
IMTC 2005 – Instrumentation and Measurement
Technology Conference
Ottawa, ON, Canada, 16-19 May 2005

A MOBILE AGENT PLATFORM FOR REMOTE MEASUREMENTS

S. De Capitani di Vimercati (1), A. Ferrero (2), M. Lazzaroni (1)

1 Dipartimento di Tecnologie dell’Informazione - Università degli Studi di Milano
Via Bramante, 65 – 26013 Crema (CR), Italy

Phone: +39 02 503.30073, Fax: +39 02 503 30010, Email: lazzaroni@dti.unimi.it

2 Dipartimento di Elettrotecnica - Politecnico di Milano
Piazza Leonardo Da Vinci, 32 - 20133 Milano – Italy

Phone: 0039 02 23993702, Fax: 0039 02 23993703, Email: loredana.cristaldi@polimi.it

Abstract – Industrial applications require suitable monitoring
systems able to identify any decrement in the production efficiency
involving economical losses. The information coming from a general
purpose monitoring system can be usefully exploited to implement a
sensorless instrument monitoring an AC motor drive and a
diagnostic tool providing useful risk coefficients. The method is
based on a complex digital processing of the line signals acquired
by means of a Virtual Instrument. In this paper a Genetic Algorithm
implemented in a Mathcad environment performs the evaluation of
the risk indexes from the processed line signals. The combination of
Genetic Algorithms and Neural Network is also investigated as a
promising possibility for the development of a reliable diagnostic
tool. The risk coefficients derived from this approach are evaluated,
discussed and compared to other indexes – in particular Fuzzy
Indexes - introduced by the authors in previous papers.

Keywords – Mobile Agents, Measurements, Diagnostic, Testing.

I. INTRODUCTION

Mobile code (mobile agent) technologies are receiving a great
deal of interest from both industrial and academic world. The
ability to move computations across the nodes of a wide area
network allows deployment of services and applications in a
more flexible, dynamic, and customizable way with respect to
the well-known client-server paradigm. Mobile agents are an
emerging technology that makes the design, implementation,
and maintenance of distributed systems a very ease task.
Mobile agents reduce the network traffic, provide an effective
means of overcoming network latency and, through their
ability to operate asynchronously and autonomously of the
process that created them, help us to construct more robust
and fault-tolerance systems.
Yet, the wide acceptance of the mobile agents approach is
hampered by the security issues that arise when executable
content and associated execution state are moved among
different computational environments.
In this paper the authors propose a Mobile Agent Platform
implemented for the calibration of the instruments located at
the customer factory, instead of the calibration laboratory.

II. MOBILE AGENT PARADIGM

Mobile agent systems provide a computing infrastructure
upon which distributed applications belonging to different
(and potentially untrusted) users can execute concurrently.
The execution of a program on a remote machine, that is, on a
different machine from the one on which it is being operated,
has been a current task since operations on Internet services,
(e.g. e-mail, ftp, telnet), have been in use. Every service
requests to activate a particular program able to serve it. This
first model of remote code execution has definite limitations:
it cannot put an arbitrary program in execution, since only the
designated program that has been installed from the system
administrator on the server, and only that one can be
activated by a given service.
This type of operation is implemented as the realization of a
virtual terminal, that is, it works as if the local keyboard and
monitor and the remote machine were linked by “long virtual
cables”. In this case the execution is confined to only the
application stored on the hard-disk of the machine where the
code must be executed.
When applet Java and JavaScripts or programs written in
VisualBasic have started to be integrated in the Web pages,
the situation became more interesting: in fact, the executable
program is not originally stored on the remote machine, but it
is downloaded from the server and then executed. However
their execution still remains confined in every single
computer where the browser is installed and they are never
executed on the server, where they exist only as latent codes.
The provision of services in an open, global, and mobile
environment has significantly stimulated research work on
new programming paradigms in order to enhance the
flexibility of the traditional client/server model where client
and server processes communicate either through message
passing or remote procedure calls [1]. All proposed
paradigms focus on the support of code mobility at runtime.
In particular, a mobile agent is a program which represents a
user in a computer network and can migrate autonomously
from node to node in the network to perform some
computation on behalf of the user. A mobile agent is then a
program (encapsulating code, data, and execution context)
sent by a server to a client. Unlike a procedure call, it does
not have to return its results to the client but to the server. It
could migrate to other servers, transmit information back to

its origin, or migrate back to the client. It can be used for
user-level applications, middleware, as well as system
software.
Mobile agents are able to navigate on the net by themselves.
In particular mobile agents interrupt the execution of their
task on a client, migrate to another client (or server) and
restart the execution from the precise point when they have
been stopped.
A Mobile Agent, is therefore a "program that can be moved
between several machines conserving its state", where the
state represents the values assumed by the data structures of
the program. In Mobile Agents this feature is mandatory and
it is their long term memory.
From this point of view viruses and Internet worms, for
example, cannot be considered Mobile Agents: they are able
to replicate themselves from a machine to another one, but
they do not have conscience, because, after arrival on a new
computer their execution starts again from the beginning. The
state possessed by the program when the request that
generates the copy has been issued is not propagated in the
generated copy. Fig. 1 reports a simple program where a
variable named counter is incremented and, sometime, the
code migrate on a different machine. The C-code reported in
Fig. 1 is not a Mobile Agent: in fact every time it arrives on a
new computer, it starts its execution from counter = 0,
forgetting the value reached on the previous machine. If it is
possible to suppose that, passing the value of the counter to
function migrate(), the C-code is able to recover this data on
the new machine, for instance by means of function
get_previous_value(), then a simple Mobile Agent is
obtained. Fig. 2 reports an example of C-code implementing
a Mobile Agent. The program state (in this simple case only
variable “counter”) is now preserved correctly. The more
interesting and difficult part of the program consists in the
implementation of the migrate() and get_previous_value()
functions.

These functions must: i) save all variables that represent
the state of the program; ii) send the executable code and the

variables of the Mobile Agent on the destination machine; iii)
restore the state of the program, once it arrived to destination:
iv) re-start the executable code. Obviously, these implies the
presence of an application named, for example, agent server,
on all machines involved.
Telescript [2] was the first system expressly designed for
programming mobile agents. It was followed by several
prototypes such as Tacoma [3] and Agent Tcl 0, where
agents are written using script languages.
The wide diffusion of Java language and programming
environment with its support for mobile code, led to develop
object oriented agent systems, which represent the fusion of
mobile object systems with mobile agents. Aglets [5],
Voyager [6], and Concordia [7] are examples of Java-based
mobile agent systems.

The adoption of the mobile agent technology is
encouraged by many researchers in the distributed system
area [8] due to the several advantages of the mobile agent
technology (e.g., reduced network usage, increased non
synchronicity among clients and servers, and so on) in
comparison with traditional message passing or remote
procedure call paradigms. The possible drawbacks of the
mobile agent technology are represented by the security risks
introduced by the need to host the execution of new
computing entities that carry their own code. Furthermore, an
agent may be attacked, modified, or deleted by a hostile agent
platform on a malicious network host. Another typically
stated and obvious concern related to mobile agents is the
question if agent migration is always of more effective than
message passing. For instance, it could probably be better to
interact by message passing in case the agent code is bigger
than the expected data volume to be exchanged. We will
discuss the security problems more in details in the following
sections.

III. THE PROPOSED MOBILE AGENTS
ARCHITECTURE

As far as the proposed architecture is concerned, its most
basic requirement is to provide a facility for executing
visiting agents and transporting them to other hosts upon
request. Agents need to access system-level resources on
their host machines, such as data, files, network ports, and so
on. To this purpose the agent infrastructure needs to define a
binding between the visiting agent and its environment or
between two or more agents which need to communicate or
to coordinate their activities. The runtime system is structured
as a client/server system. Fig. 3 shows the architecture of the
realized system at the server side. The architecture is
composed of five modules (classes):
o The Agent Launcher creates an agent within the server

process. A service can be activated manually, through a
graphical interface (module Agent Manager) or
automatically, through a request on a TCP/IP port
(module KKMulti ServerThread).

o The Agent Manager creates the graphical interface used to

void main()
 {
 int stay_here = 10;
 int counter = 0;
 while (stay_here--)
 counter++;
 migrate(new_IP_address);
 }

Fig. 1 – C-code of a simple program where a variable named counter is
incremented. Moreover, the code is able to migrate on a different machine.

void main()
 {
 int stay_here = 10;
 int counter = get_previous_value();
 while (stay_here--)
 counter++;
 migrate(new_IP_address, counter);
 }

Fig. 2 – C-code of a simple Mobile Agent.

interact with the Agent Launcher and takes care of
monitoring the connected users and controlling the
running agent.

o The KKMulti Server is responsible for the communication
among servers, users, and agents. It creates a server
socket and waits for a new connection. When a new
connection is required, the KKMulti Server creates a new
thread (KKMulti ServerThread) whose job is to serve that
particular request.

o The KKMulti ServerThread manages the transmission of
information such as the request of a service, the
registration of a new user, and the error handling.

o The Agent Server takes care of receiving the migrated
agents and executing agent code using an internal
interpreter.

At the client side, the classes needed are those
implemented in the Agent server module. In addition, the
client has to notify to the server the termination of the
service.

IV. IMPLEMENTATION OF THE PROTOTYPE

To demonstrate the applicability and the advantages of the
solution in measurement applications, a prototype has been
realized in Java by using the Aglets system. Aglets is a Java-
based system developed by IBM where agents are named
aglets. Java provides object serialization functions which
allow to convert an object instance into a machine-
independent array of bytes. The byte array can then be
transmitted over a network to another host and de-serialized
there (i.e., converted back into an identical Java object). In
our application, agents therefore are simply serializable Java

objects. In Java, the source code for a class is first compiled
into bytecode, which is then interpreted by a virtual machine.
This bytecode can be transmitted over a network and reloaded
as a class at the remote end. This implies that we can send
both classes and objects from one machine to another. A
remote agent server therefore does not need to have all of the
agent's classes available locally beforehand. It can accept
incoming agents and starts executing them. If the agent
encounters a reference to a class which is not currently
available, the Java virtual machine invokes the agent's class
loader which can then contact the agent's home site to
download the requisite bytecode. Agents migrate between
agent servers (called aglet context) located on different
network hosts. An interesting feature of Aglets is its callback-
based programming model. The system invokes specific
methods on the agent when certain events in its life-cycle
occur. For instance, when an agent arrives at a server, its
onArrival method is invoked. Agent mobility is realized
adopting Java's object serialization. When an agent is
reactivated at its destination, its run method is invoked. The
programmer must implement further control flow in this
method. Message-passing is the only mode of communication
supported, that is, aglets cannot invoke each others' methods.
The system provides a retract primitive that recalls an aglet
to the caller's server. There is however no access control on
this primitive and therefore it is possible for one user to
retract another user's agent. We now briefly present the main
classes of the realized prototype, to illustrate how the
principles previously presented in the paper have been
realized in practice.
Agent. It is the most important class that represents the
agents. It is declared as abstract and therefore some methods
are implemented when the agent is loaded. The agent

Fig. 3 - Architecture of our system at the server side.

Graphic interface with
control e supervision

functions

Management of
Mobile Agents

Tread managing of
communication

Manages the transmission
at single user level

Migration control of
Mobile Agents

External world
TCP-IP (9999)

External world
TCP-IP (4444)

migrates from a server to another one when a connection
between the servers has been established.
Agent Server. It listens for agents. It is a multithread server,
that is, multiple simultaneous connections are handled.
AgentHandler. It handles a single connection with a client.
If there is the needed to use classes that are not stored in the
server, it has to redefine the class loader through the class
AgentLoader.
AgentClassLoader. It loads classes when needed. It uses an
hash table with two columns: the first column is the class
name and the second column is an array of bytes (the
corresponding bytecode). This table includes all classes
needed for the working of the agent.

AgentLoader. It is responsible of the agent serialization
and deserialization.

V. SECURITY CONSIDERATIONS

Three apparent security problems arise when applying mobile
agents:
o authentication (i.e., the determination of the identity of an

agent or an agent system): the mobile agents need to be
authenticated and authorized at the servers;

o secure communication and agent transfer: to ensure the
integrity of the data; it must be transmitted in a secure
communication channel;

o access control of resources/services depending on the
requesting agent.

To guarantee confidentiality and integrity, crucial
information such as code and state of a migrating agent
should exploit, for example, public-key cryptographic
encryption before transfer over an untrusted network.
In our prototype these issues have been addressed by setting
up a Virtual Private Network (VPN) connection. A VPN is a
connection that allows data to be sent securely over a shared
or public network, such as the Internet. From the user's
point of view, a VPN connection is a point-to-point
connection between the user's computer and the server. VPN
connections leverage the IP connectivity of the Internet and
use a combination of tunneling and data encryption to
securely connect remote clients and remote offices.

In the final paper a detailed discussion concerning security
will be reported. In particular, a discussion concerning
security in measurement applications will be reported and the
proposed and implemented solution for security improvement
of the realized application will be presented.

VI. USING MOBILE AGENTS IN MEASUREMENT:
THE PROPOSED APPLICATION

We have seen how the technology of the Mobile Agents
opens many doors. However, the use of the Mobile Agent is
actually limited to the data-sharing application, database, and
so on. Actually, the use of the Mobile Agent technology can
be extended to control hardware and peripherals (such as
calibrators, instruments and other devices), provided that they
are connected to a host client through standard interfaces
(RS232, IEEE 488, etc..) and specifics agents are developed
to access the peripheral through these interfaces.
If these issues are correctly addressed it is possible to use
Mobile Agent Technology to gain a full control of an
instrument (or more instruments!). In particular the
aforementioned technology can be used to calibrate a
measurement instrument implementing the simple
architecture depicted in Fig. 4.

Fig. 5 shows the Control Panel of the prototype Agent
Manager for Mobile Agent launching implemented in Java.
The realized Platform is fully operative and detailed
discussion on obtained results will be reported on final paper.
Finally, in Fig. 6 an example of Mobile Agent implemented
is reported: the Mobile Agent is able to recognize the
instruments connected by IEEE 488 to the PC.

VII. CONCLUSIONS

In the final paper a detailed discussion concerning the
architecture of the Mobile Agent technology implemented
will be reported. The designed and realized Mobile Agent
System is able to perform a remote calibration of the
measurement instruments and the obtained results, reported in
the finale paper, are very interesting.

REFERENCES

[1] B.H. Tay and A.L. Ananda. A survey of remote procedure calls.
Operating System Review, 24(3):68-79, July 1990.

[2] J.E. White. Mobile agents. Technical report, General Magic, Inc.,
October 1995.

[3] D. Johansen, R. van Renesse, and F.B. Schneider. Operating system
support for mobile agents. In Proc. of the 5th IEEE Workshop on
Hot Topics in Operating Systems (HotOS-V), May 1995.

Fig. 4 – An example of application of Mobile Agents in Measurement.

[4] R.S. Gray. Agent tcl: A Flexible and secure mobile-agent system. In
Proc. of the Fourth Annual Tcl/Tk Workshop (TCL'96), July 1996.

[5] G. Karjoth, D. Lange, and M. Oshima. A security model for aglets.
IEEE Internet Computing, pages 68-77, July-August 1997.

[6] Voyager application. http://www.recursionsw.com/voyager.htm.
[7] Mitsubishi Electric. Concordia: An infrastructure for collaborating

mobile agents. In Proc. of the 1st International Workshop on Mobile
Agents (MA'97), April 1997.

[8] D. Chess, C.G. Harrison, and A. Kershenbaum. Mobile agents:
Are they a good idea? In G. Vigna, editor, Mobile Agents and
Security, LNCS 1419. Springer Verlag, 1998.

Fig. 5 – The Control Panel of theAgent Manager for Mobile Agent launching.

Fig. 6 – An example of an implemented Mobile Agent which is able to recognize the instruments connected by IEEE 488 to the PC.

