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Abstract We live today in a globally interconnected society characterized by grow-
ing availability of computational power and connectivity, enabling every citizen to
carry out tasks, access services, and stay connected virtually anywhere anytime.
Unfortunately, the downside of such convenience is an increased exposure of pos-
sibly sensitive information and new risks of privacy vulnerabilities. In this chapter,
we survey the main issues related to privacy in emerging pervasive scenarios and
discuss some approaches towards their solution.

1 Introduction

In today’s society most actions we perform are recorded and the collected data
are stored, processed, and possibly shared in a way that was impossible until few
years ago, before the development of ubiquitous and pervasive technologies. Ubiq-
uitous technologies represent one of the most significative revolution in the Infor-
mation and Communication technologies. The term “ubiquitous computing” was
introduced by Mark Weiser in the late 80’s to describe a future world based on
“the idea of spreading computers ubiquitously, but invisibly, throughout the envi-
ronment” [48]. Pervasive and ubiquitous technologies are now present everywhere
in our daily life. People may have several devices (e.g., smartphones, tablets) that
can be used to access any kind of services everywhere everytime. There are also
devices that can keep track and measure health conditions (e.g., blood pressure and
heart rate) and send such information to different parties. The amount of data that is
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therefore generated everyday has grown exponentially and is expected to continue
this growth in the coming years. Since the cost of data storage and processing has
significantly decreased, all these data can be long-term stored and made accessible
when needed.

While the technology advancements and the possibility of collecting, storing,
processing, and accessing data everywhere in the world bring enormous benefits,
users are becoming more and more concerned about their privacy. In fact, collected
data can be used to identify individuals, or infer something that was not intended
for disclosure. The location information generated by a cell phone, the pattern of
walking as recorded by a surveillance camera, as well as the combination of seem-
ingly innocuous information (e.g., the ZIP code and the date of birth) are all ex-
amples of data that can be exploited to identify the person to whom they refer, not
to mention information like the biometrics that may raise some privacy concerns
(e.g., [6, 20, 24, 42]). The main motivation behind these privacy issues is that when
users, for example, subscribe to a new social networking service or provide some
information to access a service, they immediately lose control over their data.

The users’ abilities to manage their personal information and also to delete
such information may then become difficult, if not impossible. This is a well
recognized problem that research and development communities, governments,
and public and private organizations are all trying to solve. In particular, at the
European level, a proposal for a regulation was released in 2012 with the aim
of unifying all the data protection laws within the European Union with a sin-
gle General Data Protection Regulation (http://ec.europa.eu/justice/
data-protection/). The main goal of this new regulation on data protection is
to take into consideration the recent technological developments (e.g., cloud com-
puting and social networks) and their security and privacy risks [21, 30] to build
trust in the digital world and to empower users to keep the control over their data.
There are several key aspects that are considered in the proposed regulation such as:
the introduction of new concepts (e.g., encrypted data and genetic data), which ad-
dress new privacy concerns; the right to be forgotten, which allows users to require
the erasure of their personal data whenever, for example, such data are no more nec-
essary for the purpose for which they have been collected; and the applicability of
such a regulation also to companies based outside the EU that process the personal
data of EU residents.

Clearly, privacy in the modern digital society is a complex concept that should be
addressed from several points of view: legal, social, economical, and technological.
The main focus of this chapter is on the technological aspect of privacy within to-
day’s ubiquitous and pervasive systems. In particular, we aim at analyzing the main
privacy issues that can arise when collecting, processing, and sharing data in per-
vasive and ubiquitous environments, and then at presenting available technological
solutions that can be put in place to counteract them. As a running example, we
will consider a museum organization that manages a large cultural heritage. The
museum aims at exploiting the pervasive availability of computing infrastructures
to develop a framework for providing a cultural site (e.g., indoor museums, archae-
ological sites, historical archives, old town centers) with several smart services for
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assisting users (e.g., visitors or staff personnel) in the seamless exploration and man-
agement of the related environment. In this context, smart and pervasive solutions
can be adopted, for example, from the electronic management of ticket purchases,
to interactive and guided tours based on the sensed proximity of a visitor to a spe-
cific exhibition, to the continuous monitoring of the environmental conditions (e.g.,
humidity, temperature, pollutant concentrations) in the museum premises through
environmental sensors.

The remainder of the chapter is organized as follows. Section 2 illustrates
our reference scenario, and presents the main related privacy risks. Section 3
overviews the most well-known approaches to protect location information. Sec-
tion 4 discusses some solutions that allow the privacy-preserving sharing of per-
sonal/sensitive data. Section 5 shows possible approaches that allow the secure stor-
age of personal/sensitive data. Finally, Section 6 gives our final remarks and con-
cludes the chapter.

2 Privacy in pervasive systems

We first introduce the reference scenario that will be considered in the remainder
of this chapter (Section 2.1). We then illustrate the privacy issues that may arise in
such a scenario (Section 2.2).

2.1 Reference scenario

Our scenario (Figure 1) refers to a museum with both indoor and outdoor exhi-
bitions and facilities, distributed in a wide geographical area, such as a city or a
region (e.g., Rome, Paris, New York). To be considered “smart”, the museum fea-
tures a digital infrastructure providing digital services and pervasive solutions to
both enhance the experience of the visitors, and efficiently manage the museum and
its exhibitions. As illustrated in Figure 1, the considered scenario is characterized by
the interaction of different subjects. In particular, users (i.e., visitors of the museum)
interact with the museum system through an app that they can install on their smart-
phone, and by enabling GPS and location services. The app acts as a smart guide, as
described in the following of this section. Also, the museum features a set of envi-
ronmental monitoring stations to measure different environmental parameters (e.g.,
temperature, humidity, pollutants). Data about users and the environmental mea-
sures collected by the museum are stored at different servers (i.e., the registrations
and payments server, the LBS provider, and the environmental measures server).
The smart solutions adopted by the museum can be classified in the following three
groups, depending on their objective.

• Ticket purchases and visitor registrations. Visitors of the museum can buy their
tickets either in place or online. When buying online, users pay by credit card
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Fig. 1: Reference scenario

and can then collect their tickets presenting the credit card used for the payment
at an automatic machine at any of the museum facilities. When purchasing a
ticket, a visitor becomes a user of the museum systems. Users can also register
to the museum web site and/or follow it on social networks to receive news, dis-
counts, and other information. Data about users and registrations are stored at the
registration and payments server, which is in charge of maintaining all the infor-
mation provided by the users. Figure 1 illustrates the information flows caused
by ticket purchases and registration activities by users as the dashed arrows, la-
beled data, from users to the registrations and payments server. Figure 2 illus-
trates an example of the relation stored and managed by this server. The relation
stores personal data (attributesPhone, Name, DoB, and Sex), ticket information
(attribute TicketType), and payment information (attribute Payment) about
the visitors of the museum. Attribute TicketType represents the kind of ticket
bought by a visitor, which can be either Regular (i.e., full price and no discount)
or discounted/free if, for example, the visitor suffers from specific pathologies
(Health ticket) or has a particular job (e.g., Army or Government) for which the
museum adopts reduced fares.

• Smart guides to artworks. Besides traditional guided tours to the different exhi-
bitions, in which an authorized guide escorts the visitors, the museum also offers
location-based and automatic guided tours. To this aim, visitors can download an
ad-hoc location-based app, provided by the museum, on their smartphone (smart-

phone icon close to users in Figure 1), which describes the artworks based on the
position of the user. This indeed represents a great advantage for the visitors of
the museum, who can decide their own itineraries without the need of reserving
a guide in advance while, at the same time, enjoying professional illustrations of
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Phone Name DoB Sex ZIP TicketType Payment

(800) 917-5551 Alice 1960/04/10 F 97401 Health Credit card
(500) 234-5678 Bob 1970/05/12 M 98302 Army Debit card
(541) 271-2136 Carol 1960/04/04 F 97467 Regular Cash
(360) 474-4614 Daniel 1970/05/20 M 98245 Army Cash
(360) 373-2030 Erik 1970/07/12 M 98312 Navy Cash
(541) 946-1711 Fred 1960/04/11 F 97434 Professor Credit card
(360) 435-3746 Greg 1970/07/25 M 98223 Government Check
(253) 863-5555 Hal 1970/07/30 M 98389 Marines Cash
(360) 794-7058 Ian 1970/05/12 M 98290 Army Credit card
(503) 497-91 33 John 1950/12/01 M 97210 Air Force Debit card

Fig. 2: Personal and payment data of the visitors of the museum

the exhibitions based on their position. Visitors can then walk around in the city
and, as soon as they approach an artwork (such as the Trevi fountain, the Sistine
Chapel, or the Colosseum in Rome), their location-based app will ring an alarm
and a description of the artwork will start. The location-based service offered by
the museum can also suggest to visitors the best itinerary to avoid queues that
would delay their visit. To this aim, it collects and aggregates location data about
the users who are using the location-based app, and takes them into consider-
ation when determining the best itinerary to be suggested to a new visitor. For
instance, it can re-arrange the itinerary of visitors (e.g., if a place is too crowded,
an updated itinerary skipping that place can be suggested to a visitor). Figure 1
illustrates the communications from users to the Location-Based Service (LBS)
provider of the museum to support the smart guide service as dashed arrows,
labeled position.

• Environmental monitoring. To protect the artworks, the museum uses a pervasive
environmental monitoring system (sensor icons distributed in the environment in
Figure 1). This system analyzes and keeps under control different parameters that
might harm the artworks such as: the temperature of a room to regulate air con-
ditioning, the quality of the air (e.g., specific pollutants and humidity to enforce
specific countermeasures to protect the artworks), and the number of visitors at
an exhibition or in a given room to regulate further accesses to the same. Figure 1
illustrates the communication exchanges from sensors to the environmental mea-
surements server as dashed arrows, labeled measurement. Figure 3 illustrates an
example of the relation kept by this server storing the measurements of tempera-
ture (in Celsius degrees), humidity percentage, concentration of PM10 pollutant
(in µg/m3), and noise pollution (in dB).

The data about users and environment are analyzed (either at runtime, such as
for the environmental sensing, or offline, such as for discovering statistics on the
visitors based on the contact information provided at the time of ticket purchases),
stored, and maintained for possible future use, possibly including disclosure to third
parties. For instance, the ministry of arts and culture periodically asks the museum
to provide all data related to visits and payments. Thanks to these data, the ministry
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Sensor Temp (oC) Humidity PM10 (µg/m3) Noise (dB)

int A 25 40% 25 60
ext B 28 60% 30 55
int C 27 45% 40 57
ext D 30 55% 50 62
ext E 29 53% 55 58
int F 22 42% 59 32
ext G 30 59% 50 47
ext H 28 60% 42 50
int I 28 43% 58 30
int J 22 51% 35 35
ext K 32 63% 37 65

Fig. 3: Environmental measurements at the facilities of the museum

can study marketing strategies, and take knowledge-based decisions regarding, for
example, special rates and discounts for specific groups of visitors, increasing the
personnel working in the museum, adjusting the opening hours, planning special ex-
hibitions and many other activities. The museum can also decide to share these data
with third parties. For instance, the museum can provide its data to research orga-
nizations to study countermeasures for improving the quality of the air by reducing
the concentration of specific pollutants. The paths of users among the different fa-
cilities of the museum can be shared with other museums, to suggest each user the
most appropriate smart visit based on their previous ones.

2.2 Privacy issues

The main privacy issues that arise in the considered scenario are related to the fact
that the data collected by the museum include sensitive information that can put at
risk the privacy of the users to whom it refers. The collected data span from the
contextual information generated by the pervasive infrastructure to the information
released by the users themselves. Contextual information is needed to develop smart
services that can react to the environment surrounding a user. A notable example of
this kind of information is the location information that users continuously release
during their visits. Such information can then be used to track the movements of
users, which is considered intrusive and harmful of their privacy. The data released
by the users are needed to take advantage of the museum services. The storage and
processing of these data should always be performed in respect of the privacy of the
users. For instance, information like phone numbers cannot be shared with an ad-
vertising company without the prior consent of the users. When accessing sensitive
information, both direct and indirect privacy violations may occur, as illustrated in
the following.
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• Direct violations. Direct violations are caused by the presence in the collected
data of sensitive information available to all parties accessing the data. For in-
stance, all recipients accessing the data collection in Figure 2 can discover the
phone numbers of the visitors of the museum.

• Indirect violations. Indirect violations are caused by the possibility of determin-
ing sensitive information that is not explicitly included in the collected data, but
can be obtained from them. For instance, observing the discounts applied to the
tickets purchased by the visitors of the museum in Figure 2, a recipient can infer
that Alice suffers from a disease and that Bob is a military.

It is interesting to note that privacy violations might affect both individuals rep-
resented in the collected data (i.e., registered visitors) as well as individuals that are
apparently not involved in the data release. For instance, the relation in Figure 2
includes personal and payment information of the visitors of the museum and its
improper sharing or distribution can affect the privacy of the visitors. As another
example, consider the table in Figure 3. An insurance company might increase the
premium to individuals living in the areas close to the museum and for which the
table reports a high PM10 concentration. This behavior clearly affects the privacy
of individuals who are not necessarily visitors of the museum.

As it might be clear from the discussion above, privacy violations can occur
for a variety of different reasons, including the presence of sensitive information
in the data collection (e.g., attributes Phone and TicketType in the relation in
Figure 2), the existence of correlations and associations among different datasets
(e.g., correlations among pollutant concentrations and respiratory diseases), and the
observation of data evolution. As an example of this latter aspect, suppose that en-
vironmental sensor ext B of the museum (see Figure 3) be close to the city railway
and record noise levels continuously at regular time intervals. Assume also that the
schedule of freight trains be sensitive and therefore not publicly available. By ob-
serving peaks in the sensed noise levels, and linking them to the (public) timetables
of passenger trains, it might be possible to deduce the schedule of freight trains.
Unusual data can also leak sensitive information: for example, an individual paying
the museum ticket with a very exclusive credit card makes her/his stand from others,
and reveals that, with high probability, s/he enjoys a relatively high income.

In the remainder of this chapter, we survey some of the approaches that can be
adopted to protect data and users from the privacy issues described above. To guide
the reader through the chapter, Figure 4 illustrates a summary of the solutions that
will be described in the remaining sections.

3 Protecting location information

The widespread adoption of mobile communication devices and the advancements
made on location technologies have contributed to the development of a great va-
riety of location-based services for business, social or informational purposes. As
an effect of such innovative services, however, privacy concerns are increasing. In
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Fig. 4: Summary of the solutions illustrated in Sections 3–5

fact, location information is subject to a variety of privacy threats, including stalk-
ing or physical harassment. Location information can also be exploited for infer-
ring sensitive information about users. As an example, consider a user running the
location-based app provided by the museum for smart guides in Rome. Since the
exhibitions and facilities of the museum are distributed over the city, while walking
from the Colosseum to Trevi fountain, the user might stop by a pharmacy selling
medicaments for a specific disease, still releasing her/his position to the LBS of the
museum. While this might not be a problem when the service provider (the museum,
in our example) is trusted by the user, this situation becomes problematic when lo-
cation information is shared with (or managed by) third parties. Anyone accessing
such location information can in fact infer that the user (or an individual close to
her) suffers from that specific disease. The existing solutions for protecting privacy
of location information can be classified based on whether they aim at protecting the
single positions of a user, or her/his path whenever s/he continuously releases the
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trace of her/his movements to a provider. In our running example, the first class of
solutions are important if the user decides to use the smart guide app in pull mode,
that is, the app issues a query to the LBS of the museum when the user is close to
an artwork. The second class of solutions can instead be useful when the user de-
cides to use the smart guide in push mode. To this aim, the app continuously sends
the user location to the LBS of the museum and, as soon as s/he reaches a point of
interest, the app automatically receives the description for that art piece.

We will now illustrate the most well-known approaches for protecting location
privacy, distinguishing between solutions tailored to protect the single position of a
user, and those aimed at protecting her/his path.

Single position protection. Anonymity-based techniques (e.g., [4, 5, 8, 25, 28, 33,
39, 40]) aim at protecting the association between users’ identities and their precise
position to prevent re-identification by observing users’ requests to the LBS. These
techniques include solutions based on the concept of k-anonymity [16, 43] originally
proposed in the database context (see Section 4.2). To protect users’ identities, their
explicit identifier is removed and the precision of their position is degraded in such
a way that a user is indistinguishable by other k− 1 users in a given location area
or temporal interval. Figure 5(a) illustrates an example of the application of such
protection techniques, where k = 4. In the figure, users are represented by a small
circle, labeled with the user name. In the right-hand side of the figure, users Greg,
Hal, Ian, and John are de-identified (i.e., their identities are not associated with their
queries), and all queries are associated with the area represented by the gray rect-
angular in the figure. Therefore, every request can be indistinguishably generated
by any of the four users. Whenever the identity of a user needs to remain attached
to her/his location information (e.g., with reference to our scenario, when descrip-
tions of exclusive art pieces should be available only to specific visitors who paid
an additional ticket), obfuscation-based techniques (e.g., [2, 3, 22]) can be adopted,
instead of anonymity-based solutions. Rather than anonymizing users, these tech-
niques degrade the accuracy of their location. The main goal of these techniques
is therefore to perturb the location information of the users, while still maintaining
a binding with their identity. Figure 5(b) illustrates an example of the application
of these techniques. The right-hand side of the figure shows a degradation of the
released position of user Bob, represented by the shaded rectangle, so to protect
his actual position. Note that, as opposite to Figure 5(a), the identity of Bob is not
hidden to the LBS provider, and remains associated with his (degraded) position.

Path protection. The protection of the trajectory information of a user is a critical
aspect in our reference scenario. Suppose that the users adopt the museum app in
push mode, meaning that the app on their smartphone continuously sends their po-
sitions to the location-based service offered by the museum. While walking around
and sightseeing the city, a user might visit other places that can be considered sen-
sitive as they can be exploited to infer personal information about her. For instance,
the user can stop to a pharmacy selling drugs for rare diseases, hence making this
information available to all parties observing her/his movements. In this scenario,
it is possible to adopt path-protecting approaches. Figure 6 illustrates an example
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(a)

(b)

Fig. 5: Protecting users’ location through anonymity-based (a) and obfuscation-
based (b) approaches

of the application of such protection techniques, in which the real paths followed
by Alice and Bob in the left-hand side of the figure have been protected by appear-
ing indistinguishable to the eyes of an observer. Traditionally, these solutions use
spatial cloaking techniques: a cloaked spatial region must be shared by at least k

users and, to protect user trajectories, all k users must appear as belonging to the
same region as time passes (e.g., [11, 41, 49]). A different approach is based instead
on the generation, and release to the LBS, of (partially) synthetic trajectories. For
instance, the technique in [38] relies on mix-zones created over synthetic trajecto-
ries, obtained with first-order Markov chains from historical data. The release of
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Fig. 6: Protecting users’ path

fake paths is also at the basis of a recent technique aimed at counteracting the risk
of sensitive information disclosure due to the observation of unusual paths. In fact,
being unusual with respect to what is expected and considered common, these paths
can leak information not intended for disclosure. The proposal in [6] introduces a
framework, based on first-order Markov chains, to evaluate how “unusual” a path
followed by a user is with respect to traditional trajectories (in our example, com-
mon itineraries followed by visitors), to reduce the risk of inferences by releasing a
slightly modified and safe (i.e., less unusual) path.

4 Privacy-preserving data sharing

Data sharing and dissemination are becoming more and more common and, in some
cases, even mandatory by law. Collected data can be disseminated in the form of
macrodata or microdata [17]. Macrodata are aggregate values representing statis-
tics of interests computed over a sample population. Such statistics are measures
that summarize the values of one or more properties/attributes of respondents (i.e.,
individuals, organizations, associations, business establishments, and so on). Mi-
crodata are specific data related to single respondents (i.e., single visitors, in our
example). The release of macrodata and/or microdata might cause leakage of sen-
sitive information that was not intended for disclosure. In this section, we will then
illustrate available solutions for protecting macrodata (Section 4.1) and microdata
(Section 4.2), and for protecting data streams, which are common in pervasive sce-
narios since data are often collected by sensing devices in streams (Section 4.3).
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Cash Check Credit Card Debit Card Tot

M 3 1 1 2 7
F 1 0 2 0 3

Tot 4 1 3 2 10

(a) Number of male and female visitors purchasing tickets with a given payment method

Cash Check Credit Card Debit Card Tot

M 30 10 10 20 70
F 10 0 20 0 30

Tot 40 10 30 20 100

(b) Percentage of male and female visitors purchasing tickets with a given payment method

Cash Check Credit Card Debit Card Tot

M 0 0 12.5 4 16.5
F 0 0 11 3.5 14.5

Tot 0 0 23.5 7.5 31

(c) Average delay (number of days) between ticket purchase and collection

Fig. 7: Count (a), frequency (b), and magnitude (c) tables

4.1 Protecting macrodata

Macrodata are represented as tables where each cell of a table is the value of a
quantity computed over the considered properties. A macrodata table usually in-
cludes marginal totals, that is, the aggregate computed over each row/column in the
table. Depending on how macrodata tables are defined, they can be classified as: i)

count and frequency tables, where each cell contains the number (percentage, re-
spectively) of respondents that share the same value over all attributes of analysis
reported in the table; and ii) magnitude tables, where each cell contains an aggregate

value (e.g., sum) of a quantity of interest over all attributes of analysis reported in the
table. Figures 7(a) and 7(b) illustrate an example of count and frequency tables, re-
spectively, computed over the data in Figure 2, reporting the number and percentage
of male and female visitors who purchased tickets with a given payment method.
Figure 7(c) illustrates an example of magnitude table reporting the average delay
between the purchase of a ticket and its collection. Columns in the tables represent
the payment methods, while rows represent male and female visitors, respectively.

Although macrodata do not explicitly include information specifically related to
single respondents, sensitive information can still be leaked. To counteract the risk
of unintended information disclosure, it is then necessary to first identify and then
protect cells that can be considered sensitive [17, 23].

Identifying sensitive cells. Sensitive cells can be identified according to differ-
ent strategies [23]. In count and frequency tables, sensitive cells can be identified
through the threshold rule, which classifies a cell as sensitive if its value is less than
a given threshold. As an example, consider the macrodata table in Figure 7(a) and
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suppose that the threshold is set to 1. In this case, the second cell and the third cell
in the first row, and the first cell in the second row should be considered sensitive.
In magnitude tables, sensitive cells can be identified through different rules (e.g.,
(n,k)-rule, p-percent rule, pq−rule) all aimed at identifying cells whose value could
be exploited to estimate too accurately the contribution of one specific respondent.
As an example, according to the (n,k)-rule a cell is considered sensitive if less than
n respondents contribute to more than k% of its value. For instance, the third cell
of the first row in Figure 7(c) does not satisfy (2,90%)-rule as one respondent only
contributes to 100% of the cell content.

Protecting sensitive cells. Once detected, sensitive cells must be protected. Several
protection techniques have been proposed for macrodata tables. For count and fre-
quency tables, the easiest solution consists in suppressing sensitive cells (primary

suppression). Unfortunately, primary suppression might open the door to inferences:
if marginal totals are published together with the released table, or are publicly
known, it might still be possible to restrict the uncertainty about the missing values.
To overcome this risk, additional cells need to be suppressed (secondary suppres-

sion), and linear programming techniques are typically adopted to minimize the
number of cells undergoing secondary suppression. Besides suppression, rounding
techniques can also be used, which consist in modifying the original value of a cell
by rounding it to a near multiple of a chosen base number. The roll-up categories

technique instead modifies the original table combining rows and/or columns to ob-
tain a less detailed table. A widely used protection technique is sampling, which
consists in computing the aggregate values in the macrodata table over a represen-
tative sample of the collected data (e.g., in our running example over a sample of
the museum visitors). Protection is provided by uncertainty, since a recipient does
not know whether a target respondent has been considered in the sampling. These
protection techniques can be adopted to protect both count and frequency tables. We
note however that also other, more sophisticated, approaches have been proposed to
protect sensitive cells in macrodata release.

4.2 Protecting microdata

Many scenarios require that the specific stored data (microdata) be released. Fig-
ures 2 and 3 represent two examples of microdata tables. Although microdata pro-
vide higher flexibility and utility for final recipients than macrodata, they are subject
to a greater risk of privacy breaches. In particular, a microdata table must be pro-
tected against both identity disclosure (i.e., disclosure of respondents’ identities)
and attribute disclosure (i.e., disclosure of respondents’ sensitive information). In
the remainder of this section, we present some well-known approaches to protect
microdata tables against identity and attribute disclosures.
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Phone Name DoB Sex ZIP TicketType Payment

1960/04/10 F 97401 Health Credit card
1970/05/12 M 98302 Army Debit card
1960/04/04 F 97467 Regular Cash
1970/05/20 M 98245 Army Cash
1970/07/12 M 98312 Navy Cash
1960/04/11 F 97434 Professor Credit card
1970/07/25 M 98223 Government Check
1970/07/30 M 98389 Marines Cash
1970/05/12 M 98290 Army Credit card
1950/12/01 M 97210 Air Force Debit card

(a) De-identified version of the relation in Figure 2

Name Address City ZIP DoB Sex

. . . . . . . . . . . . . . . . . .
John Jacob 1100 Garden State Parkway Portland 97210 50/12/01 male

. . . . . . . . . . . . . . . . . .

(b) Portland voters’ list

Fig. 8: An example of de-identified microdata table (a) and of publicly available non
de-identified dataset (b)

4.2.1 Identity disclosure

The attributes in a microdata table can be classified in four classes: identifiers, quasi-
identifiers, sensitive attributes, and non-sensitive attributes. Identifiers are attributes
whose values univocally identify respondents, such as social security numbers and
phone numbers. Quasi-identifiers are attributes that can be linked to external sources
of information to reduce the uncertainty over the identity of respondents, such as
ZIP, DoB, and Sex. Sensitive (non-sensitive, resp.) attributes correspond to the re-
maining sensitive (non-sensitive, resp.) information of the microdata table. The first
step for protecting a microdata table consists in removing (or encrypting) explicit
identifiers. A de-identified microdata table, however, does not provide any guarantee
of anonymity, since quasi-identifiers might be linked to publicly available informa-
tion to re-identify respondents. For instance, the de-identified table in Figure 8(a)
(computed from the table in Figure 2 removing attributes Phone and Name) can be
linked with the public voters’ list of Portland (Figure 8(b)), which includes a single
tuple related to a male, living in the 97210 area, and born on 01 December 1950.
This combination of values, if unique in the external world as well, uniquely identi-
fies the corresponding tuple in the microdata table as pertaining to John Jacob, 1100
Garden State Parkway, revealing that he works in the Air Force and that he paid the
visit to the museum with a debit card. It is interesting to note that a study performed
on 2000 U.S. Census data showed that 63% of the U.S. population can be uniquely

identified combining their gender, ZIP code, and complete date of birth [27].
To protect respondents’ identities from the linking attack illustrated above, k-

anonymity [43] requires that any released tuple be indistinguishably related to no
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less than a certain number k of respondents. Since re-identification through linking
attacks exploits quasi-identifying attributes, this requirement is translated as fol-
lows: Each release of data must be such that every combination of values of quasi-

identifiers can be indistinctly matched to at least k respondents [43]. Starting from
the assumption that each respondent is represented by a tuple in a microdata table
(and, vice versa, that each tuple is related to a single respondent), a microdata table
satisfies the k-anonymity requirement iff: i) each tuple in the table cannot be related
to less than k individuals in the population; and ii) each individual in the population
cannot be related to less than k tuples in the table. Since it is not possible to take into
consideration all possible external sources of information, the k-anonymity require-
ment is typically enforced by taking a safe approach and requiring each respondent
be indistinguishable from at least k− 1 respondents of the table itself (which rep-
resents a sufficient, though not necessary, condition for the k-anonymity require-
ment). A table is therefore said to be k-anonymous if each combination of values of
the quasi-identifier appears with either zero or at least k occurrences in the released
table.

k-Anonymity is traditionally enforced by adopting generalization and suppres-

sion techniques on the attributes composing the quasi-identifier, without modifying
sensitive and non-sensitive attributes. Generalization substitutes the original values
with more general values (e.g., the date of birth can be generalized by releasing only
the year of birth). Suppression consists in removing information, and is particularly
useful to reduce the amount of generalization necessary to guarantee k-anonymity
whenever a limited number of outliers (i.e., quasi-identifying values with less than
k occurrences) would require considerable generalizations. Generalization and sup-
pression can be applied at different levels of granularity, and several approaches
have been proposed combining them in different ways [7, 16, 34, 35, 43]. The ma-
jority of available solutions rely on attribute generalization and tuple suppression.
Figure 9(a) illustrates a 3-anonymous microdata table obtained from the table in
Figure 8, where attribute Payment has been projected out since not intended for
release. Attributes DoB, Sex, and ZIP in the table are considered as the quasi-
identifier, and TicketType is considered sensitive as the museum is not autho-
rized to disclose such information. The 3-anonymous table has been obtained by
generalizing attributes DoB (only the year and month of birth are released) and ZIP
(only the first two digits are released). Also, the outlier tuple related to John Jacob
has been suppressed not to force further generalization on the date of birth, since
John is the only respondent born in 1950.

Reducing the details in the anonymized table, k-anonymity inevitably causes in-
formation loss. To find a good trade-off between data protection and utility for final
recipients, it is necessary to compute a k-anonymous table minimizing the adoption
of generalization and suppression. To this aim, both exact and heuristic algorithms
can be adopted [16].



16 S. De Capitani di Vimercati, S. Foresti, G. Livraga, S. Paraboschi, P. Samarati

PhoneName DoB Sex ZIP TicketType

1970/05/** M 98*** Army
1970/05/** M 98*** Army
1970/05/** M 98*** Army

1960/04/** F 97*** Health
1960/04/** F 97*** Regular
1960/04/** F 97*** Professor

1970/07/** M 98*** Navy
1970/07/** M 98*** Government
1970/07/** M 98*** Marines

PhoneName DoB Sex ZIP TicketType

1970/**/** M 983** Army
1970/**/** M 983** Marines
1970/**/** M 983** Navy

1960/**/** F 974** Health
1960/**/** F 974** Regular
1960/**/** F 974** Professor

1970/**/** M 982** Army
1970/**/** M 982** Army
1970/**/** M 982** Government

(a) (b)

Fig. 9: An example of 3-anonymous table (a) and 3-anonymous and 2-diverse table
(b)

4.2.2 Attribute disclosure

k-Anonymity, while effective for protecting respondents’ identities, does not pro-
tect against attribute disclosure. To protect the association between respondents’
identities and their values of sensitive attributes, alternative solutions extending k-
anonymity have been proposed. In the following, we will illustrate ℓ-diversity and
t-closeness, two well-known extensions that counteract attribute disclosure.

ℓ-Diversity. ℓ-Diversity has been proposed to counteract two specific attacks that
might cause attribute disclosure in a k-anonymous table, namely the homogeneity

attack [37, 43] and the external knowledge attack [37].

• Homogeneity attack. k-Anonymity does not impose restrictions on the values that
can be assumed by the sensitive attribute in an equivalence class (i.e., by the tu-
ples sharing a same value for the quasi-identifier). As a consequence, it might
happen that a given equivalence class includes tuples with the same sensitive
value. If a data recipient knows the quasi-identifier value of an individual that
is represented in the table, the data recipient can identify the equivalence class
corresponding to the target respondent, and then infer the value of her/his sen-
sitive attribute. For instance, consider the 3-anonymous table in Figure 9(a) and
suppose that a recipient knows that Daniel born on 1970/05/20 is included in
the table. Since all the tuple in the equivalence class with quasi-identifier value
equal to (1970/05/**,M,98***) have Army as value for attribute TicketType,
the recipient can infer that Daniel works in the army, which represents a sensitive
information not intended for disclosure in our example.

• External knowledge attack. k-Anonymity assumes that the only external knowl-
edge a recipient can have be represented by external sources linking respondents’
quasi-identifier values to their identities. However, a recipient might exploit some
additional external knowledge about some respondents to infer their associated
sensitive information. For instance, consider a 3-anonymous equivalence class
where two out of three tuples have Army as value for attribute TicketType,
while the third tuple has value Health. Suppose now that a recipient knows that
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a target respondent Phil is included in this equivalence class, and that Phil does
not suffer from any specific disease. The recipient can easily infer that Phil is not
likely to pay for a reduced ticket for medical conditions, hence discovering that
he works in the army.

To counteract these two attacks, ℓ-diversity extends k-anonymity by requiring
the existence of at least ℓ well-represented values for the sensitive attribute in each
equivalence class [37]. A straightforward understanding of “well-represented” val-
ues requires each equivalence class to have at least ℓ different values for the sensitive
attribute. For instance, the 3-anonymous table in Figure 9(b) is also 2-diverse. It is
easy to see that an ℓ-diverse table is not vulnerable to the homogeneity attack as
each equivalence class has at least ℓ different values for the sensitive attribute. Also,
external knowledge attacks lose effectiveness as ℓ increases, since more external
knowledge is necessary to associate a specific sensitive attribute value with a target
respondent.

An ℓ-diverse table that minimizes the adoption of generalization and suppression
to reduce information loss can be computed using any algorithm that computes an
optimal k-anonymous table, by simply adding a control to check whether the condi-
tion on the diversity of the sensitive attribute values is satisfied by all the equivalence
classes in the table [37].

t-Closeness. An ℓ-diverse table might still cause improper disclosures of sensitive
information, since it is vulnerable to the following two attacks [36].

• Skewness attack. This attack may occur when the distribution of values of the
sensitive attribute within a given equivalence class differs from the general (de-
mographic or in the whole table) one. Indeed, differences in these distributions
highlight changes in the probability with which a respondent in the equivalence
class is associated with a specific sensitive value. As an example, the 2-diverse ta-
ble in Figure 9(b) leaks the information that respondents in the third equivalence
class work in the army with 2/3 probability, compared to the 1/3 probability over
the whole relation.

• Similarity attack. This attack may occur when the values of the sensitive at-
tribute within a given equivalence class are (despite syntactically different as
demanded by ℓ-diversity) semantically similar. For instance, all respondents in
the first equivalence class of the 2-diverse table in Figure 9(b) work in the Armed
Forces, as the values assumed by the three tuples are Army, Marines, and Navy.

To counteract these two attacks, t-closeness extends the k-anonymity requirement
taking into account the distribution of sensitive values in equivalence classes [36].
t-Closeness requires that the frequency distribution of the sensitive values in each
equivalence class be close (i.e., with distance smaller than a fixed threshold t) to the
distribution of the same attribute values in the microdata table. Note that the distance
between the frequency distribution of the sensitive attribute values in the released
table and in each equivalence class can be evaluated adopting several metrics (e.g.,
Earth Mover Distance [36]). The enforcement of the t-closeness requirement makes
the skewness attack harmless, as the knowledge of the quasi-identifier value for a
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target respondent does not change the probability of inferring the sensitive value as-
sociated with her. t-Closeness reduces also the effectiveness of the similarity attack:
the presence of semantically similar values in an equivalence class can only be due
to the presence of the same values in the whole microdata table.

4.3 Protecting data streams

The solutions proposed to provide k-anonymity, ℓ-diversity, and t-closeness, as well
as the majority of microdata protection techniques, assume all data that need to be
released to be available at initial time. Then, the chosen protection technique can be
applied on the whole collection at once. In the context of pervasive systems, how-
ever, this assumption might be too strong as new data are continuously generated
(and possibly need to be immediately released), forming a so-called data stream. In
the context of data streams, timeliness usually assumes a paramount importance in
the release process, as disclosing old or outdated data is likely to be of little interest
for final recipients. Data streams can be protected by applying ad-hoc solutions to
guarantee k-anonymity, which are typically based on generalization and on the in-
troduction of a limited delay in data publication. The first solution in this direction
has been proposed in [50], and consists in publishing all the tuples in an equivalence
class at the same time. To this aim, a set of equivalence classes – all initially empty
– is prepared. When a new tuple is generated by the stream, it is inserted into a
suitable equivalence class, if such class exists; a new equivalence class suitable for
the tuple is generated, otherwise. As soon as an equivalence class includes k tuples
(which must be related to k different respondents), these tuples are generalized to
the same quasi-identifier value and published.

Aiming at enforcing ℓ-diversity, rather than k-anonymity, an alternative approach
has been proposed in [47], where data are assumed to be generated and published
as “snapshots” (i.e., sets of records available at a given moment of time) of d tu-
ples each. This technique combines traditional generalization and suppression tech-
niques with tuple relocation to guarantee ℓ-diversity. In a nutshell, relocation con-
sists in moving a tuple from one snapshot to a more recent one, if this delay in data
publishing can be useful to satisfy ℓ-diversity.

5 Privacy-preserving data storage

Privacy concerns can arise also when data storage and management is delegated
(for various reasons, such as economical costs) to external, possibly not fully
trusted, storage providers. These scenarios present several challenging issues, rang-
ing from fault tolerance, data protection, data and query integrity to private access
(e.g., [31, 32, 44]). Relying on external providers is particularly appealing in the
context of pervasive data, due to the high volume of data generated requiring large
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c1 = {Phone}
c2 = {Name, TicketType}
c3 = {Name, Payment}
c4 = {TicketType, Payment}

Fig. 10: Confidentiality constraints for the relation in Figure 2

storage space that, for example, the museum is most likely not to have. In this sce-
nario, to protect confidentiality of data to unauthorized users – including the external
provider – a straightforward solution is represented by wrapping an encryption layer
around the data to be protected. While effective for protecting data confidential-
ity, encryption inevitably complicates query execution that becomes possible only
with the adoption of expensive ad-hoc encryption schemes [10, 18, 26, 46], or in-
dexes [9, 19, 29, 45]. Moreover, in many scenarios, the sensitive information to be
protected is represented by the association among data items, rather than the data
themselves singularly taken. For instance, with reference to our running example,
knowing that a user named Alice visited the museum, and that a user paid a reduced
ticket for health reasons may not be sensitive. But discovering that Alice, who visited
the museum, paid a reduce ticket because of her health problems might represent a
confidential information.

Sensitive associations can be modeled as confidentiality constraints, which are
set of attributes whose joint visibility (i.e., association) is sensitive. Attributes whose
values are sensitive per se correspond to singleton constraints. For instance, with
reference to our running example, Figure 10 represents an example of confidentiality
constraints over the relation in Figure 2. Constraint c1 states that the phone numbers
of the visitors represent sensitive information to be protected, and constraint c2 (c3

and c4, respectively) states that the association between visitors’ name and type of
ticket (name and payment, and type of ticket and payment, respectively) is sensitive
and must be protected.

The adoption of encryption to satisfy confidentiality can be (partially) avoided
storing the collected data through a set of privacy-preserving views, which are de-
fined in such a way to satisfy confidentiality constraints [1, 12, 13, 14, 15]. To this
aim, sensitive associations among attributes are broken (fragmented) by storing the
attributes composing each of them in different views. Sensitive associations are then
protected by restricting visibility over the views or by ensuring their unlinkability.

Given a relation to be protected, privacy-preserving views can be defined accord-
ing to different paradigms, differing on how data are fragmented to satisfy the confi-
dentiality constraints. In the following, we briefly illustrate the three most important
approaches that can be used in our scenario to create privacy-preserving views.

Two can keep a secret [1]. Given a data collection, this strategy produces two views
V1 and V2, to be stored at two non-communicating providers. Sensitive attributes
are protected by obfuscating (e.g., encrypting) them, while sensitive associations
are protected by distributing the attributes in the confidentiality constraint between
the two views. In addition to sensitive attributes, also some attributes appearing
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V1

tid Name DoB Sex Paymentk Phonek

t1 Alice 1960/04/10 F α λ
t2 Bob 1970/05/12 M β µ
t3 Carol 1960/04/04 F γ ν
t4 Daniel 1970/05/20 M δ ξ
t5 Erik 1970/07/12 M ε o
t6 Fred 1960/04/11 F ζ π
t7 Greg 1970/07/25 M η ρ
t8 Hal 1970/07/30 M θ σ
t9 Ian 1970/05/12 M ι τ
t10 John 1950/12/01 M κ υ

V2

tid TicketType ZIP Paymentk Phonek

t1 Health 97401 φ Γ
t2 Army 98302 χ ∆
t3 Regular 97467 ψ Θ
t4 Army 98245 ω Λ
t5 Navy 98312 ε Ξ
t6 Professor 97434 ϑ Π
t7 Government 98223 ϖ Σ
t8 Marines 98389 ρ ϒ
t9 Army 98290 ς Φ
t10 Air Force 97210 ϕ Ψ

(a) Two can keep a secret

V1

salt enc Name DoB

s01 α Alice 1960/04/10
s02 β Bob 1970/05/12
s03 γ Carol 1960/04/04
s04 δ Daniel 1970/05/20
s05 ε Erik 1970/07/12
s06 ζ Fred 1960/04/11
s07 η Greg 1970/07/25
s08 θ Hal 1970/07/30
s09 ι Ian 1970/05/12
s10 κ John 1950/12/01

V2

salt enc TicketType Sex

s11 λ Health F
s12 µ Army M
s13 ν Regular F
s14 ξ Army M
s15 o Navy M
s16 π Professor F
s17 ρ Government M
s18 υ Marines M
s19 φ Army M
s20 χ Assistant M

V3

salt enc Payment ZIP

s21 ψ Credit card 97401
s22 o Debit card 98302
s23 π Cash 97467
s24 ρ Cash 98245
s25 σ Cash 98312
s26 τ Credit card 97434
s27 υ Check 98223
s28 φ Cash 98389
s29 χ Credit card 98290
s30 ψ Debit card 97210

(b) Multiple views

Vo

Phone Name TicketType

(800) 917-5551 Alice Health
(500) 234-5678 Bob Army
(541) 271-2136 Carol Regular
(360) 474-4614 Daniel Army
(360) 373-2030 Erik Navy
(541) 946-1711 Fred Professor
(360) 435-3746 Greg Government
(253) 863-5555 Hal Marines
(360) 794-7058 Ian Army
(503) 497-91 33 John Assistant

Vs

DoB Sex ZIP Payment

1960/04/10 F 97401 Credit card
1970/05/12 M 98302 Debit card
1960/04/04 F 97467 Cash
1970/05/20 M 98245 Cash
1970/07/12 M 98312 Cash
1960/04/11 F 97434 Credit card
1970/07/25 M 98223 Check
1970/07/30 M 98389 Cash
1970/05/12 M 98290 Credit card
1950/12/01 M 97210 Debit card

(c) Keep a few

Fig. 11: Privacy-preserving views over the relation in Figure 2 satisfying the con-
straints in Figure 10

in sensitive associations might be obfuscated when two views are not sufficient to
protect all sensitive associations. A common attribute tid is included in both views,
to allow the data owner (and all authorized users) to reconstruct the original relation.
Figure 11(a) illustrates two views defined over the relation in Figure 2 satisfying the
constraints in Figure 10. Note that attribute Payment, although not sensitive per se,
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has been obfuscated in both the views: in fact, its plaintext representation in view
V1 would violate constraint c3, and in view V2 would violate c4.

Multiple views [13, 15]. Given a data collection, this strategy produces a set
{V1, . . . ,Vn} of unlinkable views. The multiple views approach removes the limit-
ing assumption of the existence of two non-communicating providers, hence result-
ing applicable to several real-world scenarios. According to this approach, sensitive
attributes are protected with encryption, while sensitive associations are protected
by distributing their attributes in different views. Views include disjoint sets of at-
tributes, to guarantee their unlinkability. Note that, since the number of views that
can be produced is not limited to two, no attribute that is not sensitive per se needs
to be protected with encryption. To allow query execution over a single view, each
view is complete, meaning that it stores all the attributes of the original relation in
either encrypted or plaintext form. Attributes that are encrypted in a view are en-
crypted in a single encrypted chunk (at the level of tuple), which is properly salted
not to expose the frequencies of values. Figure 11(b) illustrates three views defined
over the relation in Figure 2 satisfying the constraints in Figure 10.

Keep a few [14]. Given a data collection, this strategy produces two views Vo and
Vs only, one of which (i.e., Vo) is stored at a trusted party (e.g., the data owner).
The keep a few approach completely departs from encryption: sensitive attributes
are protected by storing them in Vo maintained at the trusted party, while sensitive
associations are protected by storing at least one attribute, for each association, in Vo.
The two views include a common attribute tid to allow the owner and authorized
users to reconstruct the content of the original relation. Figure 11(c) illustrates the
two views Vo and Vs defined over the relation in Figure 2 satisfying the constraints
in Figure 10, where view Vs stores attribute Phone, which is sensitive per se, and
one attribute for constraints c2, c3 and c4.

6 Conclusions

The pervasive availability of computing infrastructures, often enriched with senso-
rial capabilities and context awareness to provide personalized services to users,
causes unprecedented privacy risks that need to be carefully tackled. In this chapter,
starting from a sample scenario, we have illustrated such privacy risks, and dis-
cussed some available solutions to counteract them when accessing, sharing, and
storing information collected through pervasive systems.
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