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Abstract. A recent solution for permitting data owners to make their
data selectively available on digital market platforms combines the adop-
tion of selective owner-side encryption and smart contracts deployed on
blockchains. Selective encryption, coupled with key derivation techniques
to reduce key management burden, guarantees that only subjects who
are entitled to access a resource can read its content. The adoption of
smart contracts deployed on a blockchain permits to regulate the inter-
play among the interacting parties, the possible economic incentives to
be paid to the owners as expected in markets, and the exchange of the
information necessary for resource decryption (i.e., updates to the key
derivation structure) upon payment. In this paper, we investigate differ-
ent approaches for managing and updating the key derivation structure
to enable selective data sharing on digital data markets, while limiting
access times to resources and the cost of operations on the blockchain.

Keywords: Digital data market · Selective encryption · Key derivation.

1 Introduction

An ever-increasing deal of interest focuses nowadays towards the development
and adoption of spaces and platforms where data can be easily shared and/or
traded among interested subjects. Such spaces, typically called digital data mar-
kets, represent virtual places where data owners (acting as data producers) offer
datasets, and data consumers can access (parts of) them. The creation of these
platforms, enabling data sharing among different subjects, can have a positive
impact on the creation of knowledge based on the analysis of heterogeneous data,
with clear societal benefits.

One of the main concerns that can hinder the adoption of digital data markets
is the (perceived) lack of control owners can suffer resorting to these platforms.
Some concerns naturally arise in any scenario in which a data owner wishes to
delegate storage and management of data to an external third party that can
be considered honest-but-curious (i.e., trusted for correctly managing the data,
but not trusted for accessing their content) or, more in general, not fully trusted
(e.g., it can be considered lazy). In addition, the scenario of digital data markets
complicates the picture with peculiarities that require careful consideration, such
as the possibility of providing owners with payments when consumers access their
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data as a reward for contributing their data. Clearly, ensuring proper protection
to the data managed and shared in digital data markets, and ensuring owners
remain in control over they data obtaining rewards when it is the case, are key
requirements for enabling a wide adoption of such markets.

To permit the adoption of digital data markets to trade data while ensur-
ing data are protected an under the control of their owner, without the need of
completely trusting the market provider, a recent proposal combines selective
owner-side encryption and blockchain [6]. With selective owner-side encryption,
data are published on the market only after being encrypted by their owner.
Encryption is performed using different encryption keys, so that different data
items are encrypted with different keys. Encryption keys are distributed to con-
sumers according to the restrictions set by the owners, including the fact of
having received a reward. In this way, encrypted data can be possibly stored
directly on the premises of the data market, if available, or more generally of
economically-convenient cloud platforms with the guarantee that unauthorized
subjects (including the market/cloud provider itself) cannot access their plain-
text content. When an interested consumer requests access to a certain dataset,
the owner/consumer interaction and the possible economic transaction for the
incentives are managed via smart contracts deployed on a blockchain. In this
way the request, the payment, and the willingness of the owner to grant access
to such data to the consumer remains logged in the immutable ledger of the
blockchain, ensuring therefore transparency and accountability.

The combined adoption of blockchain and selective owner-side encryption
should however be carefully regulated. To ensure a reasonable key management
burden for consumers, selective owner-side encryption is typically complemented
by key derivation techniques, which define key derivation structures that repre-
sent sets of tokens enabling the derivation (i.e., the computation) of one encryp-
tion key starting from another one. The catalog of the tokens is publicly stored
on the blockchain so that key derivation can be executed in accordance with the
restrictions imposed by the owners. Every time an owner grants access to a new
data item, or set thereof, the key derivation structure (and hence the entailed
token catalog) needs to be restructured to reflect and enforce the new granted
access. Different optimization strategies can be pursued when updating a key
derivation structure. We investigate this issue and propose two different strate-
gies: while the first aims at maintaining a slim token catalog, trying to minimize
the overall number of tokens inserted in the catalog to ensure fast retrieval of
tokens, the second strategy we investigate aims at reducing the modifications to
the catalog, trying to reduce the costs entailed by updating the catalog on-chain.
A preliminary version of this work appeared in [8], which we here extend with
more complete and revised algorithms, and enhanced discussions on the possible
strategies that can be adopted along with their pros and cons. The remainder of
this paper is then organized as follows. Section 2 illustrates our reference scenario
and introduces the general problem of maintaining owners in control in digital
data markets. Section 3 provides some preliminaries on the building blocks that
our solution adopts. Section 4 discusses how access restrictions specified by the
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owner can be self-enforced by the data stored on the market through selective en-
cryption and key derivation. Section 5 illustrates how to selectively encrypt data
for being securely stored and traded on data markets. Section 6 illustrates our
approach for selectively granting access to data by updating the key derivation
structure and token catalog according to our optimization strategies. Finally,
Section 7 illustrates related work, and Section 8 concludes the paper.

2 Scenario and Problem Statement

We are concerned with the problem of permitting a secure adoption of digital
data markets permitting owners to publish data, and interested consumers to
access (some of) them provided that an adequate reward is paid, by the con-
sumers, to the owner. The general reference scenario is then characterized by two
sets of subjects: a set O of data owners on one side, and a set C of consumers
on the other side, who leverage the availability of the a data market to sell and
buy data, which for generality we model as a set R of resources. Formally, our
problem can be formulated as follows.

Problem 1. Let R be a set of resources published on a data market platform,
and C be a set of consumers. ∀r ∈ R, ∀c ∈ C : c can access r iff c is authorized
by o and paid cost(r) to o, with o the owner of r and cost(r) the reward for r.

This problem entails a number of challenges and issues that need to be care-
fully addressed. A first issue concerns the definition of the rewards to be paid for
accessing resources. As it is to be expected in real-world scenarios, we assume
such rewards to be defined by the owners of the resources, such that each owner
sets the rewards that need to be paid for accessing her resources. For simplicity
but without loss of generality, given a resource r published by an owner o, we
assume the reward cost(r) to be paid for accessing r to be fixed and equal to
each consumer, while we note that our solution is general and is not impacted
by different definitions of rewards.

A second issue that characterizes our problem concerns the processing of
the payment of the rewards to the owners. In particular, considering the digital
nature of data markets and the fact that owners, consumers, and market provider
may not fully trust each other, a key requirement demands payments must be
correctly executed: a consumer cannot claim to have paid for a resource while
she has not and, conversely, an owner cannot claim a payment by a consumer
has not been received while it has. A recent solution [6] has put forward the idea
of leveraging blockchain and smart contracts to execute payments and have a
verifiable log of the accesses requested and granted. We build on this strategy and
leverage blockchain and smart contracts to guarantee that i) after a consumer
c purchases access to a resource r, by paying cost(r) to r’s owner o, then o
cannot claim that payment has not been received and refuse to grant access to
c; and ii) after an owner o has granted to a consumer c access to a resource r,
then c cannot claim that access has not been granted (and ask to be refunded
cost(r)).
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A third issue that characterizes our problem, and which represents the main
focus of this paper, concerns ensuring adequate data protection, meaning that
only authorized consumers who have paid adequate rewards to the owners can
access resources. A complicating factor in this regard is that the market provider
may not be fully trusted to enforce access restrictions (i.e., to prevent unautho-
rized accesses to resources that have not been paid). The provider may in fact be
lazy (and not enforce access control, partially or entirely) and/or not completely
trusted to act as a reference monitor. The solution in [6] protects resources with
owner-side encryption, so that resources are outsourced to the market in an
encrypted form that makes them unintelligible to any subject who does not pos-
sess the correct encryption keys, and in providing authorized consumers with the
correct encryption keys. In our work we leverage selective owner-side encryption
(for supporting fine-grained access restrictions) and key derivation (to ease key
management to consumers) to ensure that only authorized consumers can access
a resource, without relying on the active involvement of the market provider.

Example 1. We refer our discussion to the data generated by a smart fitness de-
vice that measures different parameters (e.g., heart rate, steps and movements,
sleep, oxygen saturation levels). Such measurements are collected throughout
the whole day, and the owner of the device and of the measured data can down-
load them. Since these data can be of interest to a multitude of subjects (e.g.,
researchers), the owner decides to monetize them and, at regular time inter-
vals, publishes them on a data market platform. In our examples, we consider
the release of five sets of measurements R={a, b, c, d, e}. We consider four con-
sumers C = {α,β, γ, δ}, which over time require access to resources and hence
pay rewards to the owner.

3 Preliminaries and Sketch of the Approach

The solution studied in this paper combines selective encryption (for protect-
ing resources) and key derivation (for permitting efficient management), with
blockchain and smart contracts (for managing the payments among possibly dis-
trusting parties). In this section we provide some preliminaries on these building
blocks.

3.1 Selective Encryption and Key Derivation

Encrypting the resources to be stored at an external platform is an effective
approach for protecting their confidentiality, since the encryption layer (set by
the data owner) makes resources unintelligible to subjects who do not know
the encryption key, possibly including the provider itself. The enforcement of
fine-grained access restrictions can be effectively managed through selective en-
cryption [1, 4] whenever the storage platform is not considered trusted to mediate
access requests. Selective encryption consists in wrapping each resource with an
encryption layer (set by the owner) using different keys for different resources,
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a c kc⊕h(ka, lc)
b c kc⊕h(kb, lc)
b d kd⊕h(kb, ld)

Fig. 1. An example of key derivation structure and token catalog

and in distributing keys to users in such a way that each user can decrypt all
and only the resources she is authorized to access. To mitigate the burden of
key management, selective encryption is usually coupled with key derivation [1].
Given two keys kx and ky, the derivation of ky from kx is enabled by a pub-
lic token tx,y computed as ky⊕h(kx, ly), with ly a public label associated with
ky, ⊕ the bitwise xor operator, and h a deterministic non-invertible crypto-
graphic function. The derivation relationship between keys can be direct , via a
single token, or indirect , through a chain of tokens. Key derivation structures
can be graphically represented as DAGs (directed acyclic graphs), where ver-
tices represent encryption keys and their labels (e.g., vertex vx represents key
kx), and edges represent tokens (i.e., edge (vx, vy) represents token tx,y enabling
the derivation of ky from kx). Tokens are physically stored in a public catalog
T . Key derivation allows each user to manage a single key, from which she can
compute all the keys for the resources for which she is authorized. In the fol-
lowing, when clear from the context, we will use the terms keys and vertices
(tokens and edges, respectively) interchangeably. Figure 1 illustrates an example
of a key derivation structure and of the corresponding token catalog, regulating
the derivation relationships among four encryption keys ka, kb, kc, and kd. For
readability, we denote the label of an encryption key kx with x, and use the label
to denote its corresponding vertex vx in the structure (e.g., vertex a in Figure 1
represents key ka and its label). For example, the tokens in the structure permit
the derivation of kc from key ka and kb, and the derivation of kd from kb only.

3.2 Blockchain and Smart Contracts

A blockchain is a shared and trusted public ledger of transactions, maintained
in a distributed way by a decentralized network of peers. Transactions are orga-
nized in a list of blocks, linked in chronological order, and each block bi contains
a number of transaction records along with a cryptographic hash of the previous
one bi−1. Each transaction is validated by the network of peers, and is included in
a block through a consensus protocol. The state of a blockchain is then continu-
ously agreed upon by the network of peers: everyone can inspect a blockchain, but
no single user can control it, or tamper with it, since modifications to the content
of a blockchain require mutual agreement. Once a block is committed, nobody
can modify it: updates are reflected in a new block containing the modified infor-
mation. This permits to trust the content and the status of a blockchain, while
not trusting the specific underlying peers. Blockchain is probably best known
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to be the core component of Bitcoin for allowing secure value transfer between
two parties (through their digital wallets) without the need of a trusted central
authority, such as a bank. The cryptographic primitives and digital signatures
used for value transfer certify that the value is deducted from the payee’s wallet,
and that the receiver is indeed the party who now holds the value. Since then,
blockchain technology has evolved to the aim of allowing transactions over vir-
tually any value, material of immaterial. This has been achieved by introducing
the concept of smart contracts, a powerful tool for establishing contracts among
multiple, possibly distrusting, parties. A smart contract is a software running
on top of a blockchain defining a set of rules, on which the interacting parties
agree. It can be seen as a set of ‘if-then’ instructions, defining triggering condi-
tions (the ‘if’ part) and subsequent actions (the ‘then’ part). These conditions
capture and model in a machine-readable format the clauses of a contract that is
to be signed by the parties. The execution of a smart contact can be trusted for
correctness thanks to the underlying blockchain consensus protocols, meaning
that all the conditions of the agreement modeled by the contract are certainly
met and validated by the network. However, smart contracts and their execution
lack confidentiality and privacy, as plain visibility over the content of a contract
and over the data it manipulates is necessary for validation [3].

3.3 Sketch of the Approach

We enforce access restrictions to resources, ensuring their owners remain always
in control of who can access them, with owner-side encryption, so that resources
are stored in encrypted form to the market, hence being protected also from the
eyes of the market provider. Key management burden is reduced for consumers
through key derivation, so that each consumer has to manage a single key per
owner, starting from which she can derive all the keys needed to decrypt and ac-
cess all authorized resources. To ensure that key derivation reflects the payments
of the rewards enforced by consumers, and to counteract possible misbehaviors
from the interacting parties, we follow the proposal in [6] and assume reward pay-
ments to occur leveraging a blockchain, and storing the token catalog enabling
key derivation on-chain. As will be illustrated in the remainder of this paper,
the key derivation structure (and hence the token catalog) needs to be updated
whenever a consumer requests (and pays the reward for) a new resource, so to
maintain correctness of the enabled key derivations. Different strategies may be
adopted for enforcing such updates, which may have different costs that can be
considered more or less important depending on the pursued objective. A first
and natural objective is to keep the token catalog small in size, so to ensure fast
retrieval time by consumers when in need of deriving keys. With this strategy,
possibly extensive restructuring operations to the key derivation structure and
token catalog may be performed to the aim of reducing the overall number of
tokens. Considering that writing on a blockchain has a cost, a second objective is
to keep the number of modified tokens small, so to ensure a reduction in the costs
entailed by the on-chain storage of the token catalog. In the following sections,
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Fig. 2. An example of authorizations for Example 1

we illustrate approaches for enforcing selective encryption and key derivation to
protect resources in data markets pursuing these two objectives.

4 Authorizations and Key Derivation

We illustrate how to guarantee that the content of each resource published on
the data market is visible only to authorized consumers who paid the reward to
their owners. For simplicity, but without loss of generality, we refer our discussion
to the set of resources published by one owner o, with the note that the same
reasonings apply to all data owners operating on the data market. We illustrate
how authorizations can be modeled in Section 4.1, and how they can be enforced
through the definition of a key derivation structure in Section 4.2.

4.1 Authorizations

In line with the goal of monetizing data, we assume that a resource r can be
accessed by any consumer who paid cost(r) to the owner. For this reason, the
authorization policy regulating which consumer can access which resources re-
flects the payments made by the consumers themselves, but we note that our
approach can also manage additional access conditions that a specific owner may
wish to impose.

We represent the authorization policy granting access to resources to au-
thorized consumers through the capability lists of the consumers in C. Given a
consumer c ∈ C, her capability list cap(c) includes all resources in R that c can
access (i.e., in our scenario, for which c paid cost(r) to the owner). Capability
lists are by definition dynamic, and reflect the updates to the authorization pol-
icy. In particular, whenever a consumer c purchases access to a new resource r,
r will be added to cap(c). In principle, an access (say, to resource r) that has
been previously granted to c may also be revoked, resulting in r to be removed
from cap(c). We however note that such access revocation is not in line with
the peculiarities of the data market platforms, also considering the fact that our
reference scenario is characterized by consumers purchasing (and not, for exam-
ple, renting) access to a resources. For this reason, we do not consider access
revocation and, as a consequence, capability lists of consumers never lose ele-
ments in the course of time. Figure 2 illustrates an example of authorizations for
the consumers and resources of our running example (Example 1). For readabil-
ity, we represent sets omitting commas and curly brackets (e.g., abc stands for
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Fig. 3. Two examples of a key derivation structure enforcing cap(ε) = cap(ζ) = fgh,
enabling key derivation through six tokens (a), and five tokens (b)

{a, b, c}). For example, cap(α) = abc, meaning that consumer α is authorized
(and hence has paid the reward to the owner) for resources a, b, and c.

As introduced in Section 3, we protect the confidentiality of the resources
and enforce access restrictions through selective owner-side encryption [4]. As
highlighted by the name, selective encryption requires the owner to encrypt
different resources with different encryption keys before outsourcing them to
the market (or, more in general, to an external storage/management platform).
In this way, an authorization policy can be easily enforced by providing each
consumer c with only the encryption keys necessary to decrypt the resources c
is authorized to access.

Fine-grained access restrictions with selective owner-side encryption can be
practically enforced in different ways, depending on how encryption keys are
managed and distributed to consumers. A naive approach could consist in en-
crypting each resource r ∈ R with a different key kr , and in distributing to each
consumer c the keys used to encrypt all resources in her capability list cap(c).
While this approach can correctly enforce an authorization policy, it would place
upon consumers the burden of storing and managing a number of keys linear in
the number of resources they can access (i.e., each consumer c would need to
manage one key kr for each resource r ∈ cap(c)). Key derivation (Section 3.1)
can be effectively employed for reducing such key management burden: the pos-
sibility of deriving (computing) an unlimited number of encryption keys starting
from the knowledge of a single encryption key allows each consumer c to agree
with the data owner a single key kc , and the owner can define and publish a
set of |cap(c)| tokens, each one allowing the computation of the encryption key
used for a resource in cap(c). This way, since tokens can be publicly stored, each
consumer c will have to manage a single key kc only and compute, when needed
for accessing a resource r ∈ cap(c), the encryption key kr .

While effective, this simple solution might create more tokens than necessary.
Consider two consumers ε and ζ such that cap(ε) = cap(ζ) = fgh. To permit
both consumers to access the three resources, six tokens (three for permitting
derivation of kf, kg, and kh starting from kε, and three for permitting the same
derivation starting from kζ) would be needed, as illustrated in Figure 3(a). The
insertion of an intermediate vertex (i.e., key) in the DAG modeling key derivation
would still permit the same derivations, while saving a token, as illustrated in
Figure 3(b): it is easy to see that both ε and ζ are still able to derive all (and
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only) the keys they are entitled to with the creation of five (rather than six)
tokens. Such additional keys are used for derivation purposes only, and are not
used to encrypt any resource (nor are they assigned to any consumer). They can
be defined according to different criteria: in traditional cloud-based scenarios
they are typically associated with sets of users [5]. Considering the peculiarities
of the market scenario, and the fact that consumers dynamically join and leave
the market to acquire sets of resources, it is natural to associate them with sets
of resources. We illustrate our key derivation structure in the remainder of this
section.

4.2 Key Derivation Structure and Correctness

A key derivation structure for our problem is formally defined as follows [6].

Definition 1 (Key derivation structure). Let R = {r1, . . . , rn} be a set of
resources and C = {c1, . . . , cm} be a set of consumers. A key derivation structure
over R and C is a DAG G(V ,E) such that:

1. ∀vx ∈ V , (x ∈ C) ∨ (x ⊆ R);
2. ∀c ∈ C, vc ∈ V ;
3. ∀r ∈ R, vr ∈ V ;
4. ∀(vx, vy) ∈ E : (y⊂x) ∨ (x∈C ∧ y ⊆ R).

The definition above formally characterizes a generic key derivation structure
for a data market over a set of resources and a set of consumers. Condition 1
states that a key derivation structure includes a set of vertices representing
consumers or sets of resources. Condition 2 demands that, for each consumer
c, a key derivation structure includes a vertex vc for c. Similarly, Condition 3
demands that, for each resource r, a key derivation structure includes a vertex
vr for r. Lastly, Condition 4 states that the (directed) edges of a key derivation
structure connect either a consumer to a set of resources (x∈C ∧y ⊆ R), or a set
of resources to a subset of the same (y ⊂ x). Recall (Section 3.1) that vertices
in a key derivation structure represent encryption keys. Each consumer c ∈ C
knows the encryption key kc represented by vertex vc . Similarly, each resource
r ∈ R is encrypted with the key kr represented by vertex vr .

Example 2. Figure 4 illustrates an example of key derivation structure defined
over the four consumers α,β, γ, δ and five resources a, b, c, d, e of our running
example (Example 1). The structure includes a vertex for each consumer (de-
noted, for readability, with a gray background), a vertex for each resource, and
two additional vertices defined over sets of resources. As already noted, for sim-
plicity in the figures we denote each vertex vx with x (e.g., a is the vertex for
resource a representing the encryption key ka used to encrypt it and, similarly,
α is the vertex for consumer α representing her encryption key kα).



10 Sara Foresti and Giovanni Livraga

a b c d e
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abc
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γ
δ

Fig. 4. An example of a key derivation structure enforcing the authorizations in Fig-
ure 2

The definition of a key derivation structure creates (direct and/or indirect)
derivation relationships among encryption keys (be them assigned to consumers,
to resources, or to group of resources). Clearly, such derivation relationships
must correctly enforce the authorization policy so to ensure that each consumer
can derive all and only the encryption keys used for encrypting the resources
she can access. This requires to guarantee that each consumer c can reach,
starting from the vertex vc representing her encryption key kc , all and only the
vertices representing the encryption keys kr used to encrypt the resources in
her capability list cap(c). Formally, given an authorization policy A over R of
resources and C, a key derivation structure correctly enforces A iff ∀r∈R, ∀c∈C
it holds that r∈cap(c) ⇔ ∃ a path in G from vc to vr .

Example 3. Consider the authorization policy expressed by the capability lists
reported in Figure 2. The key derivation structure in Figure 4 correctly enforces
the policy. The structure includes one vertex for each resource, one vertex for
each consumer, and two additional vertices representing the non-singleton ca-
pability lists of consumers α (cap(α) = abc) and β (cap(β) = cde). The edges
in the structure connect, linking their vertices, each consumer to her capability
list, and sets of resources respecting subset containment relationship. It is easy
to see that each consumer can reach through a path all and only the resources
in her capability list, meaning she can derive the correct encryption keys. For
example, consumer α can, from her key kα and with token tα,abc, derive kabc,
from which she can use tokens tabc,a, tabc,b, and tabc,c to derive ka, kb, and kc.

Given an authorization policy, a correct key derivation structure can be de-
fined in different ways, depending on how the additional vertices (i.e., those
not corresponding to consumers nor to resources, and used for derivation pur-
poses only) are defined and how edges are defined to connect vertices enabling
key derivation. Our approach consists in including in the structure a vertex for
each capability list of consumers in C, and an edge (vc , vcap(c)) connecting each
consumer c to her capability list cap(c). We then include edges connecting ver-
tices representing sets of resources (e.g., capability lists) ensuring that the set R
represented by vertex vR is covered guaranteeing that the set of resources rep-
resented by the vertices directly reachable from vR is equal to R. The rationale
behind this approach is quite intuitive: each consumer c can, starting from her
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PUBLISH_RESOURCE(r,G(V ,E))

1: generate key kr for r
2: generate label lr for r
3: generate vertex vr for r
4: V := V ∪ {vr}
5: enc_r := encrypt(r,kr )
6: publish(enc_r)

Fig. 5. Management of the publication of a resource r

own key (vertex vc , included in the structure by Condition 2 in Definition 1),
derive the key associated with her capability list (vertex vcap(c) in the structure).
Since cap(c) is covered, and since (by Condition 3 in Definition 1) the structure
includes a vertex for each resource in cap(c), c can derive (directly and/or in-
directly) all and only the keys for all resources in cap(c). For example, the key
derivation structure in Figure 4 is built following this approach, and correctly
enforces the authorizations in Figure 2. In the following sections, we illustrate
our approach for managing the publication of resources on the market, and for
enforcing access restrictions through the definition and maintenance of a key
derivation structure.

5 Resource Management

An empty key derivation structure G(V ,E) is created whenever an owner inter-
acts for the first time with the data market. Such key derivation is then updated
whenever a resource is published by the owner on the market, as well as when-
ever consumers are granted access to resources, to guarantee its correctness and
the correctness of the key derivations enabled. In this section, we illustrate our
approach for managing the publication of a resource. We will discuss how the
purchase of a resource by a consumer can be managed in Section 6.

Figure 5 illustrates the pseudocode of procedure Publish_Resouce, man-
aging the publication of a new resource on the market. The procedure takes as
input a resource r and an existing key derivation structure G(V ,E), possibly
empty if r is the first resource to be published by the owner. The procedure
generates an encryption key kr , which will be used for encrypting r, and the
corresponding label lr , used for enabling derivation (lines 1–2). It then creates
the corresponding vertex vr , and inserts vr into V (lines 3–4). Resource r is
encrypted with key kr (line 4), and the resulting encrypted version enc_r is
published on the market (line 6).

Example 4. Consider the publication of the five resources of our running example
(Example 1). Figure 6 illustrates an example of a key derivation structure after
the publication on the market of the resources. Since no authorizations have
been granted yet, the structure includes only one vertex for each resource, and
no vertex for consumers nor sets of resources.
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a b c d e

Fig. 6. An example of a key derivation structure after publishing the five resources of
Example 1, including one vertex for each resource

6 Access Control Enforcement

The key derivation structure is updated to reflect purchases by consumers, to
ensure that the key derivation enabled by the tokens represented by edges in
the structure correctly enforces the granted authorizations. As mentioned in
Section 4, we recall that revocation of an access already granted is not in line
with the peculiarities of the considered market scenario. Clearly, this does not
imply that once an owner has published a resource on the market she cannot
remove it: as a matter of fact, owners remain in full control of their resources
and, should they wish so, they can always remove resources from the market.
Issues that may arise if owners remove resources for which consumers have paid
are beyond the scope of this paper. We illustrate in Section 6.1 how to update
a key derivation structure aiming at minimizing the size of the entailed token
catalog (thus ensuring fast access to tokens by consumers), and an alternative
strategy aiming at minimizing the number of additional tokens (thus reducing
the costs entailed by updating the catalog stored on-chain).

6.1 Reducing token catalog size

Figure 7 illustrates the pseudocode of procedure Min_Token_Catalog, up-
dating a key derivation structure to accommodate –and reflect in the key deriva-
tions enabled– the purchase of a set R of resources by a consumer c, aiming
at minimizing the overall number of tokens. The procedure takes as input the
consumer c, her current capability list cap(c), the set R of resources for which
c has paid a reward to the owner and for which the owner grants access, and
the key derivation structure G(V ,E) to be updated. It updates the structure to
enable c to derive the keys needed to decrypt the resources in cap(c)∪R.

The procedure first checks whether the structure already contains a vertex
for c, meaning that c has already interacted with the market and the owner, and
has her own key kc . If this is not the case, the procedure generates a key kc ,
a corresponding vertex vc , and adds vc to the structure (lines 1–4). Otherwise,
the procedure removes the edge connecting vc to vertex vcap(c), representing her
current (meaning before the purchase of R) capability list, and the correspond-
ing token from the catalog (lines 5–7). The procedure then checks whether it is
possible to remove from the structure vcap(c) and, if so, whether removing its in-
cident edges and directly connecting its ancestors to its descendants can reduce
the number of tokens in the catalog (edges in the structure, lines 8–18). To do
so, it checks whether other consumers have the same current capability list as,
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MIN_TOKEN_CATALOG(c,cap(c),R,G(V ,E))

1: if vc #∈ V then
2: generate key kc for c
3: generate vertex vc for c
4: V := V ∪ {vc}
5: else
6: E := E \ {(vc , vcap(c))}
7: T := T \ {tc,cap(c)}
8: if !c′ #=c s.t. cap(c) = cap(c′) then
9: let Anc be the ancestors of vcap(c)
10: let Desc be the descendants of vcap(c)

11: if (|Anc| × |Desc|) < (|Anc| + |Desc|) then
/* removing vcap(c) and its incident edges reduces the number of tokens */

12: for each va ∈ Anc do
13: E := E \ {(va, vcap(c))}
14: T := T \ {ta,cap(c)}
15: for each vd ∈ Desc do
16: E := E \ {(vcap(c), vd)} ∪ {(va, vd)}
17: T := T \ {tcap(c),d} ∪ {ta,d}
18: V := V \{vcap(c)}
19: cap(c) := cap(c) ∪ R
20: if vcap(c) ∈ V then
21: E := E ∪ {(vc , vcap(c))}
22: T := T ∪ {tc,cap(c)}
23: else
24: generate key kcap(c) for cap(c)
25: generate label lcap(c) for cap(c)
26: generate vertex vcap(c) for cap(c)
27: V := V ∪ {vcap(c)}
28: E := E ∪ {(vc , vcap(c))}
29: T := T ∪ {tc,cap(c)}

/* connect vcap(c) ensuring that cap(c) is covered */

30: CandCover := {vX ∈ V : X ⊆ cap(c)}
31: Cover := ∅
32: ToCover := cap(c)
33: while ToCover #= ∅ do
34: let vY ∈ CandCover be the vertex s.t. Y ∩ToCover is largest
35: Cover := Cover ∪ {vY }
36: CandCover := CandCover \ {vY }
37: ToCover := ToCover \ Y
38: E := E ∪ {(vcap(c), vY )}
39: T := T ∪ {tcap(c),Y }

/* check if inserting vcap(c) as an intermediate vertex can reduce the number of tokens */

40: let Par ⊆ V be the set of vertices over a set of resources ⊃ cap(c)
41: let ReachCover be the set of vertices reachable from vertices in Cover
42: for each vpar ∈ Par do
43: ToRemove := ∅
44: for each v ∈ ReachCover ∪ Cover do
45: if (vpar , v) ∈ E then
46: ToRemove := ToRemove ∪ {(vpar, v)}
47: if |ToRemove| ≥ 2 then
48: E := E ∪ {(vpar, vcap(c))}
49: T := T ∪ {tpar,cap(c)}
50: for each (vpar , vz)∈ToRemove do
51: E := E \ {(vpar , vz)}
52: T := T \ {tpar,z}

Fig. 7. Management of purchases reducing the size of the token catalog

clearly, if this is the case, then the vertex could not be removed (line 8). It deter-
mines the sets Anc and Desc of ancestors and descendants of vcap(c) (lines 9–10).
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If (|Anc|× |Desc|) < (|Anc|+ |Desc|) the procedure removes all vcap(c)’s incident
edges and connects all vcap(c)’s ancestors to vcap(c)’s descendants, removing also
the corresponding tokens from the catalog (lines 11–17). The procedure removes
vcap(c) from the structure (line 18) and updates c’s capability list to cap(c) ∪R
(line 19). If the structure already includes a vertex for the updated capability list,
the procedure simply adds an edge (and the corresponding token) connecting vc
to the vertex, and terminates (lines 20–22). Otherwise (line 23), it generates a
key for cap(c), the corresponding label and vertex, and inserts the vertex in the
structure (lines 24–27), also connecting vc to it through an edge, and adding
the corresponding token to the catalog (lines 28–29). To guarantee correctness
of the key derivation, the procedure then connects the newly created vertex
vcap(c) to other vertices of the structure, ensuring coverage (i.e., ensuring that
the vertex is connected to other vertices so that the union of the resources of the
vertices directly reachable from vcap(c) is equal to cap(c), lines 30–39). It does so
defining three sets CandCover , Cover , and ToCover , modeling respectively the
vertices that are candidate for coverage (i.e., for becoming direct descendants
of vcap(c)), the vertices that are actually selected for coverage, and the resources
to be covered. Such sets are initialized, respectively, to the set of vertices in the
structure defined over a subset of cap(c) (line 30), to an empty set (line 31), and
to cap(c) (line 32). The procedure heuristically selects, among the candidates
in CandCover , the vertex vY that covers the largest number of the resources
to be covered in ToCover (i.e., such that Y ∩ ToCover is largest, lines 34–35),
removes it from the candidates (line 36), removes the set Y of resources from
ToCover (line 37), and connects vcap(c) to vY adding the corresponding token
to the catalog (lines 38–39). These operations are repeated until all resources in
cap(c) have been covered (i.e., ToCover is empty, line 33). Finally, the procedure
checks whether the overall number of tokens can be further reduced thanks to
the creation of vcap(c) [4]. The procedure first identifies a set Par of vertices rep-
resenting supersets of cap(c), and a set ReachCover of vertices reachable from
the vertices used for coverage (i.e., those in Cover) (lines 40–41). To this aim, if a
vertex vpar in Par is directly connected to more than one vertex in Cover and/or
in ReachCover , the procedure inserts vcap(c) as an intermediate vertex, and re-
moves the edges from vpar to the vertices in Cover ∪ DescCover (lines 42–52),
reducing the number of edges (and of corresponding tokens).

Example 5. Consider the key derivation structure in Figure 4. Figure 8 illustrates
the evolution of the structure to enforce a sequence of requests. The structure
in Figure 8(a) grants γ access to b and c: the token enabling the derivation
of ka from kγ (modeled by edge (vγ , va)) is replaced with a token enabling the
derivation of kabc from kγ (modeled by edge (vγ , vabc)). Similarly, the structure
in Figure 8(b) grants β access to a and b, starting from the structure in Fig-
ure 8(a): vertex vabcde, representing cap(β) = abcde, is inserted in the structure
and is connected to vertices vabc and vcde (left-hand-side structure). Following
this purchase, vertex vcde becomes redundant, and is removed, saving two tokens
while permitting the same derivations (right-hand-side structure). Finally, Fig-
ure 8(c) grants α access to e, starting from the structure in Figure 8(b): vertex
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Fig. 8. Evolution of the key derivation structure in Figure 4 to enforce a sequence of
purchases minimizing the overall number of tokens

vabce is inserted in the structure, vα is connected to it, and our approach places
it also as direct descendant of vabcde, saving one token in the catalog.

6.2 Reducing token catalog updates

The approach illustrated in the previous section aims to limit the size of the token
catalog by deleting the tokens that become unnecessary after accommodating
the purchase of R by a consumer c (e.g., the token represented by the edge
connecting vc to vcap(c), with cap(c) the previous capability list of c, which
becomes redundant due to the fact that vc will be connected to vertex vcap(c)∪R

and thanks to the coverage of cap(c)∪R), and by re-organizing the key derivation
structure, possibly deleting unnecessary vertices (e.g., vcap(c)) and deleting old
tokens and adding new tokens leveraging the deletion of vcap(c) and the inclusion
of vcap(c)∪R . All these operations have clearly a cost, and can represent an issue
as they are reflected on the blockchain as token catalog is stored on-chain [6]. To
limit the update (write) operations on the blockchain, we propose an alternative
approach that: i) does not require token deletion; and ii) tries to re-use as much
as possible elements already included in the key derivation structure.

This approach follows the observation that token deletion is not necessary
for enforcing new access grants, and re-using elements already existing in the
structure limits the number of the tokens added to accommodate the policy up-
date. To illustrate, consider the purchase of a set R of resources by consumer
c. Indeed, the capability list of c needs to be updated to include the resources
in R (i.e., it is to be updated to cap(c ∪R)) and, to ensure correctness of key
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derivation, vc must be connected with a vertex in the structure representing
cap(c) ∪ R. If such a vertex already belongs to the hierarchy, it is possible to
add to the structure an edge (vc , vcap(c)∪R), representing the token enabling the
derivation of kcap(c)∪R from kc , without deleting the (now redundant, but not
incorrect) edge (vc , vcap(c)) and the corresponding token. This increases the over-
all number of tokens, but reduces the operations performed to accommodate the
purchase. If, otherwise, vcap(c)∪R does not belong to the hierarchy, two different
approaches can be adopted.

– Insertion of a new vertex: insert vertex vcap(c)∪R in the structure, and con-
nect it to vcap(c) (and hence indirectly to the corresponding resources) and,
directly or indirectly, to the vertices of the resources in R;

– Relabeling of an existing vertex: connect (directly or indirectly) vertex vcap(c)
to the vertices of the resources in R, relabeling vcap(c) to represent cap(c)∪R.
Compared to the previous strategy, this strategy saves the insertion and
deletion of one token (the one from vc to vcap(c)∪R , as it already exists),
but it is not always viable. In particular, relabeling vcap(c) to vcap(c)∪R can
be adopted only if: i) no other consumer c′ still has a capability list equal
to the (previous) list of c (i.e., cap(c′)=cap(c)), as otherwise c′ would, as a
consequence of the connection of vcap(c) with the vertices for R, gain access
to R without being authorized; and ii) all the ancestors of the relabeled
vertex represent a superset of cap(c) ∪ R, since otherwise consumers who
can derive such vertices would be granted access to R.

Independently from the strategy chosen for including vertex vcap(c)∪R in the
structure, such vertex needs to be connected to the resources in R (as it is clearly
already connected to those in cap(c)). If the structure already contains a vertex
vR , it is sufficient to add to the structure edge (vcap(c)∪R , vR) and define the
corresponding token. If this is not the case, a possible solution -always available-
can consist in adding |R| edges, one for each resource in R. However, if the
structure already includes a set K of less than |R| vertices representing subsets
of cap(c)∪R that completely cover R, the number of additional edges (and hence
of the tokens to be added) can be reduced to |K| by connecting cap(c)∪R with
the vertices in K.

Figure 9 illustrates the pseudocode of procedure
Min_Additional_Tokens, updating a key derivation structure to ac-
commodate –and reflect in the key derivations enabled– the purchase of a set
R of resources by a consumer c, aiming at minimizing the number of additional
tokens. The procedure takes as input the consumer c, her current capability list
cap(c), the set R of resources for which c has paid a reward to the owner and
for which the owner grants access, and the key derivation structure G(V ,E) to
be updated. It updates the structure to enable c to derive the keys needed to
decrypt the resources in cap(c)∪R.

The procedure first checks whether the structure already contains a vertex for
c, meaning that c has already interacted with the market and the owner, and has
her own key kc . If this is not the case, the procedure generates a key kc , a corre-
sponding vertex vc , and adds vc to the structure (lines 1–4). The procedure then
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MIN_ADDITIONAL_TOKENS(c,cap(c),R,G(V ,E))

1: if vc #∈ V then
2: generate key kc for c
3: generate vertex vc for c
4: V := V ∪ {vc}
5: if vcap(c)∪R ∈ V then
6: E := E ∪ {(vc , vcap(c)∪R )}
7: T := T ∪ {tc,cap(c)∪R}
8: else
9: if !c′ #= c ∈ C : cap(c′) = cap(c) then
10: let Anc be the ancestors of vcap(c)

11: if ∀vX ∈ Anc : X ⊃ cap(c) ∪ R then
12: relabel vcap(c) into vcap(c)∪R

13: else
14: generate key kcap(c)∪R

15: generate label lcap(c)∪R

16: generate vertex vcap(c)∪R

17: V := V ∪ {vcap(c)∪R}
18: E := E ∪ {(vcap(c)∪R , vcap(c))} /* cover cap(c) */
19: T := T ∪ {tcap(c)∪R,cap(c)}

/* connect vcap(c)∪R ensuring that R is covered */

20: CandCover := {vX ∈ V : X ⊆ cap(c) ∪ R}
21: ToCover := R
22: while ToCover #= ∅ do
23: let vY ∈ CandCover be the vertex s.t. Y ∩ToCover is largest
24: CandCover := CandCover \ {vY }
25: ToCover := ToCover \ Y
26: E := E ∪ {(vcap(c)∪R , vY )}
27: T := T ∪ {tcap(c)∪R,Y }
28: E := E ∪ {(vc , vcap(c)∪R )}
29: T := T ∪ {tc,cap(c)∪R}

Fig. 9. Management of purchases reducing the number of additional tokens

checks whether the structure already includes a vertex for cap(c)∪R (line 5). If
this is the case, the procedure simply adds an edge connecting vc to vcap(c)∪R ,
creates the corresponding token, and terminates (lines 5–7). Otherwise, it checks
whether it is possible to relabel the vertex vcap(c): to this end, it checks whether
no consumer c′ has capability list equal to cap(c) (line 9), and whether all an-
cestors of vcap(c) are defined over supersets of cap(c)∪R (lines 10-11). If so, the
procedure relabels vcap(c) into vcap(c)∪R (line 12), resulting in the structure to
include a vertex for cap(c) ∪ R. If this is not the case, the procedure generates
an encryption key and a label for cap(c) ∪R, creates the corresponding vertex,
adds it to the structure (lines 13–17), and connects it to vcap(c) (lines 18–19).
The procedure then covers the resources in R starting from the vertices already
included in the structure that have the larges intersection with R, to reduce the
number of needed connections (i.e., of added edges, hence of additional tokens,
lines 20–27). Finally, the procedure connects vc to vertex vcap(c)∪R representing
cap(c) ∪R, creating the corresponding token (lines 28–29).

Example 6. Consider the key derivation structure in Figure 4. Figure 10 illus-
trates the evolution of the structure to enforce the same sequence of requests
as in Figure 8, but minimizing the number of additional tokens. The structure
in Figure 10(a) grants γ access to b and c: since the structure already includes
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Fig. 10. Evolution of the key derivation structure in Figure 4 to enforce a sequence of
purchases minimizing the number of additional tokens

a vertex vabc for the updated capability list of γ, the structure is updated sim-
ply adding a token enabling the derivation of kabc from kγ (modeled by edge
(vγ , vabc)): the (now redundant) edge (vγ , va) is left untouched, saving on its
deletion. The structure in Figure 10(b) grants β access to a and b, starting from
the structure in Figure 10(a): vertex vcde is relabeled as vabcde, and is covered by
connecting it to vabc, which completely covers resources ab purchased by β. Note
that this approach implies the simple insertion of one token (modeled by edge
(vabcde, vabc)), in contrast to the insertion of 4 tokens and the removal of 4 tokens
paid by the solution minimizing the token catalog size in Figure 8(b). Finally,
Figure 10(c) grants α access to e, starting from the structure in Figure 10(b):
in this case it would not be possible to relabel vabc as vabce, as this would also
allow γ to access e. In this case, it is then necessary to insert a new vertex
vabce, connected to vabc and ve. Again, the (now redundant) edge (vα, vabc) is
left untouched, avoiding its deletion.

6.3 Further optimizations

The reduction of the additional tokens introduced to accommodate resource pur-
chase could leverage further optimizations, which we illustrate in the remainder
of this section.

– Remove the assumption of having a node representing the capabil-
ity list of each customer. The two strategies we have illustrated build on
the inclusion in the hierarchy of a vertex representing the capability list of
the consumers. This requires the creation of a new vertex, or the relabeling
of an existing one, at each purchase of a resource. Removing this assump-
tion may reduce the number of tokens that need to be created to manage a
purchase operation. To illustrate, consider a consumer c who had purchased
a set of resources, and suppose she is now purchasing a set R of resources.
Suppose that the key derivation structure already includes a vertex for R.
In principle, to enforce such purchase, it could be sufficient add an edge
to the structure linking vc to vR , hence requiring the insertion of a single
token in the catalog. Requiring to have, in the structure, vertex vcap(c)∪R
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Fig. 11. Evolution of the key derivation hierarchy in Figure 4 removing the assumption
of having all capability vertices

would instead imply the insertion of at least two edges (hence two tokens):
one connecting vc to vcap(c)∪R , one connecting vcap(c)∪R to vR . Figure 11
illustrates the key derivation structure obtained, starting from the struc-
ture in Figure 4 and managing the purchases in Figure 10, according to this
optimization strategy. In particular, the purchase of e by α is enforced by
connecting vα directly to ve, saving 3 tokens w.r.t. Figure 10. Note that we
did not manage the purchase of a and b by β and of b and c by γ connecting
directly their vertices to the resources’ vertices, since this would not provide
any cost reduction.

– Manage purchases in batch. The two strategies we have illustrated as-
sume that the owner manages each request, independently from other ones,
as soon as it is submitted by a consumer. However, it can be noted that
the combined management of multiple requests together may enable consid-
erable benefits. A first intuitive advantage relates to allowing the owner to
be not available all the time for managing resource purchase: in agreement
with the consumers (and possibly with adjustments to the reward to be paid
for the resources), the owner may opt for a periodic (e.g., daily, or after a
certain number of requests have been submitted) re-organization of the key
derivation structure. Also, when some requests by different consumers in a
batch relate to the same resources, there can be a saving in the number of
tokens needed to accommodate them. To illustrate, consider the four con-
sumers and five resources of our running example, and suppose a sequence
of access requests such that, starting from the structure in Figure 4, i) a

is requested by β, ii) c is requested by γ, iii) b is requested by β, iv) e is
requested by α, and v) b is requested by γ. Figure 12(a) illustrates the key
derivation structure obtained managing the sequence in the order, updating
the structure at every request. Figure 12(b) illustrates the key derivation
structure obtained managing the same purchases in batch. While the first
strategy implies the addition of 8 tokens, the second one requires only 6
additional tokens (note that, for readability, in these structures of Figure 12



20 Sara Foresti and Giovanni Livraga

a b c d e

β

γ

α
abc

abce

abcde

δ

a b c d e

α β

γ

δ
abc cde

abce

abcde

(a) (b)

Fig. 12. Evolution of the key derivation hierarchy in Figure 4 managing purchases in
order (a) and in batch (b)

we did not report the tokens that became redundant due to the enforcement
of the new access grants).

– Add additional vertices. A third possibility aiming at further reducing
the number of additional tokens can leverage the observation that the in-
sertion of additional nodes referring to sets of resources at a certain point
in time may reduce the number of tokens that will be needed in the future,
to accommodate future requests. The presence of a vertex in the structure
representing a set R of resources could be profitably used for accommodating
another purchase for a superset of R, with a saving in the number of tokens.
Intuitively, if a set R′ ⊃ R of resources is acquired by at least two differ-
ent consumers, the presence of R in the structure can reduce the number
of tokens needed to accommodate such requests. A possible strategy follow-
ing this intuition is to materialize (i.e., create and insert into the structure)
the vertex representing the set R of resources acquired by a consumer. The
data owner clearly pays an additional token for inserting R, but she may
experience a saving in the future. To illustrate, consider the key derivation
structure in Figure 4. To enforce the purchase of resources a and b by β,
the owner might materialize a vertex vab (though it does not correspond to
any capability list). Suppose that, after some time, also consumers δ and ε
request access to these resources. Having vab in the structure, it is sufficient
to insert a token from vabd to vab for δ, and from vε to vab for ε, saving on the
number of tokens inserted to manage the three purchases (7 tokens instead
of 9 tokens). Figure 13 illustrates the resulting key derivation structure.

The optimizations illustrated above, while helping in further reducing the
number of additional tokens, require analysis to balance the benefits against
some complications they entail. In particular, for the first strategy, we note that
the availability of vertices representing groups of resources in the structure can be
beneficial to accommodate future requests (possibly by other consumers) which
can be enforced leveraging such vertices. This reasoning clearly applies also to
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Fig. 13. Evolution of the key derivation hierarchy in Figure 4 inserting additional
vertices

vertices for capability lists. Removing the assumption of having them in the
hierarchy can be beneficial to enforce a specific purchase, but may result –in the
long run– in additional tokens to be then added to accommodate future requests.
Also, if adopted from initialization time (i.e., from the very first request), it
creates a structure with vertices for consumers and for single resources, resulting
in a bipartite graph where each consumer c is directly connected by |cap(c)|
edges (with an equal number of tokens in the catalog) to each resource in her
capability list. For the second strategy (managing batches of purchases), it can
clearly help in optimizing the key derivation structure, but brings the inevitable
drawback of introducing delays in making resources available to consumers. As
for the last strategy, additional vertices can be beneficial if they can be used
to accommodate future requests, which requires some analysis by the owner to
forecast, in a reliable way, future requests.

7 Related Work

The adoption of selective encryption for enforcing access restrictions in digital
data markets, coupled with smart contracts deployed on a blockchain, has first
been proposed in [6]. Our solution builds on this proposal and on the use of
selective encryption and key derivation for enabling data owners to maintain
control over their resources in the data market to propose different optimization
strategies for effectively updating the key derivation structure enforcing new ac-
cess restrictions. A preliminary version of this work appeared in [8], which is here
extended with more complete and revised algorithms, and enhanced discussions
on the possible strategies that can be adopted along with their pros and cons.

The adoption of selective encryption, possibly combined with key derivation,
has been widely adopted as a means for protecting data in outsourcing scenarios,
which are characterized by data owners storing their resources on the premises
of non fully trusted (cloud) providers (e.g., [2, 4, 5]), and which would benefit
from data self-enforcing access restrictions through an encryption layer. These
approaches however operate in a different scenario and aim at enforcing a (quite
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static) authorization policy defined by the data owner. The key derivation hi-
erarchy is organized to model the access control lists of resources (i.e., nodes
represent groups of users), in contrast to capability lists. Changes in the autho-
rization policy can imply both grant and revoke of privileges as decided by the
data owner, who is interested in limiting her intervention to enforce policy up-
dates. Also, they do not consider the peculiarities of digital data markets, such
as the payment of rewards to the owner, nor the integration with blockchain and
smart contracts.

Other lines of work close to ours are related to the adoption of blockchain
and smart contracts for data management and access control (e.g., [7, 9–17]).
These approaches are however complementary to ours, as they do not consider
selective encryption and key derivation for enforcing access restrictions to traded
resources or do not consider the peculiarities of data markets.

8 Conclusions

We investigated the problem of maintaining owners in control over their data
when shared and traded in digital data markets through selective owner-side en-
cryption and smart contracts on a blockchain. We proposed different approaches
for enforcing selective access restrictions by properly modifying the key deriva-
tion structure and the catalog of tokens used to distribute keys to authorized
subjects. Our strategies pursue different optimization criteria that suit the pe-
culiarities of the digital data market scenario, and aim at reducing the size of
the token catalog to ensure fast token retrieval, and at reducing the tokens to be
updated for enforcing new access requests to reduce the costs caused by update
operations on the blockchain. We also proposed additional considerations that
may be employed for further reducing the number of tokens necessary to enforce
access restrictions.
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