
Query Integrity in Smart Environments

Sabrina De Capitani di Vimercati[0000−0003−0793−3551], Sara
Foresti[0000−0002−1658−6734], and Pierangela Samarati[0000−0001−7395−4620]

Computer Science Department, Università degli Studi di Milano
{sabrina.decapitani,sara.foresti,pierangela.samarati}@unimi.it

Abstract. Our smart society strongly relies on data, which are continu-
ously generated, collected, stored, and processed by millions of connected
IoT devices and smart sensors. Such data are at the basis of typically
complex decision-making processes that require advanced analytics.
Due to the vast and increasing amount of data, their storage and pro-
cessing are often outsourced to third parties (e.g., service providers and
decentralized computational services) that might be not fully trustworthy
in their operating. In this chapter, we focus on the problem of assessing
integrity of query computations involving external service providers, and
illustrate possible approaches for enabling the verification of the integrity
of query results. We will cover both deterministic approaches, based on
the definition of authenticated data structures over the data and giv-
ing full integrity guarantees, and probabilistic approaches, based on the
insertion of control information in the data and providing probabilistic
integrity guarantees.

Keywords: Query integrity, deterministic techniques, probabilistic tech-
niques

1 Introduction

The advancements of digital and smart technologies (e.g., Internet of Things,
big data analytics, and 5G/6G connectivity) are at the basis of today’s smart
society that supports new applications in a variety of sectors, also thank you
to the availability of a powerful hyperconnected infrastructure offering unprece-
dented network capacity and speed. Distributed sensors, mobile and pervasive
devices, cloud/edge/fog computational and storage nodes, can all be involved in
providing advanced storage and computational services and applications. At the
center of such novel scenarios are data, gathered, generated, shared, processed,
and communicated among the different components of the infrastructure at an
incredible pace. The possibility of efficiently performing analysis on such data for
making data-informed decisions becomes then extremely important. Often data
storage, as well as data analytics, are outsourced to external providers or rely
on the involvement of a distributed framework for storing and processing large
datasets (e.g., peer-to-peer networks [6], Apache Hadoop [20], and Spark [41]).
Outsourcing data and data analytics brings several advantages, including cost
savings, increased efficiency, and flexibility. However, such advantages come at

the price of the data owners losing control over their own data and processing,
and introducing therefore the problem of their proper protection [12].

The problem of protecting data and computations managed by an external
service provider, allowing data owners to keep the control over them, has many
facets. The service provider can be honest-but-curious (i.e., the service provider
is trusted for the management of data but, at the same time, it is not trusted
with respect to the data content, which should remain confidential), or can be
lazy (i.e., the service provider might not be considered fully trustworthy and, for
example, might delete data that are accessed rarely or omit some computations
to save resources) or malicious (i.e., the service provider may intentionally be-
have improperly in the storage and processing of data) and its behavior should
be controlled. Depending on the trust assumption on the service provider, there
are different security problems that need to be addressed, including the confi-
dentiality and integrity of data and computations, the management and specifi-
cation of policies, the exposure to different cyber-attacks, and the reliability and
availability of services (e.g., [2, 12, 14, 17, 21]). For instance, natural solutions for
protecting data confidentiality are based on encryption [30] (i.e., data are pro-
tected by encrypting them before their storage at external service providers),
and fragmentation [1, 5] (i.e., data are split in different non-linkable fragments
to protect sensitive associations). Data integrity is usually ensured through the
application of solutions that rely on encryption such as digital signatures, Proof
Of Retrievability, and Provable Data Possession (e.g., [3, 22]).

When the trustworthiness of the service provider cannot be taken for granted,
data owners may be concerned about the correctness of the results (retrieved data
or queries) received from the service provider. As a matter of fact, the lack of
control of data owners and the open nature of the adopted storage and processing
platforms may open the door to possible misbehavior by the providers involved
in data storage and computation. It is therefore important to design efficient
and practical techniques that enable data owners and, in general, clients asking
the service provider to perform a query over the data, to assess the integrity of
every computation performed by the service provider.

The goal of this chapter is to provide an overview of the main techniques
for verifying the integrity of query results. The remainder of the chapter is or-
ganized as follows. Section 2 presents the reference scenario and discusses the
integrity verification objectives (i.e., correctness, completeness, and freshness)
together with the main characteristics of the two categories (i.e., deterministic
and probabilistic) of integrity verification techniques. Section 3 describes the
main deterministic techniques, that is, solutions that provide deterministic in-
tegrity guarantees, relying on authenticated data structures. Such techniques
include those based on signatures, tree-based data structures, and list-based
data structures. Section 4 presents the main techniques (sentinels and twins)
that provide probabilistic integrity guarantees, and illustrates how to assess the
completeness of join queries. Section 5 discusses some open research directions.
Finally, Section 6 gives our conclusions.

service provider

service provider
D1

D1

data owner

.

data owner

client

client

outsourcing Dn

outsourcing D1

query qm

query result resm

query q1
query result res1

Dn

Dn

Fig. 1. Reference outsourcing scenario

2 Query Integrity Verification

We consider a data outsourcing scenario that is usually characterized by three
interacting parties: data owners, service providers, and clients (see Figure 1).
The data owner is a company or an individual who outsources their data to an
external service provider . The service provider offers storage and/or computation
resources for the management of data. The client is a company or an individual
who can require the execution of a computation over the outsourced data. For
concreteness, we will consider the evaluation of queries over an (outsourced)
dataset composed of one or more relations. Each query can involve the data
managed by a service provider or can also involve data stored and managed
by different service providers (e.g., a join query), which have to collaborate for
query execution. If the service providers are not trustworthy, they can return
incorrect query results. There can be multiple reasons for a query result to be
incorrect, including a temporary misconfiguration, or a malicious action by the
service provider (which may want to either sabotage the execution of the query
or get the reward for computing queries while omitting to do so). Note that there
is an integrity issue regardless of whether the incorrect result has been caused
by failure, malfunctioning, sloppiness, or intentional opportunistic behavior since
they all have the effect of the service provider not correctly computing the queries
submitted to it. The problem then arises of providing clients with the ability to
assess the integrity of query results, that is, to assess whether, given a query
q, the result res obtained by the execution of q over the outsourced dataset D,
denoted q(D), (i.e., res=q(D)) is correct , complete, and fresh.

– Correct . The query result res is correct if the data items in res have been
obtained from the execution of q on dataset D, and have not been tampered
with.

– Complete. The query result res is complete if no valid data is missing from
the result.

– Fresh. The query result res is fresh if it has been obtained by executing the
query q over the most recent version of dataset D.

Most of the current approaches provide guarantees of completeness and cor-
rectness, with a few proposals complementing them with timestamps or peri-
odical refreshing to provide freshness guarantees. In the following, we present
some of the most well-known solutions proposed for ensuring completeness and
correctness of query results.

Integrity verification techniques can be classified in two main categories: de-
terministic approaches, which provide integrity guarantees with full confidence,
and probabilistic approaches, which provide integrity guarantees with a certain
degree of confidence [13].
Deterministic approaches (Section 3). Deterministic approaches are typically
based on the generation of a proof, called Verification Object (VO), which pro-
vides deterministic integrity guarantees. Intuitively, given a query q, the service
provider executes the query over the outsourced dataset D and constructs a VO
for the query result res=q(D). The service provider then returns to the client
the query result res together with the verification object. The construction of
the verification object is based on an authenticated data structure that is built
over D by the owner of the data and is stored together with the data at the
external service provider. In addition to the authenticated data structure, other
pieces of information can be distributed to the client. The client then uses the
VO and the information possibly received from the owner of the data to ver-
ify whether res satisfies certain properties (i.e., correctness, completeness, and
freshness). Deterministic techniques can assess with full confidence the integrity
of the result of queries defined over the attribute(s) on which the authenticated
data structure has been defined; no guarantee is instead provided for queries
using other attributes.

Other deterministic solutions are based on advanced cryptographic protocols
(e.g., [24]) and trusted hardware (e.g., [43]). This chapter, however, focuses on
those based on the definition of an authenticated data structure mainly because
they are largely used and practical.
Probabilistic approaches (Section 4). Probabilistic approaches provide prob-
abilistic integrity guarantees, meaning that a query result that violates the in-
tegrity property passes the integrity check with a given probability. Such tech-
niques enable the assessment of query integrity by injecting control information
in the dataset. The advantage of the probabilistic approaches is a larger ap-
plicability than deterministic approaches, as they are not limited to operate
considering queries defined over a specific attribute. The offered integrity guar-
antee is probabilistic because an integrity compromise can be detected only if it
affects the control information. Control information is of two types: non-genuine
data (called sentinels or markers) injected in the original dataset, or controlled
replication of data (twinning). Absence of a sentinel or of one replica (in the
presence of the other) from a query result signals that the query result is not

HospitalPatient (HP)
PId PName YoB Doc

t1 12 Amos 1961 d50
t2 14 Bea 2000 d52
t3 16 Cal 1985 d52
t4 20 Dennis 1933 d54
t5 22 Ethan 1973 d56
t6 24 Frank 1965 d58
t7 26 Grady 1953 d60
t8 28 Helen 1987 d62
t9 30 Ian 1987 d60

t10 32 Loretta 1961 d60
stored at H

FamilyDoctor (FD)
DId Name Phone Specialty

f1 d50 Ann 123876 Cardiology
f2 d52 Bart 784309 Allergy
f3 d54 Carl 619345 Dermatology
f4 d56 Dexter 914382 Nephrology
f5 d58 Elen 903658 Cardiology
f6 d60 Frank 814309 Urology
f7 d62 George 357823 Psychiatry
f8 d64 Hal 813456 Neurology

stored at M

Fig. 2. Relations of the running example

complete. The incorrect value for a sentinel or different results over twins sig-
nal that the query result is not correct. The guarantee is probabilistic because
omissions or incorrect values of data items that are neither sentinels nor twins
cannot be detected. The probability of detecting an integrity violation depends
on the amount of sentinels and twins injected, as we elaborate next.

In the remainder of this chapter, we will describe the main deterministic
and probabilistic integrity verification techniques. To fix ideas and make the
discussion clear, the examples will refer to queries operating over the relations
in Figure 2. Relation HospitalPatient (HP) contains the identifier (attribute
PId), name (attribute PName), year of birth (attribute YoB), and the identifier
of the family doctor (attribute Doc) of the patients of a hospital H, which is
the owner of the relation. Relation FamilyDoctor (FD) contains the identifier
(attribute DId), name (attribute Name), phone number (attribute Phone), and
specialty (attribute Specialty) of family doctors who practice in Milan (Italy),
and the municipality M of Milan is the owner of the relation.

3 Deterministic Approaches

Deterministic integrity verification techniques are based on the definition, and
storage at the service provider, of an authenticated data structure built on one
of the attributes (or set thereof) in the outsourced dataset. Deterministic ap-
proaches can be classified based on the kind of authenticated data structure
used for integrity verification, which can be a chain of signatures, a tree-based
structure, or a list-based structure, as illustrated in the following.

3.1 Signatures-based Approaches

Signature-based techniques rely on the digital signature of tuples for generating
a verification object (e.g., [4, 26, 42]). The data owner signs (e.g., using an RSA

t−∞
0

t1

12

t2

14

t3

16

t4

20

t5

22

t6

24

t7

26

query result

t8

28

t9

30

t10

32

t∞11

Fig. 3. An example of a chain of tuples of relation HospitalPatient in Figure 2 ordered
on attribute PId (for convenience of the reader the attribute value is reported above
each tuple)

signature) each tuple of a relation, and outsources the relation where each tuple
is complemented with its signature (e.g., [26]). When the service provider per-
forms a query over the outsourced relation, the service provider returns to the
client the query result together with a signature obtained by aggregating the
signatures of the tuples in the query result. This aggregate signature forms the
verification object of the query result. The aggregate signature can be computed
according to different approaches (e.g., condensed RSA [13]). The client can then
verify the correctness of the query result by recalculating the single aggregate
signature combining the signatures associated with the returned tuples. The
computation by the client of the aggregate signature requires a number of oper-
ations that is linear in the number of tuples in the query result. This technique
permits to assess the correctness of the query result and the non-tampering of
each tuple singularly taken but not the completeness of the query result. To pro-
vide completeness guarantees to query results, this technique can be extended
by constructing an authenticated chain over the signatures associated with the
tuples in the relation. Intuitively, tuples in the outsourced relation are ordered
according to the values of an attribute a that is defined over a totally ordered
domain. Let {t−∞

0 , t1, . . . , tn, t
∞
n+1} be the ordered list of tuples in the outsourced

relation, with t−∞
0 and t∞n+1 two fictitious tuples: t−∞

0 is a left delimiter and t∞n+1

is a right delimiter. The owner signs each pair (ti,ti+1) of tuples, i = 0, . . . , n,
and stores the signature of each pair (ti,ti+1) together with ti+1. The signature,
denoted s(ti+1), associated with tuple ti+1, i = 1, . . . , n + 1, is computed as:
s(ti+1)=sign(h(ti) ||h(ti+1), sk), where h is a cryptographic hash function, || is
the concatenation operator, sign is a signature algorithm, and sk is the private
key of the data owner.

Figure 3 illustrates an example of the chain of tuples built over attribute
PId of relation HospitalPatient in Figure 2. Tuples are first ordered according
to the values of attribute PId, the left and right delimiters (t−∞

0 and t∞n+1)
are added to the chain, and then the data owner computes the signatures as
described above. Suppose now that a client submits query “select ∗ from
HospitalPatient where PId between 15 and 25”. The result of this range
query includes all the tuples in the relation with a value for attribute PId that
falls in the query range [15,25] (i.e., tuples {t3,t4,t5,t6} with a green - dark gray
on a b/w printout - background in Figure 3) together with two left and right
tuples, that is, the tuple (left) preceding the first tuple satisfying the range query
and the tuple (right) following the last tuple satisfying the range query (i.e.,

tuples t2 and t7 with a light blue - light gray on a b/w printout - background
in Figure 3). The VO includes instead the signature of the tuples between t3
and t7 (the signature of tuple t2 is not needed since this tuple is included in
the signature of t3), and an aggregate signature resulting from the combination
of all the signatures of tuples between t3 and t7. The client can then verify
the correctness and completeness of the query result by: i) checking if the set
of returned tuples, together with their signatures, form a valid chain; ii) if the
values for attribute PId of the returned tuples are within the query range (in our
example, PId is between 15 and 25), and iii) if the boundary tuples are outside
the query range (in our example, 14<15 and 26>25). If the signatures do not
form a valid chain, the client can conclude that the query result is not correct
or not complete. As an example, suppose that tuple t4 has been omitted from
the query result, meaning that the client receives the sequence t3, t5, t6, t7. By
checking the signature associated with the returned tuple t5, the client would
discover that its value obtained removing the encryption layer of the signature
(i.e., h(t4) ||h(t5)) is different from the one that the client can compute with the
returned tuples (i.e., h(t3) ||h(t5)).

3.2 Tree-based Authenticated Data Structures

Most authenticated tree-based structures are based on variants of the Merkle
Hash Tree (Merkle Tree, for short) structure. A Merkle Tree over a relation R
is a binary tree that stores, in each leaf, the result of a one-way hash function h
applied over a tuple of the original relation (e.g., h can be a collision-resistant
hash function such as SHA-1). The tuples in the leaves of the Merkle Tree are
ordered according to the values of an attribute a, defined over a totally ordered
domain. The internal nodes store the result of the hash function applied over
the concatenation of the values stored at their children. In other words, given
an internal node n with children nx and ny, its hash value hn is h(hnx ||hny),
where hnx and hny are the hash values of nx and ny, respectively, and || is the
concatenation operator. The root of the Merkle Tree is signed by the data owner.
Figure 4 illustrates an example of a Merkle Tree defined over attribute DId of
relation FamilyDoctor in Figure 2. The hash of the root (i.e., h12345678) is signed
by the data owner with their private key (i.e., sk).

To verify the correctness and completeness of a point or range query over
attribute a, the service provider returns to the client (together with the tuples
resulting from the evaluation of the query) a VO that includes the values of
the nodes in the Merkle Tree needed by the client to compute the hash value
associated with the root of the tree. The client then computes the hash value of
the root using the VO and the tuples in the query result, and checks whether
such a value corresponds to the hash value of the root initially computed (and
signed) by the data owner [15]. Note that, while being stored at the service
provider, the Merkle Tree cannot be modified by the provider itself, since any
update to the structure would imply a change in the hash of the root and hence
would invalidate its signature.

h1 = h(f1) h2 = h(f2) h3 = h(f3) h4 = h(f4) h5 = h(f5) h6 = h(f6) h7 = h(f7) h8 = h(f8)

h12 =
h(h1 ∥h2)

h34 =
h(h3 ∥h4)

h56 =
h(h5 ∥h6)

h78 =
h(h7 ∥h8)

h1234 =
h(h12 ∥h34)

h5678 =
h(h56 ∥h78)

h12345678 = h(h1234 ∥h5678)

s=sign(h12345678,sk)

Fig. 4. An example of Merkle Tree built over the tuples of relation FamilyDoctor in
Figure 2 ordered according to attribute DId

The computation of the VO depends on the kind of query evaluated (and
hence on the set of tuples returned) and on the integrity guarantee (correctness
and/or completeness) to be verified. In case of a point query (i.e., a query with
a select condition of the form a=‘v ’, with v a value in the domain of attribute
a), the result includes one tuple only, and the VO contains the values of all the
nodes being sibling of those in the path from the root to the leaf corresponding to
the returned tuple. The use of a collision-resistant hash function for computing
the hash values guarantees that it is computationally infeasible for a malicious
service provider to return a fake tuple since this would imply the ability of
finding a collision in the tree to pass integrity verification. In fact, the root of
the Merkle Tree, being signed, should remain unchanged. The cost for verifying
the correctness of a point query then corresponds to the computation of log n
hash values, where n is the number of nodes in the Merkle Tree. As an example of
point query, consider relation FamilyDoctor in Figure 2 and the Merkle Tree in
Figure 4 built over attribute DId. Suppose that a client submits query “select
∗ from FamilyDoctor where DId=d60” that returns tuple f6. To verify the
correctness of the query result, tuple f6 is returned together with a VO that
contains the light blue nodes (light gray in b/w printout) in Figure 4. The client
can then compute the hash of tuple f6 (green - dark gray in b/w printout - node)
and combine it with the VO, as illustrated in the figure, to compute the hash of
the root of the tree, which is then compared to the one computed (and signed)
by the data owner. To verify the completeness of a query result, the VO must
include the tuples corresponding to the two left and right nodes of the range of
the returned tuple(s), together with the values of the nodes needed to compute
the hash value of the root. When relying on a Merkle Tree, the size of the VO
depends then on the size of the outsourced relation and is independent from
both the number of tuples in the query result and from the width of the range
covered by the query. Therefore, the approach based on the construction of a
signature chain returns a smaller VO than a Merkle Tree for point queries, while

p0 h0 k1 p1 h1 k2 km−1 hm−1 pm−1
.

h1 = h(h10 ||h11 || . . . || h1m−1)

p10 h10 k11 p11 h11 k12 k1m−1 h1m−1 p1m−1
.

ti hi = h(ti)

Fig. 5. An example of nodes in a MB-tree with order m

the Merkle Tree returns a smaller VO for range queries covering more than log n
tuples.

Variations of this basic tree-based integrity verification technique have been
proposed to improve the efficiency of the verification process (e.g., [25, 27]) and
to support integrity verification of more complex (e.g., join) queries (e.g., [23,
40]). In [23] the authors have proposed the Merkle B-tree (MB-tree) structure
for supporting the efficient execution and verification of range queries over a
single attribute. A MB-tree combines a Merkle Tree with a B+-tree, meaning
that the nodes of the B+-tree are extended with a hash value associated with
every pointer entry in the node. More precisely, in the leaf nodes, each tuple t
is associated with a hash value h(t) computed on the tuple itself. In the internal
nodes, each pointer pi to a child node is associated with hash value hi = h(hi1 ||
hi2 || . . . || him−1), with hi1, . . . , him−1 the hash values in the child node pointed
by pi, assuming a B+-tree of order m (i.e., a tree where the number of children
of an internal node is at most m). Figure 5 illustrates an example of internal
and leaf nodes of a MB-tree with order m. Similarly to Merkle Tree, the data
owner signs the concatenation of the hash values stored in the root.

When a client submits a range query, the service provider executes the query
over the dataset and returns the set of tuples that satisfy the query together with
a VO. The VO is computed by visiting the MB-tree twice, to find the tuples at
the left and at the right of the range, respectively. The VO then includes all the
information needed to the client to reconstruct all the hash values that appear
in the sub-tree whose leaf nodes contain the tuples that satisfy the range query.

Figure 6 illustrates an example of MB-tree that has been built over attribute
PId of the tuples of relation HospitalPatient in Figure 2. Suppose that the
client submits query “select ∗ from HospitalPatient where PId between
15 and 25”. The service provider returns the query result res={t3, t4, t5, t6} to-
gether with the VO that the client uses to verify the completeness and correctness
of the query result. In particular, the service provider includes in the VO the tu-
ple on the left (t2 in our example) and the tuple on the right (t7 in our example)
of those belonging to the query result, respectively. These left and right tuples
allow the client to verify the completeness of the query result. The VO must also
include all the hash values needed to the client for recomputing the hash values

t1
12

h(t1) t2
14

h(t2) t3
16

h(t3) t4
20

h(t4) t5
22

h(t5) t6
24

h(t6) t7
26

h(t7) t8
28

h(t8) t9
30

h(t9) t10
32

h(t10)

h2 16 h3 22 h4 h5 30 h6

h6=h(h(t9)||h(t10))h5=h(h(t7)||h(t8))h4=h(h(t5)||h(t6))h3=
h(h(t3)||h(t4))

h2=h(h(t1)||h(t2))

h1=h(h5||h6)h0=h(h2||h3||h4)

h0 26 h1

query result

Fig. 6. An example of MB-tree with order m = 4 built over attribute PId of the tuples
in relation HospitalPatient of Figure 2

in the root. For the leaf nodes, the service provider includes in the VO the hash
values of all the residual tuples (i.e., tuples that are not returned to the client) in
the left and right leaves (i.e., the leaves that contain the left and right tuples). In
the example, the VO includes h(t1) and h(t8). For the internal nodes, the service
provider includes in the VO the hash values associated with all the pointers that
appear in the nodes visited when searching for the left and right tuples except
the hash value of the pointers that are on the right (left) of the pointer traversed
when searching for the left (right) tuple. In the example, the service provider
includes in the VO hash value h6. Figure 6 illustrates the elements forming the
VO with a light blue (light gray in b/w printout) background.

In [23] the authors compared a MB-tree structure defined over attribute a,
with the adoption of a B+-tree structure over relation R for attribute a combined
with a signature chain over a for R (Section 3.1). Indeed, both solutions efficiently
support the evaluation of range queries and their integrity verification. While the
adoption of the MB-tree structure implies that the size of the VO depends on
the order of the MB-tree (and can therefore be larger than the VO defined when
using a signature chain), the construction of the authenticated data structure
is expected to be lower. To combine the advantages of the MB-tree structure
with the ones of using a B+-tree with a signature chain over the tuples in the
relation, in [23] the authors propose an alternative authenticated data structure
(the embedded MB-tree).

3.3 List-based Authenticated Data Structures

Besides tree-based structures, integrity verification approaches can rely on list-
based authenticated data structures such as skip lists (e.g., [29]). A skip list
defined for a set K of distinct key values includes a set of lists L0, L1, . . . , Ln

such that: i) L0 contains all the keys in K in non-decreasing order, together with
special values −∞ and +∞ as first and last element in the list, respectively;

ii) each list Li, i = 1, . . . , n, contains an arbitrary subset of the keys in Li−1;
iii) all lists L0, L1, . . . , Ln include values −∞ and +∞. Figure 7(a) illustrates
an example of skip list defined over the set K={12, 14, 16, 22, 26} of values for
attribute PId (i.e., patient identifier) of relation HospitalPatient in Figure 2.
This skip list includes three lists L0, L1, and L2.

Skip lists have been designed in such a way to efficiently support search
operations. The search for a key value v starts from −∞ in the top list (i.e.,
Ln), and proceeds through the application of two operations: hop forward , and
drop down. Hop forward means that the search proceeds right along the current
list until the visited key value vi is the largest value lower than or equal to v.
Then, the search moves down of one step (i.e., from the current list Lj to Lj−1).
The search iteratively applies the hops forward and drops down operations until
it reaches the bottom list L0. Figure 7(b) illustrates an example of the search
process for value 22 in the skip list in Figure 7(a). In the figure, visited nodes
are denoted with bold lines, while bold arrows denote hop forward (horizontal)
and drop down (vertical) operations.

Skip lists can be efficiently used to verify the integrity of point queries defined
over an attribute with actual domain corresponding to K. In this case, each
node of the skip list defined over K is enriched with a label, computed through a
commutative and collision-resistant hash function (i.e., a hash function h such
that h(x, y) = h(y, x) and such that its application to different inputs always
returns different values). Given a node v of the skip list and the node w at its
right, the label for v is computed as follows for L0:

ℓ(v, L0) =

{
h(v, w) if w ∈ L1

h(v, ℓ(w,L0)) otherwise
(1)

and as follows for Li with i = 1 . . . n:

ℓ(v, Li) =

{
ℓ(v, Li−1) if w ∈ Li+1

h(ℓ(v, Li−1), ℓ(w,Li)) otherwise
(2)

For instance, with respect to the skip list in Figure 7(a), the label of node
22 on L0 is computed as ℓ(22, L0) = h(22, 26) and the label of node 14 on L0 is
computed as ℓ(14, L0) = h(14, ℓ(16, L0)). The label of node 12 on L1 is instead
computed as ℓ(12, L1) = ℓ(12, L0) and the label of node 14 on L1 is computed
as ℓ(14, L1) = h(ℓ(14, L0), ℓ(22, L1)).

The label of the first node in the top list (i.e., Ln) is signed by the data owner
and used for integrity check.

The verification of the integrity of a point query targeting value v consists
in checking whether v is included in the skip list. In particular, if v belongs to
the skip list, the integrity verification process verifies its presence. Otherwise, it
verifies the existence of two values v′ and v′′, consecutive in list L0, such that
v′ < v < v′′. The verification process uses the information in the VO, which
includes: the signed label of the starting node of the skip list and the labels
of the nodes on the right and below the nodes in the path visited to reach v,

L0 −∞ 12 14 16 22 26 +∞

L1 −∞ 12 14 22 26 +∞

L2 −∞ 14 26 +∞

(a) initial skip list

L0 −∞ 12 14 16 22 26 +∞

L1 −∞ 12 14 22 26 +∞

L2 −∞ 14 26 +∞

(b) search path for 22

L0 −∞ 12 14 16 22

22

26

26

+∞

L1 −∞ 12 14 22 26 +∞

L2 −∞ 14 26 +∞

(c) verification

Fig. 7. A skip list for set K={12, 14, 16, 22, 26} of keys with three lists (a), search
process for value 22 (b), and verification object for a point query searching value 22
(c)

which are necessary to recompute the label of the starting node of the skip list.
If such recomputed value corresponds to the value signed by the data owner, the
verification process succeeds. For instance, consider the skip list in Figure 7(a)
and a query targeting value 22. Figure 7(c) highlights the visited nodes with
bold lines and the nodes included in the verification object with a light blue
(light gray in b/w printout) background and with dashed lines. The verification
object then corresponds to the list ⟨22, 26, ℓ(14, L0), ℓ(−∞, L1), ℓ(26, L2)⟩. The
client formulating the query verifies the query result by hashing the values in

the verification object and comparing the result with the label of the starting
node of the skip list.

The main advantage of skip lists over tree-based structures is that they can
be efficiently managed by a relational database with a limited overhead at the
client-side for integrity verification [16]. Such technique, however, permits the
verification of the correctness and completeness of point queries only.

4 Probabilistic Approaches

Probabilistic techniques offer a probabilistic guarantee on the integrity of query
results, that is, there is a (typically low) probability that an integrity viola-
tion (e.g., omission of tuples in the query result) goes undetected. Probabilistic
integrity verification approaches mainly focus on providing correctness and com-
pleteness guarantees and most of them are based on the injection in the original
dataset of non genuine data (called sentinels or markers) [19, 34–36], or the con-
trolled replication of data (twins) [10, 32, 33]. The offered integrity guarantees
are probabilistic because, while the omission of an expected sentinel or replica
signals an integrity violation, its presence in the computation of the query re-
sult does not imply the integrity of the result. As a matter of fact, the service
provider might have just been lucky in not missing any of the sentinels and/or
twins inserted by the data owner. We now provide a more detailed description
of the use of sentinels and twins for integrity verification (Section 4.1), and then
describe their use for the verification of join queries (Section 4.2).

4.1 Probabilistic Integrity Controls

We describe two probabilistic integrity verification approaches (i.e., sentinels
and twins) and their adoption for controlling the correctness and completeness
of query results.

Sentinels. Sentinels are fake tuples inserted in a dataset before using it in a
computation, and are built in such way to be indistinguishable from original
data to the providers involved in the computation (e.g., [8, 37]). The insertion of
a set S of sentinels is driven by the client requesting the execution of a query.
Given a dataset D and a query q, the service provider executes the query over
D∪S and returns to the client the query result res. The correctness of the query
result is verified by the client by checking whether, for each sentinel in the query
result res, the result of the evaluation of query q over the sentinel is the expected
one. Absence in the query result res of one or more of the expected tuples (i.e.,
the tuples obtained by the execution of q over S, denoted q(S)) signals instead
the fact that the query result is not complete. Otherwise, the query result is
considered complete with a certain probability. As proved in [36], even a limited
number of sentinels ensures high probabilistic guarantees of completeness of
the query result. The main drawback of the use of sentinels is that the client
should store the set S of sentinels injected in the dataset to compare the query
result received from the service provider with the evaluation of the query q

HospitalPatient (HP)
PId Name YoB Doc

t1 12 Amos 1961 d50
t2 14 Bea 2000 d52
t3 16 Cal 1985 d52
t4 20 Dennis 1933 d54
t5 22 Ethan 1973 d56
t6 24 Frank 1965 d58
t7 26 Grady 1953 d60
t8 28 Helen 1987 d62
t9 30 Ian 1987 d64

t10 32 Loretta 1961 d64
s1 18 Ben 1980 d60
s2 25 Gloria 1970 d58

(a)

HospitalPatient (HP)
PId Name YoB Doc

t1 12 Amos 1961 d50
t2 14 Bea 2000 d52
t′2 14 Bea 2000 d52
t3 16 Cal 1985 d52
t4 20 Dennis 1933 d54
t5 22 Ethan 1973 d56
t6 24 Frank 1965 d58
t7 26 Grady 1953 d60
t′7 26 Grady 1953 d60
t8 28 Helen 1987 d62
t9 30 Ian 1987 d64

t10 32 Loretta 1961 d64
(b)

Fig. 8. Relation HospitalPatient in Figure 2 enriched with sentinels (a) and twins
(b)

over S. To avoid this drawback, some approaches (e.g., [36]) are based on the
use of deterministic functions for sentinels generation. A client can then have
knowledge and check sentinels without storing them. Another problem is related
to the generation of sentinels, which should be: i) indistinguishable from the
original tuples; and ii) generated to cover in a uniform way the domains of the
attributes in the dataset, to maximize the probability that any query hits at
least a sentinel. The approaches in [8, 37] use encryption to prevent the service
provider from distinguishing between sentinels and real tuples. Other approaches
use specific functions that generate uniformly distributed sentinels (e.g., [19]).
As an alternative, if the provider storing the data is assumed to be trusted,
sentinels can be generated and injected on the fly, before sending the dataset to
the provider in charge of query evaluation. In this case, sentinels can be generated
in such a way that they belong to the query result. As an example of the use of
sentinels, consider relation HospitalPatient in Figure 2 and suppose to inject
two sentinels (s1 and s2) in the relation as illustrated in Figure 8(a), where
sentinels have a yellow (light gray in b/w printout) background. Assume that
a client submits query “select ∗ from HospitalPatient where YoB≤1970”,
asking for all patients born in 1970 or before. The client would expect sentinel
s2 to belong to the query result, that is, res={t1, t4, t6, t7, t10, s2}. Absence of s2
from the query result signals the incompleteness of the result. We note, however,
that a result including tuples t4, t6, t7, t10, and s2, while not complete (it misses
t1) would not violate the integrity check over sentinels.

Controlled replication (twins). Controlled replication consists in replicating
the tuples in the relation(s) involved in a query that satisfy a replication condition
Cr. The service provider involved in the computation should not be able to
identify pairs of replicated tuples. To verify the completeness and correctness

of the query result, the client checks the presence of two identical copies for
each tuple in the query result that satisfies the replication condition Cr. The
presence of one copy only signals the incompleteness of the query result. Also
receiving, for twin tuples, inconsistent results signals an incorrect result (i.e.,
at least one of the two results is incorrect). As an example, consider relation
HospitalPatient in Figure 2 and assume to replicate tuples with PId equal to
14 or 26 (i.e., tuples t2 and t7), as illustrated in Figure 8(b) where twins have a
orange (dark gray in b/w printout) background. Note that, for simplicity, in the
example we did not change twin tuples t′2 and t′7 to make them indistinguishable
from the corresponding twins (t2 and t7, respectively). Suppose that a client
submits query “select ∗ from HospitalPatient where Name=‘Bea’ ”. The
query result should include both t2 and t′2. Absence of one of these tuples from
the query result signals its incompleteness. We note, however, that an empty
result would pass integrity verification.

Complementary adoption of sentinels and twins. Sentinels and twins have
been proposed independently, and can be applied in isolation (i.e., either sen-
tinel or twins can be adopted to verify the integrity of a query result) or can be
applied in combination (e.g., [7–9]). Indeed, the complementary nature of sen-
tinels and twins ensures that their combined adoption provides stronger integrity
guarantees. As observed in [8, 11] twins are twice as effective as sentinels in de-
tecting omissions since the absence of any of the tuples in a twin pair signals an
integrity violation. However, twins lose effectiveness when the service provider
omits a large fraction of the tuples in the query result: the greater the number
of omitted tuples in the query result the more likely it is for the service provider
to omit twins in pairs and therefore to have the omission undetected (e.g., the
omission of all the tuples in the join result would pass the integrity check based
on twins only). This is then where sentinels come into help. In fact, when the
number of tuples omitted from the query result increases, the probability for the
service provider to be undetected with respect to the sentinel control decreases.
This is due to the fact that the greater the number of omissions, the greater
the probability of omitting a sentinel. The combined use of a limited number of
sentinels together with a limited number of twins ensures then complementar-
ity of controls and stronger integrity guarantees, as formally illustrated by the
analysis in [11].

4.2 Probabilistic Guarantees of Join Queries

In the discussion so far we have described how existing techniques can be adopted
for assessing the integrity of point and range queries. Often, however, data com-
ing from multiple data owners need to be combined (joined) to extract useful
information. The verification of join queries is more complex than the verification
of point/range queries. In the following, we illustrate how sentinels and twins can
be also adopted for assessing the integrity of the result of join queries. In the dis-
cussion, we consider a client that wants to execute a join query over two relations,
denoted Rl and Rr, stored at two independent trusted service providers, Sl and

Sr, respectively. We distinguish service providers that offer storage resources and
that manage the relations on which the queries are performed, from computa-
tional providers that offer computational resources. We assume that the service
providers storing the relations are trustworthy while computational providers
are not. The execution of joins can be delegated to computational providers
because the adoption of the service providers for performing the joins (which
are expensive operations) might not be the most economically viable solution or
because they might not want to use their network and computational resources
for performing queries on behalf of the client. In the following, we describe how
to perform one-to-one or one-to-many join operations with sentinels and twins
and with the help of a computational provider.

One-to-one join. Correctness and completeness of the result of join queries
performed over Rl and Rr is provided through the coordinated insertion of sen-
tinels and twins in the relations before transmitting them to the computational
provider. To have the guarantee that sentinels and twins also belong to the join
result, the insertion of such checks is driven and coordinated by the client sub-
mitting the query. More precisely, the client determines the number of sentinels
to be inserted in the two relations and their values for the join attribute, as well
as the replication condition regulating the percentage of twins to be inserted in
Rl and Rr. To avoid spurious tuples in the join result, the values of the join at-
tribute for sentinels are chosen outside the domain of the original join attribute
values. The twinning condition is defined over the join attribute, because it is
the only attribute common between the two relations. The values of the join
attribute for twinned tuples are combined with a random nonce. In this way,
twinned tuples do not join with the original ones. The relations to be joined are
encrypted before sending them to the untrusted computational provider. Note
that to allow the computational provider to perform the join operation, the
join attribute in the two relations Rl and Rr is encrypted separately using the
same deterministic encryption algorithm and the same key. The encryption of
the relations guarantees the confidentiality of the data and ensures the indistin-
guishability of sentinels and twins from the original tuples. The computational
provider performs the join operation over the encrypted relations and returns
the query result to the client. The client checks the integrity of the query result
by analyzing sentinels and twins: an integrity violation is detected if a sentinel
is missing or a tuple satisfying the twinning condition appears solo.

Figure 9 illustrates an example of one-to-one join query “select DId,Name
from FamilyDoctor join HospitalPatient on DId=Doc” retrieving the identi-
fier and name of the family doctors with a patient in the hospital. For simplicity,
the figure shows a simplified version of the schema of the relations in Figure 2,
and a simplified version of the instances that produces a one-to-one join. Also, we
use the abbreviations FD and HP as name of the relations. Service providers M and
H, storing the two relations, first inject both sentinels and twins (which are the
tuples that satisfy replication condition DId=d52 or Doc=d52, respectively). The
resulting extended relations (FD∗ and HP∗) are then encrypted on-the-fly and sent
to the computational provider (in the figure, encrypted values are represented

M H

computational
provider

client

FD
DId Name

d50 Ann
d52 Bart

HP
Doc PName

d50 Amos
d52 Bea
d60 Grady
d64 Ian

sentinels/twins sentinels/twins

FD∗

DId Name

d50 Ann
d52 Bart
d52 Bart
x sen1

HP∗

Doc PName

d50 Amos
d52 Bea
d60 Grady
d64 Ian
d52 Bea
x sen2

encrypt encrypt

FD∗k
Ik Tk
α µ1

β µ2

β µ3

χ µ4

HP∗k
Ik Tk
α η1
δ η2
γ η3
β η4
β η5
χ η6

▷◁

J∗k
FD*.Ik FD*.Tk HP*.Ik HP*.Tk

α µ1 α η1
β µ2 β η2
β µ3 β η5
χ µ4 χ η6

decrypt

J∗

DId Name Doc PName

d50 Ann d50 Amos
d52 Bart d52 Bea
d52 Bart d52 Bea
x sen1 x sen2

Fig. 9. An example of evaluation of a one-to-one join query with twins (orange - dark
gray on a b/w printout - tuples) on ‘d52’ and one sentinel (yellow - light gray on a b/w
printout - tuple)

as Greek letters). The encrypted relations FD∗k and HP∗k have two attributes: Ik,
the encrypted join attribute; and Tk, the encryption of all the attributes in the
original relation (including the join attribute). The computational provider com-
putes the natural join between the received encrypted relations and sends the
result (J∗k) to the client. The client decrypts J∗k (J∗), verifies its completeness
(i.e., if all the expected sentinels and twins are in J∗) and correctness, and, if no
omission is detected, projects over attributes DId and Name, and removes twins
and sentinels to obtain the final join result J to be returned to the client.

One-to-many join. The correctness and completeness of one-to-many joins
can be verified combining sentinels and twins as illustrated for one-to-one join
operations. However, when the join between relation Rl and relation Rr is a
one-to-many join (we assume Rl to be the relation on side “one” and Rr to be
the relation on side “many”), the frequencies of the values of the join attribute
remain visible to the computational provider, thus possibly making twins and
sentinels recognizable. Indeed, sentinels are all distinct and therefore multiple
tuples with the same value for the join attribute cannot be sentinels. Also, the
uncertainty on twin tuples can be reduced since twin pairs are characterized by
the same number of occurrences for the join attribute. As a simple example,
suppose that the computational provider receives a relation Rr where there are
8 tuples with 4 distinct values for the join attribute: one value occurs 3 times (3
tuples), two values occur twice (4 tuples), and one value occurs once (1 tuple).
The computational provider can immediately infer that the three tuples with the
same value for the join attribute cannot be sentinels, since sentinels have distinct
values for the join attribute, and cannot be twins since twins are always in pairs
and no other value in Rr has three occurrences. The two pairs of tuples with
two occurrences each can be twins or can be genuine tuples. The only tuple with
one occurrence can be a sentinel or a genuine tuple. The frequency distribution
of the values of the join attribute can then compromise the indistinguishability
property of twins and sentinels, and therefore it should not be revealed to the
computational provider.

The approach in [8] flattens the frequency distribution of values of the join
attribute of the tuples participating in a one-to-many join by using salts, buckets,
or a combination of salts and buckets. Intuitively, salts aim at transforming a
one-to-many join into an equivalent one-to-one join. The different occurrences of
a same value for the join attribute in relation Rr are made different by combining
each occurrence with a different random salt. To enable the correct evaluation
of the join operation, each value of the join attribute in relation Rl is replicated
as many times as the maximum expected number of occurrences of a value
in Rr, and each replica is combined with a different random salt. Clearly, the
values for salts used by the two service providers Sl and Sr must be the same,
therefore their generation is coordinated. Buckets aim instead at guaranteeing
a flat frequency distribution of the join attribute values in Rr. The idea is to
make the number of occurrences of all values of the join attribute in Rr equal
to the number of occurrences of the join value that appears more frequently in
the relation. For the join attribute values with a number of occurrences smaller

than the number of occurrences of the most frequent value, dummy tuples (i.e.,
tuples with the same value for the join attribute and a dummy content) are then
inserted in the relation. Salts and buckets can also be used in combination to
limit the increase of the size of relation Rl when using salts due to the replication
of salted tuples, and the increase of the size of relation Rr and of the join result
when using buckets due to the addition of dummy tuples in Rr. Note that salts
and/or buckets operate on original as well as on control (i.e., sentinels and twins)
tuples, to guarantee their indistinguishability. The number of salts and the size
of buckets need to be coordinated among the client and the service providers,
and the number of salts in particular need to be known to both Sl and Sr. The
client is therefore in charge of choosing and communicating the number of salts
to be used. The size of buckets can be autonomously computed by Sr based on
the maximum frequency in relation Rr (i.e., by dividing such a frequency by the
number of available salts).

Consider, as an example, the evaluation of the one-to-many join query “se-
lect DId,Name from FamilyDoctor join HospitalPatient on DId=Doc” in
Figure 10, where each provider H and M injects in its relation one sentinel and
twins tuples that satisfy the replication condition DId=d52 or Doc=d52. Like for
the one-to-one join, the figure reports a simplified version of the schema of the
relations in Figure 2. We assume that the client sets the number of salts to 2.
Buckets will have size 2, since the most frequent value in HospitalPatient (i.e.,
value d60) has 3 occurrences (⌈ 3

2⌉ = 2). The 3 tuples with value d60 are then
split in two buckets, one of which includes a dummy tuple. Similarly, sentinel x is
included in a bucket with a dummy tuple, since by definition sentinels have one
occurrence only. Figure 10 illustrates the evaluation of the join, which proceeds
as already discussed for the one-to-one join in Figure 9, with the addition of
salts and buckets.

5 Open Issues

Although the problem of query integrity verification has been widely studied,
there are still several interesting research directions that need to be further
investigated, as summarized in the following.

– Type of outsourced computation and data. Existing integrity verification tech-
niques mainly consider SQL queries (e.g., point, range, aggregate, and join
queries), location-based range queries, and top-k queries as outsourced com-
putations, and work on relational databases. An interesting research direc-
tion would then be the investigation of integrity verification techniques for
other kinds of computations, (e.g., data mining, machine learning, data clas-
sification, and clustering) as well as for other kinds of data. Very few ap-
proaches have addressed the problem of verifying the integrity of queries for-
mulated, for example, over spatial data or graph data (e.g., [18, 31]). These
solutions are based on a variation of the Merkle hash tree.

– Distributed platforms. The growing interest toward the use of distributed
platforms (e.g., distributed cloud storage platforms) for processing large vol-

M H

computational
provider

client

FD
DId Name

d50 Ann
d52 Bart

HP
Doc PName

d52 Bea
d52 Carl
d60 Grady
d60 Ian
d60 Loretta

sentinels/twins
salts/buckets

sentinels/twins
salts/buckets

FD∗

DId Name

d50 Ann
d50′ Ann
d52 Bart
d52′ Bart
d52 Bart
d52

′
Bart

x sen1

HP∗

Doc PName

d52 Bea
d52 Carl
d60 Grady
d60 Ian
d60′ Loretta
d60′ dummy
d52 Bea
d52 Carl
x sen2
x dummy

encrypt encrypt

FD∗k
Ik Tk
α µ1

α′ µ2

β µ3

β′ µ4

β µ5

β
′

µ6

χ µ7

HP∗k
Ik Tk
β η1
β η2
γ η3
γ η4
γ′ η5
γ′ η6
β η7
β η8
χ η9
χ η10

▷◁

J∗k
FD*.Ik FD*.Tk HP*.Ik HP*.Tk

β µ3 β η1
β µ3 β η2
β µ5 β η7
β µ5 β η8
χ µ7 χ η9
χ µ7 χ η10

decrypt

J∗

DId Name Doctor PName

d52 Bart d52 Bea
d52 Bart d52 Carl
d52 Bart d52 Bea
d52 Bart d52 Carl
x sen1 x sen2
x sen1 x dummy

Fig. 10. An example of evaluation of a one-to-many join query with twins (orange -
dark gray on a b/w printout - tuples) on ‘d52’, one sentinel (yellow - light gray on a
b/w printout - tuple), two salts, and bucket of size two

umes of data goes along with the growing interest for designing integrity
verification techniques that are able to verify the behavior of all the par-
ties involved in the computation (e.g., [7]). These platforms are typically
characterized by the presence of independent workers that collaboratively
perform a computation. There are several aspects that need to be studied to
efficiently and effectively apply the integrity verification techniques in such
distributed context, including: i) the need to verify the behavior of all the
workers; ii) the consideration of different trust assumptions on the workers
involved in the computation; and iii) the need to limit the overhead due
to coordination of integrity verification. The presence of different workers
also introduces the problem of collusion. As a matter of fact, the working
of distributed platforms is typically based on the assumption that workers
are independent and do not communicate. It would then be interesting to
investigate what can happen when such independency cannot be assumed
and some workers, under the control of a same subject, can communicate
and collude to go undetected in their omissions. The design of probabilistic
integrity verification techniques for distributed scenarios also requires the
definition of a model for capturing the distribution among workers of sen-
tinels and twins, their combined use, and their generation so to provide best
effectiveness for integrity guarantees [11].

– Freshness. Most of the existing integrity verification techniques mainly focus
on the correctness and completeness of query results. Only few proposals
also address the problem of verifying the freshness of query results (e.g., [28,
38]). An interesting research direction would then be the design of efficient
integrity verification techniques (especially probabilistic) able to assess at
the same time the correctness, completeness, and freshness of query results.

– Combined application of integrity verification and other security approaches.
While integrity verification techniques might work well in isolation, their
combined application with other approaches for protecting data/computations
may open the door to new vulnerabilities that need to be addressed. As an
example, the problem of combining integrity and query privacy in its different
aspects (e.g., protection of the data, protection of single queries, and protec-
tion of query patterns) requires a careful analysis, investigating approaches
that can balance the trade-off between protection enjoyed and performance
overhead paid, allowing clients to tune the protection guarantees and over-
head in different contexts and scenarios. A further example is represented
by the combination of integrity and access control. In fact, existing query
integrity verification techniques are typically based on the assumption that
the client is authorized to access the whole outsourced datasets. Such an
assumption, however, does not fit real world applications, which demand for
selective access by different users (e.g., [39]).

6 Conclusions

The outsourcing of query computations brings several advantages but, at the
same time, requires solutions that should consider not only the protection of

data confidentiality, but also the need of verifying the integrity of query results.
Integrity is particularly important when the service providers involved in a query
evaluation are not trustworthy, that is, they are not reliable for properly per-
forming queries. In this chapter, we presented an overview of the main integrity
verification techniques. We described both deterministic and probabilistic tech-
niques, which differ on the kind of guarantees provided. For each category, we
illustrated the main techniques, highlighting the verification cost. We concluded
the chapter with a discussion on possible open research directions.

Acknowledgements This work was supported in part by the EC under projects
EdgeAI (101097300) and GLACIATION (101070141), by the Italian MUR under
PRIN project POLAR (2022LA8XBH), and by project SERICS (PE00000014)
under the MUR NRRP funded by the EU - NGEU.

References

1. Aggarwal, G., Bawa, M., Ganesan, P., Garcia-Molina, H., Kenthapadi, K., Mot-
wani, R., Srivastava, U., Thomas, D., Xu, Y.: Two can keep a secret: a distributed
architecture for secure database services. In: Proc. of CIDR. Asilomar, CA, USA
(January 2005)

2. Albanese, M., Jajodia, S., Jhawar, R., Piuri, V.: Securing mission-centric opera-
tions in the cloud. In: Jajodia, S., Kant, K., Samarati, P., Swarup, V., Wang, C.
(eds.) Secure Cloud Computing, pp. 239–260. Springer, New York (2014)

3. Ateniese, G., Burns, R., Curtmola, R., Herring, J., Kissner, L., Peterson, Z., Song,
D.: Provable data possession at untrusted stores. In: Proc. of ACM CCS. Alexan-
dria, VA, USA (October/November 2007)

4. Boneh, D., Gentry, C., Lynn, B., Shacham, H.: Aggregate and verifiably encrypted
signatures from bilinear maps. In: Proc. of EUROCRYPT. Warsaw, Poland (May
2003)

5. Ciriani, V., De Capitani di Vimercati, S., Foresti, S., Jajodia, S., Paraboschi, S.,
Samarati, P.: Combining fragmentation and encryption to protect privacy in data
storage. ACM TISSEC 13(3), 22:1–22:33 (July 2010)

6. Damiani, E., De Capitani di Vimercati, S., Paraboschi, S., Samarati, P.: Managing
and sharing servents’ reputations in P2P systems. IEEE TKDE 15(4), 840–854
(July/August 2003)

7. De Capitani di Vimercati, S., Foresti, S., Jajodia, S., Livraga, G., Paraboschi,
S., Samarati, P.: Integrity for distributed queries. In: Proc. of IEEE CNS. San
Francisco, CA, USA (October 2014)

8. De Capitani di Vimercati, S., Foresti, S., Jajodia, S., Paraboschi, S., Samarati, P.:
Integrity for join queries in the cloud. IEEE TCC 1(2), 187–200 (July-December
2013)

9. De Capitani di Vimercati, S., Foresti, S., Jajodia, S., Paraboschi, S., Samarati,
P.: Optimizing integrity checks for join queries in the cloud. In: Proc. of DBSec.
Vienna, Austria (July 2014)

10. De Capitani di Vimercati, S., Foresti, S., Jajodia, S., Paraboschi, S., Samarati, P.:
Efficient integrity checks for join queries in the cloud. JCS 24(3), 347–378 (2016)

11. De Capitani di Vimercati, S., Foresti, S., Jajodia, S., Paraboschi, S., Sassi, R.,
Samarati, P.: Sentinels and twins: Effective integrity assessment for distributed
computation. IEEE TPDS 34(1), 108–122 (January 2023)

12. De Capitani di Vimercati, S., Foresti, S., Livraga, G., Paraboschi, S., Samarati,
P.: Privacy in pervasive systems: Social and legal aspects and technical solutions.
In: Colace, F., Santo, M.D., Moscato, V., Picariello, A., Schreiber, F., Tanca, L.
(eds.) Data Management in Pervasive Systems, pp. 43–65. Springer, USA (2015)

13. De Capitani di Vimercati, S., Foresti, S., Livraga, G., Samarati, P.: Practical tech-
niques building on encryption for protecting and managing data in the cloud. In:
Ryan, P., Naccache, D., Quisquater, J.J. (eds.) The New Codebreakers. Springer,
USA (2016)

14. De Capitani di Vimercati, S., Foresti, S., Samarati, P.: Protecting data and queries
in cloud-based scenarios. SN Computer Science 4(5) (September 2023)

15. Devanbu, P., Gertz, M., Martel, C., Stubblebine, S.: Authentic third-party data
publication. In: Proc. of DBSec. Schoorl, The Netherlands (August 2000)

16. Di Battista, G., Palazzi, B.: Authenticated relational tables and authenticated skip
lists. In: Proc. of DBSec. Redondo Beach, CA, USA (July 2007)

17. Donida Labati, R., Genovese, A., Piuri, V., Scotti, F., Vishwakarma, S.: Compu-
tational intelligence in cloud computing. In: Kovács, L., Haidegger, T., Szakál, A.
(eds.) Recent Advances in Intelligent Engineering, Topics in Intelligent Engineering
and Informatics, vol. 14, pp. 111–127. Springer, Cham, USA (2020)

18. Fan, Z., Peng, Y., Choi, B., Xu, J., Bhowmick, S.: Towards efficient authenticated
subgraph query service in outsourced graph database. IEEE TSC 7(4), 696—-713
(October-December 2014)

19. Ghazizadeh, P., Mukkamala, R., Olariu, S.: Data integrity evaluation in cloud
database-as-a-service. In: Proc. of IEEE SERVICES. Santa Clara, CA, USA (June-
July 2013)

20. Apache hadoop, http://hadoop.apache.org/
21. Jhawar, R., Piuri, V.: Fault tolerance and resilience in cloud computing environ-

ments. In: Vacca, J. (ed.) Computer and Information Security Handbook, 2nd
Edition, pp. 125–141. Morgan Kaufmann, USA (2013), 978-0-1239-4397-2

22. Juels, A., Kaliski, B.: PORs: Proofs of retrievability for large files. In: Proc. of
ACM CCS. Alexandria, VA, USA (October–November 2007)

23. Li, F., Hadjieleftheriou, M., Kollios, G., Reyzin, L.: Dynamic authenticated index
structures for outsourced databases. In: Proc. of SIGMOD. Chicago, IL, USA (June
2006)

24. Li, X., Weng, C., Xu, Y., Wang, X., Rogers, J.: ZKSQL: Verifiable and efficient
query evaluation with zero-knowledge proofs. PVLDB 16(8), 1804–1816 (2023)

25. Mouratidis, K., Sacharidis, D., Pang, H.: Partially materialized digest scheme: An
efficient verification method for outsourced databases. The VLDB Journal 18, 363–
381 (2009)

26. Pang, H., Jain, A., Ramamritham, K., Tan, K.: Verifying completeness of relational
query results in data publishing. In: Proc. of ACM SIGMOD 2005. Baltimore, MD,
USA (June 2005)

27. Pang, H., Tan, K.: Authenticating query results in edge computing. In: Proc. of
ICDE. Boston, MA, USA (April 2004)

28. Pang, H., Zhang, J., Mouratidis, K.: Scalable verification for outsourced dynamic
databases. PVLDB 2(1), 802–813 (2009)

29. Pugh, W.: Skip lists: a probabilistic alternative to balanced trees. Communications
of ACM 33(6), 668—-676 (1990)

30. Samarati, P., De Capitani di Vimercati, S.: Cloud security: Issues and concerns.
In: Murugesan, S., Bojanova, I. (eds.) Encyclopedia on Cloud Computing. Wiley,
USA (2016)

31. Tian, F., Wu, Z., Gui, X., Ni, J., Shen, X.: Fine-grained query authorization with
integrity verification over encrypted spatial data in cloud storage. IEEE TCC
10(3), 1831–1847 (July-September 2022)

32. Ulusoy, H., Kantarcioglu, M., Pattuk, E.: TrustMR: Computation integrity assur-
ance system for MapReduce. In: Proc. of BigData. Santa Clara, CA, USA (Oct-Nov
2015)

33. Wand, H., Yin, J., Perng, C.S., Yu, P.: Dual encryption for query integrity assur-
ance. In: Proc of ACM CIKM. Napa Valley, CA, USA (October 2008)

34. Wang, C., Chow, S., Wang, Q., Ren, K., Lou, W.: Privacy-preserving public au-
diting for secure cloud storage. IEEE TC 62(2), 362–375 (Feb 2013)

35. Wong, W., Cheung, D., Kao, B., Hung, E., Mamoulis, N.: An audit environment
for outsourcing of frequent itemset mining. PVLDB 2(1), 1162–1172 (2009)

36. Xie, M., Wang, H., Yin, J., Meng, X.: Integrity auditing of outsourced data. In:
Proc. of VLDB. Vienna, Austria (September 2007)

37. Xie, M., Wang, H., Yin, J., Meng, X.: Integrity auditing of outsourced data. In:
Proc. of VLDB. Vienna, Austria (September 2007)

38. Xie, M., Wang, H., Yin, J., Meng, X.: Providing freshness guarantees for outsourced
databases. In: Proc. of EDBT. Nantes, France (March 2008)

39. Xu, C., Xu, J., Hu, H., Au, M.: When query authentication meets fine-grained
access control: A zero-knowledge approach. In: Proc. of SIGMOD. Houston, TX,
USA (June 2008)

40. Yang, Y., Papadias, D., Papadopoulos, S., Kalnis, P.: Authenticated join processing
in outsourced databases. In: Proc. of SIGMOD. Providence, RI, USA (June-July
2009)

41. Zaharia, M., Chowdhury, M., Franklin, M., Shenker, S., Stoica, I.: Spark: Cluster
computing with working sets. In: Proc. of HotCloud. Boston, MA, USA (June
2010)

42. Zheng, Q., Xu, S., Ateniese, G.: Efficient query integrity for outsourced dynamic
databases. In: Proc. of ACM CCSW. Raleigh, NC, USA (October 2012)

43. Zhou, W., Cai, Y., Peng, Y., Wang, S., Ma, K., Li, F.: VeriDB: An SGX-based
verifiable database. In: Proc. of SIGMOD (June 2021)

