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Abstract—More and more organizations are today using the
cloud for their business as a quite convenient alternative to
in-house solutions for storing, processing, and managing data.
Cloud-based solutions are then permeating almost all aspects
of business organizations, resulting appealing also for functions
that, already in-house, may result sensitive or security critical,
and whose enforcement in the cloud requires then particular
care. In this paper, we provide an approach for securely
relying on cloud-based services for the enforcement of Internal
Controls and Audit (ICA) functions for corporate governance.
Our approach is based on the use of selective encryption and of
tags to provide a level of self-protection to data and for enabling
only authorized parties to access data and perform operations
on them, providing privacy and integrity guarantees, as well
as accountability and non-repudiation.

Keywords-Cloud-based services; outsourcing; internal con-
trols and audit process; selective encryption

I. INTRODUCTION

Corporate Governance is a collection of rules, best prac-

tices, and processes needed to achieve an organization’s

objectives and strategies. The benefits and the importance

of having a good corporate governance are continuously

increasing, due to the growth in business regulation and

capital mobility. Indeed, countries see corporate governance

as a key factor for their global competitiveness. There

are therefore several attempts to promote the adoption of

national Corporate Governance Codes by organizations. As

an example, the European Corporate Governance Codes

Networks (www.ecgcn.org) has the goal to share experience

on issues related to corporate governance. These national

Corporate Governance Codes contain many principles fo-

cusing on different aspects, such as the model of corporate

governance, and relations with shareholders; an important

role is played by the internal control and risk management

system, which has, as central mechanisms, the internal

controls and audit (ICA) functions.

ICA functions aim mainly at verifying the effectiveness

and efficiency of operations and their successful realization

can contribute to the improvement of the quality of cor-

porate governance and management. ICA functions can be

performed in different ways, depending on how the general

principles described in the Corporate Governance Code are

implemented in the context of a specific organization. This

paper focuses on the case of an organization structured in

multiple units and where all the operations performed in

the units must be checked according to a three-level ICA

process. A structure with three levels is the most common in

companies that have to comply with market regulations, like

banks and financial institutions. The first level of control is

executed by an employee of the unit where the operation has

been performed. The second level of control is performed

by the director of the unit, and the third level of control is

performed by an independent auditor. Each level of control

aims at verifying different aspects related to, for example,

the operational and business area, and produces a report

summarizing the results of the control.

The adoption of cloud-based solutions for supporting ICA

functions requires to ensure confidentiality and integrity of

data and of controls on them, involving different challenges.

First, data records subject to internal controls and audit may

need to remain confidential to the cloud provider itself.

Second, access to data and execution of internal controls

and audit should be possible only for authorized parties.

Third, parties should be accountable for their actions. Fourth,

parties involved in the control should be able to assess

integrity of information (data and results of control) on

which they operate. Although several proposals have been

designed for the protection of data in the cloud (e.g., [1]),

none of them can be directly applied to correctly enforce

the ICA of corporate governance.

In this paper, we consider the problem of securely relying

on the cloud for supporting ICA functions and address all the

challenges above. The remainder of this paper is organized

as follows. Section II presents the scenario, introducing the

parties involved in the ICA functions and their execution.

Section III illustrates our solution for providing protection

to data in the cloud and enforcing access control on them

so that only authorized parties can access them. Section IV

enriches such solution with capability of secure support of

all ICA functions ensuring their execution only to authorized

parties, with confidentiality and integrity guarantees. Sec-

tion V provides the algorithm implementing the proposed

solutions. Section VI discusses related work. Finally, Sec-

tion VII concludes the paper.

II. SCENARIO AND PROBLEM DEFINITION

We consider an organization composed of different operat-

ing units whose employees can process and manage different

operations. Each unit is under the control of a unit director,

who is responsible for the activity of the unit. For simplicity

of exposition, but without loss of generality, we assume that
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Figure 1. ICA process at an external cloud provider

each director is responsible for one unit only. Formally, we

denote the set of units of the organization as U , and, for each

unit ui∈U , we denote its employees as Ei and its director

as di. Each unit ui stores the information of operations in a

log, modeled as a set Oi of operation records. Each record

stores the information of the corresponding operation, which

includes a unique operation identifier id and the identifier

of the unit u where the operation has been processed. We

use the traditional dot notation to refer to a specific attribute

of an operation record (e.g., o.id denotes the identifier of

operation o). For simplicity, in the following, we will use

the term operation to refer interchangeably to the operation

and its record. Notation D, E , and O is used to refer to

the set of directors, employees, and operations of all units,

respectively (i.e., D = {d1, . . . , dn}, E = E1 ∪ . . . ∪ En,

and O = O1 ∪ . . . ∪ On). Note that the directors of units

are disjoint from the set of employees, that is, D ∩ E = ∅.

Given an employee e∈E , unit(e) denotes the unit for which

the employee works. Analogously, given a director d∈D,

unit(d) denotes the unit directed by d.

All operations must undergo an internal controls and audit

(ICA) process to ensure that they are legitimate. This process

involves different subjects, that is, the employees of the

organizations, the directors, and a set A = {a1, . . . , aw}
of independent auditors appointed by the organization. Each

subject is responsible of different checks on the operations.

Given an operation, a first level of control is executed

by an employee of the unit where the operation has been

processed. The result of this check is a report that is stored

in association with the operation itself (as attribute o.re).

The second level of control is performed by the director of

the unit. The director must check both the operation and

the report generated during the first level of control. Also

in this case, at the end of the check, a second report is

created (as attribute o.rd). Finally, the third level of control

is performed by an independent auditor who checks the

operation and the reports created in the previous steps. The

independent auditor produces a final report for the operation

(as attribute o.ra) and marks the internal controls and audit

process as concluded (attribute o.fl set to TRUE).

Example 2.1: We consider, as a running example, an

organization with two units U={X , Y }, where unit X has

three employees Ex={x1 , x2 , x3} and is directed by dx , and

unit Y has two employees Ey={y1 , y2 } and is directed by

dy . The set of operations processed by units X and Y are

Ox and Oy , respectively.

The management of operations and of the corresponding

internal controls and audit operate in compliance with a

regulation established by the organization, according to

which: i) information related to an operation is accessible

to all employees and the director of the unit where the

operation has been processed; and ii) information related to

all operations of all the units is accessible to all independent

auditors. These two requirements naturally translate into an

access control policy regulating which subject (employee,

director, auditor) should be authorized to access the opera-

tions. Given the set S=E∪D∪A of subjects in the system,

the access control policy of the organization can be formally

defined as follows.

Definition 2.1 (Access control policy): Let S=E∪D∪A
be the set of subjects, U be the set of units, and O be the

set of operations. An access control policy P regulating

access to operations in O is a set of permissions of the

form 〈s,o〉, with s∈S, o∈O, such that only the following

permissions are included:

1) ∀s ∈ E ∪D, ∀o ∈ O : 〈s,o〉 ∈ P iff o.u=unit(s);

2) ∀a ∈ A, ∀o ∈ O : 〈a,o〉 ∈ P .

Each pair 〈s, o〉 in P states that s can access o.

Due to the huge number of operations that are processed

on a daily basis, the operation records as well as the

corresponding reports generated during the internal controls

and audit process are stored and managed in the cloud (see

Figure 1). Our goal is therefore the design of a solution that

supports the external storage of the operation records while

guaranteeing the confidentiality and integrity of their content

as well as the integrity and non repudiation of ICA reports.

Indeed, the cloud provider, which is not under the direct

control of the organization, is assumed to be honest-but-

curious meaning that it is trustworthy to properly manage the

ICA process but it may not be trusted to read the operations

content and reports. Figure 2 summarizes the notation used

in the paper. In the following, we first describe how to



U set of units
E set of employees of the organization
D set of directors of the organization
A set of independent auditors
S set of subjects (E ∪D ∪ A)
O set of operations processed at the organization
Ei set of employees of unit ui

Oi set of operations processed at unit ui

ui unit i
di director of unit ui

unit(e) unit of employee e∈E

unit(d) unit of director d∈D

o.id identifier of operation o

o.u unit where operation o has been processed
o.re employee report of operation o

o.rd director report of operation o

o.ra auditor report of operation o

o.fl flag of status of operation o

P access control policy of the organization

Figure 2. Notation used in the paper

enforce the access control policy of the organization using

selective encryption (Section III) and then shows how to

enforce the ICA process (Section IV and Section V).

III. STORAGE AND ACCESS CONTROL

Before moving the storage of the operations to the cloud,

the record of each operation is encrypted to guarantee its

confidentiality with respect to the cloud provider. Our solu-

tion enforces the access control policy of the organization

over the encrypted operations externally stored leveraging

the selective encryption technique (e.g., [2]). Basically, we

encrypt different operations with different encryption keys

and ensure that each subject can decrypt all and only the

operations she is authorized to access. To do so without

requiring the distribution of multiple keys to subjects, we

organize keys in a hierarchical structure enabling a subject

to derive from a single key (the one assigned to the subject)

all, and only, the keys used for encrypting the operations

that the subject is authorized to access (e.g., [3]). Each

subject s with key ks can then derive another key k through

a public token computed as t=k⊕h(ks ,l), where h is a

deterministic cryptographic function, ⊕ is the bitwise xor

operator, and l is a publicly available label associated with

key k. The derivation process can be direct or indirect,

through a chain of tokens (i.e., key k can in turn be used

to derive another key k′). Intuitively, key derivation permits

to assign a single key to each subject (employee, director,

auditor), from which she can derive the encryption keys used

to protect the operations that she is authorized to access.

The access control policy P can then be translated into

an equivalent encryption policy dictating the key used to

encrypt each operation, the key released to each subject, and

key derivation via tokens. Basically, each employee, director,

and auditor has her own key. Also, since all operations

processed at a specific unit can be accessed by the same set
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Figure 3. Key derivation structure for Example 3.1

of subjects (i.e., the employees and the director of the unit

as well as all auditors), they can be all encrypted with the

same key. We can therefore associate a key with each unit

and use it for encrypting all the operations processed at the

unit. The employees and director of each unit must then be

able to derive, from their own key, the key of the unit where

they work. The auditors must instead be able to derive,

from their own key, the keys of all the units. Formally, an

encryption policy equivalent to the access control policy P
of the organization is defined as follows.

Definition 3.1 (Equivalent encryption policy): Let P be

the access control policy over the set U of units and the

set S=E∪D∪A of subjects, and O be the set of opera-

tions. An encryption policy Π equivalent to P is a 7-uple

〈S,O,K,L,φS ,φO,T 〉 where:

1) (K,L) is the set of keys and corresponding labels such

that K=KS∪KU , with KS={ks| s ∈ S} and KU={ku |
u ∈ U};

2) φS : S → KS is an injective function assigning a key

and corresponding label to each subject;

3) φO : O → KU is a function assigning a key and corre-

sponding label to each operation such that ∀o′, o′′ ∈O
with o′.u=o′′.u, φO(o′)=φO(o′′);

4) T is the set of tokens defined over K and L such that:

∀〈s, o〉 ∈ P , φS(s)
T
−→ φO(o); ∀kw

T
−→ kv , with kw ∈

KS , kv ∈ KU , ∀o ∈ φO
−1(kv), 〈φS

−1(kw), o〉 ∈ P .

Notation k′
T
−→ k′′ indicates that key k′′ is derivable from

key k′ through a (sequence of) token(s) in T . The above

definition of equivalent encryption policy says that: there is

a key for each subject and each unit, and all operations of

the same unit u are encrypted with the same key ku (1-3),

and each subject s is associated with a key φS(s) from which

she can derive all and only the keys of the operations that s

is authorized to access according to policy P (4). Note that

the definition does not say anything about how to create the

tokens to guarantee policy equivalence. We can therefore

adopt different strategies. Our solution consists in creating,

for each unit u∈U , a token enabling the direct derivation

of ku from the key of each employee and director of u and

from the key of each auditor. Each operation o∈O is then

encrypted with key ku , thus ensuring the correct enforcement

of conditions 3 and 4 of Definition 3.1.

Example 3.1: Figure 3 graphically illustrates the key

derivation structure of our running example, obtained ac-



cording to the above-mentioned approach. Each key is

represented by a node and each token ti,j enabling the

derivation of kj from ki is represented by an edge (ki,kj).

For simplicity, in the figure we denote each key ki with the

subject/unit i to which it refers.

Note that each access by an authorized subject to an

outsourced operation record requires a search across the set

T of tokens (and labels L) that are publicly available and

stored on the cloud provider.

IV. ICA PROCESS IN THE CLOUD

Considering an operation o processed at unit u, the

ICA process applied by our reference organization satisfies

some requirements related to the management of the reports

created after each ICA process phase. Such requirements can

be summarized as follows.

R1) Report generation. The report of each ICA phase can

be generated only by authorized subjects, namely:

R1.1) the employee report re can be prepared only by

an employee e of unit u (i.e., unit(e)=u);

R1.2) the director report rd can be prepared only by

the director d of unit u (i.e., unit(d)=u); and

R1.3) the audit report ra can be prepared only by an

auditor a∈A.

R2) Report update. The report of each ICA phase can be

modified:

R2.1) only by the subject who generated it; and

R2.2) only until the beginning of the subsequent phase.

R3) Report integrity and accountability. The report of each

ICA phase should not be tampered with and cannot be

repudiated by the subject who generated it, who is also

responsible for its content.

In this section, we present our solution for the enforce-

ment of these requirements when the operation records are

encrypted and stored at an external cloud provider where no

trusted monitor can directly enforce them.

A. Report generation

When moving the storage of operation records to the

cloud, the enforcement of requirement R1 is complicated

by the absence of a trusted party to whom controls can

be delegated. Indeed, the cloud provider is not trusted for

authentication and policy enforcement. The idea is then

to design a solution that, in cooperation with the cloud

provider, exploits selective encryption for the enforcement

of requirement R1. Intuitively, our solution consists in asso-

ciating a secret, encrypted using selective encryption, with

each report to regulate (write) access to it. The secret is a

value generated together with the operation and encrypted

with a key known only to the subjects authorized to generate

the report and to the cloud provider. The encrypted secret is

called tag and the cloud provider will accept a write/create

operation on a report related to a given operation when the

ID OPERATION GENERATION REPORT CONTROLS

︷︸︸︷ ︷ ︸︸ ︷ ︷ ︸︸ ︷

id Enc(o.*,kui
) re Enc(σ,kEiP ) rd Enc(σ′,kdiP ) ra Enc(σ′′,kAP ) fl

tag_e tag_d tag_a

Figure 4. Structure of outsourced operation record

requesting subject shows ability to decrypt the corresponding

tag. Formally, a tag is defined as follows.

Definition 4.1 (Tag): A tag is the result of the encryption

Enc(σ,kSP ) of a secret σ with a key kSP known to the

subjects in S ⊆ E ∪D ∪A and to the cloud provider P .

The secret σ used to compute a tag can be a randomly

generated number. The proper enforcement of requirement

R1 requires each operation to be associated with three

different tags, one for each report, that must be encrypted

with different keys shared by the cloud provider and the

subjects authorized to generate the report. Formally, each

operation o of unit ui is associated with three tags computed

as follows.

• tag_e=Enc(σ,kEiP ), with kEiP a key known only to

the employees Ei of unit ui and to the cloud provider

P , and σ the secret needed to create/write report re

(R1.1).

• tag_d=Enc(σ′,kdiP ), with kdiP a key known only to the

director di of unit ui and to the cloud provider P , and

σ′ the secret needed to create/write report rd (R1.2).

• tag_a=Enc(σ′′,kAP ), with kAP a key known to the

auditors A and to the cloud provider P , and σ′′ the

secret needed to create/write report ra (R1.3).

Figure 4 shows the structure of the outsourced records.

As an example, operation ox processed at unit X is associ-

ated with tags tag_e=Enc(σ,kEXP ), tag_d=Enc(σ′,kdxP),

and tag_a=Enc(σ′′,kAP ) enabling the employees of unit

X , its director dx , and all auditors to create/write report

re, rd, and ra, respectively. Indeed, the cloud provider

will permit to write report re (rd and ra, resp.) only

to subjects demonstrating their ability to correctly decrypt

tag_e (tag_d and tag_a, resp.). Operatively, a subject

(i.e., an employee e, director d, and auditor a, resp.) before

performing a check on an operation has to first download

the appropriate tag from the cloud provider (i.e., tag_e,

tag_d, or tag_a, resp.), decrypt it, and send the retrieved

secret to the cloud provider. The cloud provider allows

the subject to write the report only if the communicated

secret corresponds to the secret that the provider retrieves

decrypting the same tag (i.e., tag_e, tag_d, and tag_a,

resp.).

The key derivation structure illustrated in Section III is

then extended with the keys necessary for the management

of tags. In particular, the structure is extended by adding a

node for the key kP of the cloud provider and a node for

each key kSP shared by a subset S ⊆ S of subjects and the
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Figure 5. Extended key derivation structure for our running example

cloud provider. The cloud provider, as well as the authorized

subjects, can derive these keys through a direct token from

their own key. For instance, each employee e ∈ Ei working

at unit ui can derive key kEiP through a token from key ke

to key kEiP .

Example 4.1: Consider our running example and the key

derivation structure in Figure 3. Figure 5 illustrates the

extended key derivation structure, where nodes with a dotted

circle represent keys shared with the cloud provider, and

dotted edges represent the tokens added to the original key

derivation structure for allowing authorized subjects and the

cloud provider to derive the keys necessary to decrypt tags.

B. Report update

Requirement R2 regulates who can update a report and

until when. As an example, consider our running example

and suppose that employee x1 checks operation ox and

then generates report ox .re. According to R2, only x1 can

modify ox .re until director dx begins the second level of

control. As discussed in Section IV-A, tags represent an

effective solution for regulating, in cooperation with the

cloud provider, who can write reports. We then leverage tags

to enforce also requirement R2 as described in the following.

Restrict updates (R2.1). Since a report can be gener-

ated/modified only by the subjects who can prove the

knowledge of the corresponding secret (σ) in the tag (i.e.,

the subjects who can correctly decrypt the tag), updates

to the report can be prevented by changing the secret and

therefore the tag. In this way, only presenting the new secret

a subject can modify the corresponding report. Note that the

secret must be changed and encrypted with a key that only

the subjects authorized to modify the report (and the cloud

provider) know, to avoid that previously authorized subjects

can present the old secret and obtain the access. We apply

this idea to restrict updates to the employee and auditor

reports (the director report can already be updated only by

the director). Whenever an authorized subject s ∈ E∪A (i.e.,

an employee or auditor) starts the analysis of an operation

o, the subject has to: 1) generate a new secret σ′; 2)

create a new tag obtained encrypting the new secret with

key ksP shared with the cloud provider (Enc(σ′, ksP )); 3)

tag_e tag_d tag_a fl

ICA process Enc(σ1 ,kExP ) Enc(σ2 ,kdx P ) Enc(σ3 ,kAP ) FALSE

1st start, x1 Enc(σ4 ,kx1 P ) Enc(σ2 ,kdx P ) Enc(σ3 ,kAP ) FALSE

2nd start, dx dummy Enc(σ2 ,kdx P ) Enc(σ3 ,kAP ) FALSE

3rd start, a1 dummy dummy Enc(σ5 ,ka1 P ) FALSE

3rd end, a1 dummy dummy dummy TRUE

Figure 6. An example of evolution of tags for operation ox

overwrite the old tag (i.e., o.tag_e or o.tag_a, depending

on whether s is an employee or an auditor) with the new

one. Since the new secret σ′ is encrypted with key ksP , only

subject s can prove to the cloud provider the knowledge

of σ′, thus blocking the possible attempts by previously

authorized subjects (i.e., the employees of the same unit as

s and all the auditors) to modify the report. The new keys

needed to encrypt the new secrets (i.e., ∀s ∈ E ∪A, key ksP )

are derivable by the authorized subjects (i.e., each subject

s ∈ E ∪A) and by the cloud provider through tokens added

to the key derivation structure and that start from the key of

the authorized subjects and from the key of the provider.

Prevent updates (R2.2). A subject who has generated a

report can modify it until the subsequent control phase,

that is, when a director or auditor starts a control, the

subject who has created the report in the previous phase

(i.e., an employee or director, resp.) should not be able to

update it anymore. To prevent such updates, it is sufficient

to substitute the tag of the previous phase with a dummy

content that cannot be decrypted. In this way, since the tag

cannot be decrypted, the provider as well as any subject

cannot retrieve the secret and then nobody is authorized to

update the report. Note that also when an auditor terminates

her control, the corresponding tag tag_a is overwritten with

a dummy content. Furthermore, the auditor sets attribute fl

to TRUE. When attribute fl is TRUE the ICA process on

the corresponding operation is considered concluded and the

cloud provider does not accept any write operation on any

reports.

Example 4.2: Consider operation ox of unit X of our run-

ning example. Figure 6 illustrates the evolution of tag_e,

tag_d, and tag_a to satisfy requirement R2, assuming

that x1 , dx , and a1 perform the first, second, and third level

of control, respectively. In the figure, updates to tags are in

black, while unchanged tags are in gray. Note that, while

any employee in Ex can start the first level of control, since

they can all retrieve σ1 from tag_e, when x1 starts the

first level of control, x2 and x3 cannot modify re since

they cannot decrypt tag_e (they do not know kx1P ) and σ1

is no more accepted by the provider. Similarly, when tag_e

is set to dummy by the director, also x1 cannot modify re.

Figure 7 illustrates the key derivation structure in Figure 5,

extended with the keys necessary to manage tags for the

enforcement of requirement R2.
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Figure 7. Extended key derivation structure for our running example, with
keys for tags evolution

C. Report integrity and accountability

Requirement R3 has the objective to verify that all sub-

jects involved in the ICA process as well as the cloud

provider behave properly. In particular, it aims at ensuring

that modifications to reports have been produced only by

authorized subjects. If all subjects behave as discussed in

the previous sections and the cloud provider performs the

correct control on tags, the integrity of operations and reports

is automatically guaranteed. However, since unauthorized

updates to reports cannot be prevented, we adopt a signature-

based approach that allows the detection of possible tam-

pering of operations and reports. Each subject has a pair

〈ks,kp〉 of secret and public keys and uses her secret key to

sign the reports she generates. This guarantees that any tam-

pering to an operation or to its reports can be immediately

detected by any subject knowing the public key kp of the

subject who generated the report. Also, by signing a report,

the subject who generated the report cannot repudiate it.

Concretely, given a hash function h, each operation record is

associated with the following three signatures, one for each

subject involved in the three controls of the ICA process.

• se=Sign(h(o.*||re), kse ), with o.* the set of all at-

tributes in o and e the employee who generated report

re.

• sd=Sign(h(se||rd), ksd), with d the director who

generated report rd.

• sa=Sign(h(sd||ra), ksa), with a the auditor who

generated report ra.

Figure 8(a) illustrates the structure of the portion of the

outsourced records that includes the three signatures. Each

signature guarantees the integrity of the corresponding report

and makes the subject who produced the report accountable

for its content. Since the public keys used to generate se,

sd, and sa are publicly available, all subjects in the system

and the cloud provider can verify the signatures and detect

tampering of reports and operations. Note that the signature

produced at the end of a phase of the ICA process is applied

on the digest of the concatenation of the report produced

ID SIGNATURES

︷︸︸︷ ︷ ︸︸ ︷

id . . . Sign(h(o.*||re),kse) Sign(h(se||rd),ksd) Sign(h(sd||ra),ksa)

se sd sa
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o.∗ re rd ra
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ksd
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Figure 8. Signatures in the outsourced operation record (a) and their
layered structure (b)

in that phase and the signature computed at the end of the

previous phase (with the operation content, for the employee

report). By signing the signature computed in the previous

phase, the subject implicitly confirms that she has verified

such signature before starting her control. Figure 8(b) shows

the layered organization of the signatures. Note that this

layered structure, which starts with the signature of an

employee computed over the operation content together with

the employee report, ensures the correct association of each

operation with its reports. For instance, if a malicious subject

copies the content of oi.re into oj .re, signature oj .se

would signal the inconsistency of the report content.

Example 4.3: With respect to Example 4.2, when em-

ployee x1 has generated report re, she signs ox concate-

nated with re, using her secret key ksx1 . Director dx can

then verify se with key kpx1 , generate report rd, and sign

the concatenation of se and rd with her secret key ksdx
.

Similarly, auditor a1 can verify sd with kpdx
. When the

auditor generates report ra, she signs the concatenation of

sd and ra with her secret key ksa1
.

V. OPERATION GENERATION AND CONTROL

We describe the functions (Figure 9) implementing the

solutions described in the previous sections for the storage

of operations and the enforcement of the ICA process.

Generation. Each operation is generated by an employee

working at a unit ui∈ U . The operation record is encrypted

with the key kui
of the unit (line 1). The encrypted record is

also associated with a unique identifier (line 2) and with the

tags regulating the generation of reports (lines 3–6). While

tag tag_e can be generated by any employee of the unit,

tag_d and tag_a can be generated only by the director

of the unit and by auditors, respectively. To avoid requesting

continuous online presence of directors and auditors, we

assume that the director of the unit and auditors generate a

pool of tags in advance (sets DirTagsui
and AuditTags,

resp.). When an operation is generated, it is associated with

tags extracted from these sets. Reports and signatures for



OPERATION MANAGEMENT

Generate_Encrypted_Operation(o) @ ui

1: ok .enc := Enc(o.*, kui
)

2: ok .id := generate an identifier
3: randomly generate σ1

4: ok .tag_e := Enc(σ1 , kEiP )

5: ok .tag_d := ExtractTag(DirTagsui
) /* tags for director of ui */

6: ok .tag_a := ExtractTag(AuditTags) /* tags for auditors */

7: ok .re := ok .rd := ok .ra := NULL

8: ok .se := ok .sd := ok .sa := NULL

9: ok .fl := FALSE

10: upload ok on the cloud provider

First_Level_Control(id) @ e ∈ Ei

1: ok := download o with identifier id from the provider

2: σ1 := Dec(ok .tag_e, kEiP )
3: if Verify(id, 1, σ1, Ei)=TRUE then

4: randomly generate σ4

5: ok .tag_e := Enc(σ4 , keP )

6: upload ok on the cloud provider

7: o := Dec(ok .enc, kui
)

8: report := generate the report for o

9: ok .re := Enc(report, kui
)

10: ok .se := Sign(h(o.*||report), kse )

11: upload ok on the cloud provider

Second_Level_Control(id) @ di
1: ok := download o with identifier id from the provider

2: σ2 := Dec(ok .tag_d, kdiP )
3: if Verify(id, 2, σ2, {di})=TRUE then

4: ok .tag_e := dummy

5: upload ok on the cloud provider

6: o := Dec(ok .enc, kui
)

7: o.re := Dec(ok .re, kui
)

8: if Verify_Signature(ok .se, h(o.*||o.re), kpe ) then

9: report := generate the report for o
10: else report := not passed

11: ok .rd := Enc(report, kui
)

12: ok .sd := Sign(h(ok .se||report), ksdi )

13: upload ok on the cloud provider

Third_Level_Control(id) @ a

1: ok := download o with identifier id from the provider

2: σ3 := Dec(ok .tag_a, kAP )
3: if Verify(id, 3, σ3, A)=TRUE then

4: randomly generate σ5

5: ok .tag_a := Enc(σ5 , kaP )

6: ok .tag_d := dummy

7: upload ok on the cloud provider

8: o := Dec(ok .enc, kui
)

9: o.re := Dec(ok .re, kui
)

10: o.rd := Dec(ok .rd, kui
)

11: if Verify_Signature(ok .sd, h(ok .se||o.rd), kpdi ) then

12: report := generate the report for o
13: else report := not passed

14: ok .ra := Enc(report, kui
)

15: ok .sa := Sign(h(ok .sd||report), ksa )

16: ok .tag_a := dummy

17: ok .fl := TRUE

18: upload ok on the cloud provider

Verify(id, phase, σ, X) @ P

1: let ok be the operation with ok .id=id
2: case phase of

3: 1: proof := Dec(ok .tag_e, kXP )

4: 2: proof := Dec(ok .tag_d, kXP )

5: 3: proof := Dec(ok .tag_a, kXP )
6: if σ=proof then return(TRUE)
7: return(FALSE)

Figure 9. Pseudocode of operation generation and ICA process

the generated operation are set to NULL, while fl is set to

FALSE (lines 7–9). When all information about the operation

has been set, the record is uploaded on the cloud provider

(line 10).

First level control. When employee e performs the first

control on operation o, she first needs to prove to the

cloud provider her ability to decrypt tag_e (lines 1–3).

The employee then overwrites tag_e with a tag that other

employees cannot decrypt (lines 4–6). Note that the update

to tag_e is immediately uploaded on the server. The

employee then decrypts the operation record, performs the

control, and generates the corresponding report (lines 7-8).

She encrypts the report using the key of the unit kui
and

computes signature se (lines 9–10). Finally, the operation

record is uploaded on the cloud provider (line 11).

Second level control. When the unit director di needs to con-

trol operation o, she first decrypts tag_d to demonstrate to

the cloud provider that she is entitled to generate the report

(lines 1–3). The director then nullifies tag_e (lines 4–5).

She decrypts the operation record and report re, verifies

signature se, and performs the control (lines 6-10). The

director encrypts her report with the key of the unit kui
and

computes signature sd (lines 11–12). Finally, the operation

record is uploaded on the cloud provider (line 13).

Third level control. When auditor a controls operation o, she

first decrypts tag_a to demonstrate that she is authorized to

perform the control (lines 1–3). The auditor then overwrites

tag_a with a tag that other auditors cannot decrypt, and

nullifies tag_d (lines 4–7). She decrypts the operation

record and the reports of the first two controls, re and rd,

and verifies signature sd (lines 8-11). The auditor generates

her report, encrypts it with kui
, and computes sa (lines 12–

15). The auditor finally nullifies tag_a, sets fl to TRUE

(lines 16–17), and the operation record is uploaded on the

cloud provider (line 18).

Note that when one of the controls of an operation fails,

the record associated with the operation is not deleted. The

unit is alerted and further controls are put in place at the

organization level, generating a new report for the operation.

Example 5.1: Figure 10 illustrates the evolution of the

record of operation ox of our running example. The table has

a column for each generation report control and signature

attribute, and a row for each ICA phase. We assume that ox
is verified by employee x1 , director dx , and auditor a1 .

VI. RELATED WORK

The problem of moving data storage and management to

the cloud has been widely studied. Since cloud providers

are not necessarily trusted, data confidentiality, integrity, and

availability are possibly at risk when outsourcing data [1].

Several efforts have been then devoted to the definition of

approaches enabling the effective and efficient evaluation

of computations and queries directly over encrypted data



re tag_e rd tag_d ra tag_a fl se sd sa

ICA process NULL Enc(σ1 , kExP ) NULL Enc(σ2, kdx P ) NULL Enc(σ3 , kAP ) FALSE NULL NULL NULL

1st start, x1 NULL Enc(σ4 , kx1 P ) NULL Enc(σ2, kdx P ) NULL Enc(σ3 , kAP ) FALSE NULL NULL NULL

1st end, x1 Enc(re, kX ) Enc(σ4 , kx1 P ) NULL Enc(σ2, kdx P ) NULL Enc(σ3 , kAP ) FALSE Sign(h(ox ||re),ksx1 ) NULL NULL

2nd start, dx Enc(re, kX ) dummy NULL Enc(σ2, kdx P ) NULL Enc(σ3 , kAP ) FALSE Sign(h(ox ||re),ksx1 ) NULL NULL

2nd end, dx Enc(re, kX ) dummy Enc(rd, kX ) Enc(σ2, kdx P ) NULL Enc(σ3 , kAP ) FALSE Sign(h(ox ||re),ksx1 ) Sign(h(se||rd),ksdx ) NULL

3rd start, a1 Enc(re, kX ) dummy Enc(rd, kX ) dummy NULL Enc(σ5 , ka1P ) FALSE Sign(h(ox ||re),ksx1 ) Sign(h(se||rd),ksdx ) NULL

3rd end, a1 Enc(re, kX ) dummy Enc(rd, kX ) dummy Enc(ra, kX ) dummy TRUE Sign(h(ox ||re),ksx1 ) Sign(h(se||rd),ksdx ) Sign(h(sd||ra),ksa1 )

Figure 10. An example of evolution of the tags, reports, and signatures for operation ox

(e.g., [4], [5], [6]) and providing integrity of their results

(e.g., [7], [8], [9]). For enforcing access control, researchers

have investigated approaches that rely on attribute-based

encryption based on public keys (e.g., [10], [11], [12], [13],

[14]) and selective encryption based on hierarchically orga-

nized symmetric keys (e.g., [2], [15], [16]). Attribute-Based

Encryption (ABE) regulates access to resources according

to access control policies that are defined on attributes

associated with every user’s secret key and on an access

structure associated with every resource (or vice versa). A

user can access a resource when her attributes match the

access structure associated with the resource (or vice versa).

Selective encryption techniques translate the authorization

policy regulating access to resources into an equivalent

encryption policy. Each resource is then encrypted with a

different key that only authorized users can derive from their

own secret key. The management of policy updates is com-

plicated when using both ABE and selective encryption and

solutions for both techniques have been proposed (e.g., [17],

[18]).

Most of the current solutions for access control enforce-

ment in cloud scenarios mainly focus on the restriction

of read operations over sensitive data. A few works have

addressed the problem of enforcing restrictions on write

operations, which are usually assumed to be an exclusive

privilege of the data owner. Similarly to read restrictions,

also the proposals aimed at enforcing write restrictions rely

on ABE (e.g., [19]) or on selective encryption and key

derivation (e.g., [20]). The first class of techniques are based

on the combination of ABE with Attribute-Based Signature

(ABS), while the second class of techniques rely on digital

signatures and/or on HMAC functions.

VII. CONCLUSIONS

We have presented an approach enabling organizations

to securely rely on cloud-based solutions for supporting

corporate governance’s internal controls and audit functions.

By leveraging selective encryption and tags, our approach

guarantees confidentiality and integrity of data subjects to

audit as well as on controls on them, without requiring

trust in the cloud provider. Only authorized parties will

be able to access data and perform control functions, also

being accountable for them. All parties involved in the ICA

process, as well as the organization, will be able to assess

integrity of the data and function execution, hence detecting

possible misbehavior of the provider itself. Our work leaves

space for extensions such as the management of conflict of

interests in the enforcement of controls and the support for

delegation.
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