
XML-based Access Control Languages

C.A. Ardagna E. Damiani S. De Capitani di Vimercati P. Samarati
Dipartimento di Tecnologie dell’Informazione

Università degli Studi di Milano
26013 Crema, Italy

{ardagna,damiani,decapita,samarati}@dti.unimi.it

Abstract

One of the most challenging problems in managing large, distributed, and heterogeneous
networked systems is specifying and enforcing security policies regulating interactions between
parties and access to services and resources. Recent proposals for specifying and exchanging
access control policies adopt XML-based languages. XML appears in fact a natural choice as
the basis for the common security-policy language, due to the ease with which its syntax and
semantics can be extended and the widespread support that it enjoys from all the main platform
and tool vendors.

In this chapter, we first investigate the basic concepts behind access control design and
enforcement, and point out different security requirements that may need to be taken into con-
sideration in designing an access control language for Internet information systems. We then
focus on XML-based access control languages and, in particular, on the eXtensible Access Con-
trol Markup Language (XACML), a recent OASIS standardization effort. XACML is designed
to express authorization policies in XML against objects that are themselves identified in XML.
The language can represent the functionalities of most policy representation mechanisms.

1 Introduction

Accessing information on the global Internet has become an essential requirement of the modern
economy. Information is however one of, if not the most valuable asset of an organization. An
important requirement of any system is then to protect its data and services against unautho-
rized disclosure (secrecy or confidentiality) and unauthorized or improper modifications (integrity),
while at the same time ensuring their availability to legitimate users (no denial-of-service or avail-
ability) [10, 13, 18]. The problem of ensuring protection has existed since information has been
managed. However, as technology advances and information management systems become more
and more powerful, the problem of enforcing information security also becomes more critical. A
fundamental component in enforcing protection is represented by the access control service whose
task is to control every request to data/services maintained by a system and determining whether
the request should be granted or denied. The access control service establishes the kinds of reg-
ulations (policies) that can be stated, through an appropriate specification language, and then
enforced by the access control mechanism enforcing the service. By using the provided interface,
security administrators can specify the access control policy (or policies) that should be obeyed in
controlling access to the managed resources.

1



The definition of access control policies to be fed into the access control system is far from
being a trivial process. One of the major difficulties lies in the interpretation of, often complex
and sometimes ambiguous, real world security policies and in their translation in well defined
unambiguous rules enforceable by the computer system. Many real world situations have complex
policies, where access decisions depend on the application of different rules coming, for example,
from laws practices, and organizational regulations. A security policy must capture all the different
regulations to be enforced and, in addition, must consider all possible additional threats due to
the use of computer systems. Given the complexity of the scenario, it is therefore important that
the access control language be expressive and flexible enough to accommodate all the different
requirements that may need to be expressed, while at the same time be simple both in terms
of use (so that specifications can be kept under control) and implementation (so to allow for
its verification). Some of the main concepts/features that an access control language expressing
security policies should include are discussed below [11]:

• Interchangeable policy format. Protection requirements on the data need to be defined by
using a format both human- and machine- readable, easy to inspect and interchange. This
format should be simple to complement and check for being compliant with externally defined
regulations; also, it should be simple enough to be readily understood by non-specialists.

• Support for fine- and coarse-specifications. The access control system should allow rules to
be referred to specific accesses, providing fine-grained reference to the subjects and objects in
the system. However, fine-grained specifications should be supported, but not forced. In fact,
requiring the specification of access rules with reference to every single user and object in
the system would make the administration task a heavy burden. Beside, groups of users and
collections of objects often share the same access control requirements. The access control
system should then provide support for authorizations specified for groups of users, groups
of objects, and possibly even groups of actions [15]. Also, in many organizational scenarios,
access needs may be naturally associated with organizational activities; the access control
system should then support authorizations referred to organizational roles [19].

• Conditional authorizations. Protection requirements may need to depend on the evaluation
of some conditions [18]. Conditions can be in the simple form of system’s predicates, such
as the date or the location of an access (e.g., ‘Employee can access the system from 9 am to
5 pm’). Conditions can also make access dependent on the information being accessed (e.g.,
‘Managers can read payroll data of the employees they manage’).

• Policy combination and conflict-resolution. If multiple modules (e.g., for different authorities
or different domains) exist for the specification of access control rules, the access control
system should provide a means for users to specify how the different modules should interact,
for example, if their union (maximum privilege) or their intersection (minimum privilege)
should be considered. Also, when both permissions and denials can be specified, the problem
naturally arises of how to deal with incompleteness, that is, existence of accesses for which no
rule is specified, and inconsistency , that is, the existence of accesses for which both a denial
and a permission are specified. Dealing with incompleteness–requiring the authorizations to
be complete would be very impractical–requires support of a default policy either imposed by

2



the system or specified by the users. Dealing with inconsistencies require support for conflict
resolution policies. While, among the different conflict resolution policies that can be thought
of (see [18] for a deeper treatment), some solutions may appear more natural than others,
none of them represents “the perfect solution”. Whichever approach we take, we will always
find one situation for which the approach does not fit. Therefore any conflict resolution
policy imposed by the access control mechanism itself will always result limiting. On the
other side, support of negative authorizations does not come for free, and there is a price to
pay in terms of authorization management and less clarity of the specifications. However,
the complications brought by negative authorizations are not due to negative authorizations
themselves, but to the different semantics that the presence of permissions and denials can
have, that is, to the complexity of the different real world scenarios and requirements that
may need to be captured. There is therefore a trade-off between expressiveness and simplicity.
Consequently, current systems try to keep it simple by adopting negative authorizations for
exception support, imposing specific conflict resolution policies, or supporting a limited form
of conflict resolution.

Recently, several proposals have been introduced for access control to distributed heterogeneous
resources from multiple sources based on the use of attribute certificates [5]. These proposals
are often based on the use of logic languages, which are not immediately suited to the Internet
context, where simplicity and easy integration with existing technology must be ensured. XML-
based access control languages seems more suitable for this context and are also well suited for the
interchange of policies. Two relevant access control languages using XML are WS-Policy [8] and
XACML [17]. Based on the WS-Security [4], WS-Policy provides a grammar for expressing Web
service policies. The WS-Policy includes a set of general messaging related assertions defined in WS-
PolicyAssertions [6] and a set of security policy assertions related to supporting the WS-Security
specification defined in WS-SecurityPolicy [22]. In addition, WS-PolicyAttachment [7] defines how
to attach these policies to Web services or other subjects such as service locators. The eXtensible
Access Control Markup Language (XACML) [17] is a language for the expression of authorization
policies in XML against objects that are themselves identified in XML. While XACML and WS-
Policy share some common characteristics, XACML has the advantage of enjoying an underlying
policy model as a basis, resulting in a clean and unambiguous semantics of the language. For this
reason, in this chapter we illustrate XACML as our choice of language.

The remainder of this chapter is structured as follows. Section 2 introduces the basic features
of XACML. Section 3 describes the XACML policy language model and presents an example of
XACML policy. Finally, Section 4 gives our conclusions.

2 XACML: basic characteristics and data flow model

The eXtensible Access Control Markup Language (XACML) [17] is the result of a recent OASIS
standardization effort proposing an XML-based language to express and interchange access control
policies. XACML is designed to express authorization policies in XML against objects that are
themselves identified in XML. The language can represent the functionalities of most policy rep-
resentation mechanisms and has standard extension points for defining new functions, data types,

3



combining logic, and so on. We now describe the main features of XACML and then shows the
data-flow model.

2.1 XACML features

The major functionalities offered by XACML can be summarized as follows.

• Combination policy support. XACML provides a method for combining policies independently
specified. Different entities can then define their policies on the same resource. When an
access request on that resource is submitted, the system has to take into consideration all
these policies. XACML defines three elements for the specification of access control policies:
Rule, Policy, and PolicySet. The Rule element corresponds to the traditional concept of
authorization: it defines who can access to what resource and under which conditions. The
Policy element consists of a set of rules and specifies how combining the results of their
evaluation. Finally, the PolicySet element contains a set of Policy or PolicySet.

• Combining algorithms support. Since both a Policy and PolicySet element can contain
multiple policies or rules, each of which can evaluate to different access control decisions,
XACML needs to define a method for reconciling such decisions. XACML supports different
combining algorithms, each representing a way of combining multiple decisions into a single
decision. To this purpose, XACML defines two attributes, namely RuleCombiningAlgId, and
PolicyCombiningAlgId. The first attribute indicates a method for combining the individuals
results of evaluation of a set of rules. The second attribute indicates a method for combining
the individuals results of evaluation of a set of policies.

• Attribute support. XACML supports the definition of policies based on properties (at-
tributes) associated with subjects and resources other than their identities. This allows
the definition of powerful policies based on generic properties associated with subjects (e.g.,
name, address, occupation) and resources. To this purpose, XACML provides two elements,
namely SubjectAttributeDesignator and ResourceAttributeDesignator, that together
with SubjectMatch and ResourceMatch elements allow to identify a particular subject and
resource attribute, respectively.

• Operators support. XACML includes some built-in operators for comparing attribute values
and provides a method of adding non-standard functions.

• Multiple subjects. XACML allows the definition of more than one subject relevant to a decision
request.

• Policy distribution support. Policies can be defined by different parties and enforced at dif-
ferent enforcement points. Also, XACML allows one policy to contain or refer to another.

• Implementation independency. XACML provides an abstraction-layer that isolates the policy-
writer from the implementation details. This means that different implementations should
operate in a consistent way, regardless of the implementation itself. As we will see later on,
XACML defines a canonical form for the request and response, called XACML context.

4



Figure 1: XACML overview [17]

• Obligations support. XACML provides a method for specifying some action, called obligations,
that must be fulfill in conjunction with the policy enforcement. The element that provides
this feature is the Obligation element.

2.2 Data-flow model

The main entities involved in the XACML domain are illustrated in Figure 1. The standard gives
a definition of these concepts that we summarize as follows.

• The Policy Evaluation Point (PEP) module enforces the access decision taken by the decision
point.

5



• The Policy Decision Point (PDP) module receives an access request and interacts with the
PAP that encapsulates the information needed to identify the applicable policies. It then
evaluates the request against the applicable policies and returns the authorization decision to
the PEP module.

• The Policy Administration Point (PAP) module retrieves the policies applicable to a given
access request and returns them to the PDP module.

• The Policy Information Point (PIP) module provides attributes values about the subject,
resource, and action (the function to be performed).

• The Context Handler translates the access requests in a native format into a canonical format.

• The Environment provides a set of attributes that are relevant to take an authorization
decision and are independent of a particular subject, resource, and action.

A typical scenario for using XACML is when someone wants to take some action on a resource.
For instance, suppose a physician wants to access a patient’s record for inquiry only. The physician
would log on to the hospital information system, enter the patient identifier, and retrieve the
corresponding record. In this case, the hospital application would make a request to the PEP
module that protects the patient inquiry function. The PEP would then create a request based on
the physician’s attributes, the resource requested, and any other information related to the request.
The PEP module then sends this request to the PDP which evaluates the request. To this purpose,
the PDP interacts with the PAP which retrieves the policies applicable to the request and returns
them to the PDP module. More precisely, data flows through an XACML model by the following
steps (see Figure 1):

• The requester sends an access request to the PEP module.

• The PEP module sends the access request to the context handler which translates the original
request in an XACML request context by inquiring the PIP to obtain attributes of the subject,
resource, action, and environment. The PIP retrieves the requested attributes and returns
them to the context handler. Optionally, the context handler includes the resource in the
context.

• The context handler sends the XACML request to the PDP. The PDP identifies the applicable
policies by means of the PAP module and retrieves the required attributes and, possibly, the
resource from the context handler. The PDP then evaluates the policies and returns the
XACML response context to the context handler.

• The context handler translates the XACML response context to the native format of the PEP
and returns it to the PEP together with an optional set of obligations.

• The PEP fulfills the obligations and, if the access is permitted, performs the access. Other-
wise, the PEP denies access.

6



Figure 2: XACML context [17]

As described above, the XACML Context defines a canonical form of the request/response
managed by the PDP. Any implementation has to translate the attribute representations in the
application environment (e.g., SAML, .NET, Corba) in the XACML context (see Figure 2). As an
example, consider SAML [20] that is the most successful standard protocol handling authentication
information across transactions between parties. SAML uses tagged sets of user attributes to
represent subject-related information encapsulated inside service requests. An application can then
provide a SAML message that includes a set of attributes characterizing the subject making the
access request. This message has to be converted to the XACML canonical form and, analogously,
the XACML decision has then to be converted to the native format.

3 Policy Language Model

The main conceptual difference between XACML and other XML-based access control languages
is that XACML relies on a model that provides a formal representation of the access control
security policy and its working. This modeling phase is essential to ensure a clear and unambiguous
language which could otherwise be subject to different interpretations and uses. This can be
obviously a serious problem especially in the access control area, where access decisions have to be
deterministic [1, 2]. Figure 3 illustrates the XACML policy language model . The main concepts of
interests are rule, policy , and policy set .

3.1 PolicySet, Policy and Rule

An XACML policy has as root element either a Policy or a PolicySet. A PolicySet is a collection
of Policy or PolicySet. An XACML policy consists of a set of rules, a target , an optional set of
obligations, and a rule combining algorithm. A Rule specifies a permission (permit) or a denial
(deny) for a subject to perform an action on an object. A Target basically consists of a simplified
set of conditions for the subject, resource, and action that must be satisfied for a policy to apply
to a given request. If all the conditions of a Target are satisfied, then its associated Policy (or
Policyset) applies to the request. If a policy applies to all entities of a given type, that is all
subjects, actions, or resources, an empty element, named AnySubject, AnyAction, AnyResource,
respectively, is used. An Obligation is an operation that has to be performed in conjunction with
the enforcement of an authorization decision. For instance, an obligation can state that all accesses

7



Figure 3: XACML policy language model [17]

on medical data has to be logged. Obligations are passed back in the response from the PDP to
the PEP. Note that only policies which are evaluated and have returned a response of permit or
deny can return obligations. More precisely, an obligation is returned only if the effect of the policy
matches the value specified in the FullfillOn attribute associated with the obligation. This means
that if a policy evaluates to indeterminate or not applicable, then the associated obligations are
not returned to the PEP. Each Policy also defines a rule combining algorithm used for reconciling
the decisions each rule makes. The final decision value, called authorization decision, inserted in the
XACML context by the PDP is the value of the policy as defined by the rule combining algorithm.
XACML defined different combining algorithms. Examples of these are the following.

• Deny overrides. If there exists a rule that evaluates to deny or, if all rules evaluates to
not applicable, then the result is deny. If all rules evaluates to permit, then the result is

8



permit. If some rules evaluate to permit and some evaluate to not applicable, then the
result is permit.

• Permit overrides. If there exists a rule that evaluates to permit, then the result is permit. If
all rules evaluate to not applicable, then the result is deny. If some rules evaluate to deny
and some evaluate to not applicable, then the result is deny.

• First applicable. Each rule is evaluated in the order in which it appears in the Policy. For
each rule, if the target matches and the conditions evaluate to true, then the result is the
effect (permit or deny) of such a rule. Otherwise, the next rule is considered.

• Only-one-applicable. If more than one rule applies, then the result is indeterminate. If no
rule applies, then the result is not applicable. If only one policy applies, the result coincides
with the result of evaluating that rule.

In summary, according to the selected combining algorithm, the authorization decision returned
to the PEP can be permit, deny, not applicable (when no applicable policies or rules could be
found), or indeterminate (when some errors occurred during the access control process).

The PolicySet element consists of a set of policies, a target , an optional set of obligations,
and a policy combining algorithm. The policy, target, and obligation components are as described
above. The policy combining algorithms define how the results of evaluating the policies in the
policy set has to be combined when evaluating the policy set. This value is then inserted in the
XACML response context by the PDP.

As said before, a rule specifies the actual conditions under which access is to be allowed or
denied. The components of a rule are a target , an effect , and a condition. The target defines the
set of resources, subjects, and actions to which the rule is intended to apply. The effect of the
rule can be permit or deny. The condition represents a boolean expression that may further refine
the applicability of the rule. Note that the target element is an optional element: a rule with no
target applies to all possible requests.

An important feature of XACML is that a rule is based on the definition of attributes corre-
sponding to specific characteristics of a subject, resource, action, or environment. For instance, a
physician at an hospital may have the attribute of being a researcher, a specialist in some field, or
many other job roles. According to these attributes, that physician can be able to perform different
functions within the hospital. As another example, a particular function may be dependent on the
time of the day (e.g., access to the patient records can be limited to the working hours of 8:00 AM
to 6:00 PM). When an access request is sent from the PEP to the PDP, that request is mainly com-
posed of attributes that will be compared to attribute values in a policy to make an access decision.
Attributes are identified by the SubjectAttributeDesignator, ResourceAttributeDesignator,
ActionAttributeDesignator, and EnvironmentAttributeDesignator elements. These elements
use the AttributeValue element to define the value of a particular attribute. Alternatively, the
AttributeSelector element can be used to specify where to retrieve a particular attribute. Note
that both the attribute designator and attribute selector elements can return multiple values. To
this reason, XACML provides an attribute type called bag . A bag is an unordered collection and
can contain duplicates values for a particular attribute. In addition, XACML defines other standard
value types such as string, boolean, integer, time, and so on. Together with these attribute types,

9



XACML also defines operations to be performed on the different types such as equality operation,
comparison operation, string manipulation, and so on.

3.2 XACML request and response

XACML defines a standard format for expressing requests and responses. More precisely, the
original request submitted by the PEP is translated through the context handler in a canonical
form then forwarded to the PDP to be evaluated. Such a request contains attributes for the
subject, resource, action, and, optionally, for the environment. Each request includes exactly one
set of attributes for the resource and action and at most one set of environment attributes. There
may be multiple sets of subject attributes each of which is identified by a category URI. Figure 4
illustrates the XSD Schema of the request.

<xs:element name="Request" type="xacml-context:RequestType">
<xs:complexType name="RequestType">

<xs:sequence>
<xs:element ref="xacml-context:Subject" maxOccurs="unbounded">
<xs:element ref="xacml-context:Resource">
<xs:element ref="xacml-context:Action">
<xs:element ref="xacml-context:Environment" minOccurs="0">

</xs:sequence>
</xs:complexType>

Figure 4: XACML request schema

A response element contains one or more results each of which correspond to the result of
an evaluation. Each result contains three elements, namely Decision, Status, and Obligations.
The Decision element specifies the authorization decision (i.e., permit, deny, indeterminate, not
applicable), the Status element indicates if some error occurred during the evaluation process,
and the optional Obligations element states the obligations that the PEP must fulfill. Figure 5
illustrates the XSD Schema of the response.

<xs:element name="Result" type="xacml-context:ResultType">
<xs:complexType name="ResultType">

<xs:sequence>
<xs:element ref="xacml-context:Decision">
<xs:element ref="xacml-context:Status">
<xs:element ref="xacml-context:Obligations" minOccurs="0">

</xs:sequence>
<xs:attribute name="ResourceId" type="xs:string" use="optional">

</xs:complexType>

Figure 5: XACML response schema

10



<Policy PolicyId="Policy1" RuleCombiningAlgId="urn:oasis:names:tc:xacml:1.0:rule-combining-

algorithm:permit-overrides">
<Target>

<Subjects>
<AnySubject/>

</Subjects>
<Resources>

<Resource>
<ResourceMatch MatchId="urn:oasis:names:tc:xacml:1.0:function:anyURI-equal">

<AttributeValue DataType="http://www.w3.org/2001/XMLSchema#anyURI">
http://www.example.com/forum/private.html

</AttributeValue>
<ResourceAttributeDesignator DataType="http://www.w3.org/2001/XMLSchema#anyURI"

AttributeId="urn:oasis:names:tc:xacml:1.0:resource:resource-id"/>
</ResourceMatch>

</Resource>
</Resources>
<Actions>

<AnyAction/>
</Actions>

</Target>
<Rule RuleId="ReadRule" Effect="Permit">

<Target>
<Subjects>

<AnySubject/>
</Subjects>
<Resources>

<AnyResource/>
</Resources>
<Actions>

<Action>
<ActionMatch MatchId="urn:oasis:names:tc:xacml:1.0:function:string-equal">

<AttributeValue DataType="http://www.w3.org/2001/XMLSchema#string">
read

</AttributeValue>
<ActionAttributeDesignator DataType="http://www.w3.org/2001/XMLSchema#string"

AttributeId="urn:oasis:names:tc:xacml:1.0:action:action-id"/>
</ActionMatch>

</Action>
</Actions>

</Target>
<Condition FunctionId="urn:oasis:names:tc:xacml:1.0:function:string-equal">

<Apply FunctionId="urn:oasis:names:tc:xacml:1.0:function:string-one-and-only">
<SubjectAttributeDesignator DataType="http://www.w3.org/2001/XMLSchema#string"

AttributeId="group"/>
</Apply>
<AttributeValue DataType="http://www.w3.org/2001/XMLSchema#string">

moderator

</AttributeValue>
</Condition>

</Rule>
</Policy>

Figure 6: XACML policy

11



3.3 An XACML example

We illustrate a simple example of XACML policy, request and response. Suppose that there is a
corporation named Forum Corp that defines a high level policy as follows:

Any member of the moderator group can read the web page
www.example.com/forum/private.html

Figure 6 shows the XACML policy corresponding to the high level policy of Forum Corp. The
policy applies to requests on the http://www.example.com/forum/private.html resource. It has
one rule with a target that requires an action of read and a condition that applies only if the subject
is a member of the group moderator. Suppose now that a user belonging to group moderator and
with email user1@example.com wants to read the www.example.com/forum/private.html web
page. The corresponding XACML request is illustrated in Figure 7(a). This request is compared
with the previous XACML policy. The result is that the user is allowed to access the requested
web page. The corresponding XACML response is illustrated in Figure 7(b).

4 Conclusions

In this chapter, we have discussed the basic concepts of access control and illustrated the main
features of the eXtensible Access Control Markup Language (XACML). XACML is a powerful and
expressive language with many benefits [21]: it allows the unification of access control languages;
policies do not have to be rewritten in different languages; developers do not have to invent new
policy languages and write code to support them; it encourages reusability; multi-application tools
for managing and writing access control policies will be unified; it allows extensions to the access
control language to accommodate other access control policies; it allows one policy to contain or
refer to another.

References

[1] R. Agrawal, J. Kiernan, R. Srikant, and Y. Xu. An XPath-based preference language for P3P.
In Proc. of the World Wide Web Conference, Budapest, Hungary, May 2003.

[2] C. Ardagna and S. De Capitani di Vimercati. A comparison of modeling strategies in defining
xml-based access control languages. CSSE, 2004.

[3] P. Ashley, S. Hada, G. Karjoth, C. Powers, and M. Schunter. Enterprise privacy authorization
language (epal 1.1). IBM Research Report. http://www.zurich.ibm.com/security/enterprise-
privacy/epal.

[4] B. Atkinson and G. Della-Libera et al. Web services security (WS-Security). http://msdn.
microsoft.com/library/en-us/dnglobspec/html/ws-security.asp%, April 2002.

[5] P. Bonatti and P. Samarati. A unified framework for regulating access and information release
on the web. Journal of Computer Security, 10(3):241–272, 2002.

12



<Request>
<Subject>

<Attribute AttributeId="urn:oasis:names:tc:xacml:1.0:subject:subject-id"

DataType="urn:oasis:names:tc:xacml:1.0:data-type:rfc822Name">
<AttributeValue>user1@example.com</AttributeValue>

</Attribute>
<Attribute AttributeId="group" DataType="http://www.w3.org/2001/XMLSchema#string"

Issuer="administrator@example.com">
<AttributeValue>moderator</AttributeValue>

</Attribute>
</Subject>
<Resource>

<Attribute AttributeId="urn:oasis:names:tc:xacml:1.0:resource:resource-id"

DataType="http://www.w3.org/2001/XMLSchema#anyURI">
<AttributeValue>http://www.example.com/forum/private.html</AttributeValue>

</Attribute>
</Resource>
<Action>

<Attribute AttributeId="urn:oasis:names:tc:xacml:1.0:action:action-id"

DataType="http://www.w3.org/2001/XMLSchema#string">
<AttributeValue>read</AttributeValue>

</Attribute>
</Action>

</Request>
(a)

<Response>
<Result>

<Decision>Permit</Decision>
<Status>

<StatusCode Value="urn:oasis:names:tc:xacml:1.0:status:ok"/>
</Status>

</Result>
</Response>

(b)

Figure 7: An example of XACML request (a) and response (b)

[6] D. Box et al. Web services policy assertions language (WS-PolicyAssertions) version
1.1. http://msdn.microsoft.com/library/en-us/dnglobspec/html/ws-policyassert%
ions.asp, May 2003.

[7] D. Box et al. Web Services Policy Attachment (WS-PolicyAttachment) version
1.1. http://msdn.microsoft.com/library/en-us/dnglobspec/html/ws-policyattach%
ment.asp, May 2003.

[8] D. Box et al. Web services policy framework (WS-Policy) version 1.1.
http://msdn.microsoft.com/library/en-us/dnglobspec/html/ws-policy.asp, May 2003.

[9] E. Damiani, S. De Capitani di Vimercati, S. Paraboschi, and P. Samarati. Securing SOAP
E-services. International Journal of Information Security (IJIS), 1(2):100–115, February 2002.

13



[10] E. Damiani, S. De Capitani di Vimercati, and P. Samarati. Towards security XML web
services. In Proc. of the 2002 ACM Workshop on XML Security, Washington, DC, USA,
November 2002.

[11] S. De Capitani di Vimercati, S. Paraboschi, and P. Samarati. Access control: Principles and
solutions. Software – Practice and –¿ – Experience, 33(5):397–421, April 2003.

[12] S. Feldman. The Changing Face of E-Commerce. IEEE Internet Computing, 4(3):82–84,
May/June 2000.

[13] B. Galbraith, W. Hankinson, A. Hiotis, M. Janakiraman, D. Prasad, and R. Trived. Profes-
sional Web Services Security. Wrox Press Ltd., December 2002.

[14] J. Hine, W. Yao, J. Bacon, and K. Moody. An architecture for distributed OASIS services. In
Proc. of the IFIP/ACM International Conference on Distributed Systems Platforms nd Open
Distributed Processing, Hudson River Valley, New York, USA, April 2000.

[15] S. Jajodia, P. Samarati, M. Sapino, and V. Subrahmanian. Flexible support for multiple access
control policies. ACM Transactions on Database Systems, 26(2):18–28, June 2001.

[16] H. Koshutanski and F. Massacci. An access control framework for business processes for web
services. In Proc. of the 2003 ACM Workshop on XML security, Fairfax, Virginia, November
2003.

[17] OASIS eXtensible Access Control Markup Language (XACML) version 1.1. http://www.
oasis-open.org/committees/xacml/repository/cs-xacml-specific%ation-1.1.pdf.

[18] P. Samarati and S. De Capitani di Vimercati. Access control: Policies, models, and mecha-
nisms. In R. Focardi and R. Gorrieri, editors, Foundations of Security Analysis and Design,
LNCS 2171. Springer-Verlag, 2001.

[19] R. Sandhu, E. Coyne, H. Feinstein, and C. Youman. Role-based access control models. IEEE
Computer, 29(2):38–47, February 1996.

[20] Security assertion markup language (SAML) v1.0. http://www.oasis-
open.org/committees/download.php/3400/oasis-sstc-saml-1.1-pdf-xsd.zip.

[21] SUN. Introduction to XACML, June 2003. http://sunxacml.sourceforge.net.

[22] Web services security policy (WS-SecurityPolicy), December 2002. http://www-106.ibm.
com/developerworks/library/ws-secpol/.

14


