by the server itself, while a join operation can be

executed if all the data communications correspond to authorized releases. Figure 5 summarizes the operations

and the data exchanges needed to perform a relational operation, reporting, for every data communication, the

profile of the relation being communicated (and hence the information exposure implied by it); data access by

a server on its own relation is implicit. For each operation/communication we also show, before the “:”, the

server executing it. We note that a join operation Rl!"Jlr
Rr, where Rl and Rr represent the left and right input

relations, respectively, can be executed either as a regular join or a semi-join. We call master the server in

charge of the join computation and slave the server that cooperates with the master during the computation.

We then distinguish four different cases depending on whether the join is executed as a regular join or as a

semi-join and on which operand serves as master (slave, respectively). The master/slave assignment is specified

10

as a pair, where the first element is the operand that serves as master and the second element is the operand

that serves as slave. We discuss the cases where the left operand serves as master (denoted [Sl,null] for the

regular join and [Sl,Sr] for the semi-join), with the note that the cases where the right operand serves as master

([Sr,null] and [Sr,Sl]) are symmetric.

• [Sl,null]: in the regular join processed by Sl, server Sr sends its relation to Sl, and Sl computes the join.

For execution, Sl needs to be authorized to view Rr, which has profile [Rπ
r ,R

"#
r ,Rσ

r].

• [Sl,Sr]: the semi-join requires a sequence of five steps. 1) Sl computes the projection RJl
of the attributes

in its relation Rl participating in the join. 2) Sl sends RJl
to Sr; this operation entails a data release

characterized by the profile of RJl
, which (according to Definition 3.2) is [Jl,R"#

l ,Rσ
l]. 3) Sr locally

computes RJlr as the join between RJl
and its relation Rr. 4) Sr sends RJlr to Sl; this operation entails

a data release characterized by the profile of RJlr, namely [Jl∪Rπ
r ,R

"#
l ∪R"#

r ∪Jlr,Rσ
l ∪R

σ
r]. 5) Sl computes

the natural join between RJlr and its own relation Rl.

Semi-joins allow reducing the flow of information: the slave server needs only to send those tuples that

participate in the join, instead of its complete relation.

Example 4.1. Consider query q1 in Example 2.2. If the join between Insurance and Nat registry (node n2

in Figure 2) is executed as a regular join, SN sends the whole Nat registry relation to SI (or, vice versa, SI

sends the whole Insurance relation to SN), who computes the result of the join. If the join is executed as a

semi-join, where SI acts as master, SI sends to SN the projection of Insurance on Holder. SN then sends back

to SI Nat registry joined with the list of values of Holder received from SI . Finally, SI computes the result of

the join between the relation received from SN and its relation Insurance.

We assign to each node of a query tree plan a server or a pair of servers, called executor , responsible for

the execution of the algebraic operation represented by the node. To formally capture this intuitive idea, we

introduce the definition of the executor assignment function λT as follows.

Definition 4.1 (Executor assignment). Given a query tree plan T (N ,E), an executor assignment function

λT : N → S × (S∪{null}) assigns to each node a pair of servers such that:

1. each leaf node (corresponding to a base relation R) is assigned the pair [S,null], with S the server where

R is stored;

2. each non-leaf node n, corresponding to unary operation op on operand Rl (left child) at server Sl, is

assigned the pair [Sl,null];

11

3. each non-leaf node n, corresponding to a join on operands Rl (left child) at server Sl and Rr (right child)

at server Sr, is assigned a pair [master,slave] such that master ∈ {Sl, Sr}, slave ∈ {Sl, Sr,null}, and

master -=slave.

Given a query plan, we need to determine an assignment of the computation steps to different servers, in

such a way that the execution given by the assignment entails only views allowed by the authorizations. This

concept is captured by the following definition of safe assignment.

Definition 4.2 (Safe assignment). Given a query tree plan T (N ,E), a node n∈N , and an executor assignment

function λT , λT (n) is said to be safe if one of the following conditions hold: 1) n is a leaf node; 2) n corresponds

to a unary operation; 3) n corresponds to a join and all the views derived by the assignment are authorized.

The executor assignment λT is said to be safe iff ∀n ∈ N , λT (n) is safe.

A query plan is feasible iff there exists a safe assignment for it, as captured by the following definition.

Definition 4.3 (Feasible query plan). A query plan T (N ,E) is said to be feasible iff there exists an executor

assignment function λT on T such that λT is safe.

4.1 Third party involvement

As already discussed, the execution of joins necessarily requires some communication of information among

the operands, which we check against authorizations and allow only if authorized. It may happen that, for

a given join, none of the four possible modes of execution in Figure 5 corresponds to a safe assignment, but

the join could be safely executed with the consideration of a third party acting either as proxy for one of the

two operands or as coordinator for the join evaluation. To find a safe executor assignment for the join, it is

therefore necessary to verify whether one or more third parties can be involved in the computation of the join.

The following theorem proves that the maximum number of third parties that may need to be involved is equal

to the number of conditions in the join path.

Theorem 4.1. Given two relations Rl(Al1 ,Al2 , . . . ,Aln ,Aln+1) and Rr(Ar1 ,Ar2 , . . . ,Arn ,Arn+1), the maximum

number of parties necessary to evaluate an equi-join Rl!"Jlr
Rr, with Jlr =

n∧

i=1

〈Ali ,Ari〉, is n.

Proof: See Appendix.

While the consideration of a third party can bring great advantage in many cases, it is instead clearly

impractical, as well as undesirable, to consider an arbitrary number of parties (and check all the possible ways

for executing a join that could therefore arise). In this paper, we therefore consider the case where only one

third party can participate in the join operation. This assumption keeps the computational cost of the algorithm

limited, since the number of ways in which a join operation can be safely evaluated remains low.

12

[m,s] Operation/Flow Views(Sl) Views(Sr) Views(St) View profiles

[St,null] Sl:Rl→ St Rl [Rπ
l ,R"#

l ,Rσ
l]

Sr :Rr→ St Rr [Rπ
r ,R"#

r ,Rσ
r]

St:Rl"#Jlr
Rr

[St,Sl] Sr :Rr→ St Rr [Rπ
r ,R"#

r ,Rσ
r]

St:RJr
:= πJr

(Rr)

St:RJr
→ Sl πJr

(Rr) [Jr ,R"#
r ,Rσ

r]

Sl:RlJr
:=Rl"#Jlr

RJr
Sl:RlJr

→ St Rl"#Jlr
(πJr

(Rr)) [Rπ
l ∪Jr ,R"#

l ∪R"#
r ∪Jlr ,Rσ

l ∪Rσ
r]

St:RlJr
"#Rr

[St,Sr] Sl:Rl→ St Rl [Rπ
l ,R"#

l ,Rσ
l]

St:RJl
:= πJl

(Rl)

St:RJl
→ Sr πJl

(Rl) [Jl,R
"#
l ,Rσ

l]

Sr :RJlr
:= RJl

"#Jlr
Rr

Sr :RJlr
→ St πJl

(Rl) "#Jlr
Rr [Jl∪Rπ

r ,R"#
l ∪R"#

r ∪Jlr ,Rσ
l ∪Rσ

r]

St:RJlr
"#Rl

[Sl,St] Sl:RJl
:= πJl

(Rl)

Sl:RJl
→ St πJl

(Rl) [Jl,R
"#
l ,Rσ

l]

Sr :Rr→ St Rr [Rπ
r ,R"#

r ,Rσ
r]

St:RJlr
:= RJl

"#Jlr
Rr

St:RJlr
→ Sl πJl

(Rl) "#Jlr
Rr [Jl∪Rπ

r ,R"#
l

∪R"#
r ∪Jlr ,Rσ

l
∪Rσ

r]

Sl:RJlr
"#Rl

[Sr,St] Sr :RJr
:= πJr

(Rr)

Sr :RJr
→ St πJr

(Rr) [Jr ,R"#
r ,Rσ

r]

Sl:Rl→ St Rl [Rπ
l

,R"#
l

,Rσ
l
]

St:RlJr
:= Rl"#Jlr

RJr
St:RlJr

→ Sr Rl"#Jlr
(πJr

(Rr)) [Rπ
l ∪Jr ,R"#

l ∪R"#
r ∪Jlr ,Rσ

l ∪Rσ
r]

Sr :RlJr
"# Rr

[St,SlSr]Sl:RJl
:= πJl

(Rl)

Sr :RJr
:= πJr

(Rr)

Sl:RJl
→ St πJl

(Rl) [Jl,R
"#
l ,Rσ

l]

Sr :RJr
→ St πJr

(Rr) [Jr ,R"#
r ,Rσ

r]

St:RJlJr
:= RJl

"#Jlr
RJr

St:RJlJr
→ Sl (πJl

(Rl)) "#Jlr
(πJr

(Rr)) [Jl ∪ Jr ,R"#
l ∪R"#

r ∪Jlr ,Rσ
l ∪Rσ

r]

St:RJlJr
→ Sr (πJl

(Rl)) "#Jlr
(πJr

(Rr)) [Jl ∪ Jr ,R"#
l ∪R"#

r ∪Jlr ,Rσ
l ∪Rσ

r]

Sl:RlJlr
:=Rl"# RJlJr

Sr :RJlrr :=RJlJr
"#Rr

Sl:RlJlr
→ St Rl"#((πJl

(Rl)) "#Jlr
(πJr

(Rr))) [Rπ
l ∪Jr ,R"#

l ∪R"#
r ∪Jlr ,Rσ

l ∪Rσ
r]

Sr :RJlrr → St ((πJl
(Rl)) "#Jlr

(πJr
(Rr)))"#Rr [Jl∪Rπ

r ,R"#
l

∪R"#
r ∪Jlr ,Rσ

l
∪Rσ

r]

St:RlJlr
"# RJlrr

Figure 6: Different strategies for executing a join operation with the intervention of a third party

Figure 6 summarizes the different ways considered in the paper in which a third party St can be involved.

We briefly comment them here.

• [St,null]: the third party St receives the relations from the operands and independently computes the

(regular) join.

• [St,Sl] and [St,Sr]: the third party St replaces Sr (Sl, resp.) in the computation with the role of master,

with Sl (Sr, resp.) in the role of slave.

• [Sl,St] and [Sr,St]: the third party St replaces Sr (Sl, resp.) in the computation with the role of slave,

with Sl (Sr, resp.) in the role of master.

• [St,SlSr]: the third party St takes the role of master in charge of computing the join with Sl and Sr

both working as slaves. In this case, each of the operands computes the projection of its attributes that

participate in the join and sends it to the third party. The third party computes the join between the two

inputs and sends back the result to each of the operands, each of which joins the input with its relation

13

and returns the result to the third party. The third party can now join the relations received from the

operands and compute the result.

Note that the first five scenarios are a simple adaptation of those already seen in the previous section, with

the third party only acting as proxy, which therefore needs to have the authorization to view the relation of

the party for which it acts as proxy as well as the view required by its role (master/slave). The latter scenario

[St,SlSr] is instead a little more complex and, as it can be easily seen from the table, entails different data

views. In this scenario, the third party is required to only view the tuples of the operands that participate in

the join (it does not need to have the complete view on one of the operand relations as it is when it acts as

proxy). Also, each of the slaves is required only to view the attributes of the other relation that joins with itself

(instead of the complete set of attributes).

The consideration of a third party requires to slightly change the executor assignment definition (Defini-

tion 4.1) which becomes as follows.

Definition 4.4 (Executor assignment (with third party)). Given a query plan T (N ,E), an executor assignment

function λT : N → S × (S ∪ {[S × S]}∪{null}) is an assignment of pairs of servers to nodes such that:

1. each leaf node (corresponding to a base relation R) is assigned the pair [S,null], where S is the server

where R is stored;

2. each non-leaf node n, corresponding to unary operation op on operand Rl (left child) at server Sl, is

assigned a pair [Sl,null];

3. each non-leaf node n, corresponding to a join on operands Rl (left child) at server Sl and Rr (right child)

at server Sr, is assigned a pair [master,slaves] such that master ∈ S, slaves ∈ (S ∪ {[Sl, Sr]} ∪ {null}),

master -=slaves, and at least one between master and slaves is in {Sl,Sr,[Sl,Sr],null}.

The definition of views required by an execution remains as before (with the note that the views of the third

party are now also included). The definition of safe assignment and feasible query plan also remain unchanged.

Example 4.2. Consider query q2 in Example 2.2 and the set of authorizations in Figure 3. The join between

Insurance and Hospital (node n1 in Figure 2) can be safely assigned neither to SI nor to SH . It is then

necessary to resort to the intervention of a third party, which is SN . A safe assignment for the given operation

is [SH ,SN]. In fact, SN can act as slave, as a proxy for SI , since it is authorized to access the whole content of

the Insurance relation (authorization 9) and attribute Patient (authorization 10). SH can act as master since

it is authorized to view the Holder, Plan, and Patient attributes, provided prior enforcement of join condition

〈Holder,Patient〉 (authorization 5).

14

We can now state our problem as follows.

Problem 4.1. Given a query plan T (N ,E) and a set of authorizations A: 1) determine if T is feasible and 2)

retrieve a safe assignment λT for it, assuming possible involvement of third parties.

In the next section, we illustrate an algorithm that, given a query tree plan and a set of authorizations,

determines if the plan is feasible and, if so, returns a safe assignment for it.

5 Algorithm

We follow two basic principles in the determination of a safe assignment: i) we favor semi-joins (in contrast to

regular joins); ii) if more servers are candidate to safely execute a join operation, we prefer the server that is

involved in a higher number of join operations. To this aim, we associate, with each candidate server, a counter

that keeps track of the number of join operations for which the server is a candidate.

The algorithm in Figure 7 receives in input the set A of authorizations and a query tree plan T (N ,E) and,

if T is feasible, returns a safe executor assignment λT for it (solving Problem 4.1). Each node n in the query

tree plan is associated with the following variables: n.left and n.right are the left and right children; n.operator

and n.parameter are the operation and its parameters; n.leftslave and n.rightslave are the left and right slaves;

n.candidates is a list of records of the form [server ,fromchild ,counter] stating candidate servers, the child (left,

right, left right, third, third left, third right) it comes from, and the number of joins for which the server is a

candidate in the subtree rooted at n; n.executor.master and n.executor.slave represent the executor assignment

computed by the algorithm for n (i.e., λT (n)); and [n.π,n.!",n .σ] is the profile of the node. We assume that

for each leaf node n (base relation R) the list n.candidates of candidate executors is initialized to [server , ,0],

where server is the server storing the relation. Also, variables n.executor.master and n.executor.slave are set to

server and null, respectively.

The algorithm performs two traversals of tree T . The first traversal (procedure Find candidates) visits

the tree in post-order . At each node n, the profile of the node is computed (as described in Figure 4) based

on the profiles of its children and on the operation associated with the node. Then, the set n.candidates of

possible candidate executors for the node is computed by analyzing the candidate executors of its children. If

the node is a unary operation, the candidate executors for the node are all the candidate executors of its only

child (we suppose that if a node has only one child, it is the left one). If the node is a join operation, procedure

Find candidates proceeds by checking whether the candidate executors of its left and right children can act as

slave and master, respectively, and vice versa (i.e., it then verifies whether the left and right candidate executors

can act as master and slave, respectively). To this purpose, the procedure considers the candidate executors of

15

Algorithm 5.1 (Safe assignment computation).

/* Input: A, T(N ,E) */
/* Output: λT (n) as n.executor */

/* n.left, n.right: left and right children */
/* n.operator, n.parameter: operation and its parameters */
/* [n.π,n."#,n.σ]: profile */
/* n.leftslave, n.rightslave: left and right slaves */
/* n.leftthirdslave, n.rightthirdslave: third parties acting as left and right slaves */
/* n.candidates: list of records of the form [server ,fromchild,counter] stating candidate servers, the child

(left, right, left right, third, third left, third right) it comes or proxies for, and the number of joins for which the server
is candidate in the subtree */

/* n.executor.master, n.executor.slave: executor assignment */

MAIN
Find candidates(root(T))
Assign ex(root(T), null)
return(T)

FIND CANDIDATES(n)
l := n.left; r := n.right
if l "=null then Find candidates(l) /* recursive call on the left child */
if r "=null then Find candidates(r) /* recursive call on the right child */
case n.operator of

π: n.π := n.parameter; n."# := l ."#; n.σ := l.σ
/* the candidates of the node are the candidate of its left child */
for c in l.candidates do Add [c.server, left, c.count] to n.candidates

σ: n.π := l .π; n."# := l."#; n.σ := l.σ ∪ n.parameter
/* the candidates of the node are the candidate of its left child */
for c in l.candidates do Add [c.server, left, c.count] to n.candidates

"#: n.π := l .π ∪ r .π; n."# := l ."# ∪ r ."# ∪ n.parameter; n.σ := l.σ ∪ r .σ
right slave view := [Jl, l."#, l.σ]
left slave view := [Jr, r ."#, r .σ]
right master view := [l.π ∪ Jr, l."# ∪ r ."# ∪ n.parameter, l.σ ∪ r .σ]
left master view := [Jl ∪ r .π, l."# ∪ r ."# ∪ n.parameter, l .σ ∪ r .σ]
right full view := [l.π, l."#, l.σ]
left full view := [r .π, r ."#, r .σ]
/* check case [Sr,null] and [Sr,Sl] */
n.leftslave := null

c := GetFirst(l.candidates)
while (n.leftslave=null)and(c "=null) do

/* candidate for the left child that can serve as a slave */
if Can view(left slave view , c.server) then n.leftslave := c.server
c := c.next

regular := null; rightmasters = null

for c in r .candidates do
/* candidates of the right child that can execute a regular join */
if Can view(right full view , c.server) then Add [c.server, right, c.count+1] to regular
/* candidates of the right child that can serve as a master */
if Can view(right master view , c.server) then Add [c.server, right, c.count+1] to rightmasters

if n.leftslave "=null then Add rightmasters to n.candidates
else Add regular to n.candidates

/* check case [Sl,null] and [Sl,Sr] */
n.rightslave := null

c := GetFirst(r .candidates)
while (n.rightslave=null)and(c "=null) do

/* candidate for the right child that can serve as a slave */
if Can view(right slave view , c.server) then n.rightslave := c.server
c := c.next

regular := null; leftmasters = null

for c in l.candidates do
if ∃c′∈n.candidates : c.server=c′.server then /* candidate for both left and right children */
c′.count := c′.count + c.count
c′.fromchild := left right

else
/* candidates of the left child that can execute a regular join */
if Can view(left full view , c.server) then Add [c.server, left, c.count+1] to regular
/* candidates of the left child that can serve as a master */
if Can view(left master view , c.server) then Add [c.server, left, c.count+1] to leftmasters

if n.rightslave "=null then Add leftmasters to n.candidates
else Add regular to n.candidates

if n.candidates=null then n.candidates := Find third party(n,leftmasters,rightmasters) /* check third party */
/* there does not exists a safe executor assignment for the node */
if n.candidates=null then exit(n)

CAN VIEW(profile,S)
for each [A, J] ∈view(S) do /* check the profile with all the authorizations of the server */

if ((profile.π∪profile.σ)⊆ A) and (profile."#=J) then return(true)
return(false)

Figure 7: Pseudocode of the algorithm computing a safe assignment for a query tree plan

16

the left child in decreasing order of join counter (GetFirst) and stops at the first candidate executor found that

can serve as left slave (inserting it into local variable leftslave). The procedure then examines all the candidate

executors of the right child to determine if they can work as master for a semi-join (if a left slave was found) or

for a regular join (if no left slave was found). Note that while we need to identify all the servers that can act as

master, as we need to consider all possible candidate executors for propagating them upwards in the tree, it is

sufficient to identify one slave (a slave is not propagated upward in the tree). For each right candidate executor

server identified for node n, the triple [server ,right,counter] is added to the n.candidates list, where counter is

the counter that was associated with server in the right child of the node incremented by one (as candidate

executor also for the join of the father, the server would execute one additional join compared to the number

it would have executed at the child level). Then, the procedure proceeds symmetrically to determine whether

there is a candidate from the right child (considering the candidates in decreasing order of counter) that can

work as slave and, as before, stops at the first candidate found that can serve as right slave (inserting it into

local variable rightslave). After that, the procedure examines all the candidate executors of the left child of the

node. In particular, for each left candidate executor server , the procedure first checks if server already appears

as a candidate executor for the node itself, that is, [server ,right,counter] is in candidates , meaning that the left

child and the right child have a common candidate server. If this is the case, [server ,right,counter] is updated

by adding to counter the value of the variable counter associated with server in the candidate list of the left

child. Also, the right value in [server ,right,counter] is updated to left right . If server does not already appear

as a candidate for the node, the algorithm determines if server can work as master for a semi-join (if a right

slave was found) or for a regular join (if no right slave was found) and updates the candidates list accordingly.

Note that procedure Find candidates calls function Can view whenever it is necessary to verify whether a

server can work as slave/master for a semi-join or can execute a regular join. Can view takes in input the

profile of the view that should be made visible in the execution of an operation along with a server and returns

true if the view is authorized.

At the end of this process, list candidates contains all the candidate servers coming from either the left or right

child that can execute the join in any of the execution modes involving only the two operand parties (Figure 5).

If no candidate executor was found, the algorithm determines whether the operation can be executed with the

intervention of a third party (different from the candidate executors of the left and right children of the node)

by calling function Find third party (Figure 8). Similarly for the cases above, function Find third party

enforces the controls necessary to verify whether there are third parties authorized to evaluate the join operation

according to the strategies reported in Figure 6. The function receives in input the current node n for which

candidates list is empty, along with the corresponding sets leftmasters and rightmasters , and returns a possible

list of candidate executors. The function checks the following four cases in the order, applying two main

17

FIND THIRD PARTY(n,leftmasters,rightmasters)
l := n.left; r := n.right; list := null

right slave view := [Jl, l."#, l.σ]
left slave view := [Jr, r ."#, r .σ]
right master view := [l.π ∪ Jr , l."# ∪ r ."# ∪ n.parameter, l .σ ∪ r .σ]
left master view := [Jl ∪ r .π, l ."# ∪ r ."# ∪ n.parameter, l.σ ∪ r .σ]
right full view := [l.π, l."#, l.σ]
left full view := [r .π, r ."#, r .σ]
two slave view := [Jl∪Jr, l ."# ∪ r ."# ∪ n.parameter, l.σ ∪ r .σ]
/* check if a third party can act as slave */
if leftmasters "=null then /* case [Sl,St] */
n.rightthirdslave := null

cand slave := S\(l.candidates∪r .candidates)
while (n.rightthirdslave=null)and(cand slave "=∅) do

S := Extract(cand slave)
/* server that can work as a right slave */
if Can view(right slave view , S) and Can view(left full view , S) then n.rightthirdslave := S

if n.rightthirdslave "=null then
for each c ∈ leftmasters do Add [c.server, left, c.count] to list

if rightmasters "=null then /* case [Sr,St] */
n.leftthirdslave := null

cand slave := S\(l.candidates∪r .candidates)
while (n.leftthirdslave=null)and(cand slave "=∅) do

S := Extract(cand slave)
/* server that can work as a left slave */
if Can view(left slave view , S) and Can view(right full view , S) then n.leftthirdslave := S

if n.leftthirdslave "=null then
for each c ∈ rightmasters do Add [c.server, right, c.count] to list

if list "=null then return(list)
/* check if a third party can act as master */
for each S∈S\(l.candidates∪r .candidates) do

if n.leftslave "=null then /* case [St,Sl] */
/* server that can proxy for the right child */
if Can view(right master view , S) and Can view(left full view , S) then Add [S, third right, 1] to list

else
if n.rightslave "=null then /* case [St,Sr] */
/* server that can proxy for the left child */
if Can view(left master view , S) and Can view(right full view , S) then Add [S, third left, 1] to list

if list "=null then return(list)
/* check if a third party can execute the regular join: case [St,null] */
for each S∈S\(l.candidates∪r .candidates) do

/* server that can execute a regular join */
if Can view(left full view , S) and Can view(right full view , S) then Add [S, third, 1] to list

if list "=null then return(list)
/* check if a third party can act as coordinator: case [St,SlSr] */
c:= GetFirst(l.candidates)
while (n.leftslave=null)and(c "=null) do

if Can view(two slave view , c.server) then n.leftslave := c.server
c := c.next

if n.leftslave "=null then
c:= GetFirst(r .candidates)
while (n.rightslave=null)and(c "=null) do

if Can view(two slave view , c.server) then n.rightslave:= c.server
c := c.next

if n.rightslave "=null then
masterlist := null

for each S∈S\(l.candidates∪r .candidates) do
if Can view(left slave view , S) and Can view(right slave view , S)
and Can view(left master view , S) and Can view(right master view , S)
then Add S to masterlist /* server that can act as coordinator */

if masterlist "=null then
for each m∈masterlist do Add [m, third, 1] to list

if list "=null then return(list)

Figure 8: Pseudocode of the function that evaluates the intervention of a third party for join operations

18

principles: i) solutions where the third party acts as slave are preferred to solutions where it acts as master to

avoid the propagation of the third party up in the tree; ii) semi-joins are preferred to regular joins. Note that

the case where the third party acts as coordinator is the last option, since it is less efficient than all the other

execution modes. The function stops at the first case that produces a candidate list that is not null.

Case 1. The function verifies whether a server can work as left/right slave, depending on whether rightmas-

ters/leftmasters is not null. In particular, the function first verifies whether there exists a server in the system

that can work as right slave and inserts it into local variable rightthirdslave. If such a server exists (i.e., right-

thirdslave is not null), for each candidate server in leftmasters , a triple [server ,left,counter] is added to the

candidates list . Then, the function proceeds symmetrically to determine whether there exists a server in the

system that can work as left slave (inserting it into local variable leftthirdslave). If leftthirdslave is not null,

for each candidate server in rightmasters , a triple [server ,right,counter] is added to the candidate list .

Case 2. The function verifies whether there is a server that can work as master. For each server in the system,

if leftslave is not null and server can work as right master, triple [server ,third right,1] is added to the candidate

list . Otherwise (i.e., leftslave is null), if rightslave is not null, for each server in the system that can work as

left master, triple [server ,third left,1] is added to the candidate list .

Case 3. The function verifies whether there is a server in the system that can execute the join represented by

node n as regular join. For each server in the system, if server can execute the regular join, triple [server ,third,1]

is added to the candidate list .

Case 4. The function verifies whether there is a server that can act as coordinator. The function considers

candidate executors of the left child in decreasing order of join counter (GetFirst) and stops at the first

candidate server found that can serve as slave in the coordinator join evaluation mode, inserting it into local

variable leftslave. If a candidate left slave has been determined (i.e., leftslave is not null), the function repeats

the same process on the candidate executors of the right child thus checking the existence of a candidate right

slave that is inserted in variable rightslave. If also rightslave is not null, for each server in the system, the

function verifies whether it can work as coordinator for the join operation. If so, the candidate list is updated

by adding the triple [server ,third,1].

If the call to function Find third party does not return any candidate executor, the algorithm exits

returning the node at which the process was interrupted (i.e., for which no safe assignment exists) signaling

that the tree plan is not feasible.

If Find candidates completes successfully, the algorithm proceeds with the second traversal of the query

tree plan. The second traversal (procedure Assign ex in Figure 9) recursively visits the tree in pre-order . At

the root node, if more assignments are possible, the candidate server with the highest join counter is chosen.

19

ASSIGN EX(n, from parent)
if from parent "=null then

chosen := Search(from parent, n.candidates)
else chosen := GetFirst(n.candidates)
n.executor.master := chosen.server /* assign master executor */
case chosen.fromchild of

left: /* case [Sl,null], [Sl,Sr], [Sl,St] */
if n.left"=null then Assign ex(n.left, n.executor.master)
if n.right"=null then

if n.rightslave "=null then
n.executor.slave := {n.rightslave} /* the slave is a candidate for the right child */
Assign ex(n.right, n.rightslave)

else n.executor.slave := {n.rightthirdslave} /* the slave is either a third party or does not exist */
Assign ex(n.right, null)

right: /* case [Sr,null], [Sr,Sl], [Sr,St] */
if n.left"=null then

if n.leftslave "=null then
n.executor.slave := {n.leftslave} /* the slave is a candidate for the left child */
Assign ex(n.left, n.leftslave)

else n.executor.slave := {n.leftthirdslave} /* the slave is either a third party or does not exist */
Assign ex(n.left, null)

if n.right"=null then Assign ex(n.right, n.executor.master)
left right: /* case [Sl,null], [Sr,null] when Sl=Sr */
if n.left"=null then Assign ex(n.left, n.executor.master)
if n.right"=null then Assign ex(n.right, n.executor.master)

third left: /* case [St,Sr] */
n.executor.slave := {n.rightslave}
if n.left"=null then Assign ex(n.left, null)
if n.right"=null then Assign ex(n.right, n.rightslave)

third right: /* case [St,Sl] */
n.executor.slave := {n.leftslave}
if n.left"=null then Assign ex(n.left, n.leftslave)
if n.right"=null then Assign ex(n.right, null)

third: /* case [St,null], [St,SlSr] */
n.executor.slave := {n.leftslave, n.rightslave} /* the slave is either a pair of servers or does not exist */
if n.left"=null then Assign ex(n.left, n.leftslave)
if n.right"=null then Assign ex(n.right, n.rightslave)

Figure 9: Pseudocode of procedure Assign ex

Hence, the chosen candidate executor is pushed down to the child(s) from which it comes in the post-order

traversal, and the selected slave is pushed down to the other child. If no slave was recorded as possible (i.e.,

rightslave/leftslave=null or the slave is a third party) a null value is pushed down. At each child, the master

executor is determined as the server pushed down by the parent (if it is not null) or the candidate server with

the highest join counter and the process is recursively repeated, until a leaf node is reached.

Example 5.1. Consider the two query plans in Figure 2 (reported also in Figure 10 for convenience) and the set

of authorizations in Figure 3. Figure 10 illustrates the working of procedures Find candidates and Assign ex

reporting the nodes in the order they are considered by the procedures and the candidates/executors determined.

Candidates/executors with a “*” are those of the leaf nodes (already given in input). To illustrate the working,

let us look at some sample calls.

Consider query q1 and, in particular, call Find candidates(n2). Among the candidates of the children (SI

from left child n4, and SN from right child n5) only the right child candidate SN survives as candidate for the

join, which needs to be executed as a regular join since the only candidate from the left child cannot serve as

slave. When Assign ex is called, the set of candidates at each node is as shown in the table summarizing

the results of Find candidates. Starting at the root node, the only possible choice consists in assigning to n0

executor [SH ,null], where SH was recorded as coming from the left (and only) child n1, to which SH is then

20

n0 πPatient,Physician,Plan,HealthAid

n1 "#Citizen=Patient

&&
&&

&&
&&

''
''
''
''

n2 "#Holder=Citizen

&&
&&

&&
&&

((
((
((

n3 πPatient,Physician

n4 Insurance n5 Nat registry n6 Hospital

Find candidates

NodeCandidates Slaves
n4 [SI , , 0]∗

n5 [SN , , 0]∗

n2 [SN , right, 1]
n6 [SH , , 0]∗

n3 [SH , left, 0]
n1 [SH , right, 1]SN

n0 [SH , left, 1]

Assign ex

NodeλT (n) Calls to Assign ex
n0 [SH , null] (n1, SH)
n1 [SH , SN] (n2, SN) (n3, SH)
n2 [SN , null] (n4, null)(n5, SN)
n4 [SI , null]∗

n5 [SN , null]∗

n3 [SH , null] (n6, SH)
n6 [SH , null]∗

(a)

n0 πPatient,Physician,Plan

n1 "#Holder=Patient

$$
$
$$
$
$$
$$
$$))

))
)

n2 σDisease=“hypertension”

n3 Insurance n4 Hospital

Find candidates

NodeCandidates Slaves
n3 [SI , , 0]∗

n4 [SH , , 0]∗

n2 [SH , left, 0]
n1 [SH , right, 1]SN

n0 [SH , left, 1]

Assign ex

NodeλT (n) Calls to Assign ex
n0 [SH , null] (n1, SH)
n1 [SH , SN] (n3, null)(n2, SH)
n3 [SI , null]∗

n2 [SH , null] (n4, SH)
n4 [SH , null]∗

(b)

Figure 10: An example of algorithm execution over queries q1 (a) and q2 (b) of Example 2.2

pushed down with a recursive call. At n1 the master is set to SH and, combining this with the slave field, the

executor is set to [SH , SN]. Hence, SH is further pushed down to the right child n3 (from where it was taken by

Find candidates), while SN is pushed down to the left child n2.

Consider query q2 and, in particular, call Find candidates(n1). Among the candidates of the children (SI

from left child n3, and SH from right child n2) only the right child candidate SH survives as candidate for the

join, which needs to be executed as a semi-join with the collaboration of third party SN working as slave. When

Assign ex is called, the set of candidates at each node is as shown in the table summarizing the results of

Find candidates. Note that call Assign ex(n1) assigns to n1 the pair [SH , SN] as an executor. Then, SH is

further pushed down to the right child n2 (from where it was derived by Find candidates): by contrast, SN is

not pushed down in the tree, since it is a third party.

The executor assignment computed by procedure Assign ex implicitly determines the flows of information

among cooperating servers necessary for query execution. These data exchanges practically translate into send

and receive operations, which permit to transfer a set of tuples from a server (the sender) to another (the

receiver).

Example 5.2. Consider the query plans and executor assignments in Figure 10. Figure 11 illustrates the server

responsible for the evaluation of each operation in the plan and the data exchanges these assignments imply.

Each box delimits the operations for which each server is responsible and edges across boxes represent flows of

21

SH
* * * * * * * * * * * *+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+

+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+

* * * * * * * * * * * *

πPatient,Physician,Plan,HealthAid

"#Citizen=Patient

,,,,
,,,,

,,,

Receive

--

SN
* * * * * * * * * * * * * * * *+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+
* * * * * * * * * * * * * * * *

Send

"#Citizen=Patient

...
...

.

##
##
##
##
##

Receive

//
//

//

"#Holder=Citizen

00
00
0

Send

Receive

11
11
11

πPatient

2222
2222

222

SI Send
* * * *+
+
+
+

+
+
+
+

* * * *

πPatient,Physician

Insurance Nat registry Hospital

SH πPatient,Physician,Plan

* * * * * * * * *+

+
+
+

+
+

+
+
+

+
+
+

+
+

+
+
+

+
+

+
+
+

+

+
+
+

+
+

+
+
+

+
+
+

+
+

+
+
+

+
+

+
+
+

* * * * * * * * *

"#Holder=Patient

33
33
3

Receive

444
444

444

SN Send

"#Holder=Patient

55
55
5

66
66

6

Receive

* * * * * * * * * *+
+
+
+
+
+

+
+
+
+
+
+

* * * * * * * * * *Receive

77
77

7

SI Send
* * * *+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+
* * * *

Send

πPatient

//
//

//

σDisease=“hypertension”

Insurance Hospital

(a) (b)

Figure 11: Operations and data flows implied by the execution of queries q1 (a) and q2 (b), following the
assignment in Figure 10

information between servers.

For the evaluation of query q1, SN is responsible for the evaluation of the (regular) join of relations Insurance

and Nat registry. Therefore, SI sends to SN its relation. The evaluation of the join represented by node n1

requires instead the cooperation of SH , working as master, and SN , working as slave. As a consequence, SH

sends the projection of attribute Patient to SN , which can then restrict the set of tuples resulting from the

evaluation of n2 and send back the result to SH . SH locally holds all the information to complete the evaluation

of the query. The evaluation of query q2 is analogous.

The correctness of the algorithm is proved by showing that: i) the algorithm always terminates, ii) the

returned executor assignment (if any) is safe, and iii) if there exists a safe assignment for a query tree plan, the

algorithm finds it. The following theorem states the correctness of the algorithm.

Theorem 5.1 (Correctness). Given a query tree plan T (N ,E), a set A of authorizations, and a set S of servers,

Algorithm 5.1: i) terminates, ii) computes an executor assignment for T that is safe; iii) is always able to find

a safe executor assignment for T, if T is feasible.

Proof: See Appendix.

The time complexity of the algorithm is linear in the size of its input parameters, as stated by the following

theorem.

Theorem 5.2 (Complexity). Given a query tree plan T (N ,E), a set A of authorizations, and a set S of servers,

the time complexity of Algorithm 5.1 is O(|N | · |S| · |A|).

Proof: See Appendix.

22

6 Distributed architecture

We briefly discuss the integration of our approach with distributed query processing architectures. In distributed

databases the processing of queries is typically supported by a distributed query optimizer, which has access to

a complete description of the relation schemas and statistic profiles. The distributed query optimizer, available

on a location known by clients, receives the query request and produces a plan for the distributed query. The

distributed optimizer is essentially an extension of a traditional centralized SQL query optimizer. Compared to

a centralized optimizer, it also has to take into account all the parameters of the distributed system that have an

impact on query execution. The use of a single query optimizer is supported by the experience in the construction

of distributed relational systems, which has shown that a fully distributed approach, using negotiation among

the servers to identify the query plan, would be too complex and considerably impact performances, since it

would require a complex protocol for the exchange of the costs of the different alternatives and the identification

of a globally optimal solution.

The main impact of the model proposed in this paper on the distributed system architecture is the need

for the query optimizer to consider the authorizations defined by each server to determine a proper assignment

compliant with the authorizations. As discussed in Section 4.1, depending on authorizations, the join operators

can be realized in a variety of ways, characterized by different assignments of operators to servers. The portion

of the database catalog accessed by the optimizer to identify a query plan has then to be extended with the

description of all the authorizations.

The services of the distributed query optimizer are invoked by any client that desires to execute a query

(see Figure 12). The Access control and server assignment module receives from the client a query (step 2 in

Figure 12) that requires distributed computation. It first checks if the user is authorized for the profile resulting

from the query and, if the user is not authorized, the Access control and server assignment module returns an

error message. Otherwise, it identifies an efficient execution plan able to return to the requesting user the result

of the query (steps 2-5 in Figure 12). The client can then execute the query, by dispatching to the servers in

the network the assigned portions of the plan (step 6 in Figure 12).

It is important to note that, to satisfy basic security requirements, an adequate identity infrastructure has to

be available to guarantee the satisfaction of the authorizations defined on the data. The identity infrastructure

will support the authentication of all the parties involved: clients, servers, and the distributed query optimizer.

Security also requires to consider the integrity of the catalog, describing the database schemas and the associated

authorizations. The query optimizer is a relatively large software component, typically designed without paying

attention to security requirements: it is important that security does not rely on it and the architecture in

Figure 12 satisfies this requirement by isolating the optimizer from the evaluation of security aspects. To

23

USER

Access control and
server assignment

Query optimizer

DISTRIBUTED QUERY OPTIMIZER

SERVER 1
SERVER n

2) query 5) safe query plan metadata

6) safe query plan

7) query result

….
CLIENT

1) query

8) query result

authorizations

catalog
3) query 4) query plan

….

Figure 12: Architecture of the distributed system

guarantee query safety, it is sufficient to assume trust in the catalog, which contains the user authorizations,

and in the Access control and server assignment module, which computes the safety checks as described by

procedure Find candidates. Signatures on the plan will support each server in determining that the portion

of the plan the server is responsible to execute complies with all the specified authorizations.

We consider the integration with an optimizer using a 2-phase process for the identification of the distributed

query execution plan. This is an approach currently employed by several distributed query optimizers [17]: 1)

the query optimizer identifies an efficient query plan, analogous to the one it would produce for a centralized

system, e.g., using dynamic programming for the identification of the plan; 2) the query optimizer assigns

operations to the distinct servers in the system, realizing the site selection phase. Our algorithm nicely fits into

such a 2-phase structure. Specifically, the first phase of the optimization process produces a query plan that can

be immediately used as input to the Find candidates procedure, which labels every node with the identifiers

of the servers authorized to execute the operator. The second phase of the optimization process represents

instead the activity realized by procedure Assign ex, which selects a server for each node among those that

have been identified as candidates by the first phase. Procedure Assign ex applies a greedy selection aiming

to minimize information flow and parties involvement (favoring, among the candidate executors of a node, the

server assigned to its ancestors). The procedure guarantees to identify a safe assignment, if one exists. Other

site assignment techniques [8, 16] can be easily adapted in this scenario.

Finally, we observe that our approach is applicable to both dynamic and static queries. Dynamic queries

are queries that are created at run-time by a user or an application. Dynamic queries are processed by the

query optimizer and executed immediately after optimization; the execution plan is typically discarded after the

24

query has completed. Dynamic queries always consider the current state of every component of the system and

therefore updates to the policy are automatically taken into consideration. Static queries are instead queries that

appear within the code of an application, within SQL procedures or in programs using SQL Embedded. These

queries are typically processed by the query optimizer at compile-time, creating an object representation of the

query plan that will be directly executed at every query invocation. The specific issue that needs to be taken

into account for static queries is the impact that changes on policies have on a query plan, because an authorized

query plan can become invalid, for example, if a policy is modified by dropping a privilege required at some

point in the plan. Fortunately, the mechanisms within relational databases already support the representation of

dependencies for query plans, making it easy to introduce an explicit management of dependencies of compiled

query plans on policy updates. In other words, by specifying a dependency between a query plan and the

authorizations supporting it, possible changes to the policy will automatically invalidate the query plan forcing

its recomputation next time the query is executed.

7 Related work

The lines of research that have an impact on the presented proposal can be classified into two categories. On

one hand we have classical works on the management of queries in centralized and distributed systems [3, 6,

7, 17, 19, 23, 25]; these approaches describe how efficient query plans can be obtained, but do not take into

consideration constraints on attribute visibility for servers. On the other hand, in light of the crucial role that

security has in the construction of future large-scale distributed applications, a significant amount of research

has recently focused on the problem of processing distributed queries under protection requirements. Most

of these works [5, 13, 14, 15, 18, 21] are based on the concept of access pattern, a profile associated with

each relation/view, where each attribute has a value that may either be i or o (i.e., input or output). When

accessing a relation, the values for all i attributes must be supplied to obtain the corresponding values of o

attributes. Also, queries are represented in terms of Datalog, a query language based on the logic programming

paradigm. The main goal of all these works is that of identifying the classes of queries that a given set of

access patterns can support; a secondary goal is the definition of query plans that match the profiles of the

involved relations, while minimizing some cost parameters (e.g., the number of accesses to data sources [5]).

To this aim, relations not explicitly belonging to the query are possibly involved. The main difference between

the work on access patterns and the approach presented in this paper is that our proposal can be considered

a natural extension of the approach normally used to describe database privileges in a relational schema. Our

solution essentially introduces only a mechanism to define access privileges on join paths; instead, access patterns

describe authorizations as special formulas in a logic programming language for data access. In our view, the

25

two models are complementary and both needed, in the same way as both procedural and declarative languages

are typically considered in the design of a relational database engine. The model we propose is certainly

easier to integrate with the mechanisms and approaches that are used by current database servers (and are

familiar to database administrators). Also, the model presented in this paper explicitly manages a scenario with

different independent subjects who may cooperate in the execution of a query, whereas the work done on access

patterns only considers two actors, the owner of the data and a single user accessing the data. The problem of

guaranteeing data security in the distributed database scenario has also been studied in [4], where the authors

propose a view-based access control system for restricting both access to data and information flows. The access

control policies regulating access to a view are derived from the policies regulating access to the base tables

used in the view definition. Access to a view is permitted only if the view is valid , meaning that the server that

defined the view holds all the privileges for its computation and granted the requester the right to access the

content of the view itself. The main goal of this work is that of identifying the server where to define, store, and

enforce access control rules both on base tables and on views. The approach in [4] addresses therefore issues

complementary to those presented in this paper, which illustrates an approach for expressing authorizations

regulating information exchanges among servers and for executing queries entailing only information exchanges

allowed by the authorizations.

Our proposal also exploits the results on authorization composition presented in [10]. The novelty of this

proposal is that data release is not subject to the simple relation profile-authorization control, but a relation

(base or resulting from the evaluation of a query) can be released whenever the information carried by the

relation (either directly or indirectly due to the dependence of the query result with other data not explicitly

released) is legitimate according to the authorizations explicitly specified for the requesting subject. Therefore,

the definition of safe authorization composition is proposed. Also, the process of composing authorizations is

proved to be efficient, since it runs in polynomial time in the number of authorizations.

Sovereign joins [1] are an alternative solution for secure information sharing. This method, differently

from our, is based on a secure coprocessor, which is involved in query execution, and exploits cryptography

to grant privacy. The advantage of sovereign joins is that they extend the plans that allow an execution in

the scenario we present; the main obstacle is represented by their high computational cost, due to the use of

specific asymmetric cryptography primitives, which make them currently not applicable when large collections

of sensitive information must be combined (this is the reason we chose not to consider them in the construction

of the plan).

Other related work is represented by approaches enforcing access control in federated systems [9, 12, 20, 24].

Such approaches however mostly focus on the merging of security specifications, and therefore solving possible

inconsistencies among them, towards the establishment of a common security policy for regulating the federated

26

system. Furthermore, they do not address the problem of processing distributed queries under protection

requirements. Such solutions are therefore not applicable to our problem where the goal is to maintain complete

independence of the different parties that need only to participate in the distributed computation.

8 Conclusions

Adequate support for the integration of information sources detained by distinct parties is an important require-

ment for future information systems. A crucial issue in this respect is the definition of integration mechanisms

that correctly satisfy the commercial and business policies of the organizations owning the data. To solve this

problem, we propose a new model based on the characterization of access privileges for a set of servers on the

components of a relational schema. Compared to other proposals, the model promises to be more directly appli-

cable to current infrastructures and presents a greater compatibility with the basic features of current DBMSs,

which are at the heart of all modern information systems.

Acknowledgments

This work was supported in part by the EU within the 7FP project “PrimeLife” under grant agreement 216483

and by the Italian Ministry of Research within the PRIN 2008 project “PEPPER” (2008SY2PH4). The work

of Sushil Jajodia was partially supported by the National Science Foundation under grants CT-20013A, CT-

0716567, CT-0716323, CT-0627493, and CCF-1037987.

References

[1] R. Agrawal, D. Asonov, M. Kantarcioglu, and Y. Li. Sovereign joins. In Proc. of the 22nd International

Conference on Data Engineering (ICDE 2006), Atlanta, GA, USA, April 2006.

[2] A.V. Aho, C. Beeri, and J.D. Ullman. The theory of joins in relational databases. ACM Transaction On

Database Systems, 4(3):297–314, September 1979.

[3] P.A. Bernstein, N. Goodman, E. Wong, C.L. Reeve, and J.B. Rothnie, Jr. Query processing in a system for

distributed databases (SDD-1). ACM Transaction On Database Systems, 6(4):602–625, December 1981.

[4] E. Bertino and L.M. Haas. Views and security in distributed database management systems. In Proc. of

the 1st International Conference on Extending Database Technology (EDBT 1988), Venice, Italy, March

1988.

27

[5] A. Cal̀ı and D. Martinenghi. Querying data under access limitations. In Proc. of the 24th International

Conference on Data Engineering (ICDE 2008), Cancun, Mexico, April 2008.

[6] S. Ceri and G. Pelagatti. Distributed Databases: Principles and Systems. McGraw-Hill, 1984.

[7] D.M. Chiu and Y.C. Ho. A methodology for interpreting tree queries into optimal semi-join expressions.

In Proc. of the 1980 ACM SIGMOD International Conference on Management of Data (SIGMOD 1980),

Santa Monica, CA, USA, May 1980.

[8] D.W. Cornell and P.S. Yu. On optimal site assignment for relations in the distributed database environment.

IEEE Transactions on Software Engineering, 15(8):1004–1009, August 1989.

[9] S. Dawson, S. Qian, and P. Samarati. Providing security and interoperation of heterogeneous systems.

Distributed and Parallel Databases, 8(1):119–145, January 2000.

[10] S. De Capitani di Vimercati, S. Foresti, S. Jajodia, S. Paraboschi, and P. Samarati. Assessing query

privileges via safe and efficient permission composition. In Proc. of the 15th ACM Conference Conference

on Computer and Communications Security (CCS 2008), Alexandria, VA, USA, October 2008.

[11] S. De Capitani di Vimercati, S. Foresti, S. Jajodia, S. Paraboschi, and P. Samarati. Controlled information

sharing in collaborative distributed query processing. In Proc. of the 28th International Conference on

Distributed Computing Systems (ICDCS 2008), Beijing, China, June 2008.

[12] S. De Capitani di Vimercati and P. Samarati. An authorization model for federated systems. In Proc.

of 4th European Symposium on Research in Computer Security (ESORICS 1996), Rome, Italy, September

1996.

[13] A. Deutsch, B. Ludäscher, and A. Nash. Rewriting queries using views with access patterns under integrity

constraints. In Proc. of the 10th International Conference on Database Theory (ICDT 2005), Edinburgh,

Scotland, January 2005.

[14] D. Florescu, A. Y. Levy, I. Manolescu, and D. Suciu. Query optimization in the presence of limited access

patterns. In Proc. of the 1999 ACM SIGMOD International Conference on Management of Data (SIGMOD

1999), Philadelphia, PA, USA, June 1999.

[15] G. Gottlob and A. Nash. Data exchange: Computing cores in polynomial time. In Proc. of the 25th ACM

SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems (PODS 2006), Chicago, IL,

USA, June 2006.

28

[16] A. Helal, Y.-S. Kim, M.H. Nodine, A.K. Elmagarmid, and A.A. Heddaya. Transaction optimization tech-

niques. In S. Jajodia and L. Kerchberg, editors, Advanced Transaction Models and Architectures. Kluwer,

1997.

[17] D. Kossmann. The state of the art in distributed query processing. ACM Computing Surveys, 32(4):422–

469, December 2000.

[18] C. Li. Computing complete answers to queries in the presence of limited access patterns. VLDB Journal,

12(3):211–227, October 2003.

[19] G.M. Lohman, D. Daniels, L.M. Haas, R. Kistler, and P.G. Selinger. Optimization of nested queries in a

distributed relational database. In Proc. of the 10th International Conference on Very Large Data Bases

(VLDB 1984), Singapore, August 1984.

[20] P. Mitra, C. Pan, P. Liu, and V. Atluri. Privacy-preserving semantic interoperation and access control of

heterogeneous databases. In Proc. of the ACM Symposium on Information, Computer and Communications

Security (ASIACCS 2006), Taipei, Taiwan, March 2006.

[21] A. Nash and A. Deutsch. Privacy in GLAV information integration. In Proc. of the 10th International

Conference on Database Theory (ICDT 2005), Barcelona, Spain, January 2007.

[22] P. Samarati and S. De Capitani di Vimercati. Access control: Policies, models, and mechanisms. In

R. Focardi and R. Gorrieri, editors, Foundations of Security Analysis and Design, volume 2171 of LNCS.

Springer-Verlag, 2001.

[23] P.G. Selinger, M.M. Astrahan, D.D. Chamberlin, R.A. Lorie, and T.G. Price. Access path selection in a

relational database management system. In Proc. of the 1979 ACM SIGMOD International Conference on

Management of Data (SIGMOD 1979), Boston, MA, USA, May - June 1979.

[24] J. Warner, V. Atluri, and R. Mukkamala. A credential-based approach for facilitating automatic resource

sharing among ad-hoc dynamic coalitions. In Proc. of the 19th Annual IFIP WG 11.3 Working Conference

on Data and Applications Security (DBSec 2005), Storrs, CT, USA, August 2005.

[25] C.T. Yu and C.C. Chang. Distributed query processing. ACM Computing Surveys, 16(4):399–433, December

1984.

29

A Proofs of theorems

A.1 Maximum number of third parties

Theorem 4.1. Given two relations Rl(Al1 ,Al2 , . . . ,Aln ,Aln+1) and Rr(Ar1 ,Ar2 , . . . ,Arn ,Arn+1), the maximum

number of parties necessary to evaluate an equi-join Rl!"Jlr
Rr, with Jlr =

n∧

i=1

〈Ali ,Ari〉, is n.

Proof: Suppose that Rl is stored at Sl, Rr is stored at Sr, and that Sl and Sr are characterized by the

following authorizations.

• For i = 1, . . . , n: [{
i⋃

j=1

Alj ,Arj}, {
i⋃

j=1

〈Alj ,Arj 〉}]→Sl

• For i = 1, . . . , n: [{
i⋃

j=1

Alj ,Arj}, {
i⋃

j=1

〈Alj ,Arj 〉}]→Sr

These authorizations state that servers Sl and Sr are authorized to access the relations they store and each of

the attributes in the other relation, but only if joined with their relation.

Let S1,. . .,Sn+1∈S be a set of servers in the system characterized by the following authorizations.

• For i = 1, . . . , (n+ 1): [{
i⋃

j=1

Alj}, {
i−1⋃

j=1

〈Alj ,Arj 〉}]→Si and [{
i⋃

j=1

Arj}, {
i−1⋃

j=1

〈Alj ,Arj 〉}]→Si

These authorizations state that each Si is authorized to access the i-th attribute in Rl and in Rr, projected

from the join between Rl and Rr evaluated on
∧i−1

j=1〈Alj ,Arj 〉. Note that Sn+1 only is authorized to access the

table resulting from the join between Rl and Rr, on condition
∧n

i=1 〈Ali ,Ari〉.

The equi-join between Rl and Rr on Jlr cannot be directly evaluated by Sl and Sr. However, it can be

safely evaluated by resorting to S1,. . .,Sn+1. First, server S1 acts as coordinator for the join operation, re-

ceiving from Sl and Sr the relations πAl1
(Rl) and πAr1

(Rr), respectively. Server S1 then computes the join

J1=πAl1
(Rl)!"Al1=Ar1

πAr1
(Rr) between the received relations and sends the result back to both Sl and Sr.

Then, Sl computes the join Rl1 = Rl!"J1 and Sr computes the join Rr1 = Rr!"J1, which are used in the

following step of computation in place of Rl and Rr, respectively. At the i-th step (for i = 1, . . . , (n − 1)) of

the computation, server Si acts as coordinator for the join operation, receiving from Sl and Sr the projection of

attribute Ali and Ari , respectively, on the partial result computed at step i − 1 (i.e., Rli−1 and Rri−1). Server

Si then computes the join between the received relations and sends the result back to both Sl and Sr, which

compute the join between the data received from Si and the relation obtained by the previous i−1 computation

steps. Finally, server Sn+1 receives from both Sr and Sl their partial results computed at step n, and computes

the final result of the equi-join operation between Rl and Rr on condition
∧n

i=1 〈Ali ,Ari〉. !

30

A.2 Correctness of Algorithm 5.1

Before proving the correctness of Algorithm 5.1 (Theorem 5.1), we introduce three lemmas that will be used in

the proof of the main theorem.

Lemma A.1 establishes the correctness of the relation profiles associated with the nodes in a query tree plan

and computed by the algorithm.

Lemma A.1. Given a query tree plan T (N ,E), a set A of authorizations, and a set S of servers, Algorithm 5.1

associates with each node n∈N a relation profile that correctly reflects the information content of the relation

resulting from the evaluation of the operator at node n.

Proof: The prove is by induction on the nodes of T .

Base case. If n is a leaf node, the corresponding profile [n.π,n .!",n.σ] is initialized to the value [R ,∅,∅], where

R is the relation represented by n. Therefore, the profile correctly represents the implied information release.

Induction. Consider an internal node n and suppose, by induction, that both the profile [l .π,l .!",l .σ] of the

left child and the profile [r .π,r .!",r .σ] of the right child (if any) correctly represent the information content of

the left Rl operand and of the right Rr operand of n.operator, respectively. The profile of node n is always

computed by modifying the profiles of their children according to the semantics of the relational operator as

illustrated in Figure 4. It is then easy to see that by hypothesis the profiles of the children of n are correct, it

is also correct the profile of n. !

Lemma A.2 shows that for each node n in a query tree plan, the servers appearing in n.candidates can access

the relation resulting from the execution of the operation that the node represents.

Lemma A.2. Let T (N ,E) be a query tree plan and S be the set of servers in the system. At the end of the

execution of Find candidates, n.candidates contains all and only the servers authorized to access the relation

resulting from the execution of the operation represented by n, for each n∈N .

Proof: The prove is by induction on the nodes of T .

Base case. If n is a leaf node, n.candidates is initialized to [S, ,0], where S is the server storing the base

relation R represented by the leaf node. Therefore, S is authorized to access R .

Induction. Consider an internal node n and suppose, by induction, that l .candidates contains only servers

authorized to access the left operand Rl, and that r .candidates contains only servers authorized to access the

right operand Rr. We prove that also n.candidates contains only servers authorized to access the relation Rn

31

resulting from the evaluation of the operation represented by n. To this purpose, we consider three cases,

depending on n.operator.

• n.operator = π. Each candidate server S appearing in l .candidates is inserted in n.candidates. S appears

in l .candidates because there is an authorization [A, J]→S such that (l .π∪l .σ)⊆A and l .!"=J . Since

n.π⊆l .π, n.σ=l .σ, and n .!"=l .!", then (n .π∪n.σ)⊆A and n.!"=J . Therefore, each S in n.candidates can

access Rn.

• n.operator = σ. Each candidate server S appearing in l .candidates is inserted in n.candidates. S appears

in l .candidates because there is an authorization [A, J]→S such that (l .π∪l .σ)⊆A and l .!"=J . Since

n.π=l .π, n .σ⊆l .π∪l .σ, and n.!"=l .!", then (n .π∪n .σ)⊆A and n.!"=J . Therefore, each S in n.candidates

can access Rn.

• n.operator = !". A server S in S is inserted in n.candidates by both procedure Find candidates and func-

tion Find third party. This may happen due to the following different cases that the procedure/function

may verify.

1. S appears in rightmasters and is inserted in n.candidates by procedure Find candidates. The list

rightmasters of candidates is filled in with a for loop iterating on the servers appearing in r .candidates.

A server S is inserted in rightmasters only if it has the right master view . By hypothesis, S is

authorized to access Rr. Also, since profiles are correctly computed (Lemma A.1) and S is authorized

for the right master view , S can also access the tuples in Rl participating in the join between Rl and

Rr (i.e., πn.parameter(Rr)!"n.parameter Rl). As a consequence, S is also authorized to access Rn.

2. S appears in regular and is inserted in n.candidates by procedure Find candidates. The list regular

of candidates is filled in with a for loop scanning the servers appearing in r .candidates. A server S

is inserted in regular only if it has the right full view . By hypothesis, S is authorized to access Rr.

Also, since profiles are correctly computed (Lemma A.1) and S is authorized for the right full view ,

S can also access the whole content of Rl. As a consequence, S is also authorized to access Rn.

3. S appears in leftmasters and is inserted in n.candidates by procedure Find candidates. Symmetric

to Case 1.

4. S appears in regular and is inserted in n.candidates by procedure Find candidates. Symmetric to

Case 2.

5. S appears in leftmasters and is inserted in n.candidates by procedure Find third party. Since

list leftmasters is filled in by procedure Find candidates and is not updated by function

Find third party, this case is analogous to Case 3.

32

6. S appears in rightmasters and is inserted in n.candidates by procedure Find third party. Since

list rightmasters is filled in by procedure Find candidates and is not updated by function

Find third party, this case is analogous to Case 1.

7. S is inserted in n.candidates by procedure Find third party and is authorized both for the

right master view and left full view . Since profiles are correctly computed (see Lemma A.1), and

S is authorized for the right master view , S can access the tuples in Rl participating in the join with

Rr. Since S is also authorized for the right master view , S can access the whole content of Rl. As a

consequence, S is also authorized to access Rn.

8. S is inserted in n.candidates by procedure Find third party and is authorized both for the

left master view and right full view . This case is symmetric to Case 7.

9. S is inserted in n.candidates by procedure Find third party and is authorized both for the

left full view and the right full view . Since profiles are correctly computed (see Lemma A.1), and S

is authorized for both the left master view and the right master view , S can access the whole content

of both Rl and Rr. As a consequence, S is also authorized to access Rn.

10. S appears in masterlist and is inserted in n.candidates by procedure Find third party. The

list masterlist of candidates is filled in with a for loop iterating on the servers appearing in

S\(l .candidates∪r .candidates). A server S is inserted in masterlist only if it is authorized for the

left slave view , the right slave view , the left master view , and the right master view . Since profiles

are correctly computed (Lemma A.1) and S is authorized for the left master view , S can access the

tuples in Rr participating in the join between Rl and Rr. Analogously, since S is authorized for

the right master view , S can access the tuples in Rl participating in the join between Rl and Rr.

Therefore, S is also authorized for Rn=Rl!"n.parameterRr. !

Lemma A.3 shows that for each node n in a query tree plan, list n.candidates is finite and does not contain

duplicate entries (i.e., a server appears at most once in the list).

Lemma A.3. Let T (N ,E) be a query tree plan and S be the set of servers in the system. At the end of the

execution of Find candidates, for each n∈N n.candidates does not contain duplicate entries (i.e., each S∈S

is inserted at most once in n.candidates).

Proof: The prove is by induction on the nodes of T .

Base case. If n is a leaf node, then l=r=null. Also, n.candidates is initialized to [S, ,0], where S is the server

storing the relation represented by n. Since n.operator is null, then n.candidates is composed of one element

only and therefore cannot include duplicate entries.

33

Induction. Consider an internal node n and suppose that, by induction, both l .candidates and r .candidates

contain at most one element for each S∈S. We prove that also n.candidates contains at most one element for

each S∈S. To this purpose, we consider three cases depending on the value of n.operator.

• n.operator=π. n.candidates contains exactly the same elements as l .candidates. Therefore n.candidates

contains at most one element for each S∈S.

• n.operator=σ. n.candidates contains exactly the same elements as l .candidates. Therefore n.candidates

contains at most one element for each S∈S.

• n.operator=!". Procedure Find candidates first inserts in n.candidates either the elements in right-

masters or the elements in regular . However, both rightmasters and regular contain only servers in

r .candidates, which are inserted in rightmasters and/or in regular depending on their ability of acting as

masters in a regular and/or semi-join operation. Then, procedure Find candidates proceeds in the same

way with the servers in l .candidates, which are inserted in leftmasters and/or in regular depending on

their ability of acting as masters in a regular and/or semi-join operation. Either leftmasters or regular are

then inserted in n.candidates. Note that both leftmasters and regular cannot contain a server that already

appears in n.candidates since in this situation such a server is inserted neither in leftmasters nor in regular .

Since both l .candidates and r .candidates contain at most one element for each S∈S, either n.candidates

contains at most one element for each S∈S, or it is empty. In the first case, the lemma is proved. In

the second case (n.candidates=∅), procedure Find candidates calls function Find third party, which

returns a set list of servers, used to fill in n.candidates. Variable list may be filled in by extracting one

server at time either from leftmasters and rightmasters , which do not have common candidate servers, or

from the set S\(l .candidates∪r .candidates) of servers. Therefore, if function Find third party returns a

set list that is not empty, then list does not contain duplicate entries. !

Theorem 5.1 (Correctness). Given a query tree plan T (N ,E), a set A of authorizations, and a set S of servers,

Algorithm 5.1: i) terminates, ii) computes an executor assignment for T that is safe; iii) is always able to find

a safe executor assignment for T, if T is feasible.

Proof: We separately prove the three properties of the algorithm.

i) Termination

The algorithm terminates iff both procedure Find candidates and procedure Assign ex terminate.

34

Find candidates. Procedure Find candidates performs a post-order traversal of the tree T representing

the query plan. Since each node of the tree is visited only one time, the number of recursive calls to

Find candidates is finite and is equal to the number of nodes in the tree. We therefore need to show that

the visit of each node (i.e., the computations performed in correspondence of a node after the recursive calls)

terminates. The visit consists in executing for and while loops that iterate on different subsets of servers (i.e.,

l.candidates and r. candidates). Since the number of servers in the system is finite and by Lemma A.3, also

these subsets of servers are finite. Furthermore, the loops do not add new elements in the considered sets and

therefore they terminate. Each visit also calls function Can view and function Find third party. It is easy

to see that these two functions terminate. As a matter of fact, function Can view is composed of a unique

for loop iterating on view(S). Since the set A of authorizations in the system is finite and since view(S) is a

subset of A, the function terminates. Also function Find third party terminates since its for and while loops

iterate on sets of servers for which it is easy to see that they contain a finite number of servers.

Assign ex. Procedure Assign ex performs a pre-order traversal of the tree T representing the query plan.

Since each node of the tree is visited only one time, the number of recursive calls of Assign ex is finite.

Procedure Assign ex then terminates if the visit of each node terminates. The procedure is characterized by

a search operation over n.candidates list. Since the set S of servers in the system is finite and by Lemma A.3,

we also know that n.candidates is composed of a finite number of elements. We can conclude that procedure

Assign ex always terminates.

ii) Computation of a safe executor assignment

The prove is by contradiction. Suppose that the executor assignment computed by the algorithm is not safe. Let

n be the only node of T for which the corresponding assignment is not safe. We now show that the algorithm

cannot associate with n an unsafe assignment, thus contradicting the hypothesis.

• λT (n) = [chosen.server,n.rightslave]. In this case, n.rightslave -=null since otherwise the assignment

would be [chosen.server,null]. Server n.rightslave is a server S extracted from r .candidates by procedure

Find candidates(n) only if S is authorized for the right slave view , that is, if S is authorized to view

πn.parameter(Rl). This λT (n) is obtained in two cases.

1. chosen.fromchild=left. chosen is an element of n.candidates, and n.candidates is a list of servers that

procedure Find candidates(n) fills in by extracting from leftmasters the servers that are authorized

for the left master view (note that leftmasters is a subset of the servers in l .candidates authorized

to access Rl by Lemma A.2). By Lemma A.1 and Lemma A.2, we can then conclude that λT (n) is

35

safe since chosen.server is authorized for the left master view and n.rightslave is authorized for the

right slave view .

2. chosen.fromchild=third left. chosen is an element of n.candidates, and n.candidates is a list of servers

that function Find third party fills in by extracting from S\(l .candidates∪r .candidates) the servers

authorized for both the left master view and the right full view . By Lemma A.1 and Lemma A.2,

λT (n) is safe since chosen.server is authorized for the left master view and the right full view and

n.rightslave is authorized for the right slave view .

• λT (n) = [chosen.server,n.rightthirdslave]. In this case, chosen.fromchild=left and n.rightthirdslave -=null

since otherwise the assignment would be [chosen.server,null]. The third party n.rightthirdslave working

as right slave is determined by function Find third party. In particular, n.rightthirdslave is a server

that function Find third party extracts from S\(l .candidates∪r .candidates) only if it is authorized for

both the right slave view and the left full view . Since n.rightthirdslave -=null, we know that n.candidates

has been determined by function Find third party and that leftmasters -=null. Variable chosen then

represents a server extracted from leftmasters (note that leftmasters is a subset of l .candidates) that con-

tains servers authorized for the left master view . By Lemma A.1 and Lemma A.2, λT (n) is safe since cho-

sen.server is authorized for the left master view and n.rightthirdslave is authorized for the right slave view

and for the left full view .

• λT (n) = [chosen.server,n.leftslave] is symmetric to the case λT (n) = [chosen.server,n.rightslave].

• λT (n) = [chosen.server,n.leftthirdslave] is symmetric to the case λT (n) = [chosen.server,n.rightthirdslave].

• λT (n) = [chosen.server,null]. Procedure Assign ex(n) assigns null to variable n.executor.slave in four

cases.

1. chosen.fromchild=left and both n.leftslave and n.leftthirdslave are null. chosen is a server inserted

in n.candidates by procedure Find candidates(n). In particular, if n.operator=π or n.operator=σ,

chosen is also a server that appears in l .candidates and, by Lemma A.2, it can access the whole content

of both Rl and Rn. This implies that λT (n) is a safe assignment. Otherwise, if n.operator=!", chosen

is a server that procedure Find candidates(n) has inserted in n.candidates when it has added to

n.candidates all servers in regular . Set regular is a subset of l .candidates and contains all servers

that are authorized for the left full view . By Lemma A.1 and Lemma A.2 we can then conclude that

λT (n) is a safe assignment since chosen.server is authorized for the left full view .

2. chosen.fromchild=right is symmetric to the case chosen.fromchild=left when n.operator=!".

36

3. chosen.fromchild=left right. Variable chosen is inserted in n.candidates by procedure

Find candidates(n) and chosen.fromchild is set to left right when chosen.server appears both in

l .candidates and in r .candidates. It is then easy to see that chosen.server can access both Rl and

Rr and, consequently it can compute the join operation. We can then conclude that λT (n) is a safe

assignment.

4. chosen.fromchild=third. In this case, chosen is inserted in n.candidates by function

Find third party only if the server is authorized for both the left full view and the right full view .

By Lemma A.1 and Lemma A.2, we can conclude that λT (n) is a safe assignment.

• λT (n) = [chosen.server,{n.leftslave,n.rightslave}]. In this case, since the pair {n.leftslave,n.rightslave} has

been assigned to n.executor.slave, chosen.fromchild must be equal to “third” and chosen has been inserted

in n.candidates by function Find third party. More precisely, chosen is a server that belongs to list mas-

terlist and therefore is authorized for the left slave view , the right slave view , the left master view , and

the right master view . If n.rightslave is not null when calling function Find third party, n.rightslave

is a server extracted from r .candidates by procedure Find candidates(n) and that is authorized

for the right slave view . Otherwise, n.rightslave is a server extracted from r .candidates by function

Find third party and that is authorized for the two slave view . We note here that a server autho-

rized for the right slave view is also authorized for the two slave view . Analogously, n.leftslave is either

authorized for the left slave view or the two slave view . By Lemma A.1 and Lemma A.2, we can conclude

that λT (n) is a safe assignment since servers chosen.server, n.leftslave, and n.rightslave are correctly

authorized.

Since any possible assignment that the algorithm can compute for n is safe, we obtain a contradiction.

iii) Determination of a safe assignment if T is feasible

The prove is by contradiction. Suppose that T is feasible and that the algorithm does not find a safe executor

assignment. Let n be the only node of T for which the algorithm does not find a safe assignment. For simplicity

and without loss of generality, suppose that there exists exactly one safe executor assignment for each node n

in the tree (i.e., there is exactly one safe executor assignment for T).

The algorithm cannot determine a safe assignment for n only if n.candidates remains empty since other-

wise procedure Assign ex would be able to compute a safe assignment. If n.candidates is empty, the algo-

rithm terminates after the call to Find candidates(n). However, l .candidates and r .candidates cannot be

empty, since otherwise the algorithm terminates after the call to Find candidates(l) or after the call to

37

Find candidates(r). Consider now the different cases that may cause n.candidates to remain empty. We now

prove that if n.candidates remains empty, there is not a safe assignment for n, thus contradicting the hypothesis.

• If n.operator=π or n.operator=σ, n.candidates is empty only if l .candidates is empty, thus obtaining a

contradiction.

• If n.operator=!", n.candidates remains empty when the following cases happen.

1. Procedure Find candidates tries to add rightmasters to n.candidates. If n.candidates remains

empty, this happens because either rightmasters (i.e., the servers in r .candidates authorized for

the right master view) is empty or n.leftslave (i.e., the servers in l .candidates authorized for the

left slave view) is null. We can conclude that there is not a safe assignment [Sr, Sl] for n.

2. Procedure Find candidates tries to add regular to n.candidates. If n.candidates remains empty,

this happens because also regular , which should contain the servers in r .candidates authorized for

the right full view , remains empty. We can conclude that there is not a safe assignment [Sr,null]

for n.

3. Procedure Find candidates tries to add leftmasters to n.candidates. If n.candidates remains

empty, this happens because either leftmasters (i.e., the servers in l .candidates authorized for

the left master view) is empty or n.rightslave (i.e., the servers in r .candidates authorized for the

right slave view) is null. We can conclude that there is not a safe assignment [Sl, Sr] for n.

4. Procedure Find candidates tries to add regular to n.candidates. If n.candidates remains empty,

this happens because also regular , which should contain the servers in l .candidates authorized for the

left full view , remains empty. We can conclude that there is not a safe assignment [Sl,null] for n.

5. If n.candidates is still empty, procedure Find candidates calls function Find third party. Func-

tion Find third party tries to find possible candidates for n by considering the following cases in

the order with which we discuss them.

(a) Function Find third party first checks whether a third party can act as right slave. If how-

ever list remains empty, this happens because either leftmasters is empty or n.rightthirdslave

is null. Note that leftmasters is computed by procedure Find candidates and should con-

tain all servers in l .candidates authorized for the left master view . Therefore, if leftmasters is

empty, we can immediately conclude that there is not a safe assignment [Sl, St] for n. Otherwise,

function Find third party tries to determine server n.rightthirdslave by checking all servers

in S\(l .candidates∪r .candidates) authorized for the right slave view and the left full view . Note

that it is correct to exclude from this evaluation servers in r .candidates since they have been

38

already evaluated for the right slave view by procedure Find candidates without any positive

result. Analogously, servers in l .candidates can be excluded since they have been already evalu-

ated for the left full view by procedure Find candidates without any positive result. Therefore,

if n.rightthirdslave remains null, we can conclude that there is not a safe assignment [Sl, St] for

n.

(b) Function Find third party checks whether a third party can act as left slave. This case is

symmetric to Case 5a. We can then conclude that if list remains empty, there is not a safe

assignment [Sr, St] for n.

(c) Function Find third party proceeds by checking whether a third party can act as right master.

To this purpose, the function checks whether there are servers in S\(l .candidates∪r .candidates)

that are authorized for the right master view and the left full view . Note that it is correct to

exclude from this evaluation servers in r .candidates since they have already been evaluated for

the right master view by procedure Find candidates without any positive result. Analogously,

servers in l .candidates can be excluded since they have been already evaluated for the left full view

by procedure Find candidates without any positive result. Therefore, if list remains empty,

there is not a safe assignment [St, Sl] for n.

(d) Function Find third party proceeds by checking whether a third party can act as left master.

This case is symmetric to Case 5c. We can conclude that if list remains empty, there is not a

safe assignment [St, Sr] for n.

(e) Function Find third party proceeds by checking whether a third party can execute

a regular join. To this purpose, the function checks whether there are servers

S\(l .candidates∪r .candidates) authorized for the left full view and the right full view . Note that

again it is correct to exclude from this evaluation servers in r .candidates since they have been

already evaluated for the right full view by procedure Find candidates without any positive re-

sult. Analogously, servers in l .candidates can be excluded since they have been already evaluated

for the left full view by procedure Find candidates without any positive result. Therefore, if

list remains empty, there is not a safe assignment [St,null] for n.

(f) As last attempt, function Find third party checks whether there is a third party that can act as

coordinator. In this case, if list remains empty, then either n.leftslave, n.rightslave, or masterlist

are null. n.rightslave is determined by extracting from r .candidates a server authorized for

the two slave view . n.leftslave is determined by extracting from l .candidates a server authorized

for the two slave view . masterlist is computed extracting from S\(l .candidates∪r .candidates)

39

all servers authorized for the left slave view , the right slave view , the left master view , and the

right master view . Note that it is correct to exclude from this evaluation servers in l .candidates

and in r .candidates since they have been already evaluated for at least one of these views without

positive results. Therefore, list remains empty and there is not a safe assignment [St, SlSr] for

n.

Since there are no other possible safe assignments for n, we can conclude that n.candidates remains empty only

if there is not a safe assignment for n, thus obtaining a contradiction. !

A.3 Complexity analysis

Theorem 5.2 (Complexity). Given a query tree plan T (N ,E), a set A of authorizations, and a set S of servers,

the time complexity of Algorithm 5.1 is O(|N | · |S| · |A|).

Proof: The complexity in time of the algorithm is the sum of the complexities of procedures Find candidates

and Assign ex.

Find candidates. Procedure Find candidates performs a post-order traversal of T and therefore each node

of the tree is visited only one time. The complexity of the procedure is |N | times the complexity of each

visit. The visit of a node in T consists in executing for and while loops that iterate on sets l .candidates

and r .candidates and that contain calls to function Can view. By Lemma A.3, the number of elements in

both l .candidates and r .candidates is O(|S|). Function Can view is composed of a unique for loop iterating

on view(S)⊆A. The complexity in time of Can view is then O(|A|). Procedure Find candidates also calls

function Find third party, which is characterized by both for and while loops iterating on l .candidates,

r .candidates, leftmasters , rightmasters , cand slave, andmasterlist lists, that contain calls to functionCan view.

By Lemma A.3, we know that the number of elements in both l .candidates and r .candidates is O(|S|). Also,

since leftmasters ⊆ l .candidates and rightmasters ⊆ r .candidates, the number of servers in leftmasters and in

rightmasters is O(|S|). Analogously, cand slave is initialized to S\(l .candidates∪r .candidates) and masterlist ⊆

S\(l .candidates∪r .candidates) and then also the number of servers in cand slave and masterlist is O(|S|). The

complexity in time of function Find third party is O(|S| · |A|), where O(|A|) is the complexity of Can view.

Since in the worst case function Find third party is called for each node n in T , we can conclude that the

time complexity of procedure Find candidates is O(|N | · |S| · |A|).

Assign ex. Procedure Assign ex performs a pre-order traversal of T and therefore each node of the tree is

visited only one time. The complexity of the procedure is |N | times the complexity of each visit. The procedure

40

is characterized by a search of from parent in n.candidates. The time complexity of this search is O(|S|), since

by Lemma A.3, n.candidates includes O(|S|) servers. The time complexity of procedure Assign ex is then

O(|N | · |S|).

We can conclude that the overall complexity of Algorithm 5.1 is O(|N | · |S| · |A|) in time. !

41

