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Abstract. Today’s society is witnessing not only an evergrowing depen-
dency on data, but also an increasingly pervasiveness of related analytics
and machine learning applications. From business to leisure, the avail-
ability of services providing answers to questions brings great benefits in
diverse domains. On the other side of the coin, the need to provide input
data that the services need to compute a response. However, some data
may be considered sensitive or confidential and users would legitimately
be reluctant to release them to third parties.

Considering classification tasks in machine learning applications, we in-
troduce our PriSM (Privacy-friendly Support vector Machine) approach
for computing a privacy-friendly model. PriSM anticipates the training
phase of the classifier with a phase for discovering correlations among at-
tributes that can indirectly expose sensitive information. It then trains
the classifier excluding from consideration not only sensitive attributes
but also other sets of attributes that have been learned as correlated to
them. The result is a privacy-friendly classifier that does not require any
of such information as input from the users. Our experimental evaluation
on both synthetic and real-world datasets confirms the effectiveness of
PriSM in protecting privacy while maintaining classification accuracy.

Keywords: PriSM, privacy-friendly classifier, sensitive attribute, sensi-
tive correlation

1 Introduction

In machine learning, data classification is a method where a model tries to pre-
dict the correct label of a given input data. The model learns to predict labels
during a training phase, where a statistical relationship between attribute val-
ues and labels is identified by analyzing a large number of samples with known
attributes and labels. After training the model (classifier) for prediction, with
the attribute values of a user as input the model generates a corresponding label
as output. Clearly, the more the data available the more accurate the classifica-
tion, and a data-hungry approach would try to employ all available attributes
for classification, which in turn will require users of the classifier application to
provide input for all such attributes.
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In this paper, we consider the problem of building, from a training dataset,
a classifier that can be made available to third parties and that end users can
use for classifying their data. In this context, some attributes may be considered
sensitive (or company-confidential for business application scenarios) and users
of the application would not be willing to disclose them, hence a privacy-friendly
classifier should not assume their availability and therefore sensitive attributes
should also not be used in the training phase so that classification does not
depend on them. As a motivating example, consider a medical center that has
information about patients and aims at releasing a classifier that people can
use at home to have suggestions on suitable physical activities to improve their
fitness. The classifier is not run by the medical center but offered through an
external provider. The set of attributes in the medical dataset includes various
information about the patients. While some of the attributes are not considered
sensitive (e.g., age), others are to be considered sensitive (e.g., a disease) and
their values should remain confidential to the provider (i.e., the classifier should
not require them). If the classification model does not depend on an attribute
(e.g., either because it is irrelevant or because it has been artificially excluded),
the corresponding value is not required for performing the prediction on the
label. Note that, excluding sensitive information from the training process not
only enables producing a classifier that does not require it for prediction but also
ensures that the model released to the external provider does not leak sensitive
information from the training data. A naive approach to enforce such protection
would be to simply discard sensitive attributes from the dataset before training
and hence ignore them all throughout. However, such an approach would still be
exposed to improper sensitive information leakage through data dependencies
and correlations. As a matter of fact, values of the sensitive attributes may
be indirectly leaked by other attributes that - individually or in combination -
can convey information on sensitive attributes. For instance, a disease (sensitive
attribute) may be indirectly exposed by the values of medicine prescriptions
(the cure) or by a combination of values of some physical parameters. While
some data dependencies, such as the ones just mentioned, may be known, others
may be hidden in the data and a truly privacy-friendly approach should ensure
protection even with respect to them (in fact, the external provider servicing the
application to the user can employ a classification process at their side as well).

Our approach, called PriSM (for Privacy-friendly Support vector Machine),
addresses this problem by excluding from the training process sensitive attributes
as well as attributes that may leak information on them. More precisely, PriSM
first learns correlations of other attributes in the dataset with sensitive at-
tributes. It then restricts the training process forcing the classifier to exclude
from consideration not only the sensitive attributes but also sets of attributes
that can leak them. It does so while, at the same time, minimizing the effect
of such protection on the correctness of the classification. Even more, PriSM
accounts for the fact that what can be considered sensitive are, in some cases,
only specific values. For instance, while a disease like f1u may be considered
non problematic, values of other rarer or discriminatory diseases need strong
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protection. In learning correlations for attributes for which only some values are
critical, we specifically address correlations with respect to such critical values so
to find those correlations that are problematic (in contrast to any correlation).
This notwithstanding the fact that the sensitive attribute is to be excluded in
its entirety in training the classifier.

Figure 1 illustrates the overall scenario of our approach. The training phase
is performed within the trusted environment under the data owner control, and
hence with visibility of the whole dataset. The result is a classifier to be released
to an external environment and made available to users. Users can input their
data and receive a response as predicted by the classifier.

The remainder of the paper is organized as follows. Section 2 presents the
main concepts and the formulation of the problem introducing our PriSM ap-
proach to compute a privacy-friendly classifier. Sections 3 and 4 describe the two
phases of PriSM, discovering correlations among attributes in the dataset and
then training the classifier to exclude from consideration sensitive attributes as
well as other sets of attributes that have been learned as correlated to them.
Section 5 presents our experimental evaluation confirming the effectiveness of
PriSM in protecting privacy while minimizing the impact on the quality of the
classification. Section 6 discusses related works. Finally, Section 7 presents our
conclusions. Appendix A reports theorems proving the correctness of PriSM.

2 PriSM

For concreteness, we assume a support vector machine as a classifier. We note,
however, that our approach can be extended to more general classification prob-
lems and to other data analytics tasks (e.g., regression tasks). Also, we assume
a single sensitive attribute (which can be sensitive in its entirety or for which
only some values may be defined as critical), and a binary classification problem,
that is, the classification (label) attribute has domain in {+1,—1}.

The training dataset is modeled as a relational table r defined over schema
R(A,s,l), where A = {a1,...,a,} is a set of attributes other than the sensitive
attribute s and the label attribute /. Training a classifier on r for predicting [
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(a) P ={a1,a2,as} (b) P ={ai,a3} (c) P ={a1,a2}

Fig.2: An example of linear classifier in a 3-dimensional space (a) and of the
projection of points in the 3D space over two bi-dimensional spaces (b)-(c)

means learning from the tuples in r» how the value of | can be predicted based
on the values of the other attributes in a tuple (i.e., learning the relationships
between the values of the attributes in R\ {l} and known labels in a training
dataset). Assuming to represent the projection of tuples in r over R\ {l} as
points in a |R\ {/}|-dimensional space, the training phase of a support vector
machine classifier finds a hyperplane that well separates the points with positive
(4+1) from the points with negative (—1) label, corresponding to the two classes.
The predicted label will depend on the side of the hyperplane where the point
representing the user’s data falls in the multi-dimensional space. For instance,
Figure 2(a) illustrates a hyperplane in a 3-dimensional space that well separates
positive (filled circles) from negative (empty circles) points.

Our goal is to ensure the classifier to be privacy-friendly, and perform predic-
tions based only on a subset P of attributes in R\{/} that does not include the
sensitive attribute nor other attributes that can leak its values (or those values
specified as critical for it).

PriSM works in two phases: the first phase identifies sensitive correlations of
other attributes with the sensitive attribute; the second phase trains the classifier
in a controlled way to restrict the choice of predictor attributes so that privacy
is respected, while minimizing the impact on the quality of the classifier. More
precisely, the first phase of PriSM learns from the training dataset the correlations
among the other attributes A and the sensitive attribute s, meaning the sets of
attributes that can well predict the sensitive attribute (we will elaborate more
on this in Section 3). We note that if a set X of attributes is correlated with
s, denoted X~vs, so it is clearly any set Y O X. Also, blocking an inference
channel from X to s, forbidding the classifier to use all the attributes in X as
predictor attributes, trivially blocks the inference channel from any ¥ O X to
s. We are therefore interested in the identification of a set of minimal sensitive
correlations for r, as formally captured by the following definition.

Definition 1 (Set of minimal sensitive correlations). Let R(A,s,l) be a
relation schema, with s the sensitive attribute and [ the label attribute. The set
of minimal sensitive correlations for s is a set X of subsets of A such that: 1)
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In the definition, the first two conditions ensure that X" includes only existing
correlations (Condition 1) and that all correlations are captured (Condition 2).
Condition 3 ensures that only minimal correlations are explicitly represented.
Besides correlations learned from the training dataset, X can also include ad-
ditional (minimal) correlations specified by the data owner [8]. Given a set of
minimal sensitive correlations for a relation R, a classifier is said to be privacy-
friendly if the set of attributes used for classification does not include the sen-
sitive attribute s nor (in its entirety) any set X of attributes correlated to it.
This concept is formally captured by the following definition of privacy-friendly
classifier.

Definition 2 (Privacy-friendly classifier). Let R(A,s,l) be a relation
schema, with s the sensitive attribute and | the label attribute. A classifier C
for 1 using as predictor attributes a set P C R\ {l} of attributes is privacy-
friendly iff: s € P and VX C P, X + s.

In other words, a classifier is privacy-friendly if the set P of attributes that
it uses as predictor attributes does not include any set in X (formally, VX € X
X ¢ P). Note that for a set X of attributes not to be included in P it is sufficient
to exclude one (any) of its attributes. In fact, while on one hand excluding more
attributes can clearly increase privacy (the less the data, the less the potential
inference on the sensitive attribute) on the other hand removing more attributes
than needed (e.g., at the extreme, all the attributes involved in a correlation)
can affect severely the ability of the classifier to predict the value of the label
attribute, destroying any utility of the classifier. Since the set of correlations is
minimal, such an aggressive exclusion is not needed, as ensuring exclusion of one
attribute for each of the correlations would have the same effect. Additionally,
the same attribute can solve more than one correlation.

Clearly, there can be different choices for a set of predictors that satisfy
Definition 2, each with a different impact on the quality of the classifier, with
the usual dichotomy between privacy and utility. The challenge is to find a set
P of attributes that ensures privacy while minimizing the effect on the pre-
diction quality of the classifier. As an example, consider Figure 2(a), where
X={ay,a2,a3} is a sensitive correlation. If the set of selected predictor attributes
is P={a1,a3} (Figure 2(b)), it is possible to find a linear classifier that well sep-
arates the positive (filled circles) from the negative (empty circles) points. By
contrast, using P={aj,a2} (Figure 2(c)) would imply a higher misclassification
since the positive and negative points are not linearly separable.

Capturing the impact on the quality of a classifier C' in terms of misclassifi-
cation [16], denoted €(C), our problem is formalized as follows.

Problem 1 Given a training dataset v defined over relation schema R(A,s,1),
with s the sensitive attribute and I the label attribute, find a classifier C that
is privacy-friendly (Definition 2) and that minimizes misclassification. That is,
there is no classifier C' satisfying Definition 2 such that e(C") < ¢(C).
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PriSM solves the problem in two phases, first learning from the training
dataset the set of minimal correlations representing inference channels to the
sensitive attribute (Section 3), and then performing training of the classifier
controlling and restricting the choice of the set of predictor attributes (Section 4).

3 Sensitive Correlations Discovery

The first phase of our approach aims at learning sensitive correlations from
the training dataset, that is, correlations that may leak (critical) values of
the sensitive attribute. More formally, the first phase aims to find the set
X={Xi,...,X,,} of all minimal sensitive correlations X;~s, ¢ = 1,...,n. In
the following, we first discuss how to determine whether, for a given set X C A
of attributes, X~-s holds (Section 3.1), and then how to identify the set of
candidates X against which a correlation needs to be evaluated (Section 3.2).

3.1 Assessing Correlations

A set X of attributes is correlated with s if X is a good predictor for the values of
s. Intuitively, correlation between X and s can be evaluated running a classifier
(i.e., treating s as the label) and comparing some metrics on the classifier result
with a threshold value 7 (reflecting the accuracy of the prediction). Correlation
exists whenever the metrics evaluates above the threshold.

As already mentioned, our approach for discovering such correlations also
accounts for situations in which only specific values of the sensitive attribute are
considered critical. Notwithstanding the fact that the sensitive attribute is to be
discarded in its entirety in training (and prediction), considering those values
that are critical (if not all are) for s in discovering correlations enables to be
more precise in spotting those correlations that lead to a critical value, and not
just any value of the sensitive attribute. The identification of correlations for
the case where not all values of the sensitive attribute are critical deserves some
considerations. In particular, a question to solve is whether correlations should
be identified considering the set of critical values as a whole (single encoding)
or considering each critical value individually (multiple encoding). Intuitively,
considering the critical values of the sensitive attribute as a whole equates to
consider a binary label A for s, with A = +1 for all tuples ¢ such that t[s] is
critical; A = —1, otherwise. This enables to detect the set of attributes that are
correlated to the whole set of critical values. By contrast, considering the different
sensitive values separately implies considering a binary label A, for each critical
value v with A, = +1 for all tuples ¢ such that ¢t[s]=v; A, = —1, otherwise. We
note that neither of the two approaches subsumes the other since each of them
can discover sensitive correlations that would go undetected from the other. To
illustrate, consider two datasets where A={a;,a2} and, among the values of the
sensitive attribute, only « and « are critical. Figure 3 illustrates the tuples in
these two datasets as points in a bi-dimensional space where the dimensions
correspond to a; and as. In the bi-dimensional space, « and v are denoted with
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Fig.3: An example of two datasets with single (a) or multiple encoding (b)
together with their multidimensional representation

ared square (for &) and a red triangle (for v) while a green star denotes any other
value. Suppose that we aim at discovering whether there is a correlation between
X={a1,a2} and the sensitive attribute s. For the first dataset, the critical values
taken all together are linearly separable from the non-critical ones, while each
critical value singularly taken is not linearly separable from all the other values
(critical or not critical). Therefore, single encoding finds the correlation between
values in X and s while multiple encoding would not. On the contrary, for the
second dataset, the critical values taken all together are not linearly separable
from the non-critical ones, while each critical value singularly taken is linearly
separable from all the other values (critical or not critical). Therefore, multiple
encoding finds the correlation between values in X and s while single encoding
would not.

We further note that, while in principle correlations can be learned by running
a classifier (e.g., training an SVM having non-zero value only for the coefficients
of the hyperplane of the attributes in the set X to be evaluated), this would be
quite computationally intensive. We use instead correlation coefficients [16] as a
proxy for such evaluation. The specific correlation coefficient, or combination of
them, that can perform better may depend on the specific dataset. In preliminary
experiments we compared many options, finding Pearson’s correlation coefficient
and Cramer’s V test of statistical independence to be a good choice in general.

3.2 Finding Potential Candidates

To identify the candidate sets of attributes against which correlations need to be
evaluated, we leverage the natural monotonicity of sensitive correlations similarly
to Apriori strategy for frequent itemset mining [1], that is, if X~>s, then X'~>s
VX' C R such that X’ D X. We do so by performing different iterations over
variable ¢ corresponding to the cardinality of X (e.g., ¢ = 1 for evaluating
individual attributes at the first iteration), with each iteration determining the
set ). of candidates of cardinality c. Differently from Apriori, which generates
candidates for iteration ¢ by joining pairs of sets from iteration ¢ — 1 that have
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INPUT  dataset r on R(A,s,I)
sensitive attribute s (and critical values)
maximum cardinality of the set of predictor attributes pmaz
threshold correlation 7

OUTPUT set X of minimal sensitive correlations for s

MAIN
1. X =0
2: ¢: =0
3: repeat
4 ci=c+1
5: ifec=1
6 then let Vi be the set of all sets {a} s.t. a € A
7 else let Y. be the set of all sets Y with |Y| =¢

st. Y=, Xi€Q,withQC V.1, |Q|=c
for each Y € ). do
: if correlation(Y,s)> 7 /* correlation with single and/or multiple encoding */
10: then V. := Y. \ {YV}
11: X =xXU{Y}
12: until ¢ = pmaz oR |Y:|< ¢

© 00

Fig. 4: Procedure computing sensitive correlations

the first ¢ — 2 attributes in common, our algorithm considers as candidates for
iteration ¢ only those sets produced by the union of ¢ sets from iteration ¢ — 1.
For instance, assume at the end of iteration 2, Vs to include {a;, a;} and {a;, a.},
but not {a;,a.}, joining the two sets would produce as candidate to consider
{ai,a;,a,}. However, such a set cannot belong to X, since one of its subsets
already does and X is a minimal set (Definition 1). In fact, {a;,a.} ¢ Y, implies
that at least one between {a;} € X and {a,} € X holds. Our construction avoids
producing such candidates that would then be discarded for minimality, ensuring
to produce all and only candidates that are not a superset of sets already included
in X in a previous iteration (see Theorem 2 in the Appendix). The algorithm
assumes also a limit pmaz on the number of attributes in candidate sensitive
correlations, corresponding to the maximum number of predictor attributes used
by PriSM (see Section 4). The reason for such a limit is both efficiency, to limit
the iterations, as well as supporting a principle of parsimony for the number of
attributes to be used as predictors and hence requested as input to the users of
the application (clearly pmaz=| A| implies no limitation).

Figure 4 illustrates the procedure for computing the set of sensitive correla-
tions. Starting from the set ) of candidate correlations including one attribute
only (line 6), for each Y in ));, the algorithm verifies if Y'~s holds and, if this is
the case, it removes Y from Y; inserting Y into X (lines 9-11). After evaluating
all the singleton sets, )y will include only those attributes a such that {a}/s.
The algorithm then checks all the pairs in ) composed of attributes in )y, be-
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cause for any other pair X of attributes there exists an attribute a€X that has
been removed from Y; (and included in X), therefore X does not need to be
inserted into X'. The algorithm evaluates candidate sets Y of increasing size c.
For each value of ¢, the check is limited to the candidate correlations Y including
¢ attributes, obtained as the union of ¢ sets in V._1 (line 7). This restricts Y.
to the sets Y such that all the subsets of Y of cardinality ¢ — 1 belong to V._1.
Indeed, if at least a subset X of Y does not appear in ). 1, it means that a
correlation X~~s dominating Y~-s has already been learned by the algorithm.
The algorithm stops when ¢ reaches pmax attributes (larger correlations would
for sure not be exposed by a classifier using at most pmaz predictors), or when
the candidate set of correlations including ¢ attributes has less than ¢ + 1 sub-
sets of attributes (any set of ¢ + 1 attributes would not have all its subsets of ¢
attributes in Y., hence ). 1 would be empty).

The output of the first phase is then the set X of minimal correlations among
attributes A in the dataset and the sensitive attribute. Note that this phase does
not enforce any choice (or removal) of attributes from the classifier. It is for the
second phase (next section) to determine the optimal set of attributes that does
not include in its entirety any set in X and optimizes label prediction.

4 Classifier Training

The second phase of our approach consists in simultaneously selecting the set of
attributes and training a classifier, thus solving Problem 1. While the problem
applies to a general classification task, and the first phase (Section 3) is agnostic
with respect to the classifier, the execution of this second phase depends on the
classifier to be considered. As already noted in the previous sections, we consider
classification with a Support Vector Machine (SVM).

We then design a variant of SVM that controls and restricts predictor at-
tributes selection. In the following, we use boldface for denoting vectors. Sim-
ilarly to classical SVMs, each tuple ¢ in the training dataset r is modeled as
a point in a multi-dimensional space, having a dimension for each attribute in
R\ {l}. The classification model is geometrically represented as a hyperplane A
in the multidimensional space. Training a SVM then corresponds to learn the
coefficients weRI#I=1 and beR of a hyperplane H= {t € RIFI-1: w .t = b},
with t being the vector of values of tuple ¢[R \ {l}]€r. The hyperplane must
separate well (i.e., place on different sides) points with positive (¢[]] = +1) and
negative (¢[I] = —1) label in the training dataset. Each coefficient w[a], with
a € R\ {l}, used in the definition of H represents the slope of the hyperplane in
the dimension that corresponds to attribute a. Since finding a hyperplane that
separates positive from negative points might not always be possible (e.g., when
the positive and negative classes are not linearly separable), our training phase
relies on soft margin [6]. Intuitively, it considers a misclassification penalty when
maximizing the distance between the positive and negative classes.

Differently from standard SVMs, our problem has a combinatorial nature.
A straightforward adaptation would require to enumerate all possible subsets
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pla] € {0,1} Va € R\ {l} (9)

Fig.5: Mixed Integer Programming formulation of the PriSM training problem

of predictors, testing each of them for sensitive correlations, and solve a SVM
training problem for the remaining attributes. Such an approach, having a time
complexity exponential in the number of predictors, would be computationally
infeasible. We solve Problem 1 by extending the classical formulation of the SVM
training problem as an optimization problem, formulated as a Mixed Integer
Program [27] imposing privacy-friendliness (the predictors cannot include the
sensitive attribute nor any set correlated to it) and parsimony (use at most
pmaz attributes as predictors) as model constraints. Figure 5 illustrates the
formalization of the optimization problem, where the variables are as follows.

pmaz € [1,|R]): input parameter representing the maximum number of pre-
dictors that can be used by the classifier.

m€R: input parameter representing the relative penalty for misclassification
errors (higher values correspond to a smaller probability of misclassification,
at the price of smaller separation between positive and negative classes).
wUYeRIBI-1 wLeRIBI-1: jnput parameters representing the upper and lower
bounds on the values of w for each attribute in R\ {I} (which represent the
maximum and minimum slope of the hyperplane allowed in the correspond-
ing direction). They forbid the degenerate choice of vertical hyperplanes,
and improve the numerical stability of our optimization procedure (narrow
bounds speed up convergence, looser ones reduce the risk of cutting off so-
lutions that are potentially optimal [2]).

t;€RIFI=1 t[l]e{—1,+1}: input vector of values for attributes in R\ {I} and
label, respectively, for each tuple ¢;€r in the training dataset.

pe{0, 1}EI=1: resulting binary variables modeling the selection (value 1) or
exclusion (value 0) of each attribute a€ R\ {I} from the set of predictors.
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— weRIEI=1 peR: resulting coefficients of the hyperplane;
— z€RI"l: resulting misclassification error for each tuple ter.

Equation 1 is the classical soft-margin optimization function used in training
SVM classifiers, and Equations 2-4 correspond to classical constraints of the
definition of the SVM, when formulated as a Mixed Integer Linear Program.
The additional constraints (Equations 5-9), enforce instead restrictions which
are specific for our PriSM problem. The semantics of the constraints is as follows.

(2) models the possible error z in classification using the trained classifier. More
precisely, (w - t; — b) has a positive value if the predicted label for ¢; is
+1; it has a negative value if the predicted label is —1. The product between
(w-t;—0b) and the correct label ¢;[I] is positive if the predicted class is correct;
it is negative otherwise. Therefore, z[t;] is 0 if the prediction is correct (it
cannot be a negative number, see (3)); it has a positive value measuring the
misclassification error (i.e., the distance from the hyperplane), otherwise.

(3) limits the values of z to be non-negative numbers. This ensures to properly
consider the penalty of misclassification in the objective function (i.e., to
prevent positive and negative misclassifications that compensate each other).

(4) specifies the domain of coefficients w and b to be R.

(5) constrains the values of the slope coefficient w|a] to be in the range
[wL|a],wY[a]] for each attribute a€ R\ {l} selected as predictor (i.e., pla]=1);
at the same time it forces w[a]=0 when the attribute is not selected (i.e.,
plal=0).

(6) limits the number of predictors to be at most pmaz by setting the sum for
binary variables pla], with a€R \ {l}, to be lower than or equal to pmazx.

(7) excludes the sensitive attribute from the set of predictors by setting p[s] to
0. Note that this also implies constraining w|s| to be equal to 0 (see (5)).

(8) imposes the number of attributes included in the set of predictors from each
set X€X to be smaller than the cardinality of X. This ensures that, for
each X, at least one attribute is excluded from the set of predictors. The
constraint forces the solution to have at least one of the binary variables
pla], with a€X, set to 0 thus making their sum lower than the cardinality of
X. Like for s, p[a] = 0 implies w[a] = 0, meaning the attribute is excluded
from consideration.

(9) restricts the domain of p to be {0,1} (0 being exclusion, and 1 inclusion).

Intuitively, the objective function (Equation 1) aims at balancing two needs: i)
maximize separation between the positive and the negative class, and i) mini-
mize misclassifications. To maximize separation between classes, the SVM max-
imizes the distance from the hyperplane of the nearest positive point and the
nearest negative point in the training dataset. This is guaranteed by the first
term in the objective function. The second term instead represents the misclas-
sification penalty, obtained by multiplying the overall misclassification error of
tuples in the training set by coefficient 7. PriSM then offers a global optimality
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guarantee to choose a given number of predictors containing no sensitive cor-
relations, minimizing misclassification error (see Theorem 2 in the Appendix).
We note that, in general, finding effective formulations of hard problems as ours
is far from trivial [2]. Our model, however, enjoys two properties that permit
to keep training times under control: i) the number of binary variables is linear
in the number of predictors, independently from the number of tuples in the
dataset; i) when integrality conditions on these (few) binary variables are re-
laxed, we obtain a convex quadratic model, which allows for effective resolution
algorithms. This is confirmed by our experimental results, where training times
were always of few seconds with about one minute at most on datasets with 16
attributes and more than 40,000 tuples.

5 Experimental Results

We performed a series of experiments to assess the effectiveness of PriSM in
training a classifier that provides high accuracy in the prediction of the label
attribute, without revealing critical values of the sensitive attribute.

5.1 Experimental Setting and Datasets

We implemented PriSM in python3, using the python API of Gurobi 10.1 to
solve the Mixed Integer Programming formulation of PriSM in Figure 5 with a
branch-and-cut algorithm [27]. We assumed correlations of at most 5 attributes
each, and used as correlation coefficient the Cramer’s V test with p-value 0.05
and threshold 7 to either 0.02 or 0.2 (depending on the dataset). These thresholds
ensure that no subset of predictors can be selected, unless it is independent from
the sensitive attribute with very high probability or its association strength is
statistically very low. Based on preliminary testing, we set w9[a] = 1000 and
wl[a] = —1000 for all attributes in R\{l}. These values are large enough for not
affecting optimality while enhancing computational performance [2]. The results
reported in the following have been obtained using a PC equipped with an Intel
Core i5-1135G7 at 2.40 GHz and 32GB of memory.

For assessing the effectiveness of PriSM, we considered a synthetic dataset
and a real-world dataset. We generated the synthetic dataset as a stress-test of
PriSM to enable us to control all the features that might affect our approach.! It
contains 40,000 tuples and is defined over a relational schema with 15 attributes,
including 13 candidate predictors defined over a ternary domain, a binary sen-
sitive attribute, and a binary label attribute. The frequency distributions of
the two values of the sensitive attribute and of the two values of the label at-
tribute are balanced (52% and 50% occurrences of positive values, respectively)
and all the attributes have an impact on the classification task. We selected,
as real-world dataset, the binarized version of Bank Marketing dataset? that

! https://doi.org/10.13130/RD_ UNIMI/Y4LVV5
2 https://archive.ics.uci.edu/dataset /222 /bank-+marketing
Binarized version available at https://gitlab.tudelft.nl/jgmvanderlinde/dpf [17]
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well represents the heterogeneity of real-world data. The dataset collects infor-
mation about a marketing campaign of a Portuguese bank. It includes 45,211
tuples and is defined over a relational schema including 16 attributes (4 binary,
6 categorical, 6 numerical). The binarized version has been obtained perform-
ing a one-hot encoding on all the attributes, after proper binning of numerical
attributes. We consider attribute default, defined over a binary domain and
representing whether the customer has credits in default, as sensitive. The label
is attribute class defined over a binary domain and indicating whether the cus-
tomer subscribed a bank term deposit. The frequency distributions of the two
values of the sensitive attribute and of the two values of the label are highly
unbalanced (more than 98% of occurrences of the non-critical value for attribute
default, and 88% of 0 for attribute class).

5.2 Results

To assess the effectiveness of our PriSM approach, we evaluated: i) the quality
of classification results when introducing constraints to protect critical values of
the sensitive attribute, and i) the ability to reconstruct critical values of the
sensitive attribute starting from the predictor attribute used by the classifier.
To this purpose, we compared the results obtained using three classifiers:

— SVM: a classical SVM classifier (considering Constraints (2)—(5) in Figure 5),
which represents our baseline, to assess the impact of protecting against
(direct or indirect) release of sensitive information on classification results;

— Parsimony: a parsimonious SVM classifier that limits the number of pre-
dictor attributes used by the classifier to at most pmaz (considering Con-
straints (2)—(6) in Figure 5), to assess the impact of the parsimony require-
ment on classification results;

— PriSM: our privacy-friendly classifier (considering all the constraints in Fig-
ure 5).

Accuracy. Limiting the number of predictors and constraining the choice of the
same to prevent disclosure of sensitive attributes (and of correlations that might
reveal them) is expected to reduce the ability of the classifier to predict the
label of data items. Figure 6 compares the accuracy of PriSM and of Parsimony
with the baseline accuracy obtained using a traditional SVM (black horizon-
tal line), varying the maximum number pmaz of predictor attributes used by
PriSM and Parsimony from 3 to 12. We did not consider values higher than 12
since for higher values Parsimony produces the same solutions as SVM (parsi-
mony requirement was not binding anymore). Also, Constraint 8 (preventing
the classifier from using a set of predictors including sensitive correlations) in
PriSM formulation does not permit to select more than 9 predictor attributes. In
other words, setting pmax > 9 produces the same solution as pmax = 9. (Note
that such a theoretical limit can be discovered computing a hitting set on the
set of minimal sensitive correlations, avoiding unnecessary runs of the training
phase.) As expected, the accuracy of PriSM grows with the maximum number of
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Fig. 6: Accuracy of the classifier varying pmax

predictors that the classifier can use. As visible from the figure, protecting the
sensitive attribute with PriSM has a limited impact on accuracy, both compared
with the results of the SVM baseline and with the ones obtained by Parsimony.
Indeed, allowing the classifier to use pmaz > 8 predictors, PriSM loses only 2%
accuracy with respect to SVM baseline (Parsimony reaches the same gap with 5
predictors) for both the synthetic and Bank Marketing datasets.

Protection. While noting that PriSM guarantees that no set of attributes with
a correlation higher than 7 with the sensitive attribute is used by the trained
classifier, we empirically analyze the ability of an adversary to predict s based
on the predictor attributes used by the classifier produced by PriSM. We then
consider a worst case scenario and assume that the adversary trains a classifi-
cation model for predicting the sensitive attribute values using a dataset having
exactly the same distribution of values as the one used by PriSM. In our experi-
ments, this translates in using the same training set for both PriSM and for the
adversary model. For simulating the adversary predicting the sensitive attribute,
we use v-SVC (which is a reliable classification model [22]) trained with a nested
cross validation, performing hyperparameters tuning in an inner loop.

Figure 7(a) compares the accuracy of PriSM, Parsimony, and SVM in predict-
ing the sensitive attribute values of the synthetic dataset, varying pmax from 3
to 12. As visible from the figure, PriSM is much more effective than SVM and
Parsimony in protecting the sensitive attribute values. In fact, the accuracy of
the adversary classifier remains below 58% with PriSM, while it is about 72%
with the SVM. Also with Parsimony the sensitive attribute is gradually more
exposed as pmazx increases, eventually reaching a risk similar to that of SVM. It
is interesting to note that, with PriSM, the accuracy of the adversary remains
close to the theoretical accuracy lower bound given by the class frequency (52%
in our dataset).

Figure 7(b) compares the Matthew’s Correlation Coefficient (MCC) of PriSM,
Parsimony, and SVM in predicting the sensitive attribute values of the Bank
Marketing dataset, varying pmax from 3 to 12. We decided to use the MCC
for the Bank Marketing dataset since the critical value is very unfrequent (only
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2% of the tuples). Similarly to what observed on the synthetic dataset, PriSM
protects well the sensitive attribute: the MCC score is stable and as low as 0.05
(against 0.20 for SVM). The behavior of Parsimony is instead peculiar: the MCC
remains around 0.05 (similar to PriSM) until pmax=8, and suddenly worsens
at pmax=9 reaching the MCC of the SVM. From a more in depth analysis of
results, we noticed that this change is due to a strong reduction in the number of
false positives, which increases the precision of the adversary model in guessing
a positive data item from about 1 case over 50 (which, in practice, approaches a
random guess), to about 1 case over 10. This is due to the use by Parsimony of
an additional predictor that, combined with the ones already taken, implies the
set of predictors to contain a sensitive correlation. Note that in our experiments
this happens with pmax = 9, but with other training rounds and other cross
validation splittings it could happen for lower values of pmazx.

The experimental results confirm that PriSM maintains high classification
accuracy, while protecting the sensitive attribute and its critical values from
indirect disclosure through sensitive correlations.

6 Related Work

Several works have addressed the problem of protecting privacy of data in ma-
chine learning scenarios (e.g., [20,21,28]). Indeed, sensitive data in the train-
ing datasets can be exposed to various inference attacks that could violate
data privacy (e.g., [7,11,13,15,23,29]). To block such attacks, different privacy-
preserving machine learning algorithms have been proposed. Each of these so-
lutions operates at a specific step of the machine learning process (i.e., data
acquisition, training, and prediction), with the goal of guaranteeing individuals’
privacy and preventing data leakage (e.g., [12]).

Privacy-preserving machine learning approaches follow two main strategies: i)
protect the dataset (e.g., using anonymization approaches [9]) before using it for
training the machine learning model; and i) train the machine learning model
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using a privacy-preserving approach (e.g., a differentially private training [10,
14]). The adoption of anonymization techniques for protecting the training set,
while effective in protecting the privacy of the dataset, clearly reduces the accu-
racy of the machine learning model trained over it. Therefore, recent proposals
have focused on the analysis of such an impact on accuracy and of the provided
privacy guarantees (e.g., [4,24]). Other proposals instead addressed the prob-
lem of developing utility-aware anonymization techniques that protect data and,
at the same time, preserve as much as possible utility for the data analytics
working downstream (e.g., [3]). An alternative to anonymization for protecting
training datasets is represented by homomorphic encryption that, together with
secure multi-party computation, can be used to protect the training dataset
while used to train a machine learning model (e.g., [5]). Cryptographic-based
approaches, however, typically imply higher computational overhead and loss of
precision [12]. The problem of protecting training datasets including confiden-
tial information requires particular attention when different parties contribute
with their data to the training phase. Indeed, while aiming at collaboration,
each data owner also needs to keep their dataset confidential to the other own-
ers (e.g., [19,26]). PriSM differs from all these proposals since it does not use
privacy-preserving techniques neither on the training dataset nor on the machine
learning model. The focus is on protecting user’s privacy during the prediction
phase, ensuring that the machine learning model does not ask (directly or indi-
rectly) any sensitive information as input to provide an accurate prediction.

Related lines of work addressed the problems of overlearning and of fair
learning. Overlearning happens when a machine learning model unintentionally
learns sensitive attributes (which are not even correlated with the target label)
at inference time [25]. Fair learning instead is concerned with producing accu-
rate machine learning models without learning bias like, for instance, in case
of unbalance among classes (e.g., [18]). While related, these lines of work are
orthogonal to the problem addressed in this paper.

7 Conclusions

We proposed an approach, PriSM, for generating a privacy-friendly classifier that
requires neither sensitive information nor information correlated with it for clas-
sifying user’s data. This goal is reached by first identifying sets of attributes that
could (indirectly) reveal the sensitive attribute, and then training the classifier
excluding the sensitive attribute as well as other sets of attributes that have
been learned as correlated to it. The formulation of the problem as a mixed
integer programming problem guarantees protection of the sensitive attribute
and misclassification minimization, keeping training times under control. The
experiments, performed over both a synthetic and a real-world datasets, confirm
that PriSM protects sensitive information also against inference channels due to
correlated information, minimizing impact on classification accuracy. The paper
leaves space for future works, including the consideration of different families of
classifiers (e.g., non linear classifiers) as well as other data analytics tasks.
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A Minimization of the Misclassification Error

Theorem 1 (Correctness of data correlation discovery). Given a training
dataset r defined over relation schema R(A, s,l), with s a sensitive attribute, a
set Vs of sensitive values in the domain of s, the maximum number pmax of
predictors used by the classifier, and a correlation threshold T, the procedure in
Figure 4 finds the minimal set X of correlations for s.

Proof. To prove that the procedure in Figure 4 computes the set X' of minimal
correlations for s, we separately prove the three conditions in Definition 1. Note
that we consider a monotone correlation function, that is, the correlation between
Y and s is higher than or equal to the correlation between X and s, VX C Y.
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Condition 1. We first prove that each set Y in X is a sensitive correlation. Since
a set Y is inserted into X only if the correlation between Y and s is above the
given threshold 7 (lines 9-11), all the sets Y in X are such that Y~s.

Condition 2. We prove that X captures all the sensitive correlations, either
directly or through a dominating correlation. To this purpose, we prove by in-
duction that, at the end of the repeat-until loop: i) Y. contains all the subsets
of A of cardinality ¢ that do not represent a sensitive correlation, and i) X
includes all the sensitive correlations with at most ¢ attributes.

For ¢ = 1 (base case of the induction), ) contains all the singleton sets of at-
tributes in A that do not represent a sensitive correlation for s. Similarly, X
contains all the singleton sets of attributes in A that represent a sensitive cor-
relation for s. Indeed, ), is initialized to the set of all singleton sets {a} with
a € A (line 6). The procedure then checks each set Y in ) and removes it from
Y1 (line 10) inserting it into X' (line 11) if the correlation between Y and s is
above threshold 7 (line 9).

Let us now assume that the hypothesis holds for ¢ — 1 with ¢ > 1, that is: 4)
Y._1 contains all subsets of A of cardinality ¢ — 1 that do not represent a sen-
sitive correlation, and i) X includes all the sensitive correlations with at most
c — 1 attributes. It is immediate to see that the procedure inserts into X only
sensitive correlations including c¢ attributes. In fact, the sets of attributes in ),
include ¢ attributes by construction (line 7) and Y is inserted into X only if the
correlation between Y and s is above threshold 7 (line 9). Similarly, at the end
of the repeat-until loop ). contains only subsets of ¢ attributes that do not
represent a sensitive correlation for s, because each set Y in ), representing a
sensitive correlation for s is removed from Y. (line 10). To prove that ). contains
all the subsets of interest (i.e., those subsets of A of cardinality ¢ that do not
represent a sensitive correlation), suppose, by contradiction, that there exists a
set Y C A of cardinality ¢ such that all its subsets do not represent sensitive
correlations, which does not belong to ). when generated at line 7. That would
imply that, at the beginning of the repeat-until loop, it has not been possible
to find ¢ subsets of YV including ¢ — 1 attributes in YV._1 (i.e., at least one of
the subsets of Y of cardinality ¢ — 1 does not belong to )J._1). Since, by the
induction hypothesis, Y._; contains all the subsets of attributes of cardinality
¢ — 1 that do not represent sensitive correlations, the missing subset of Y would
be a sensitive correlation, therefore also Y would represent a sensitive correla-
tion, thus leading to contradiction. Similarly, to prove that X includes all the
sensitive correlations with at most ¢ attributes, we start from the observation
that X includes all the sensitive correlations with at most ¢ — 1 attributes at
the beginning of the repeat-until loop by hypothesis. Let us assume, by con-
tradiction, the existence of a set Y of cardinality ¢ that represents a sensitive
correlation, which is not included in X’ at the end of the repeat-until loop.
This means that Y either has not been inserted into ). at line 7, or it has not
been removed from ). at line 10. Since Y represents a sensitive correlation, it
cannot be maintained in )/, since the condition at line 9 would be satisfied by Y.
If Y is not inserted into ). at line 7, it means that it does not have ¢ subsets of



20 Barbato, Ceselli, De Capitani di Vimercati, Foresti, Samarati

c—1 attributes each in ). _1, that is, that do no represent a sensitive correlation.
Since a set of ¢ attributes has exactly ¢ subsets of ¢—1 attributes, if not all these
subsets belong to )._1, there is at least a subset of Y representing a sensitive
correlation that, by induction hypothesis, already belongs to X'. Therefore, Y is
already represented in X.

Since the invariant holds for each value of ¢, it holds also for ¢ = pmax (and,
in the worst case, for ¢ = |A]), thus proving that X captures all the sensitive
correlations.

Condition 3. We prove that X’ does not include any sensitive correlation that is a
superset of another sensitive correlation in X. The satisfaction of this condition
follows by construction of sets ),.. As illustrated above, for Y to be included in
X, it must be generated as a candidate sensitive correlation as the union of ¢
sets of attributes of cardinality ¢ — 1 that do not represent sensitive correlations
(line 7). Therefore, the condition holds. ad

Theorem 2 (Correctness of PriSM). Given a training dataset r defined over
relation schema R(A, s,l), with s the sensitive attribute and [ the label attribute,
and the minimal set X of sensitive correlations for s, PriSM computes a privacy-
friendly classifier that minimizes misclassification (i.e., solves Problem 1).

Proof. Since any classifier computed as a solution to the Mixed Integer Pro-
gramming formulation of PriSM training problem satisfies all the constraints in
Figure 5, the classifier is privacy-friendly (Definition 2). Indeed, Constraint 7
excludes the sensitive attribute s from the set of predictors, and Constraint 8
excludes from the set of predictors at least one attribute for each sensitive corre-
lation Xe€X. In fact, Constraint 7 is satisfied only if p[s] is 0, and Constraint 8 is
satisfied only if p[a] is 0 for at least one attribute a in X, for each X€X'. Thanks
to Constraint 5, if pla]=0 then w|a|=0. Therefore, any solution to the Mixed
Integer Programming problem in Figure 5 is privacy-friendly (Definition 2).
Since the Mixed Integer Programming formulation of PriSM in Figure 5 de-
fines a binary variable pla] for each candidate predictor attribute in R\ {l},
it implicitly encodes all the (combinatorially many) possible choices of subsets
of R\ {l} as predictors. Constraint 6 limits to at most pmax the number of
attributes for which p[s]=1, and then the number of predictors. Solving the
problem in Figure 5 is then equivalent to (implicitly) explore all the possible
choices of predictors as subsets of R\ {l} of cardinality at most pmaz.
Relaxing integrality conditions on p variables, we obtain a continuous opti-
mization problem. Such a residual optimization problem has a quadratic convex
objective function (it is the sum of a linear function and a squared norm-2 term)
and linear constraints. It is therefore a convex optimization problem, which can
be solved to proven global optimality by means of many effective algorithms.
Branch-and-bound, branch-and-cut [27] or even more effective algorithms can
therefore be used to solve the problem in Figure 5 to proven global optimality,
in terms of both choice of predictors and final hyperplane. Since the objective
function of the formulation of PriSM in Figure 5 is the classical objective func-
tion of the Mixed Integer Programming formulation of the SVM problem, the
solutions to the problem in Figure 5 minimize misclassification. a



