
Efficient and Private Access to Outsourced Data

Sabrina De Capitani di Vimercati∗, Sara Foresti∗, Stefano Paraboschi†, Gerardo Pelosi‡†, Pierangela Samarati∗
∗DTI - Università degli Studi di Milano, 26013 Crema - Italy Email: firstname.lastname@unimi.it
†DIIMM - Università degli Studi di Bergamo, 24044 Dalmine - Italy Email: parabosc@unibg.it

‡DEI - Politecnico di Milano, 20133 Milano - Italy Email: pelosi@elet.polimi.it

Abstract—As the use of external storage and data processing
services for storing and managing sensitive data becomes more
and more common, there is an increasing need for novel
techniques that support not only data confidentiality, but also
confidentiality of the accesses that users make on such data. In
this paper, we propose a technique for guaranteeing content,
access, and pattern confidentiality in the data outsourcing
scenario. The proposed technique introduces a shuffle index
structure, which adapts traditional B+-trees. We show that
our solution exhibits a limited performance cost, thus resulting
effectively usable in practice.

Keywords-shuffle index, private access, content confidential-
ity, access confidentiality, pattern confidentiality

I. INTRODUCTION

The research and industrial communities have been re-
cently showing considerable interest in the outsourcing of
data and computation. The motivations for this trend come
from the economics of system administration, which present
large scale economies, and by the evolution of ICT, which
offers universal network connectivity that makes it conve-
nient for users owning multiple devices to store personal
data into an external server. A major obstacle toward the
large adoption of outsourcing, otherwise particularly attrac-
tive to individuals and to small/medium organizations, is
the perception of insecurity and potential loss of control
on sensitive data and the exposure to privacy breaches.
Guaranteeing privacy in a context where data are externally
outsourced entails protecting the confidentiality of the data
as well as of the accesses to them. In particular, it requires
to maintain confidentiality on: the data being outsourced
(content confidentiality), the fact that an access aims at
a specific data (access confidentiality), the fact that two
accesses aim at the same data (pattern confidentiality).

Several solutions have been proposed in the past few
years, both in the theoretical and in the system communities,
for protecting the confidentiality of the outsourced data [1].
Typically, such solutions (e.g., [2], [3]) consider a honest-
but-curious server (i.e., a server trusted to provide the
required storage and management service but not authorized
to read the actual data content) and resort to encryption to
protect the outsourced data. Since the server is not allowed to
decrypt the data for access execution, these solutions provide
different techniques for elaborating queries on encrypted
data. Furthermore, they aim at content confidentiality but do

not address the problem of access and pattern confidentiality.

Access and pattern confidentiality have been traditionally
addressed within a different line of work by Private Informa-
tion Retrieval (PIR) proposals (e.g., [4]–[6]), which provide
protocols for querying a database that prevent the storage
server from inferring which data are being accessed. PIR
approaches typically work on a different problem setting.
As a matter of fact, in most proposals, the external database
being accessed is in plaintext (i.e., content confidentiality is
not an issue). Regardless of whether the external database
is plaintext or encrypted, PIR solutions have high com-
putational complexity and are therefore not applicable to
real systems. It has been proved [6] that the execution of
information-theoretic PIR protocols require more resources
than those required for a complete transfer of the database
from the server to the client.

In this paper, we aim at providing a novel efficient
approach addressing the different aspects of the privacy
problem. We consider a reference scenario where a data
owner outsources data to an external honest-but-curious
server, and accesses her data by submitting requests to a
client that directly interacts with the server. Our goal is to
enable the owner to efficiently access the outsourced data
while guaranteeing content, access, and pattern confidential-
ity from any observer, including the server itself.

We propose a novel data structure, called shuffle index,
with which the data to be outsourced are organized (Sec-
tion II). Our shuffle index assumes an unchained B+-tree
organization of data and applies node-level encryption to
hide actual data from the external storage. In the work-
ing of the system, the client can hide the actual request
within cover (fake) requests, cache nodes, and shuffle the
content among blocks stored at the server. In this way,
no observer, including the server itself, can reconstruct the
association between blocks read and actual accessed data
(Section III). Our solution combines cover, caching, and
shuffling techniques in an effective way (Section IV) to
provide confidentiality (Sections V) while maintaining a
limited performance overhead (Section VI). Our approach
is the only solution known to us that delivers content,
access, and pattern confidentiality at the same time, offering
a performance profile adequate for real applications.

Sara
Line

II. SHUFFLE INDEX DATA STRUCTURE

For outsourcing, we assume data to be indexed over a can-
didate key K defined for the data collection and organized
as an unchained B+-tree, with data stored in the leaves in
association with their index values, and where there are no
links from a leaf to the next, representing a chain. Accesses
to the data (searches) are based on the value of the index.
The reason for not representing the links between the leaves
is that following such links, when accessing data, would
leak to the server (to which the content of the nodes is not
known) i) the fact that the query being executed is a range
query, and ii) the order relationship among index values in
different nodes.1 Our data structure is therefore characterized
by a fan out F, meaning that each node (except the root) has
q ≥ ⌈F/2⌉ children and stores q − 1 values v1, . . . , vq−1,
ordered from the smallest to the greatest. The i-th child of
any internal node in the unchained B+-tree is the root of a
subtree containing the values v with: v < v1; vi−1 ≤ v < vi,
i = 2, . . . , q−2; v ≥ vq−1. Figure 1(a) illustrates a graphical
representation of our data structure. Pointers between nodes
of the abstract data structure correspond, at the logical level,
to node identifiers, which can then be easily translated at the
physical level into physical addresses. At the logical level,
our data structure can be seen as a set of nodes, where each
node is a pair ⟨id, n⟩, with id the node identifier and n the
node content. Note that the possible order between identifiers
does not necessarily correspond to the order in which
nodes appear in the value-ordered abstract representation.
Figure 1(b) illustrates a possible representation of the data
structure in Figure 1(a), where nodes appear ordered (left to
right) according to their identifiers, which are reported on
the top of each node. For simplicity and easy reference, in
our example, the first digit of the node identifier denotes
the level of the node in the tree. The reason why we
distinguish between node identifier and node content is that,
as we will see later on, our approach is based on shuffling
content among nodes. In other words, a given content may
be associated with different identifiers at different times. In
the following, when clear from the context, we will use the
term node to refer to either the content of a node or to the
content together with the identifier.

As typical in emerging outsourcing solutions, we use
encryption to preserve content confidentiality. We assume
encryption to be applied at the node level (i.e., each node is
individually encrypted). To destroy plaintext distinguishabil-
ity, the encryption function adopts a random salt. Also, the
encrypted node is concatenated with the result of a MAC
function applied to the encrypted node and its identifier.
In this way, the client can assess the authenticity of the

1Range queries are supported with only the additional cost of accessing
the next leaf, starting the access from the root. With a collection of shuffle
indexes, the overhead due to restarting the access from the root, rather than
going directly to the next leaf, causes an increase of only a few percentage
points in the overall access times.

A B - C D - E F - G H - I J - K L - M N - O P - Q R - S T - U V - W X Y

C E -

G M S

U W -O Q -I K -

(a)

I J -
201

S T -
202

G H -
203

C D -
204

K L -
205

U V -
206

E F -
207

W X Y
208

Q R -
209

A B -
210

M N -
211

O P -
212

I K -
101

G M S
001

O Q -
104

C E -
103

U W -
102

(b)

201 202 203 204 205 206 207 208 209 210 211 212

101

001

104103102

(c)

Figure 1. An example of abstract (a) and logical (b) representation of a
data structure to be outsourced, and of the corresponding view of the server
(c)

node returned by the server. Note that, since nodes contain
pointers to children, the ability to establish authenticity
of a node (starting from the root) implies the ability to
establish authenticity, and therefore integrity, of the whole
data structure.

In the realization of physical accesses, for efficiency
reasons, the size of the node to be stored (i.e., its encrypted
version together with the result of the MAC function) should
be a multiple of the size of the disk block. For simplicity,
we assume the size of each encrypted node to be equal to
the size of one disk block of the server, and the identifier of
the block to be the same as the identifier of the node. We
refer to an encrypted node as a block. Blocks are formally
defined as follows.

Definition 2.1 (Block): Let ⟨id, n⟩ be a node of an un-
chained B+-tree. The encrypted version of ⟨id, n⟩, called
block, is a pair ⟨id, b⟩, with b=C||T , C=Ek(salt||n),
T =MACk(id||C), with E a symmetric encryption function,
k the encryption key, salt a value chosen at random during
each encryption, and MAC a strongly un-forgeable keyed
cryptographic hash function.
We refer to the encrypted version of the logical data structure
outsourced to the server and on which accesses are executed
as shuffle index. The reason for the term shuffle is due to the
way the structure is dynamically modified at each access,
shuffling content among blocks (see Section III). Our shuffle
index is defined as follows.

Definition 2.2 (Shuffle index): Let {⟨id0, n0⟩,. . . ,
⟨idm, nm⟩} be a set of nodes of an unchained B+-tree.

The shuffle index is the set {⟨id0, b0⟩, . . . , ⟨idm, bm⟩} of
corresponding blocks (Definition 2.1).
According to the definition of shuffle index, the server just
sees a collection of blocks, each with a given identifier but
whose content is encrypted. Access to the data requires an
iterative process between the client and the server [7]. The
client performs an iteration for each level of the shuffle index
starting from the root. At each iteration it determines the
node to be read (i.e., the block to be retrieved from the
server) at the next level. The process ends when a leaf block
is retrieved, which is the block that contains the index value
searched (or where it would have appeared, if the index value
does not belong to the database).

III. PROTECTION TECHNIQUES

We first describe the different aspects of confidentiality
we want to guarantee against non authorized observers.
We then illustrate our protection techniques complementing
encryption for ensuring confidentiality.

A. Problem Statement

Our goal is to protect the confidentiality of the outsourced
data against any possible observer. Since, among all possi-
ble observers, the server is the party that has the highest
potential for observations (all accesses are executed by it),
without loss of generality in the following we assume the
server as our observer.

The server receives from the data owner a set of blocks
to store and receives requests to access such blocks with
the iterative process described in Section II. The server has
therefore knowledge of the number m of blocks (nodes)
and their identifiers, and the height h of the shuffle index
(because the iterative process requires the retrieval of a block
for each level of the shuffle index). Also, by observing a long
enough history of accesses, the server can easily establish
the level associated with each block. Note instead that the
topology of the shuffle index (i.e., the pointers between
parent and children) is not known to the server. Figure 1(c)
illustrates the view of the server on the shuffle index in
Figure 1(b).

Before defining the confidentiality we want to guarantee,
we note that the server can only monitor accesses at the
granularity of a block (node). The basic protection granted
by encryption already ensures uncertainty on the actual index
value (and therefore on the specific data) requested by an
access, since any of the index values stored in the returned
node could potentially be the target. Such a basic protection
cannot be considered sufficient, also because index values
stored in the same node will all be close within a given
range. Given this observation, in the following, we consider
confidentiality breaches at the granularity of nodes.

In the working of the system, every access request trans-
lates into an observation oi of the server corresponding
to a sequence of blocks {bi1, . . . , bih} accessed. At any

point in time, given a sequence of observations o1, . . . , oz
corresponding to all the accesses performed, the server
should not be able to infer: i) the data stored in the shuffle
index (content confidentiality); ii) the data to which access
requests are aimed, that is, ∀i = 1, . . . , z, the server
should not infer that oi aims at a specific node (access
confidentiality); and iii) that oi aims at accessing the same
node as oj , ∀i, j = 1, . . . , z, i ̸= j (pattern confidentiality).
Intuitively content confidentiality refers to the data stored in
the leaves of the unchained B+-tree, access confidentiality
to the data targeted by a request, and pattern confidentiality
to the relationship between the data targeted by different
requests. It is easy to see that encryption provides content
confidentiality of data at rest and access confidentiality of
individual requests. It is however not sufficient for providing
pattern confidentiality of a set of observations. To illustrate,
suppose that a shuffle index never changes. By observing
that two accesses retrieve the same blocks, an observer could
easily determine that the accesses refer to the same node,
thus breaching pattern confidentiality. An observer can then
exploit the possible information on the frequencies with
which different values can be accessed and a set of obser-
vations to reconstruct the correspondence between plaintext
values and blocks and infer (or restrict her uncertainty on)
the specific node to which a specific access refers, thus
breaching access confidentiality.

Since the information that the server can exploit in the
working of the system is the comparison between the fre-
quencies with which blocks are accessed and the frequencies
of accesses to different values, the key aspect for guarantee-
ing all forms of confidentiality above is to destroy such a
correspondence. Our approach to protect confidentiality is
based on the combination of three basic strategies: 1) cover
searches, 2) cached searches, and 3) shuffling.

B. Cover Searches

As noted above, the execution of an access over the shuffle
index can trivially leak information on the fact that two ac-
cesses aim, or do not aim, at the same node. Also, combined
with the possible knowledge of the server on frequencies of
accesses to node contents, it can help the server to establish
the correspondence between node contents and blocks where
they are stored (frequently accessed data will correspond
to frequently accessed blocks) [2]. For instance, consider
the logical representation of a shuffle index in Figure 1(b),
and two consecutive requests for index value ‘F’ translating
into accesses to blocks {(001); (103); (207)} and {(001);
(103); (207)}, respectively. By observing these sequences of
accessed blocks, the server can infer that the two requests
refer to the same data (i.e., the content of block 207). Our
first protection technique aims at introducing confusion on
the target of an access request by hiding it within a group
of other requests that work as covers.

Cover searches are fake searches that the client executes
in conjunction with the actual target search of the index
value it aims to access. The number of cover searches is a
protection parameter of our approach.

Since, as noted in Section III-A, the granularity of protec-
tion is the block (node), cover searches must provide block
diversity, that is, must translate into accesses to different
blocks at each level of the shuffle index, but the root. As a
matter of fact, covers translating to the same block would
not provide any additional protection than that offered by
encryption. For instance, ‘E’ cannot be chosen as a cover
for ‘F’ as both would translate into accesses to block 207,
thus disclosing that the access requests refer to the content of
block 207. Given a shuffle index built over a candidate key
with domain D and a value v ∈ D, path(v) denotes the set
of blocks in the unique path of the shuffle index that starts
at the root and ends in the leaf block where v is possibly
stored, if v is in the database. Cover searches are formally
defined as follows.

Definition 3.1 (Cover searches): Let {⟨id0, b0⟩, . . . ,
⟨idm, bm⟩} be a set of blocks forming a shuffle index built
over a candidate key with domain D, and let v0 be a value
in D. A set {v1, . . . , vn} of values in D is a set of cover
searches for v0 if ∀vi, vj ∈ {v0, v1, . . . , vn} : vi ̸= vj =⇒
path(vi)∩path(vj)=⟨id0, b0⟩, that is, contains only the root
of the shuffle index.
Basically, assuming num cover searches are adopted in the
execution of an access, instead of asking the server to
retrieve, for each level in the shuffle index, the block in the
path from the root to the target, the client asks the server to
retrieve num cover+1 blocks: one corresponds to the block
on the path to the target, and each of the others corresponds
to the block on the path to one cover.

Intuitively, cover searches hide the actual search within
a set of searches, since any of the num cover + 1 leaf
blocks have the same probability of containing the actual
target. This requires cover searches to be indistinguishable
from actual searches. We guarantee this cover/target in-
distinguishability property by ensuring that the frequency
distribution with which values in the candidate key domain
D are used as cover searches is the same as the frequency
distribution with which values are searched upon client’s
request (see Section IV). For instance, consider again the
two searches above for index value ‘F’ (block 207), and
assume the first uses cover ‘I’ while the second one uses
cover ‘M’. The sequences of accesses to blocks observed by
the server would now be {(001); (101,103); (201,207)} and
{(001); (103,104); (207,211)}, respectively. While without
cover the server was able to detect that the two requests
aimed at the same block (node), with one cover the server
can assess this only with probability 0.5 · 0.5 = 0.25.

The fact that searches are all executed in parallel (i.e., all
the num cover + 1 blocks at each level of the shuffle index
are retrieved before proceeding at the next level), confuses

the parent-child relationship of the different blocks. In fact,
at each level any of the num cover + 1 parents could be
associated with any of the num cover+1 children, producing
therefore (num cover + 1)h potential paths. For instance,
with reference to the example above, 201 could be child
of either 101 or 103. Of course, parent-child information
(like actual targets) can be disclosed by intersection attacks,
observing the same set of blocks in different accesses (103
and 207 in the example above). Intersection attacks are
counteracted by caching and shuffling, as explained in the
remainder of this section.

C. Cached Searches

Our second protection technique aims at counteracting
intersection attacks in the short term and consists in main-
taining at the trusted client side a local copy, called cache, of
nodes in the path to the target. Being client side, we maintain
the cache in plaintext (i.e., the cache stores plaintext nodes
and not their encrypted version).

Definition 3.2 (Cache): Let {⟨id0, n0⟩, . . . , ⟨idm, nm⟩}
be a set of nodes forming an unchained B+-tree of height
h. A cache C of size num cache for the unchained B+-tree
is a layered structure of h + 1 sets Cache0, . . . ,Cacheh,
where:

• Cache0 contains the root node ⟨id0, n0⟩;
• Cachel, l = 1, . . . , h, contains num cache nodes be-

longing to the l-th level of the unchained B+-tree;
• ∀n ∈ Cachel, l = 1, . . . , h, the parent of n in the un-

chained B+-tree belongs to Cachel−1 (path continuity
property).

Path continuity guarantees that the parent of any node in
the cache belongs to the cache. As a consequence, the path
connecting the root of the unchained B+-tree to every node
in the cache completely belongs to the cache itself. We
assume the cache to be properly initialized by the data
owner at the time of outsourcing, by locally storing nodes
in num cache disjoint paths (i.e., with only the root in
common) of the unchained B+-tree.

In the working of the system, the cache will be updated
and will keep track only of actual (and not of cover)
searches, since it is intended to work as an actual cache. We
assume the cache at each level to be managed according to
the LRU policy, that is, when a new node is added to Cachel,
the node least recently used is pushed out from Cachel. The
application of the LRU policy guarantees the satisfaction of
the path continuity property (Section IV).

The cache helps in counteracting short term intersection
attacks since it avoids the client to search for a repeated
target of two close access requests. For instance, with
reference to the two consecutive requests for index value
‘F’ in Section III-B, the second request would find ‘F’ in
cache. Since the number of blocks requested to the server has
always to be the same (i.e., num cover+1), the client would
generate, for the second request, two cover searches (e.g.,

‘M’ and ‘W’). Consequently, the observations of the server
on the two requests would be {(001); (101,103); (201,207)}
and {(001); (102,104); (208,211)}, respectively. The server
would not be able to determine whether the two requests
aim at the same target. The reader may wonder why we
perform num cover+1 fake cover searches when the target
node is already in cache. First, if the observer knows that
an access was to be executed, not performing it would leak
information on the fact that the target node is in the cache.
Second, the protection given by the cache does not work
only as an independent technique, but plays a role together
with the other protection techniques.

D. Shuffling

Caching does not prevent intersection attacks on observa-
tions that go beyond the size of the cache. As an example,
suppose that no cache is used (i.e., num cache=0), and
with reference to Figure 1(b) consider three consecutive
requests all for index value ‘F’, using one cover search for
each request (e.g., ‘I’, ‘M’, and ‘W’, respectively). These
access requests will translate into the following sequences
of accesses to blocks {(001); (101,103); (201,207)}, {(001);
(103,104); (207,211)}, and {(001); (102,103); (207,208)},
respectively. Assuming the indistinguishability of targets and
covers, by the observation of these sequences of accesses the
server can infer with probability 0.5·0.5·0.5 = 0.125 that the
three access requests refer to the same data (i.e., the content
of block 207). Also, accesses leak to the server the parent-
child relationship between blocks. While the information on
the parent-child relationship by itself might seem to not
compromise confidentiality, it can easily open the door to
privacy breaches and should then remain confidential. Given
a long enough history of observations, the server will be able
to reconstruct the topology of the shuffle index and therefore
gain knowledge on the similarity between values stored in
the blocks.

Our third protection technique starts from the observation
that inferences such as the one mentioned above are possible
to the server by exploiting the one-to-one correspondence
between a block and the node stored in it: accesses to the
same block trivially correspond to accesses to the same node.
Node shuffling breaks this one-to-one correspondence by
exchanging the content among nodes (and therefore blocks).
Since a block depends on the content of the corresponding
node and on the node identifier (Definition 2.1), shuffling
clearly requires the re-computation of the blocks associated
with shuffled nodes and then requires node decryption and
re-encryption. Note how the re-encryption of a node, applied
to the node content concatenated with a possibly different
node identifier and a different random salt, produces a
different encrypted text (block). This aspect is particularly
important since encrypted text corresponding to a given node
automatically changes at each access, making it impossible
to track the shuffling executed and to determine if the node

content stored in a block has been changed or has remained
the same. Node shuffling is formally defined as follows.

Definition 3.3 (Shuffling): Let N={⟨id1, n1⟩,. . . ,
⟨idm, nm⟩} be a set of nodes at the same level of an
unchained B+-tree and π be a permutation of id1, . . . , idm.
The node shuffling of N with respect to π is the set
{⟨id1, n′

1⟩, . . . , ⟨idm, n′
m⟩} of nodes, where idi = π(idj)

and n′
i = nj , with i, j = 1, . . . ,m.

Intuitively, our approach exploits shuffling by exchanging
the contents of all blocks read in the execution of an
access and the nodes in cache (so that their contents are
shuffled), and rewriting all of them back on the server. In this
way, the correspondence existing between block identifiers
and the content of the nodes they store is destroyed. For
instance, assume that shuffling is used and that the server ob-
serves the following sequence of accesses to blocks {(001);
(101,103); (201,207)}; {(001); (103,104); (207,211)}; and
{(001); (102,103); (207,208)}. The server can only note that
the three sequences have a leaf block in common (i.e., 207).
The three requests aim at accessing the same node only if:
the second and third requests are for the content of block
207 (the probability is 0.5 · 0.5 = 0.25); the data target of
the first request coincides with the content of block 207 after
the first shuffling operation (the probability is 0.5); and the
content of block 207 is not moved by the second shuffling
operation (the probability is 0.5). As a consequence, 0.0625
is the probability that the three requests aim at the same
node.

Note that shuffling among nodes at a given level requires
to update the parents of the nodes so that the pointers in
them properly reflect the shuffling. For instance, consider
Figure 1(b) and assume nodes (103,104) are shuffled so
that π(103)=104 and π(104)=103, (i.e., their contents are
swapped). As a consequence, root node [103G101M104S102]
must be updated to be [104G101M103S102].

IV. ACCESS EXECUTION AND SHUFFLE INDEX
MANAGEMENT

We illustrate how the protection techniques described
in Section III (cover, cache, and shuffling) are applied in
a joint way in the execution of an access and how the
shuffle index is managed. Figure 2 illustrates the algorithm,
executed client-side, enforcing the search process and the
shuffle index updates.

Given a request for searching target value in shuffle
index S, the algorithm first determines num cover + 1
values, cover value[1], . . . ,cover value[num cover + 1] to
be used as cover searches (Definition 3.1) for target value
(lines 16-20). Note that the number of cover searches is
num cover + 1, because for each level of the shuffle index,
num cover+1 blocks have to be downloaded from the server
and therefore, if the block in the path to the target value
belongs to the cache, an additional cover search becomes

necessary. For each level l = 1, . . . , h, the algorithm then ex-
ecutes the following process. The algorithm first determines
the identifiers (i.e., ToRead ids) of the blocks at level l in the
path to the target value (i.e, target id, lines 23-24) and to the
cover searches (i.e., cover id[1], . . . ,cover id[num cover +
1], lines 32-35). If the node in the path to the target value
does not belong to Cachel (i.e., a cache miss occurs), one
of the values initially chosen as a cover is discarded and
only num cover out of the num cover + 1 cover searches
are performed (lines 26-31). It sends to the server a request
for the blocks with identifiers in ToRead ids and decrypts
their content, obtaining a set Read of nodes (line 37). The
nodes in Read and Cachel are then shuffled according to a
random permutation π (Definition 3.3) (lines 39-40). As a
consequence, the pointers stored in the nodes that are parents
of the nodes in Read and Cachel, which belong either to
Cachel−1 or to Non Cached P, are updated according to
permutation π, encrypted, and sent back to the server for
storage (lines 42-44). To reflect the effects of the shuffling
on all the variables of interest, target id and cover id[i],
i = 1, . . . , num cover+1, are updated according to π (lines
45-46). The algorithm finally updates Cachel by possibly in-
serting, if a cache miss occurred, the most recently accessed
node in the path to the target value (lines 48-54). When
the visit of the shuffle index terminates, the node identified
by target id, which is the leaf node where target value is
stored (if present in the database), is returned (lines 58-59).

We note that the choice of cover searches (lines 16-20) has
to satisfy the target/cover indistinguishability property. In-
tuitively, indistinguishability is guaranteed if cover searches
and target searches follow the same frequency distribution.
However, the frequency distribution with which the target
values are accessed may not be known in advance. If this is
the case, the client can build a simple statistical model [8]
that: i) estimates the probability density function bound
to the occurrence of target values; and ii) chooses cover
values by sampling from the estimated distribution. Our
implementation of the shuffle index concretely implements
indistinguishability. To empirically demonstrate this prop-
erty, we considered recurrences within 100 accesses of the
same physical blocks, and analyzed, for every recurrence, if
this was due to a target or a cover access. The average value
of the absolute difference in probability between targets and
covers was equal to 0.0001.

Example 4.1: Figure 3 illustrates an example of algorithm
execution. The columns of the table represent: the level of
the shuffle index (l); the content of the cache (Cachel in
Retrieved nodes) and the nodes read from the server (Read
in Retrieved nodes); the permutation (π); the nodes in the
cache and read after the shuffling (Shuffled nodes); the nodes
written on the server (Written nodes). In column Retrieved
nodes, a ∗ denotes the node along the path to target value.

Consider the index in Figure 1(b) (reported for conve-
nience at the top of Figure 4) and assume num cover=1,

1: /* S : shuffle index on a cand. key with domain D, height h, fan out F */
2: /* Cachel, l=0, . . . , h : cache */
3: /* num cache : number of nodes in Cachel, l=1, . . . , h */
4: /* num cover : number of cover searches */
5: INPUT target value : value to be searched in the shuffle index
6: OUTPUT n : leaf node that contains target value
7: MAIN
8: /* Initialize variables*/
9: Non Cached := Non Cached P := ∅

10: let n0 be the unique node in Cache0
11: target id := n0.id
12: cache hit := TRUE /* the root always belongs to Cache0 */
13: num cover := num cover + 1
14: for i:=1. . .num cover do cover id[i] := target id
15: /* Choose cover searches*/
16: for i:=1. . .num cover do
17: randomly choose cover value[j] in D s.t. ∀j=1,. . .,i−1,
18: ChildToFollow(n0,cover value[i]) ̸= ChildToFollow(n0,cover value[j])
19: ChildToFollow(n0,cover value[i]) /∈ {n.id|n∈Cache1} and
20: ChildToFollow(n0,cover value[i]) ̸= ChildToFollow(n0,target value)
21: /* Search, shuffle, and update cache and index structure */
22: for l:=1. . .h do
23: let n∈Cachel−1 such that n.id=target id
24: target id := ChildToFollow(n,target value)
25: /* identify the blocks to read from the server */
26: if target id ̸∈{n.id|n∈Cachel} then
27: ToRead ids := {target id}
28: if cache hit then
29: cache hit := FALSE
30: num cover := num cover − 1
31: else ToRead ids := ∅
32: for i:=1. . .num cover do
33: let n∈Cachel−1∪Non Cached P such that n.id=cover id[i]
34: cover id[i] := ChildToFollow(n,cover value[i])
35: ToRead ids := ToRead ids ∪ {cover id[i]}
36: /* read blocks */
37: Read := Decrypt(ReadBlocks(ToRead ids))
38: /* shuffle nodes */
39: let π be a permutation of ToRead ids∪{n.id|n∈Cachel}
40: for each n∈Read∪Cachel do n.id := π(n.id)
41: /* determine effects on parents and store nodes at level l−1 */
42: for each n∈Cachel−1∪Non Cached P do
43: for i:=0. . .F do n.pointers[i] := π(n.pointers[i])
44: WriteBlock(n.id, Encrypt(n))
45: target id := π(target id)
46: for i:=1. . .num cover do cover id[i] := π(cover id[i])
47: /* update cache at level l */
48: Non Cached := Read
19: if cache hit then refresh the timestamp of n∈Cachel s.t. n.id=target id
50: else let deleted be the least recently used node in Cachel
51: let n∈Read s.t. n.id=target id
52: insert n into Cachel
53: Non Cached := Non Cached ∪ {deleted} \ {n}
54: Non Cached P := Non Cached
55: /* Write nodes at level h */
56: for each n∈Cacheh∪Non Cached P do WriteBlock(n.id, Encrypt(n))
57: /* Return the target leaf node */
58: let n∈Cacheh such that n.id=target id
59: return(n)
60: CHILDTOFOLLOW(n, v)
61: i := 0
62: if v≥n.values[1] then
63: while i+1<Length(n.values) AND v>n.values[i+1] do i := i+1
64: return(n.pointers[i])

Figure 2. Shuffle index access algorithm

num cache=2, and target value=‘F’. Initially, target id is
set to 001, the identifier of the root n0 in Cache0, and two

l Retrieved nodes π Shuffled nodes Written nodes
Cachel Read Cachel Non Cached Cachel−1 Non Cached P

0 001 [103G101M104S102] ∗
1 101 [203I201K205- -] 101→102 102 [203I201K205- -] 001 [101G102M103S104]

103 [210C204E207- -] ∗ 103→101 101 [210C204E207- -]
102 [202U206W208- -] 102→104 104 [202U206W208- -]
104 [211O212Q209- -] 104→103 103 [211O212Q209- -]

2 203 [GH-] 203→207 207 [GH-] 102 [207I201K205- -]
210 [AB-] 210→203 203 [AB-] 101 [203C204E202- -]

207 [EF-] ∗ 207→202 202 [EF-] 104 [210U206W208- -]
202 [ST-] 202→210 210 [ST-] 103 [211O212Q209- -]

207 [GH-] 203 [AB-]
202 [EF-] 210 [ST-]

Figure 3. An example of access to the shuffle index in Figure 4 with target value=‘F’, cover value[1]=‘S’, cover value[2]=‘M’

values, for example, ‘S’ and ‘M’, are randomly chosen as
covers for ‘F’.

For l = 1, ChildToFollow(001,F) returns 103, which is
in Cache1. Therefore, the two nodes in the paths to the
cover searches (i.e., 104 and 102, respectively) are read from
the server. The nodes in Cache1 and in Read are shuffled
following the permutation in Figure 3 (i.e., 101’s content
moves to block 102; 103’s to 101; 102’s to 104; and 104’s
to 103). Cache1 is updated by refreshing the timestamp of
node 101 (i.e., target id). Then, Non Cached contains the
nodes in the paths to the cover searches (i.e., 104 and 103).
Finally, the pointers in n0 are updated according to π, and
node 001 is encrypted and stored at the server.

For l = 2, ChildToFollow(101,F) returns 207, which
does not belong to Cache2, and hence the second cover
is dropped. Nodes 202 and 207 are read. The nodes in
Cache2 and in Read are shuffled following the permutation
in Figure 3. Node 202 (i.e., target id) is inserted into
Cache2 and node 203 (which we suppose the least recently
used) is pushed out and inserted into Non Cached, along
with node 210. The pointers in the nodes in Cache1 and
Non Cached P are updated according to π, encrypted, and
sent to the server.

Finally, nodes in Cache2 and in Non Cached P are en-
crypted and sent to the server. Node 202 (i.e., target id) is
returned. Figure 4 shows the evolution of the shuffle index.

The algorithm guarantees the following properties:

• it returns the unique node where the target value is (or
should be) stored;

• it maintains at the server a shuffle index representing
the original unchained B+-tree;

• it maintains the correctness of the cache according to
Definition 3.2;

• it operates in O((1 + num cover +
num cache) logF (m)) time, where m is the number
of blocks in the shuffle index and F is the fan out.

The theorems proving the correctness and complexity of the
algorithm are omitted for space constraints.

INITIAL STATE

I J -
201

S T -
202

G H -
203

C D -
204

K L -
205

U V -
206

E F -
207

W X Y
208

Q R -
209

A B -
210

M N -
211

O P -
212

I K -
101

G M S
001

O Q -
104

C E -
103

U W -
102

SHUFFLING

201 202 203 204 205 206 207 208 209 210 211 212

101

001

104103102

FINAL STATE

I J -
201

E F -
202

A B -
203

C D -
204

K L -
205

U V -
206

G H -
207

W X Y
208

Q R -
209

S T -
210

M N -
211

O P -
212

C E -
101

G M S
001

U W -
104

O Q -
103

I K -
102

Figure 4. Evolution of the shuffle index for Example 4.1

V. PROTECTION ANALYSIS

In this section, we provide the intuition of how shuffling
degrades the information on the correlation between nodes
and blocks and how the shuffle index supports access and
pattern confidentiality.

For simplicity and without loss of generality, our analysis
will consider only the leaf blocks accessed at each request,
since leaves are more exposed than internal nodes, which,
representing only summary information on the descendants,
are more protected.

Degradation due to shuffling. The continuous shuffling,
which occurs at every access, is able to degrade any informa-
tion the server may possess on the correspondence between
nodes and blocks, reaching, after a sufficient number of
accesses, a complete loss of information. This result shows
an interesting feature of the shuffle index behavior and the
absence of long term accumulation of information.

Access confidentiality. Access confidentiality is character-
ized as the protection against the server ability to associate
a specific access request with a specific node/data. Static
encrypted indexing structures do not exhibit access confi-
dentiality, because the server may exploit information on
the frequency of accesses (e.g., the server may know that
people last names are used as key and “Smith” is the most
frequently accessed value) and may thus identify the content
associated with a specific node.

The shuffle index offers a natural protection against this
attack. Even disregarding the caching and considering only
the contribution offered by covers, every time an access
is performed any information on the specific access has
to be divided among all the num cover + 1 nodes in-
volved in the access request. After the nodes are shuffled,
the information on the correspondence between nodes and
blocks is further destroyed. In general, we observe here a
reenforcing mechanism: access confidentiality is typically
at risk when there are values that are characterized by high
access frequency, but the higher the access frequency, the
greater the destruction of information realized by shuffling.

Pattern confidentiality. Pattern confidentiality is character-
ized as the protection against the server ability to recognize
that two separate accesses refer to the same node. We first
consider a generic scenario, for which we quantify the
minimum level of protection offered by the shuffle index.
We then extend the analysis to the consideration of patterns
separated by a number of steps smaller than the size of the
cache. We can observe that the degradation of information
that derives from shuffling guarantees that accesses separated
by a significant number of steps will not be recognizable.
Protection by covers and shuffling. To simplify the analysis,
here we suppose that the cache is not used. The server
observes two consecutive requests that translate into accesses
to the following two sets of leaf blocks: {bi1 , . . . , binum cover+1}
and {bj1 , . . . , bjnum cover+1}, respectively (non-consecutive re-
quests are characterized by better protection). Two cases may
occur: i) the two sets do not have any block in common,
or ii) there is (at least) one block that appears in their
intersection. In the first case, there is no repeated access
and therefore no pattern to protect. In the second case,
there is the possibility that the access to the same node has
been repeated. By the cover/target indistinguishability, the
probability that the intersection identifies a repeated access
is 1/(num cover + 1)2. We observe that the consideration
of patterns presenting a greater number of accesses (i.e.,
the identification of z accesses to the same node) will be
characterized by a probability decreasing at a geometric
rate (i.e., a sequence of z accesses presenting a non-empty
intersection will be due with probability 1/(num cover+1)z

to the execution of z accesses to the same node). The server
then cannot use the information on the accessed blocks to
recognize accesses to the same nodes.

Protection by caching. Considering a worst case scenario
where the server knows which are the nodes in the cache
before the i-th access (with i≤num cache), pattern confi-
dentiality is violated when the server can identify if the i-th
target access refers to the same node n1 as the first access or
not. This situation cannot happen since the server is not able
to distinguish cover accesses from target accesses. Therefore,
the shuffle index fully protects pattern confidentiality when
the distance between the observations is within the size of
the cache.

VI. PERFORMANCE ANALYSIS

We implemented our algorithm with a Java program. To
assess its performance, we used a data set of 1 TB stored
in the leaves of a shuffle index with 4 levels, built on a
numerical candidate key K of fixed-length, with fan out
512, and representing 232 (over 4 billion) different index
values. The size of the nodes of the shuffle index was 8
KB. The hardware used in the experiments included a server
machine with 2 Intel Xeon Quad 2.0 GHz L3–4 MB, 12
GB RAM, four 1 TB disks, 7200 RPM, 32 MB cache, and
Linux operating system with the ext4 file system. The client
machine was running an Intel Core 2 Duo CPU at 2.4 GHz,
with 4 GB RAM. The index was stored on all the 4 drives of
the server. The performance analysis started after the system
had processed a significant number of accesses, to be in
a steady state. To evaluate the performance of the shuffle
index we took into consideration the cost of: CPU, disk,
and network.

CPU. The computational load required for the management
of the shuffle index is quite limited. The algorithm uses
only symmetric encryption and a MAC; the execution times
we measured on an 8 KB block for both cryptographic
functions are under 100 µs, a negligible fraction of the time
required by network and disk accesses. The performance
of the shuffle index is then driven by disk and network
performance.

Disk. We analyzed the performance of the shuffle index
when client and server operate in a local area network (we
used a 100 Mbps Ethernet network). In this configuration,
disk performance becomes the limiting factor. These exper-
iments then permit to identify the maximum rate of queries
that a server can support. Figure 5(a) reports observed times
in milliseconds. The values are grouped by the same value
of num cover and for the same value of num cache, both
varying from 1 to 10. As expected, the access time grows
linearly with the number of cover searches, since every
additional cover requires the traversing of an additional path
in the shuffle index. Although an increase in num cache
causes a growth in the number of blocks written for each
level of the shuffle index, the number of cached nodes has a
smaller impact on the access time. This is justified by the fact
that the disk operations caused by the increase in num cache

 0

 50

 100

 150

 200

 250

1 2 3 4 5 6 7 8 9 10

A
ve

ra
ge

 A
cc

es
s

T
im

e
(m

s)

num_cover

num_cache=
1
2
3
4
5
6
7
8
9

10

(a)

 0

 50

 100

 150

 200

 250

1 2 3 4 5 6 7 8 9 10

A
ve

ra
ge

 A
cc

es
s

T
im

e
(m

s)

num_cache

num_cover=
1
2
3
4
5
6
7
8
9

10

(b)

Figure 5. Access time in a LAN as a function of the number of covers
(a) and of the size of the cache (b)

greatly benefit from buffering and cache mechanisms at the
operating system and disk controller level. We claim that, as
it is typical for database index structures, the bottleneck in
the performance of the shuffle index in a LAN is the number
and profile (e.g., random, sustained/repeated) of read and
write operations on the hard disks. The access times show
that the system is able, when retrieving randomly chosen
8 KB blocks over a 1 TB collection, to manage up to
40 requests per second. The best performance is obtained
when using a single cover and a single cache; increasing the
number of covers there is an impact on performance, but in
every tested configuration the access time was below 250 ms.
We also note that no solution providing support for access
and pattern confidentiality offers comparable performance.
The approach nearest in performance to our technique is the
one in [9], discussed in the related work, which presents
average access times significantly greater than the shuffle
index (considering an analysis of the number of read/write
accesses, supported by the experiments in [9], we estimate
that the best shuffle index configuration offers a 10x-20x
advantage). Also, in [9] when a specific reordering phase
is triggered, access times for a single request can be in the
order of hours.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

1 2 3 4 5 6 7 8 9 10

A
ve

ra
ge

 R
es

po
ns

e
T

im
e

O
ve

rh
ea

d

num_cover

num_cache=

1
2
3
4
5
6
7
8
9

10

Figure 6. Overhead in a WAN compared to the use of a plain encrypted
index as a function of the number of covers

Network. We analyzed the performance of the shuffle index
when client and server operate in a wide area network. The
server was in a University lab and the client was located
in the same city, accessing the server using a 10 Mbps
domestic Internet connection. This scenario, where a client
uses a remote untrusted party for the private access to data,
is the most interesting and natural for the shuffle index.
In this configuration, network performance becomes the
limiting factor. Rather than focusing on absolute numbers
that strongly depend on network configuration parameters
that are not under control, we were especially interested
in comparing the performance of the shuffle index and
the performance offered by a plain encrypted index (this
is essentially the tree structure that was proposed in [7]).
A plain encrypted index has the same static structure of
the shuffle index, but it does not use covers, caching, and
shuffling to provide access and pattern confidentiality. The
plain encrypted index still requires the client to visit the
nodes in the tree level-by-level. Figure 6 reports the overhead
compared to the use of the plain encrypted index. The
reported measures were obtained by averaging over 100
experiments for each data point. We built a statistical model
to analyze the results of experiments. From the model,
we derive that each increase in the number of covers or
cache searches adds respectively 30% and 10% of the plain
encrypted access time. The difference between the impact
of covers and caches is due to the different disk costs
discussed above. Again, even in a WAN configuration, our
solution enjoys considerably better performance with respect
to approaches providing comparable protection [9]. Also, we
note that configurations with num cover=1 and num cache
between 1 and 2 already provide a strong degree of access
and pattern confidentiality with a performance overhead
factor below 50% (the measured values were 170 ms for the
plain encrypted index and less than 240 ms for the shuffle
index). Hence, we believe our approach to be particularly
appealing to many application scenarios, providing adequate
access and pattern confidentiality at an affordable overhead.

VII. RELATED WORK

Previous work is related to proposals aimed at defining
indexing structures for the execution of queries on encrypted
outsourced data (e.g., [2], [3], [7], [10], [11]). These pro-
posals however focus on content confidentiality and do not
guarantee access and pattern confidentiality.

Other related work is represented by classical studies on
Private Information Retrieval (PIR) (e.g., [4], [5]). In these
works a database is typically modeled as an N -bit string and
a user is interested in retrieving the i-th bit of the collection
without allowing the server to know/infer which is the bit
the user is interested in. PIR protocols however suffer from
high computation and communication costs [6] and typically
do not address content confidentiality.

The problem presented in this paper has some affinity with
the proposals in [9], [12]. In [12] the authors describe a B-
tree based indexing technique that allows a user to access
the content of a node in the B-tree, while guaranteeing that
the server cannot infer which node has been accessed. This
proposal however does not guarantee pattern confidentiality,
since repeated accesses to the same node in the B-tree
can leak information about its content. In [9] the authors
introduce a model aimed at preserving both access and
pattern confidentiality. The main similarity with our solution
is that also this work is based on a data structure managed
by the data owner for organizing and securely querying the
remotely stored encrypted data. Their data structure is how-
ever clearly different from ours. In [9] the authors exploit the
pyramid-shaped database layout of Oblivious RAM [13] and
an enhanced reordering technique between adjacent levels of
the data structure. Response time of any access request sub-
mitted during the reordering of lower levels of the database
reaches the order of hours. This appears a strong obstacle to
the real deployment of this solution; also, the amortized cost
per query is O(logm log logm), with O(

√
m) temporary

client storage, O(m) server storage overhead (where m is
the size of the data set), and the architecture requires a secure
coprocessor trusted by the client on the server. Our shuffle
index permits to reduce the (non amortized) computational
cost for query evaluation to O(logm), maintains a constant
computational and communicational overhead, and does not
rely on any trust assumption on server components.

VIII. CONCLUSIONS

We presented an indexing technique for data outsourcing
that proves to be efficient while ensuring content, access,
and pattern confidentiality. To our knowledge this is the
first work providing such a guarantee of protection while
enjoying actual applicability. The shuffle index presents
additional advantages. First, the underlying structure is that
of B+-trees, which are commonly used in relational DBMSs
to support the efficient execution of queries. This similarity
can facilitate the integration between shuffle indexes and
traditional query processing. A second advantage is the

possibility for the use of multiple indexes, defined on distinct
search keys, over the same collection of data.

ACKNOWLEDGMENT

This work was supported in part by the EC within the 7FP,
under grant agreements 216483 (PrimeLife) and 257129
(PoSecCo), and by the Italian Ministry of Research within
the PRIN 2008 project “PEPPER” (2008SY2PH4).

REFERENCES

[1] P. Samarati and S. De Capitani di Vimercati, “Data protection
in outsourcing scenarios: Issues and directions,” in Proc. of
ASIACCS, Beijing, China, April 2010.

[2] A. Ceselli, E. Damiani, S. De Capitani di Vimercati, S. Jajo-
dia, S. Paraboschi, and P. Samarati, “Modeling and assessing
inference exposure in encrypted databases,” ACM TISSEC,
vol. 8, no. 1, pp. 119–152, 2005.

[3] H. Hacigümüs, B. Iyer, S. Mehrotra, and C. Li, “Executing
SQL over encrypted data in the database-service-provider
model,” in Proc. of SIGMOD, Madison, USA, June 2002.

[4] B. Chor and N. Gilboa, “Computationally private information
retrieval (extended abstract),” in Proc. of STOC, El Paso,
USA, May 1997.

[5] B. Chor, E. Kushilevitz, O. Goldreich, and M. Sudan, “Private
information retrieval,” JACM, vol. 45, no. 6, pp. 965–981,
1998.

[6] R. Sion and B. Carbunar, “On the computational practicality
of private information retrieval,” in Proc. NDSS, San Diego,
USA, February/March 2007.

[7] E. Damiani, S. De Capitani Vimercati, S. Jajodia, S. Para-
boschi, and P. Samarati, “Balancing confidentiality and ef-
ficiency in untrusted relational DBMSs,” in Proc. of CCS,
Washington, USA, October 2003.

[8] B. W. Silverman, Density Estimation for Statistics and Data
Analysis. Chapman & Hall Monographs on Statistics &
Applied Probability, 1986, 1st edition.

[9] P. Williams, R. Sion, and B. Carbunar, “Building castles out
of mud: Practical access pattern privacy and correctness on
untrusted storage,” in Proc of CCS, Alexandria, USA, October
2008.

[10] C. Wang, N. Cao, J. Li, K. Ren, and W. Lou, “Secure
ranked keyword search over encrypted cloud data,” in Proc.
of ICDCS, Genoa, Italy, June 2010.

[11] H. Wang and L. V. Lakshmanan, “Efficient secure query
evaluation over encrypted XML databases,” in Proc. of VLDB,
Seoul, Korea, September 2006.

[12] P. Lin and K. S. Candan, “Hiding traversal of tree structured
data from untrusted data stores,” in Proc. of WOSIS, Porto,
Portugal, April 2004.

[13] O. Goldreich and R. Ostrovsky, “Software protection and
simulation on oblivious RAMs,” JACM, vol. 43, no. 3, pp.
431–473, 1996.

	copyright: © 2011 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.

