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Abstract. Privacy requirements have an increasing impact on the real-
ization of modern applications. Technical considerations and many sig-
nificant commercial and legal regulations demand today that privacy
guarantees be provided whenever sensitive information is stored, pro-
cessed, or communicated to external parties. It is therefore crucial to
design solutions able to respond to this demand with a clear integration
strategy for existing applications and a consideration of the performance
impact of the protection measures.
In this paper we address this problem and propose a solution to enforce
privacy over data collections by combining data fragmentation with en-
cryption. The idea behind our approach is to use encryption as an un-
derlying (conveniently available) measure for making data unintelligible,
while exploiting fragmentation as a way to break sensitive associations
between information.
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1 Introduction

Information is today probably the most important and valued resource. Private
and governmental organizations are increasingly gathering vast amounts of data,
which are collected and maintained, and often include sensitive personally iden-
tifiable information. In such a scenario guaranteeing the privacy of the data,
be them stored in the system or communicated to external parties, becomes a
primary requirement.

Individuals, privacy advocates, and legislators are today putting more and
more attention on the support of privacy over collected information. Regulations
are increasingly being established responding to these demands, forcing organi-
zations to provide privacy guarantees over sensitive information when storing,
processing or sharing it with others. Most recent regulations (e.g., [2, 14]) require
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that specific categories of data (e.g., data disclosing health and sex life, or data
such as ZIP and date of birth that can be exploited to uniquely identify an in-
dividual) be either encrypted or kept separate from other personally identifiable
information (to prevent their association with specific individuals). Information
privacy guarantees may also derive from the need of preventing possible abuses
of critical information. For instance, the “Payment Card Industry (PCI) Data
Security Standard” [13] forces all the business organizations managing credit
card information (e.g., VISA and MasterCard) to apply encryption measures
when storing data. The standard also explicitly forbids the use of storage en-
cryption as natively offered by operating systems, requiring that access to the
encryption keys be separated from the operating system services managing user
identities and privileges.

This demand for encryption is luckily coupled today with the fact that the
realization of cryptographic functions presents increasingly lower costs in a com-
puter architecture, where the factor limiting system performances is typically
the capacity of the channels that transfer information within the system and
among separate systems. Cryptography then becomes an inexpensive tool that
supports the protection of privacy when storing or communicating information.

From a data access point of view, however, dealing with encrypted infor-
mation represents a burden since encryption makes it not always possible to
efficiently execute queries and evaluate conditions over the data. As a matter
of fact a straightforward approach to guarantee privacy to a collection of data
could consist in encrypting all the data. This technique is, for example, adopted
in the database outsourced scenario [5, 8], where a protective layer of encryption
is wrapped around sensitive data, thus counteracting outside attacks as well as
the curiosity from the server itself. The assumption underlying approaches ap-
plying such an encryption wrapper is that all the data are equally sensitive and
therefore encryption is a price to be paid to protect them. This assumption is
typically an overkill in many scenarious. As a matter of fact, in many situations
data are not sensitive per se; what is sensitive is their association with other
data. As a simple example, in a hospital the list of illnesses cured or the list
of patients could be made publicly available, while the association of specific
illnesses to individual patients is sensitive and must be protected. Hence, there
is no need to encrypt both illnesses and patients if there are alternative ways to
protect the association between them.

In this paper, we propose an approach that couples encryption together with
data fragmentation. We apply encryption only when explicitly demanded by the
privacy requirements. The combined use of encryption and data fragmentation
has first been proposed in the context of data outsourcing [1]. In this proposal,
privacy requirements are enforced by splitting information over two independent
database servers (so to break associations of sensitive information) and by en-
crypting information whenever necessary. While presenting an interesting idea,
the approach in [1] suffers from several limitations. The main limitation is that
the privacy relies on the complete absence of communication among the two
servers (which have to be completely unaware of each other). This assumption



is clearly too strong and difficult to enforce in real environments. A collusion
among the servers (or the users accessing them) easily breaches privacy. Also,
the assumption of two servers limits the number of associations that can be
solved by fragmenting data, often forcing the use of encryption.

In this paper, we propose an approach combining fragmentation and encryp-
tion that overcomes the above limitations. Our solution allows storing data on
a single server and minimizes the amount of data represented only in encrypted
format, therefore allowing for efficient query execution.

We frame our work in the context of relational databases. The reason for
this choice is that relational databases are by far the most common solution
for the management of the data subject of privacy regulations; also, they are
characterized by a clear data model and simple query language that facilitate the
design of a solution. We note, however, that our model could be easily adapted
to the protection of data represented with other data models (e.g., records in
files or XML documents).

Our work assumes that access to data is realized by an application that in-
cludes a compact trusted core, which is invoked every time there is the need
to access sensitive information (i.e., applying decryption or reconstructing as-
sociations by linking fragments). By contrast, the DBMS needs not be trusted,
since accessing single fragments or encrypted information does not expose to
any privacy breach. This is a considerable advantage over previous proposals,
developed, for example, in the data outsourcing scenario [5, 8].

The contribution of this paper is threefold. First, we introduce confidential-
ity constraints as a simple, yet powerful, way to capture privacy requirements.
Second, we provide a model formalizing the application of data fragmentation
and encryption, which captures properties related to the correct representation
of the data while minimizing encryption and fragmentation. Third, we propose
a heuristic algorithm for the concrete identification of a fragmentation solution
that satisfies the properties specified.

2 Confidentiality Constraints

We model, in a quite simple and powerful way, the privacy requirements through
confidentiality constraints, which are sets of attributes, as follows.

Definition 1 (Confidentiality constraint). Let A be a set of attributes, a
confidentiality constraint is a subset c ⊆ A.

The semantics of a confidentiality constraint c is that the (joint) visibility
of values of the attributes in c should be protected. When the constraint is
a singleton set, then the semantics is that the individual attribute must be
protected, that is, the list of the attribute values itself is confidential.

While simple, the definition above allows the expression of the different con-
fidentiality requirements that may need to be expressed, such as the following.

– The values assumed by some attributes are considered sensitive and therefore
cannot be stored in the clear . For instance, phone numbers or email addresses



can be considered sensitive values (even if not associated with any identifying
information).

– The association between values of given attributes is sensitive and therefore
should not be released . For instance, while the list of (names of) patients in
a hospital as well as the list of illnesses are by themselves not confidential,
the association of patient’s names with illnesses is considered sensitive.

Note that constraints specified on the association between attributes can
derive from different requirements, as they can correspond to explicit protection
of an association (as in the case of names and illnesses above) or to associations
that could cause inference on other sensitive information. As an example of the
latter, consider a hospital database and suppose that the names of patients are
considered sensitive, and therefore cannot be stored in the clear, and that the
association of DoB together with the ZIP code can work as a quasi-identifier [4, 15]
(i.e., DoB and ZIP can be used, possibly in association with external information,
to help identifying patients and therefore infer, or reduce uncertainty about, their
names). This inference channel can be simply blocked by specifying a constraint
protecting the association of DoB with the ZIP code. As another example, consider
the case where names are not considered sensitive but their association with
Illness is. Suppose again that DoB together with the ZIP code can work as
a quasi-identifier (then potentially leaking information on names). In this case,
an association constraint will be specified protecting the association between
DoB, ZIP code, and Illness, implying that the three attributes should never be
accessible together in the clear.

In general, we are interested in enforcing a set of well defined confidentiality
constraints, formally defined as follows.

Definition 2 (Well defined constraints). A set of confidentiality constraints
C = {c1,. . . ,cm} is said to be well defined iff ∀ci, cj ∈ C, i 6= j, ci 6⊂ cj and
cj 6⊂ ci.

According to this definition, a set of constraints C over A cannot contain
a constraint that is a subset of another constraint. The rationale behind this
property is that, whenever there are two constraints ci, cj and ci is a subset
of cj (or vice versa), the satisfaction of constraint ci implies the satisfaction of
constraint cj (see Sect. 3), and therefore cj is redundant.

To model the problem of enforcing a set of well defined confidentiality con-
straints, we assume standard notations from the relational database model. For-
mally, let A be a set of attributes and D a set of domains. A relation schema
R is a finite set of attributes {a1,. . . ,an} ⊆ A that are defined on a domain
Di, i = 1, . . . , n. Notation R(a1,. . . ,an) represents a relation schema R over the
set {a1,. . . ,an} of attributes. A tuple t over a set of attributes {a1,. . . ,an} is a
function that associates with each attribute ai a value v ∈ Di. Notation t[a ] de-
notes value v associated with attribute a in t. A relation r over relation schema
R(a1,. . . ,an) is a set of tuples over the set of attributes {a1,. . . ,an}. In the fol-
lowing, when clear from the context, we will use R to denote either the relation
schema R or the set of attributes in R.



MedicalData

SSN Name DoB ZIP Illness Physician

123-45-6789 A. Hellman 81/01/03 94142 hypertension M. White
987-65-4321 B. Dooley 53/10/07 94141 obesity D. Warren
246-89-1357 C. McKinley 52/02/12 94139 hypertension M. White
135-79-2468 D. Ripley 81/01/03 94139 obesity D. Warren

(a)

c0= {SSN}
c1= {Name, DoB}
c2= {Name, ZIP}
c3= {Name, Illness}
c4= {Name, Physician}
c5= {DoB, ZIP, Illness}
c6= {DoB, ZIP, Physician}

(b)

Fig. 1. An example of plaintext relation (a) and its well defined constraints (b)

For simplicity, and consistently with other proposals [1, 15], we consider a
single relation, r over a relation schema R(a1,. . . ,an), containing all the sensitive
information that needs to be protected.

Example 1. Figure 1 illustrates an example of relation together with some con-
fidentiality constraints on it. The reasons behind the constraints are as follows:

– the list of SSN of patients is considered sensitive (c0);
– the association of patients’ names with any other piece of stored information

is considered sensitive (c1,. . . ,c4);
– DoB and ZIP together can be exploited to infer the name of patients (i.e.,

they can work as a quasi-identifier), consequently their association with other
pieces of information is considered sensitive (c5,c6).

Note that also the association of patients’ Name and SSN is sensitive and
should be protected. However, such a constraint is not specified since it is re-
dundant, given that SSN by itself has been declared sensitive (c0). As a matter
of fact, protecting SSN as an individual attribute implies automatic protection
of its associations with any other attribute.

3 Fragmentation and Encryption for Constraint
Satisfaction

Our approach to satisfy confidentiality constraints is based on the use of two
techniques: encryption and fragmentation.

– Encryption. Consistently with how the constraints are specified, encryption
applies at the attribute level, that is, it involves an attribute in its entirety.
Encrypting an attribute means encrypting (tuple by tuple) all its values. To
protect encrypted values from frequency attacks [16], we assume that a salt,
which is a randomly chosen value, is applied on each encryption (similarly
to the use of nonces in the protection of messages from replay attacks).

– Fragmentation. Fragmentation, like encryption, applies at the attribute level,
that is, it involves an attribute in its entirety. Fragmenting means splitting
sets of attributes so that they are not visible together, that is, the association
among their values is not available without access to the encryption key.



It is straightforward to see that singleton constraints can be solved only by
encryption. By contrast, an association constraint could be solved by either: i)
encrypting any (one suffices) of the attributes involved in the constraint, so to
prevent joint visibility, or ii) fragmenting the attributes involved in the constraint
so that they are not visible together. In the following, we use the term fragment
to denote any subset of a given set of attributes. A fragmentation is a set of
fragments, as captured by the following definition.

Definition 3 (Fragmentation). Let R be a relation schema, a fragmentation
of R is a set of fragments F={F 1,. . .,Fm}, where F i ⊆ R, for i = 1, . . . , m.

At the physical level, a fragmentation translates to a combination of frag-
mentation and encryption. Each fragment F is mapped into a physical fragment
containing all the attributes in F in the clear, while all the other attributes
of R are encrypted. The reason for reporting all the original attributes (in ei-
ther encrypted or clear form) in each of the physical fragments is to guarantee
that any query can be executed by querying a single physical fragment. For the
sake of simplicity and efficiency, we assume that all the attributes not appearing
in the clear in a fragment are encrypted all together (encryption is applied on
subtuples). Physical fragments are then defined as follows.

Definition 4 (Physical fragment). Let R be a relation schema, and
F={F 1,. . .,Fm} a fragmentation of R. For each F i={ai1 , . . . , ain} ∈ F , the
physical fragment of R over F i is a relation schema F e

i (salt,enc,ai1 , . . . , ain),
where enc represents the encryption of all the attributes of R that do not belong
to the fragment, combined before encryption in a binary XOR (symbol ⊗) with
the salt.

At the level of instance, given a fragment F i={ai1 , . . . , ain}, and a relation r
over schema R, the physical fragment F e

i of F i is such that each plaintext tuple
t ∈ r is mapped into a tuple te ∈ f e

i where f e
i is a relation over F e

i and:

– te[enc] = Ek(t [R− Fi] ⊗ te[salt])
– te[aij ] = t [aij ], for j = 1, . . . , n

The algorithm in Fig. 2 shows the construction and population of physical frag-
ments. When the size of the attributes exceeds the size of an encryption block, we
assume that encryption of the protected attributes uses a Cipher Block Chain-
ing (CBC) mode [16], with the salt used as the Initialization Vector (IV); in the
CBC mode, the clear text of the first block is actually encrypted after it has
been combined in binary XOR with the IV.

Note that the salts, which we conveniently use as primary keys of physical
fragments (ensuring no collision in their generation), need not be secret, because
knowledge of the salts does not help in attacking the encrypted values as long
as the encryption algorithm is secure and the key remains protected.

Given a relation r over schema R and a set of confidentiality constraints C on
it, our goal is to produce a fragmentation that satisfies the constraints. However,
we must also ensure that no constraint can be violated by recombining together



Algorithm 1 (Constraint resolution).

INPUT
A relation r over schema R
C = {c1, . . . , cm} /* well defined constraints */
OUTPUT
A set of physical fragments Fe

={Fe
1,. . . ,F

e
i}

A set of relations {f e
1,. . . ,f

e
i} over schemas {Fe

1,. . . ,F
e
i}

MAIN
CF := {c∈C : |c | >1} /* association constraints */
AF := {a∈R: {a}6∈C}
F := fragment(AF , CF )
/* define physical fragments */
for each F={ai1 ,. . . ,ail

} ∈F do
define relation Fe with schema:

Fe(salt, enc, ai1 ,. . . ,ail
)

/* populate physical fragments instances */
for each t∈r do

te[salt] := generatesalt(F ,t )
te[enc] := Ek(t [aj1 . . . ajp ] ⊗te[salt]) /* {aj1 . . . ajp}=R−F */
for each a∈F do te[a ] := t [a ]
insert te in f e

Fig. 2. Algorithm that correctly fragments R

f e
1

salt enc Name

s1 α A. Hellman
s2 β B. Dooley
s3 γ C. McKinley
s4 δ D. Ripley

(a)

f e
2

salt enc DoB ZIP

s5 ε 81/01/03 94142
s6 ζ 53/10/07 94141
s7 η 52/02/12 94139
s8 θ 81/01/03 94139

(b)

f e
3

salt enc Illness Physician

s9 ι hypertension M. White
s10 κ obesity D. Warren
s11 λ hypertension M. White
s12 µ obesity D. Warren

(c)

Fig. 3. An example of physical fragments for relation in Fig. 1(a)

two or more fragments. In other words, there cannot be attributes that can be
exploited for linking. Since encryption is differentiated by the use of the salt,
the only attributes that can be exploited for linking are the plaintext attributes.
Consequently, ensuring that fragments are protected from linking translates into
requiring that no attributes appear in clear form in more than one fragment.

The conditions above are formally captured by the following definition.

Definition 5 (Fragmentation correctness). Let R be a relation schema, F
be a fragmentation of R, and C a set of well defined constraints over R. F
correctly enforces C iff the following conditions are satisfied:

1. ∀F ∈ F ,∀c ∈ C : c 6⊆ F (each individual fragment satisfies the constraints);
2. ∀F i,F j ∈ F , i 6= j : F i ∩ F j = ∅ (fragments do not have attributes in

common).

Note that condition 1, requiring fragments not to be a superset of any con-
straint, implies that attributes appearing in singleton constraints do not appear
in any fragment. As a matter of fact, as already noted, singleton constraints
require the attributes on which they are defined to appear only in encrypted



Original query on R Translation over fragment F e
3

Q1 := select SSN, Name
from MedicalData

where Illness=‘obesity’
and
Physician=‘D. Warren’

Q3
1 := select salt, enc

from F e
3

where Illness=‘obesity’and
Physician=‘D. Warren’

Q
′
1 := select SSN, Name

from Decrypt(Q3
1, Key)

Q2 := select SSN, Name
from MedicalData

where Illness=‘obesity’
and
Physician=‘D. Warren’
and
ZIP=‘94139’

Q3
2 := select salt, enc

from F e
3

where Illness=‘obesity’and
Physician=‘D. Warren’

Q
′
2 := select SSN, Name

from Decrypt(Q3
2, Key)

where ZIP=‘94139’

Fig. 4. An example of query translation over a fragment

form. Figure 3 illustrates an example of fragmentation of the relation schema in
Fig. 1(a) that correctly enforces the well defined constraints in Fig. 1(b).

4 Executing Queries on Fragments

Fragmentation of a relation implies that only fragments (which are stored in place
of the original relation to satisfy confidentiality constraints) will be available for
queries. Note that, since every physical fragment of R contains all the attributes
of R, either in encrypted or in clear form, no more than one fragment needs
to be accessed to respond to a query. However, if the query executed over a
fragment involves an attribute that is encrypted, an additional query may need
to be executed (after decryption) by the application to evaluate the conditions
on the attributes.

We consider generic select-from-where SQL queries that present relation R in
the from clause, specify a conjunction of equality predicates in the where clause,
and extract a subset of the R’s attributes in the select clause.

Example 2. Consider the relation in Fig. 1(a) and its fragment F e
3 in Fig. 3(c).

– Consider a query Q1 retrieving the Social Security Number and the name
of the patients whose illness is obesity and whose physician is D. Warren.
Figure 4 illustrates the translation of Q1 to queries Q3

1 executed by the DBMS
on the fragment, and Q

′
1 executed by the application. Note that since both

Illness and Physician are represented in the clear in F e
3, the conditions

in the where clause can be executed on the fragment itself, thus returning to
the application only the tuples belonging to the final result.



– Consider a query Q2 retrieving the Social Security Number and the name of
the patients whose illness is obesity, whose physician is D. Warren, and whose
ZIP is 94139. Figure 4 illustrates the translation of Q2 to queries Q3

2 executed
by the DBMS on the fragment, and Q

′
2 executed by the application. Note

that, since ZIP does not appear in the clear in the fragment, the condition
on it needs to be evaluated by the application.

The cost of executing a query over a fragment depends on the number of
plaintext attributes it contains and on their selectivity. A query optimizer can
be used to select the fragment that allows the execution of more selective queries
by the DBMS, thus decreasing the workload of the application and maximizing
the efficiency of the execution.

5 Minimal Fragmentation

As the examples in Section 4 have shown, the availability of plaintext attributes
in a fragment permits an efficient execution of queries. Therefore, we aim at
minimizing the number of attributes that are not represented in the clear in
any fragment, because queries using those attributes will be generally processed
inefficiently. In other words, we prefer fragmentation over encryption whenever
possible and always solve association constraints via fragmentation.

The requirement on the availability of a plain representation for the max-
imum number of attributes can be captured by imposing that any attribute
not involved in a singleton constraint must appear in the clear in at least one
fragment. This requirement is represented formally by the definition of maximal
visibility as follows.

Definition 6 (Maximal visibility). Let R be a relation schema, and C be a
set of well defined constraints. A fragmentation F of R maximizes visibility iff
∀a∈R, {a} 6∈ C: ∃F ∈ F such that a∈F .

Note that the combination of maximal visibility together with the second
condition of Definition 5 imposes that each attribute that does not appear in a
singleton constraint must appear in the clear in exactly one fragment.

Another important aspect to consider when fragmenting a relation to satisfy
a set of constraints is to avoid excessive fragmentation. As a matter of fact, the
availability of more attributes in the clear in a single fragment allows a more
efficient execution of queries on the fragment.

Indeed, a straightforward approach for producing a fragmentation that sat-
isfies the constraints while maximizing visibility is to define as many (singleton)
fragments as the number of attributes not appearing in singleton constraints.
Such a solution, unless demanded by the constraints, is however undesirable
since it makes the evaluation of a query involving conditions on more than one
attribute inefficient.

We are interested in finding a fragmentation that makes query execution
efficient. A simple strategy to achieve this goal consists in finding a minimum



fragmentation that is correct and maximizes visibility, while minimizing the num-
ber of fragments. This problem is NP-hard since it corresponds to the minimum
hyper-graph coloring problem [7]. It is also interesting to note that, assuming
NP 6= ZPP , there are no polynomial time approximation algorithms for col-
oring k-uniform hypergraphs with approximation ratio O(n1−ε) for any fixed
ε > 0 [10, 17]. We propose therefore a definition of minimality, which can be
exploited to find an efficient fragmentation through a heuristic (see Sect. 6).

To formally define minimality, we introduce the concept of fragment vector
as follows.

Definition 7 (Fragment vector). Let R be a relation schema, and F=
{F 1, . . . ,Fm} be a fragmentation of R. The fragment vector VF of F is a vector
of fragments with an element VF [a ] for each a ∈ ⋃m

i=1 F i, where the value of
VF [a ] is the unique fragment F j∈F containing attribute a .

Example 3. Let F = {{Name},{DoB,ZIP},{Illness,Physician}} be a fragmen-
tation of the relation schema in Fig. 1(a). The fragment vector is the vector VF
such that:

– VF [Name]={Name};
– VF [DoB]=VF [ZIP]={DoB,ZIP};
– VF [Illness]=VF [Physician]={Illness,Physician}.

Fragment vectors allow us to define a partial order between fragmentations
as follows.

Definition 8 (Dominance). Let R be a relation schema, and F and F ′ be two
fragmentations of R maximizing visibility. Let A be the (equal) set of attributes
in the two fragmentations. We say that F ′ dominates F , denoted F¹F ′, iff
VF [a ]⊆VF ′ [a ], for all a ∈ A. Consequently, F ≺ F ′ iff F¹F ′ and F 6= F ′.

Definition 8 states that solution F ′ dominates solution F if F ′ can be com-
puted from F by merging two (or more) fragments composing F .

Example 4. Let F1={{Name}, {DoB,ZIP}, {Illness,Physician}} and
F2={{Name}, {DoB}, {ZIP}, {Illness,Physician}} be two fragmenta-
tions of the relation schema in Fig. 1(a). According to Definition 8, F2≺F1,
since F1 can be obtained from F2 by merging fragments {DoB} and {ZIP}.

We can formally define the minimality property as follows.

Definition 9 (Minimal fragmentation). Let R be a relation schema, C be a
set of well defined constraints, and F be a fragmentation of R. F is a minimal
fragmentation iff all the following conditions are satisfied:

1. F correctly enforces C (Definition 5);
2. F maximizes visibility (Definition 6);
3. @F ′ such that F≺F ′ and F ′ satisfies the two conditions above.



Function 1 (Minimal fragmentation).

FRAGMENT(A ToPlace,C ToSolve)

F := ∅
for each a∈A ToPlace do /* initialize arrays Con[] and N con[] */

Con[a ] := {c ∈ C ToSolve| a ∈ c}
N con[a ] := |Con[a ]|

repeat
if C ToSolve 6= ∅ then

let attr be an attribute with the maximum value of N con[]
for each c ∈ (Con[attr ] ∩ C ToSolve) do

C ToSolve := C ToSolve − {c} /* adjust the constraints */
for each a ∈ c do N con[a ] := N con[a ]−1 /* adjust array N con[] */

else /* since all the constrains are satisfied, choose any attribute in A ToPlace */
let attr be an attribute in A ToPlace

endif
A ToPlace := A ToPlace − {attr}
inserted := false /* try to insert attr in the existing fragments */
for each F ∈ F do /* evaluate if F ∪ {attr} satisfies the constraints */

satisfies := true
for each c ∈ Con[attr ] do

if c ⊆ (F ∪ {attr}) then
satisfies := false /* choose the next fragment */
break

endif
if satisfies then

F := F ∪ {attr} /* attr has been inserted in F */
inserted := true
break

endif
if not inserted then /* insert attr in a new fragment */

add {attr} to F
endif

until A ToPlace = ∅
return(F)

Fig. 5. Function that finds a minimal fragmentation

According to this definition of minimality, a fragmentation F is minimal if
and only if it is correct, it maximizes visibility, and all fragmentations that can
be obtained from F by merging any two fragments in F violate at least one
constraint.

Example 5. Consider fragmentations F1 and F2 of Example 4, and the set of
constraints in Fig. 1(b). Since F2≺F1, F2 is not minimal. By contrast, F1

is minimal. As a matter of fact, F1 contains all attributes of relation schema
MedicalData in Fig. 1(a), but SSN (maximize visibility); satisfies all constraints
in Fig. 1(b) (correctness); no fragmentation obtained from it by merging any
pair of fragments satisfies the constraints.

6 Computing a Minimal Fragmentation

Our heuristic method for computing a minimal fragmentation is based on the
fragment function illustrated in Fig. 5. This function takes as input a set of
attributes A ToPlace to be fragmented, and a set of constraints C ToSolve. It
computes a minimal fragmentation F of A ToPlace as follows.



First, the function initializes F to the empty set and creates two arrays
Con[] and N con[] that contain an element for each attribute a in A ToPlace.
Element Con[a ] contains the set of constraints on a , and element N con[a ] is
the number of non solved constraints involving a (note that, at the beginning,
N con[a ] coincides with the cardinality of Con[a ]). The function then executes
a repeat-until cycle that, at each iteration, places an attribute attr into a frag-
ment as follows. If there are constraints still to be solved (C ToSolve 6= ∅) attr is
selected as an attribute with the highest number of non-solved constraints. The
reason for this choice is to bring all constraints to satisfaction in a few number
of steps. Then, for each constraint c in Con[attr ]∩C ToSolve, the function re-
moves c from C ToSolve and, for each attribute a in c , decreases N con[a ] by
one. Otherwise, that is, all constraints are solved (C ToSolve= ∅), the function
chooses attr by randomly extracting an attribute from A ToPlace and removes
it from A ToPlace. Then, the function looks for a fragment F in F in which
attr can be inserted without violating any constraint including attr that has
already been solved (indeed, there is no need to check constraints that have not
yet been solved). If such a fragment F is found, attr is inserted in F , other-
wise a new fragment {attr} is added to F . Note that the search for a fragment
terminates as soon as a fragment is found (inserted=true). Also, the control on
constraint satisfaction terminates as soon as a violation to constraints is found
(satisfies=false).

Example 6. Figure 6 presents the execution, step by step, of function fragment
applied to the example in Fig. 1. Here, for simplicity, we represent attributes with
their initials. The left hand side of Fig. 6 illustrates the evolution of variables attr ,
F , C ToSolve, and A ToPlace, while the right hand side graphically illustrates
the same information through a matrix with a row for each attribute and a
column for each constraint. If an attribute belongs to a non solved constraint ci,
the corresponding cell is set to ×; otherwise, if ci is solved, the cell is set to X.
At the beginning, F is empty, all constraints are not solved, and all attributes
need to be placed. In the first iteration, function fragment chooses attribute n,
since it is the attribute involved in the highest number of non solved constraints.
The constraints in Con[n] become now solved, N con[ai] is updated accordingly,
and fragment {n} is added to F . Function fragment proceeds in analogous way
by choosing attributes d, z, i, and p. The final solution is represented by the
relations in Fig. 3.

The correctness and complexity of our approach are stated by the following
theorems, whose complete proofs are omitted here for space constraints.

Theorem 1 (Correctness). Function fragment terminates and finds a min-
imal fragmentation (Definition 9).

Proof (sketch). The repeat loop terminates because A ToPlace is finite, and in
each iteration an attribute in A ToPlace is extracted, and the loop is executed
till A ToPlace becomes empty. Moreover, all the inner for loops always consider
a finite set of fragments and constraints. Each attribute attr in A ToPlace is then



F=∅
C ToSolve={c1,c2,c3,c4,c5,c6}
A ToPlace={n,d,z,i,p}

c1 c2 c3 c4 c5 c6 N con[ai]

n × × × × 4
d × × × 3
z × × × 3
i × × 2
p × × 2

ToSolve yes yes yes yes yes yes

attr = n
Con[n]={c1,c2,c3,c4}

F = {{n}}
C ToSolve = {c5,c6}
A ToPlace = {d,z,i,p}

c1 c2 c3 c4 c5 c6 N con[ai]

n X X X X 0
d X × × 2
z X × × 2
i X × 1
p X × 1

ToSolve X X X X yes yes

attr = d
Con[d]={c1,c5,c6}

F = {{n},{d}}
C ToSolve = ∅
A ToPlace = {z,i,p}

c1 c2 c3 c4 c5 c6 N con[ai]

n X X X X 0
d X X X 0
z X X X 0
i X X 0
p X X 0

ToSolve X X X X X X

attr = z
Con[z]={c2,c5,c6}

F = {{n},{d,z}}
C ToSolve = ∅
A ToPlace = {i,p}

c1 c2 c3 c4 c5 c6 N con[ai]

n X X X X 0
d X X X 0
z X X X 0
i X X 0
p X X 0

ToSolve X X X X X X

attr = i
Con[i]={c3,c5}

F = {{n},{d,z},{i}}
C ToSolve = ∅
A ToPlace = {p}

c1 c2 c3 c4 c5 c6 N con[ai]

n X X X X 0
d X X X 0
z X X X 0
i X X 0
p X X 0

ToSolve X X X X X X

attr = p
Con[p]={c4,c6}

F = {{n},{d,z},{i,p}}
C ToSolve = ∅
A ToPlace = ∅

c1 c2 c3 c4 c5 c6 N con[ai]

n X X X X 0
d X X X 0
z X X X 0
i X X 0
p X X 0

ToSolve X X X X X X

Fig. 6. An example of function execution



inserted exactly in one existing fragment, if no constraint is violated; it is inserted
in a new fragment, otherwise (maximal visibility and fragmentation correctness).
Moreover, function fragment cannot generate two different fragments whose
union does not violate any constraint (minimality). In fact, if merging the two
fragments does not violate any constraint, the function would have inserted all
the attributes in the first of the two fragments that was created.

Theorem 2 (Complexity). Given a set of constraints C={c1,. . . ,cm} and a
set of attributes A={a1,. . . an} the complexity of function fragment(A,C) is
O(n2m) in time.

Proof (sketch). To chose attribute attr from A ToPlace, in the worst case the
function fragment scans array N con[], and adjusts array N con[] for each at-
tribute involved in at least one constraint with attr . This operation costs O(nm)
for each attribute chosen. After the choosing phase, each attribute is inserted
in a fragment. Note that the number of fragments is O(n) in the worst case. To
choose the right fragment that will contain attr , in the worst case the function
tries to insert it in all the fragments F∈F , and compares F∪{attr} with the
constraints. Since the sum of the number of attributes in all the fragments is
O(n), then O(n) attributes will be compared with the O(m) constraints contain-
ing attr , giving, in the worst case, a O(nm) complexity for each attr . Thus, the
complexity of the second phase of function fragment is O(n2m).

Finally, the overall time complexity is therefore O(n2m).

7 Related Work

A significant amount of research has recently been dedicated to the study of the
outsourced data paradigm. Most of this research has assumed the data to be en-
tirely encrypted, focusing on the design of techniques for the efficient execution
of queries (Database As a Service paradigm). One of the first proposals towards
the solution of this problem is presented in [8, 9], where the authors propose stor-
ing additional indexing information together with the encrypted database. Such
indexes can be used by the DBMS to select the data to be returned in response
to a query. In [5] the authors propose a hash-based index technique for equality
queries, together with a B+ tree technique applicable to range queries. In [18]
the authors propose an indexing method which, exploiting B-trees, supports
both equality and range queries, while reducing inference exposure thanks to an
almost flat distribution of the frequencies of index values. In [3, 5] the authors
present different approaches for evaluating the inference exposure for encrypted
data enriched with indexing information, showing that even a limited number
of indexes can greatly facilitate the task for an attacker wishing to violate the
confidentiality provided by encryption.

The first proposal suggesting the storage of plaintext data, while enforcing
a series of privacy constraints, is presented in [1]. The main difference with the
work proposed in this paper is that in [1] the authors suppose data to be stored
on two remote servers, belonging to two different service providers, which never



exchange information. This choice also forces to design a fragmentation schema
with at most two separate fragments. The approach presented in our paper
removes all these restrictions and appears more adequate to the requirements of
real scenarios. Our approach may force the use of a greater amount of storage,
but in typical environments this presents a smaller cost than that required for
the management and execution of queries on remote database servers managed
by fully independent third parties.

Our work may bring some resemblance with the work of classifying informa-
tion while maximizing visibility [6]. However, while the two lines of work share
the goal of ensuring protection and minimizing security measures enforcement,
the consideration of fragmentation and encryption on the one side and security
labeling on the other makes the problems considerably different.

The problem of fragmenting relational databases while maximizing query
efficiency has been addressed by others in the literature and some approaches
have been proposed [11, 12]. However, these approaches are not applicable to
our problem since they are only aimed at performance optimization and do not
allow taking into consideration protection requirements.

8 Conclusions

We presented a model and a corresponding concrete approach for the definition
and management of privacy requirements in data collection. Our work provides
a direct response to the emerging demand by individuals as well as privacy
regulators.

Besides being a technical contribution, we hope that our work can represent
a step towards the effective enforcement, as well as the establishment, of privacy
regulations. Technical limitations are in fact claimed as one of the main reasons
why privacy cannot be achieved and, consequently, regulations not be put into
enforcement. Research on the line of ours can then help in providing the building
blocks for a more precise specification of privacy needs and regulations as well as
their actual enforcement, together with the benefit of a clearer and more direct
integration of privacy requirements within existing ICT infrastructures.
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