Offline Expansion of XACML Policies

C. Ardagna, E. Damiani, S. De Capitani di Vimercati, C. Fugazza, P. Samarati

Dipartimento di Tecnologie dell’Informazione
Universita di Milano
26013 Crema - Italy
{ardagna, damiani,decapita,fugazza, samarati}@dti .unimi.it

Abstract. In the last few years XML-based access control languages
like XACML have been increasingly used for specifying complex poli-
cies regulating access to network resources. Today, growing interest in
Semantic-Web style metadata for describing resources and users is stim-
ulating research on how to express access control policies based on ad-
vanced descriptions rather than on single attributes.

In this paper, we discuss how standard XACML policies can handle
ontology-based resource and subject descriptions based on the standard
P3P base data schema. We show that XACML conditions can be trans-
parently expanded according to ontology-based models representing se-
mantics. Our expansion technique greatly reduces the need for online
reasoning, and decreases the system administrator’s effort for producing
consistent rules when users’ descriptions comprise multiple credential
with redundant attributes.

1 Introduction

Semantic-Web style ontologies are aimed at providing a common framework
that allows data to be shared and reused by applications across enterprise, and
community boundaries. While interest for ontology-based data representation is
now growing in many application fields, access control techniques still do not take
full advantage of Semantic Web metadata. Even recent proposals for specifying
and exchanging access control policies adopt XML-based languages such as the
eXtensible Access Control Markup Language (XACML) [3] whose flexibility is
severely limited by the comparatively low expressive power of formalisms used
to describe resources and users requesting them.

In this paper, we present a practical and efficient approach for incorporating
into XACML policies ontology-based resource and subject descriptions based on
the standard P3P base data schema [6]. In particular, we describe how XACML
conditions can be expanded taking into account ontology-based models repre-
senting user profiles and resources semantics. Our expansion technique greatly
reduces the need for on-line reasoning, relieving the (potentially heavy) compu-
tational burden of supporting resource and users’ semantics in policy definition
and evaluation. As far as user descriptions are concerned, we rely on P3P-based
credentials, which are increasingly used to represent subject-related personal in-
formation in privacy policies. In our approach, the P3P standard data schema

II

XACML i
O ! .
S ! |
Palicy Editor Expanded Reasoner %{X :
XACML Policy [-

Subject and

Resource

Author Ontologies

Expanded XACML
Policy

Request

—_—

Decision Evaluation

- |

Requestor

Fig. 1. Scenario

for credential is converted into semantic-Web style metadata that can be easily
checked the framework of policy evaluation.! Figure 1 illustrates the scenario
we consider. The XACML policies are created via the Policy editor component.
The Reasoner takes such XACML policies together with the subject and resource
ontologies and computes the expanded XACML policies including semantically
equivalent additional conditions. These conditions, specified in disjunction with
the original ones, allow for increasing the original policy’s expressive power. Our
semantically expanded XACML policies can be straightforwardly used as a re-
placement of the original ones or, more interestingly, can be evaluated side by
side with them, flagging cases of inconsistency in the policies’ semantics.

The remainder of this paper is organized as follows. Section 3 shows a simple
example of XACML policy expansion, deriving possible alternatives obtained by
straightforward reasoning over context information. Section 4 illustrates how the
reasoning process, by taking into account an explicit representation of resources,
derives the actual credential users should provide to be granted access to a given
resource. Finally, Section 5 shows how a complex condition is modeled and how
the ontology is used to deduce some semantically equivalent alternatives.

2 Representing Heterogeneous Credential Information

We start from a simple RDFS representation of P3P standard data schema.
Fig. 3 shows the first level of RDF Schema [8] definitions (henceforth the lan-
guage layer) for our Semantic-Web style representation of the P3P standard

1 More specifically, the ontology used in this paper relies on the revised P3P base data
schema introduced in our previous work {2, 5].

IIT

rdfs: Literal rdfs:Cclass
df :|t
rdf =4 anoge hasMember r ¥pe
g rdfs:range rdfs:domain
hasFunction =
Dat.aI.te.m reéfersDefinition
Definitio
rdfs:range
has¥alue
rdfs:sulyC lassof
- Ny DataStructure- DataElement-
equivalentCondition Condition

Definition Definition

Fig. 2. The language layer defining the building blocks of our RDFS-based represen-
tation of P3P data schema.

base data schema [6]: here classes have a grey background color while prop-
erties have borders and no background color. Root class DataltemDefinition
is sub-classed by DataStructureDefinition and DataElementDefinition in
order to model P3P data structures and data elements. It is also sub-classed
by a class Condition, used to model policy conditions by means of the as-
sociated properties hasFunction, hasMember, and hasValue (representing re-
spectively the evaluation function, the variables and the literal values used
in the condition). Conditions can feature alternatives by means of property
equivalentCondition. We denote the inclusion between DataItems by means
of a property called refersDefinition; in RDFS terms, DataltemDefinition
is both the rdfs:domain and rdfs:range of property refersDefinition used
to model the data schema. This property, together with the rdfs:subClass0f
property, will be used throughout the paper to query the knowledge base for
alternatives to data items.

Below the language layer, the ontology layer depicted in Fig. 3 comprises
data elements and structures represented as classes and linked with each other
by means of the refersDefinition property. This layer models the semi-lattice
structure of the P3P base data schemal[5]. At the bottom of the model, the in-
stance layer contains the actual negotiable user credential expressed as instances
of the classes defined by the ontology layer. Credentials are connected by the
refersInstance property, modeling the tree structure linking literal values to
nodes representing credential instances as a whole. For the sake of simplicity,
rather than bending the built-in inference rules associated to ontology languages
like OWL we decided to rely on plain RDFS[8] and define from scratch a rule set
representing the reasoning patterns required by our application. The examples
in the paper make use only of the implications in the ontology layer, hence the
instance layer is not further described.

v

DataTtem—
Definition

rdf:Fype rdfs:domain

DataTtem vefersInstance
%}:@\
Datastructure Dat aElement
——— Tats:subclasso
User rdfs:subtiassof
Hame
refersbDefinition

D Family

S ¢

5501 Passport
FamilyName FHame *—/

refersPefinition

TdentityCard

refersbpefinition

Fig. 3. The ontology layer integrating the P3P base data schema with credential defi-
nitions.

3 Referencing Credential Information in Policies

We are now ready to describe some worked out examples of ontology-based
policy expansion. In the first example, we show how using an ontology to
link independent credential to the P3P base data schema allows for eas-
ily specifying alternatives. Fig. 4 shows a XACML condition that refer-
ences data items of the extended context provided by the ontology via the

eral “Rossi”. From the syntax we can gather that the referenced data items:

— belong to the underlying P3P base data schema and can feature alternatives
(corresponding to different credentials);

— have type Family, which is part of the Name context associated to the generic
User requiring a resource or service.

From the URN provided by the AttributelId we can derive a RDQL [9] query
extracting such items from P3P data (class SubjectAttribute allows for dis-
tinguishing subject credentials from resources types):

SELECT ?DataElement

WHERE

(<http://.../BaseDataSchema#Family><http://.../BaseDataSchema#refersDefinition>7DataElemen t)
(7DataElement rdfs:type <http://.../BaseDataSchema#SubjectAttribute>)

Let us now examine in some more detail the (hopefully rather self-
explanatory) RDQL syntax used above. First of all, in the selection clause we
collect all ontology nodes referenced by the Family node. Since Family is a leaf
and refersDefinition is a reflexive property, the only result is:

DataElement

<http://.../BaseDataSchema#Family>

<Rule Ruleld="urn:example:ruleid:1" Effect="Permit">
<Description/>
<Target/>
<Condition>

<AttributeValue DataType="http://www.w3.org/2001/XMLSchema#string" >
Rossi
</AttributeValue>

DataType="http://wuw.w3.org/2001/XMLSchema#string"/>
</Apply>
</Condition>
</Rule>

Fig. 4. A sample XACML condition referencing the extended context.

Then, we query the information base for data items semantically equivalent
to BaseDataSchema#Family; note that the other elements from the URN in the
original condition (User and Name) act as constraints:

SELECT ?7DataElement

WHERE

(7DataElement rdfs:subClass0f <http://.../BaseDataSchema#User>)
(7DataElement rdfs:subClass0f <http://.../BaseDataSchema#Name>)
(?DataElement rdfs:subClassOf <http://.../BaseDataSchema#Family>)
(?DataElement rdfs:type <http://.../BaseDataSchema#SubjectAttribute>)

The RDF'S reasoning engine gives us the following results:

DataElement

<http://.../Passport#FName >
<http://.../IdentityCard#FamilyName>

The entities are then mapped to the following URNs:

We can now expand the original XACML condition to take into account the
additional attributes obtained by our expansion procedure, as shown in Fig. 5.

Note that, as long as the two parties agree on the extended context, our ex-
pansion procedure does not affect the asymptotic complexity of evaluation, since
the expanded condition can still be evaluated by applying XACML standard
functions to literal values. Our policy expansion process is hiding the complex-
ity of the semantics-aware information base.

4 Referencing Proprietary Representations of Resources

P3P base data schema is normally used for describing user-related personal infor-
mation. However, the scope of our technique can be easily enlarged to encompass
resources descriptions. The availability of a common data schema allows for root-
ing an arbitrary representation model for describing resources metadata; actual

VI

<Condition>
<Apply FunctionId="urn:oasis:...:function:or">
<Apply FunctionId="urn:oasis:...:function:string-equal">
<AttributeValue DataType="http://www.w3.org/2001/XMLSchema#string" >
Rossi
</AttributeValue>
<SubjectAttributeDesignator Attributeld="urn:...:BaseDataSchema:User:Name:Family"
DataType="http://www.w3.org/2001/XMLSchema#string"/>
</Apply>
<Apply FunctionId="urn:oasis:...:function:string-equal">
<AttributeValue DataType="http://www.w3.org/2001/XMLSchema#string" >
Rossi
</AttributeValue>
<SubjectAttributeDesignator Attributeld="|urn:...:IdentityCard:FamilyName |"
DataType="http://wuw.w3.org/2001/XMLSchema#string"/>
</Apply>
<Apply FunctionId="urn:oasis:...:function:string-equal">
<AttributeValue DataType="http://www.w3.org/2001/XMLSchema#string" >
Rossi
</AttributeValue>
<SubjectAttributeDesignator AttributeId="|urn:...:Passport:FName |"
DataType="http://www.w3.o0rg/2001/XMLSchema#string"/>
</Apply>
</Apply>
</Condition>
Fig. 5. The condition of Fig. 4 after the expansion.
<Condition>
<Apply FunctionId="urn:example:functions:semantic-match">
<ResourceAttributeDesignator AttributeId="| urn:...:Document:Creator |"
DataType="urn:example:datatypes:structured-type"/>
<SubjectAttributeDesignator Attributeld="| urn:...:BaseDataSchema:User |“
DataType="urn:example:datatypes:structured-type"/>
</Apply>
</Condition>

Fig. 6. XACML condition referencing an arbitrary categorization of resources.

credentials can then be associated with this information. Following the standard
XACML approach, our second example introduces a custom matching function
called semantic-match that will be applied to structured data items, indicated
by the custom data type structured-type. With reference to Fig. 6, policy
conditions will be satisfied if the Document : Creator data structure describing a
resource matches the User data structure from the base data schema. The task
of finding the right credential against which to match the resource’s Creator
can thus be left to the reasoning engine.

In this example, the behavior of our semantic-match function is the follow-

ing:

— First, it retrieves data items identifying a document’s creator (for the sake
of conciseness, we assume that authors are uniquely defined by their first
name, last name, and e-mail). Here, class ResourceAttribute allows for
distinguishing resources types from subject credential:

VII

SELECT ?7DataElement

WHERE

(<http://.../Documents#Creator> <http://.../BaseDataSchema#refersDefinition> 7DataElement)
(7DataElement rdfs:type <http://.../BaseDataSchema#ResourceAttribute>)

DataElement

<http://.../Documents#FirstName>
<http://.../Documents#FamilyName>
<http://.../Documents#EmailAddress>

— Since resources descriptions are not credential, their definitions need not be
shared. Thus, for each of the data items retrieved, the corresponding super-
classes in the base data schema are identified?. The RDQL code shown below
selects all data items equivalent to the FirstName data element:

SELECT 7DataElement

WHERE

(<http://.../Documents#FirstName> rdfs:subClass0f 7DataElement)
(?DataElement rdfs:type <http://.../BaseDataSchema#SubjectAttribute>)

DataElement

<http://.../BaseDataSchema#Given>

At this point, all data items can be retrieved as in section 3, taking into
account the User constraint in the SubjectAttributeDesignator:

SELECT ?DataElement

WHERE

(?DataElement rdfs:subClassOf <http://.../BaseDataSchema#User>)
(7DataElement rdfs:subClassOf <http://.../BaseDataSchema#Given>)
(7DataElement rdfs:type <http://.../BaseDataSchema#SubjectAttribute>)

DataElement

<http://.../Passport#GName >
<http://.../IdentityCard#FirstName>

After translating all the alternatives into URNSs, the condition is expanded
according to the translation’s results. Once again, we remark that the expanded
policy is fully compliant with the XACML standard schema defined in [3]. For
the sake of conciseness, however, the (rather verbose) result of the expansion is
shown in the Appendix.

5 Expressing advanced semantics-aware conditions

In this Section, our expansion technique is extended to take into account not
only the metadata context being referenced by a policy, but also how data items
are combined or evaluated in conditions. As we shall see, complex translations
schemes can be defined, leading to equivalent conditions in terms of the attributes
being compared, the function being applied, and also the right-end value of the

2 Note that these super-classes are themselves leaves induced in the P3P base data
schema by the refersDescription property.

VIII

<Condition>

<AttributeValue DataType="http://www.w3.org/2001/XMLSchema#string" >
Milano
</AttributeValue>

DataType="http://www.w3.0org/2001/XMLSchema#string" />
</Apply>
</Condition>

Fig. 7. The condition of Section 5

comparison. In other words, our example will take into account not only the
context composed of attributes associated to subjects and resources, but also the
operational semantics of the policy language describing the rules. Here, metadata
represents not only the data items being exchanged, but also the conditions
applied to them.

The following triples model the condition of Fig. 7:

COND-001 rdf:type dom:Condition

COND-001 dom:hasValue ’Milano’
COND-001 dom:hasMember IdentityCard:Place0fBirth

The expansion can derive the following semantic equivalent condition:

COND-001 dom:equivalentCondition COND-002

The new condition has different values on both the left and right sides, and
also uses a different evaluation function:

COND-002 rdf:type dom:Condition

COND-002 dom:hasValue ’/11(\w)F205(\w)’
COND-002 dom:hasMember CodiceFiscale

Here the Ttalian tax code called codice fiscale (a 16 digits alphanumeric code
uniquely defined by the first name, last name, gender, date and city of birth) is
matched against a regular expression requiring the city code ‘F205’ (indicating
people born in Milan) to appear before the control character at the end of the
string. The expanded condition is represented in Fig. 8:

Computationally, the equivalence between the two conditions can be checked
by direct mapping with tabled values, such as the city codes appearing in the
CodiceFiscale, or else provided by means of numeric or string conversion func-
tions.

6 Conclusions and future work

In this paper we have shown how we can expand XACML conditions expressing
a predicate (e.g. equality) between an attribute and a literal or between two

IX

<Condition>
<Apply FunctionId="urn:oasis:names:tc:xacml:1.0:function:or">
<Apply FunctionId="urn:oasis:...:function:string-match">
<AttributeValue DataType="http://www.w3.org/2001/XMLSchema#string" >
Milano
</AttributeValue>
<SubjectAttributeDesignator Attributeld="urn:example:...:IdentityCard:Place0fBirth"
DataType="http://www.w3.org/2001/XMLSchema#string"/>
</Apply>
<Apply FunctionId="|urn:oasis:...:function:string-regexp-match |">

<AttributeValue DataType="http://www.w3.org/2001/XMLSchema#string" >
/11 (\w)F205(\w)
</AttributeValue>

DataType="http://www.w3.org/2001/XMLSchema#string"/>
</Apply>
</Apply>
</Condition>

Fig. 8. The condition of Fig. 7 after the expansion.

attributes by means of an ontology based on the standard P3P data schema.
One step further toward increasing the policy language expressive power beyond
plain XACML would require dealing with more complex logic conditions includ-
ing variables and quantifiers. For example, a complex condition like “User X
can see document Y if exists at least another document Z where =(Y.creation,
Z.creation)” cannot be expressed in plain XACML. Also, evaluating this kind of
conditions is known to be a difficult problem [1]. For this, we need to define a
different XML-syntax, based on a BNF grammar like the one shown below:
Q varList booleanExprPred.
booleanExprPred <« pred, booleanExprPred

< pred; booleanExpression.

«— pred.

< — pred.
pred < predName(varList).
varList <« varName, varList.

< varName.

Q «— 4, V.

an ontological expression through the use of RDQL
Our formal grammar can now be translated into XML as shown below:

<resourceList>
<resource id="001"

</resourcelList>
<condition>
<varList>

<variable id="002"

</varList>
<pred function="urn:.

<resourceReference ref="001"

attributeReference="urn:...:CreationDate"
DataType="urn:...:datatypes:structured-type"/>
<variableReference ref="002"
attributeReference="urn:...:CreationDate"
DataType="urn:...:datatypes:structured-type"/>
</pred>
<pred function="urn:...:predicates:different-individual">

<resourceReference ref="001"/>
<variableReference ref="002"/>
</pred>
</pred>
</quantifier>
</condition>

Note that with this approach the evaluation mechanism of the new policy
language will need to perform ontology-based reasoning as an integral part of the
policy evaluation mechanism rather than using it to explicitly expand policies.
The evaluation of complex conditions requires a component (currently being
developed [?]) traslating XML-based logic conditions into RDQL queries to be
submitted to an ontology-based reasoner during the evaluation phase. Online
reasoning about conditions, of course, will require careful design in order to
keep the computational burden of policy evaluation under control; also, it may
need to unexpected results, as the effects on policy evaluation of the semantic
information stored in the ontology are not available for inspection. For this reason
it might be necessary to publish, for transparency, also the inference rules using
for the evaluation. We plan to deal with this subject in a future paper.

Acknowledgments

This work was supported in part by the European Union within the PRIME
Project in the FP6/IST Programme under contract IST-2002-507591.

References

1. P. A. Bonatti, P. Samarati - A Uniform Framework for Regulating Service Access
and Information Release on the Web - Journal of Computer Security 10(3): 241-272
(2002)

2. E. Damiani, S. De Capitani di Vimercati, C. Fugazza, and P. Samarati - Ezxtending
Policy Languages to the Semantic Web -In Proc. of ICWE 2004, Munich, 2004,
Lecture Notes in Computer Science 3140.

3. eXtensible Access Control Markup Language (XACML) - Organization for
the Advancement of Structured Information Standards - http://www.oasis-
open.org/committees/tc_home.php?wg_abbrev=xacml

4. Jeft Z. Pan, Tan Horrocks - Metamodeling Architecture of Web Ontology Languages
- In Proc. of the Semantic Web Working Symposium 2001

5. P. Ceravolo, E. Damiani, S. De Capitani di Vimercati, C. Fugazza, and P. Samarati
- Advanced Metadata for Privacy-Aware Representation of Credentials - In Proc.
of the ICDE2005 Workshops, Tokyo, 2005

6. Platform for Privacy Preferences (P3P) - W3C Recommendation, 16 April 2002 -
http://www.w3.org/TR/P3P/

XI

. Privacy and Identity Management for Europe (PRIME) - European RTD Inte-
grated Project - http://www.prime-project.eu.org/

. RDF Vocabulary Description Language (RDFS) - W3C Recommendation, 10
February 2004 - http://www.w3.org/TR /rdf-schema/

. RDQL - A Query Language for RDF - W3C Member Submission, 9 January 2004
- http://www.w3.org/Submission/2004/SUBM-RDQL-20040109/

XII

A The condition of Fig. 6 after the expansion

<Condition>
<Apply FunctionId="urn:oasis:names:tc:xacml:1.0:function:and">
<Apply FunctionId="urn:oasis:names:tc:xacml:1.0:function:or">
<Apply FunctionId="urn:oasis:names:tc:xacml:1.0:function:string-equal">

<ResourceAttributeDesignator AttributeId="| urn:...:Document:Creator:FirstName |"
DataType="http://www.w3.org/2001/XMLSchema#string"/>
<SubjectAttributeDesignator AttributeId="| urn:...:User:Name:Given "

DataType="http://wuw.w3.org/2001/XMLSchema#string"/>
</App1<ympply FunctionId="urn:oasis:names:tc:xacml:1.0:function:string-equal">

<ResourceAttributeDesignator AttributeId="| urn:...:Document:Creator:FirstName |"
DataType="http://www.w3.org/2001/XMLSchema#string"/>
<SubjectAttributeDesignator AttributeId="| urn:...:IdentityCard:GivenName |"
DataType="http://wuw.w3.org/2001/XMLSchema#string"/>
</Apply>
<Apply FunctionId="urn:oasis:names:tc:xacml:1.0:function:string-equal">
<ResourceAttributeDesignator AttributeId="| urn:...:Document:Creator:FirstName |"
DataType="http://www.w3.org/2001/XMLSchema#string"/>
<SubjectAttributeDesignator AttributeId="| urn:...:Passport:GName ["
DataType="http://wuw.w3.org/2001/XMLSchema#string"/>
</Apply>
</Apply>

<Apply FunctionId="urn:oasis:names:tc:xacml:1.0:function:or">
<Apply FunctionId="urn:oasis:names:tc:xacml:1.0:function:string-equal">

<ResourceAttributeDesignator AttributeId="| urn:...:Document:Creator:FamilyName ("
DataType="http://www.w3.org/2001/XMLSchema#string"/>
<SubjectAttributeDesignator AttributeId="| urn:...:User:Name:Family |"
DataType="http://www.w3.org/2001/XMLSchema#string"/>
</Apply>
<Apply FunctionId="urn:oasis:names:tc:xacml:1.0:function:string-equal">
<ResourceAttributeDesignator AttributeId="| urn:...:Document:Creator:FamilyName |“
DataType="http://www.w3.org/2001/XMLSchema#string"/>
<SubjectAttributeDesignator AttributeId="| urn:...:IdentityCard:FamilyName |"
DataType="http://wuw.w3.org/2001/XMLSchema#string"/>
</Apply>
<Apply FunctionId="urn:oasis:names:tc:xacml:1.0:function:string-equal">
<ResourceAttributeDesignator AttributeId="| urn:...:Document:Creator:FamilyName |“
DataType="http://wuw.w3.org/2001/XMLSchema#string"/>
<SubjectAttributeDesignator AttributeId="| urn:...:Passport:FName ("
DataType="http://www.w3.org/2001/XMLSchema#string"/>
</Apply>
</Apply>
<Apply FunctionId="urn:oasis:names:tc:xacml:1.0:function:date-equal">
<ResourceAttributeDesignator AttributeId="| urn:...:Document:Creator:EmailAddress |"
DataType="http://www.w3.org/2001/XMLSchema#string"/>
<SubjectAttributeDesignator AttributeId="| urn:...:User:0Online:Email ["
DataType="http://wuw.w3.org/2001/XMLSchema#string"/>
</Apply>
</Apply>
</Condition>

B RDAQL Basics

RDQL queries have the following general form:

SELECT ?a
FROM <http://input-model.rdf>

XIIT

WHERE (7a, <http://some-predicate>, ?b)
AND ?b < 5

Question marks indicate variables, each variable in the SELECT clause deter-
mines a column in the output. The FROM clause allows for selecting a specific file
as the input model; this functionality is not used in the paper.

The WHERE clause simply defines triples that must be found in the knowledge
base for a result to be selected: in the example, elements eligible for the ?7a
placeholder must have property some-predicate linking to some element 7b.

Finally, the AND clause allows for evaluating literal values according to a set
of standard functions: in the example, the element ?b linked to a candidate result
7a must evaluate as < 5. Also this functionality is not used in the paper.

