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Abstract. Cloud computing has emerged as a successful paradigm al-
lowing individual users and well as companies to resort to external
providers for storing/processing data or making them available to others.
Together with the many benefits, cloud computing introduces however
new security and privacy risks. A major issue is due to the fact that the
data owner, storing data at external providers, loses control over them,
leaving them potentially exposed to improper access, use, or dissemina-
tion.

In this chapter, we consider the problem of protecting confidentiality of
sensitive information when relying on external cloud providers for stor-
ing and processing data. We introduce confidentiality requirements and
then illustrate encryption and data fragmentation as possible protection
techniques. In particular, we discuss different approaches that have been
proposed using encryption (with indexing) and fragmentation, either by
themselves or in combination, to satisfy confidentiality requirements.

1 Introduction

Cloud computing has brought enormous benefits to individual users as well as
companies, enabling them to enjoy convenient and flexible availability of on
demand storage and computational resources for storing, processing and share
data with others. While these advantages are appealing, the price to pay for
them is a loss of control of the data owners on their data, whose confidentiality
and integrity could then be put at risk [20,32]. Security issues may vary de-
pending on the considered cloud scenario. In fact, the term cloud refers to a
variety of distributed computing environments, which differ in the architectural
or trust assumptions. Specifically, different deployment models can be identi-
fied [36], ranging from private cloud, which operates for a single organization



and the infrastructures and services are maintained on a private network, to a
public cloud, where the cloud infrastructure is owned by a cloud provider that
offers its services to everybody. Ownerships and operation models between these
two extremes are also possible, such as in a community cloud, where the cloud
infrastructure is shared among a set of organizations with similar needs, and
a hybrid cloud, where an organization with a private cloud wants to use it in
conjunction with a public or community cloud for a given purpose (e.g., critical
applications and data are managed in the private cloud while other less critical
applications can be managed in a public cloud). In all models above, the con-
sideration of (not fully trusted/trustworthy) providers introduces potential risks
on the protection of data that are stored or processed by external providers. In
particular, while providers could typically be assumed to be trustworthy with
respect to the proper management of the data, they might not be trusted for
data confidentiality. In other words, data should be protected from the providers
themselves (considered honest-but-curious) that, while providing data storage,
management, and processing, should not be authorized to know the actual data
content.

In this chapter, we address the problem of guaranteeing data confidentiality
when relying on external cloud providers for storing and processing data and
illustrate possible solutions for it. In particular, a natural solution for protecting
data confidentiality is encryption: data are protected by applying an encryption
layer wrapping them before outsourcing them to external cloud providers. How-
ever, while effective, encryption makes query execution more complex. In fact,
the external provider cannot decrypt the data for query execution, and must
execute queries directly on encrypted data (not always applicable in practice)
or rely on indexing information that can be associated with encrypted data. An
additional/alternative solution is data fragmentation: when what is sensitive is
the association among data (rather than the individual data themselves), con-
fidentiality can be provided by storing different chunks of the data in separate
non-linkable fragments.

The remainder of this chapter is organized as follows. Section 2 introduces
the protection requirements to be enforced as a set of confidentiality constraints,
and describes encryption and fragmentation as basic techniques that can be used
to preserve the confidentiality of stored data. It also introduces the different data
protection paradigms given by the disjoint or combined application of encryption
and fragmentation, which are illustrated in more details in subsequent sections.
Section 3 illustrates protection via data encryption (and indexing). Section 4
illustrates an approach departing from encryption in favor of data fragmenta-
tion whenever possible and assuming two data fragments and the availability of
two independent and non-communicating providers for storing them. Section 5
illustrates a similar approach assuming an arbitrary number of non-linkable
data fragments, which can be stored at an arbitrary number (including one)
of providers on which no specific assumption is required. Section 6 illustrates
an approach completely departing from encryption relying instead only on frag-



mentation and assuming the owner’s involvement in storing (and processing) a
limited amount of data. Finally, Section 7 concludes the chapter.

2 Protection Requirements and Techniques

In this section, we first discuss confidentiality requirements that may need to
be satisfied when moving the data to the cloud (Section 2.1), and then describe
the protection techniques that can adopted for their enforcement (Section 2.2).
Finally, we illustrate the data protection paradigms resulting from different com-
binations of these protection techniques (Section 2.3).

2.1 Confidentiality constraints

Protection requirements express what is sensitive and should be therefore main-
tained confidential when storing data at external providers. For simplicity and
concreteness, most existing proposals assume data to be organized as a relation
r over relational schema R(Aq,...,A,), where 4;, i =1,...,n, are the different
attributes of the relation, with the note that the proposed protection techniques
could however be applied to different data models. Similarly, they assume pro-
tection requirements to be defined at the schema level, meaning at the level of
attributes (in contrast to specific attribute values). This assumption simplifies
the management and the application of the protection techniques, ensuring the
applicability of the solutions.

Operating at the schema level, we can distinguish the following two kinds of
confidentiality requirements that can apply to the data, corresponding to the fact
that a given attribute is sensitive or that the association among some attributes
is sensitive.

— Sensitive attributes. Some attributes are sensitive and their values should be
maintained confidential. Simple examples of such attributes are SSN, credit
card numbers, emails or telephone numbers and similar attributes whose
values should not be released.

— Sensitive associations. In some cases, what is sensitive is the association
among attributes values rather than the values of an attribute. For instance,
the names of patients in a hospital may be considered not sensitive, and so
the diseases treated by the hospital; however the specific association between
individual patients and their illnesses is sensitive and should be maintained
confidential.

A simple, yet conveniently expressive, way to capture the confidentiality re-
quirements of sensitive attributes/associations is the specification of confiden-
tiality constraints as set of attributes whose joint visibility should be avoided [1].
Singleton sets correspond to sensitive attributes; non-singleton sets correspond
to sensitive associations.



PATIENTS

SS Name|Race Job |Disease| Treatment |[Ins
123-45-6789|Alice |white|teacher [flu paracetamol 160
234-56-7890|Bob  |while [farmer |asthma |bronchodilators{100
345-67-8901 | Carol |asian [nurse gastritis [antacids 100
456-78-9012|David |black |lawyer angina |nitroglycerin 200
567-89-0123|Eric  |black [secretary |flu aspirin 100
678-90-1234|Fred |asian |lawyer diabetes |insulin 180

(a)
c1 = {ssn}
co = {Name, Disease}
c3 = {Name, Ins}

cq = {Disease, Ins}
¢5 = {Race, Job, Ins}

(b)

Fig. 1. An example of a relation (a) and of confidentiality constraints over it (b)

Definition 1 (Confidentiality constraint). Let R(A1,...,A,) be a relation
schema. A confidentiality constraint ¢ over R is a subset of attributes in R (i.e.,
Cg{Al, ceey An})

As an example, consider relation PATIENTS in Figure 1(a), reporting the
information about hospitalized patients. Figure 1(b) illustrates an example of
confidentiality constraints over it stating that:

— c1: the Social Security Numbers of the patients are sensitive and should be
maintained confidential (sensitive attribute);

— 3, c3: the disease suffered from a patient and the medical insurance she pays
are sensitive and should be maintained confidential (sensitive associations);

— c¢4: the association between the disease of a patient and the medical insurance
she pays is sensitive (sensitive association);

— c¢5: the association among the race of a patient, her job, and the insurance
she pays is confidential (sensitive association).

Note that the protection of a confidentiality constraint ¢; implies the pro-
tection of any confidentiality constraint c; such that ¢;Cc; (if observers do not
have visibility of the attribute/association ¢; they clearly do not have visibility
of the association including it); making the consideration of c¢; redundant. A
set C of confidentiality constraints over R is well-defined if it does not include
redundant constraints, that is, Vc;,c;€C, @ # j: ¢;Zc;. The set of constraints in
Figure 1(b) is well-defined.

2.2 Encryption and fragmentation

Two natural protection techniques that have been proposed for satisfying confi-
dentiality requirements are encryption and fragmentation.

Encryption consists in encrypting the data before outsourcing them to exter-
nal providers so to make them intelligible only to users holding the decryption



keys, and protecting them from unauthorized eyes (including the provider itself).
Although in principle both symmetric and asymmetric encryption schemas can
be adopted, for performance reasons, most proposals assume the adoption of
symmetric encryption. Encryption could be enforced at different levels of granu-
larity: table, column, tuple, and individual cell. Encrypting at the level of table
implies that the whole relation needs to be returned to the client for access,
requiring heavy communication and leaving the whole query processing work to
the client. Such a drawback is also present in case of encryption at the level
of column as the only operation that the provider could perform is projection,
with the whole column of interest for a query being always returned. On the
other hand, encrypting at the level of individual cells would introduce many en-
cryption/decryption operations and issues related to possible inferences on the
encrypted data. Encrypting at the level of tuple appears then the preferable op-
tion, providing some ability for fine-grained retrieval (returning only a subset of
the tuples) while not requiring too many encryption/decryption operations.

Since the provider is not trusted for confidentiality, encrypted data cannot
be decrypted for query execution. Queries need therefore to be evaluated on
the encrypted data themselves. There are typically two lines of approaches for
providing this functionality: performing queries directly on encrypted data, pos-
sibly with the use of specific cryptographic techniques (e.g., [6,13,25,34]), or
attaching to the encrypted data some metadata representing indexes that are
then exploited for query execution (e.g., [5,14,22,26]). These approaches however
support evaluation of only specific kinds of queries.

Fragmentation consists in splitting the attributes of a relation R producing
different vertical views (fragments) in such a way that these views stored at
external providers do not violate confidentiality requirements (neither directly
nor indirectly). Intuitively, fragmentation protects the sensitive association rep-
resented by an association constraint ¢ when the attributes in ¢ do not appear
all in the same (publicly available) fragment, and fragments cannot be joined by
non authorized users. Note that singleton constraints are correctly enforced only
when the corresponding attributes do not appear in any fragment that is stored
at a cloud provider. In this chapter, we illustrate fragmentation solutions assum-
ing attributes to be independent. Fragmentation can however take into account
also the case of possible correlations among attributes (which could introduce
inferences or enable linking) [16].

2.3 Data protection paradigms

Different approaches have been proposed for protecting confidentiality of data
stored at external providers by applying encryption and fragmentation, by them-
selves or in combination. We distinguish four different protection paradigms that
have been proposed.

— Encryption/indexing. Data are encrypted before being outsourced to exter-
nal providers, with encryption typically applied at the level of tuple. En-
cryption does not distinguish between attributes or association constraints,



applying instead the wrapping protection layer to all the attributes in a tuple.
For query purposes, the encrypted data are associated with some metadata
(indexes) that can be used by the cloud provider for executing queries.

— Two can keep a secret. It assumes the availability of two independent, non-
communicating, providers each storing a portion of the data. Whenever pos-
sible, sensitive associations are protected by partitioning the involved at-
tributes among the two providers (any way would do, as long as none of the
two providers has complete visibility of all the attributes in a sensitive as-
sociation). Sensitive attributes are always encrypted. Other attributes may
be stored in encrypted form whenever storing them in the clear at any of
the two providers would violate at least one confidentiality constraint. The
two fragments have a key attribute in common, making them joinable by the
owner and by authorized users, who are the only parties who have access to
both providers.

— Multiple fragments. It employs encryption for protecting sensitive attributes
and fragmentation for protecting sensitive associations. It does not make
assumptions on the nature/number of providers and on the number of frag-
ments. Employing an arbitrary number of fragments allows sensitive asso-
ciations to always be satisfied with fragmentation. Fragments are complete
(all attributes are stored in each fragment in either encrypted or plaintext
form) and not linkable (they have no attribute in common). Being fragments
unlinkable, there is no need of assuming absence of communication between
the providers.

— Keep a few. It assumes the involvement of a trusted party (typically the
owner) for storing, and hence participating in the processing of, a limited
amount of data. No encryption is applied. Sensitive attributes are stored at
the owner side. Sensitive associations are protected by storing at least one of
their attributes at the owner side (trying to minimize storage/computation
required to the owner).

In the following sections, we describe more in details these four data protec-
tion paradigms. For the encryption/indexing paradigm, we will present the data
model and describe how to execute queries directly on the encrypted data. For
the fragmentation-based paradigms, we will present: :) the fragmentation model;
i1) the metrics for evaluating the quality of a fragmentation; i) the algorithms
developed for computing an optimal fragmentation; and 4v) the techniques to
efficiently evaluate queries on the fragmentation.

3 Encryption and indexing

We first describe how data confidentiality can be guaranteed by encrypting the
data before storing them in the cloud [14,26] (Figure 2), and then illustrate how
indexes can be defined and adopted for supporting the execution of queries.
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Fig. 2. Encryption and indexing
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Fig. 3. An example of encrypted and indexed version of relation PATIENTS in Fig-
ure 1(a)

Encryption model A relation r, defined over schema R(A;,...,A,), is rep-
resented at the cloud provider as an encrypted and indexed relation ¢, defined
over schema R°(tid, enc, I;,...,I;), where:

— tid is a randomly generated tuple identifier;
— enc is the encrypted tuple;
— {I;,...,I,} is the set of indexes defined over attributes {4;,...,4,;}CR.

Each tuple ¢ in r is represented by an encrypted tuple ¢¢ in 7€, where: {¢[tid] is a
randomly generated value; t¢[enc]=FEnc(t,k), with Enc a symmetric encryption
function with key k; and t¢[I;]=¢;(¢[A;]), with ¢; an index function defined for
attribute A4;. Note that not all the attributes in R are associated with an index
in the corresponding encrypted relation R¢. Typically, indexes are defined only
for those attributes on which conditions need to be evaluated in query execution.
Figure 3 illustrates the encrypted version of relation PATIENTS in Figure 1(a),
with indexes over attributes Race, Job, Disease, and Ins. In the figure, for
simplicity, index values are represented with Greek letters.

Depending on how the index function ¢ maps plaintext values into the corre-
sponding index values, most of the existing indexing techniques can be classified
as follows [22].

— Direct index: maps each value in the attribute domain to a different index
value and viceversa. Encryption-based indexes (e.g., [14]) represent an ex-
ample of direct index. In fact, the index function maps plaintext value ¢[A]
to index value ¢(¢t[A])=FE(t[A]), for each tuple ¢ in r. For instance, index
I, in relation PATIENTS® in Figure 3 is a direct index over attribute Race of
relation PATIENTS in Figure 1(a).



— Bucket-based index: maps different values in the attribute domain to the
same index value (i.e., generates collisions), but each value in the attribute
domain is mapped to one index value only. Partition-based and hash-
based indexes are examples of bucket-based indexes. Partition-based indexes
(e.g., [26]) split the domain D of attribute A into non-overlapping subsets of
contiguous values and associate a label with each of them. The index value
representing t[A], for each tuple ¢ in r, is the label of the partition to which
t[A] belongs. For instance, index I; in relation PATIENTS® in Figure 3 is a
partition-based index over attribute Ins of relation PATIENTS in Figure 1(a),
where the domain has been partitioned in two intervals: [100, 150] with label
p, and [151,200] with label o. Hash-based indexes (e.g., [14]) instead adopt a
secure hash function & that generates collisions. Hence, the index value repre-
senting ¢[A] is computed as h(t[A]), for each tuple ¢ in 7. For instance, index
I; in relation PATIENTS® in Figure 3 is a hash-based index over attribute Job
of relation PATIENTS in Figure 1(a), where the hash function is defined as
follows: h(teacher)=h(farmer)=h(secretary)=4 and h(nurse)=h(lawyer)=e.

— Flattened index: maps each value in the attribute domain to a set of index
values, in such a way that all the index values have the same number of oc-
currences (flattening). Each index value however represents one value in the
attribute domain only. An example of flattened index applies direct encryp-
tion to the values in the attribute domain and a post-processing to flatten
the distribution of index values. For instance, index I 4 in relation PATIENTS®
in Figure 3 represents a flattened index over attribute Disease of relation
PATIENTS in Figure 1(a), where each index value has one occurrence.

Besides these approaches, indexing techniques have been proposed for sup-
porting the evaluation of specific conditions and SQL clauses [21]. As an example,
solutions that exploit homomorphic encryption have been developed to support
aggregate functions and the basic arithmetic operators (e.g., [24,27]). Techniques
based on the Order Preserving Encryption schema have been instead studied to
support range conditions and ordering (e.g., [2,35]). A different class of index-
ing techniques rely on the definition of specific data structures (e.g., B+-tree)
to support the evaluation at the provider-side of specific operations. These in-
dexes are however not represented as attributes of the encrypted relation, but
they translate into additional relations stored together with ¢ at the cloud
provider [14].

Query evaluation Since moving data to the cloud should be transparent for
final users, they formulate their queries over the original relation schema. These
queries are then translated into equivalent queries operating on the encrypted
and indexed relation r¢. The translation of a query ¢ operating on the origi-
nal relation into an equivalent set of queries exploiting indexes depends on the
indexing techniques adopted by the data owner.

Consider, for simplicity, a query ¢ of the form “SELECT Att FROM R WHERE
Cond”, with Att a set of attributes in R and Cond= A, cond; is the conjunction
of equality conditions of the form A=v, with A€R and v a value in its domain.



Original query Translated queries

q := SELECT Att qp = SELECT tid, enc
FROM R FROM R°
WHERE Cond WHERE Cond,® AND Condp.©

Gu = SELECT Att
FROM  Decrypt(R,.enc,k)
WHERE Cond, AND Condp,

q = SELECT Name
FROM Patients
WHERE Race=‘white’ AND
Job="‘teacher’ AND
Treatment="‘paracetamol’

qp := SELECT tid, enc
FROM Patients®
WHERE I,=a AND I;=§

qv = SELECT Name
FROM  Decrypt(R,.enc,k)
WHERE Job="‘teacher’ AND
Treatment="‘paracetamol’

Fig. 4. An example of query translation in the encryption and indexing scenario

To partially delegate the query evaluation to the cloud provider storing r¢, ¢ is
translated into two queries: g, executed by the provider and ¢, executed by the
user. Query ¢, contains only the equality conditions in the WHERE clause of ¢
that operate on indexes. Query ¢, operates on the result of ¢, and contains all
the other conditions. To translate ¢ into an equivalent pair of queries {¢p,qu.},
Cond is first split in sub-conditions Cond,,, Cond,,, and Cond,, as follows:

— Cond,, is the conjunction of conditions cond in Cond involving attributes
that are represented by an index in 7¢ that fully support equality conditions
(e.g., direct and flattened indexes);

— Cond, is the conjunction of conditions cond in Cond that involve attributes
that are not represented by an index in r¢;

— Cond,, is the conjunction of conditions cond in Cond that involve attributes
that are represented by any index in ¢ that only partially supports the eval-
uation of equality conditions (e.g., bucket-based indexes, due to collisions).

For instance, consider the encrypted and indexed version of rela-
tion PATIENTS in Figure 1(a) reported in Figure 3, and query “SE-
LECT Name FROM Patients WHERE Race=‘white’ AND Job=‘teacher’
AND Treatment=‘paracetamol’”. In this case, Cond,={Race=‘white’},
Cond,={Treatment=‘paracetamol’}, and Cond,,={Job="‘teacher’}.

After conditions in Cond have been classified in Cond,,, Cond,,, and Cond,,
query ¢ is translated in ¢, and g, as illustrated in Figure 4. Query g,, eval-
uated by the provider, operates on 7¢ and evaluates the conditions in Cond,
and in Cond,,, properly translated to operate on indexes. That is, each con-
dition (A4;=v) is represented in ¢, by condition (I IN ¢(v)), with I the index
defined over A and ¢ the corresponding index function. When the user receives
the result R, of query g, it decrypts attribute enc and evaluates, on the re-
sulting tuples, query ¢,. Query g, evaluates conditions in Cond, and Condy,
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Fig. 5. Two can keep a secret

and projects the attributes Att. Consider, as an example, the encrypted and
indexed version of relation PATIENTS in Figure 1(a) reported in Figure 3, and
query “SELECT Name FROM Patients WHERE Race=‘white’ AND Job=‘teacher’
AND Treatment="‘paracetamol’”. Figure 4 illustrates the translation of ¢ in the
corresponding sub-queries operating at the provider (i.e., g,) and at the user
(i.e., qu) sides.

4 Two can keep a secret

We present a solution based on encryption and fragmentation where data are
split into two fragments, with each fragment stored at a different provider (Fig-
ure 5). The two providers are assumed to be non-communicating [1].

Fragmentation model The satisfaction of confidentiality constraints is guar-
anteed by proper combination of vertical fragmentation and encryption, and
relies on the assumption that the two cloud providers storing fragments do not
communicate with each other (see Figure 5). Note that in the original pro-
posal [1] encryption is considered as one of the techniques that can be used for
encoding (i.e., obfuscating) attributes. Given an attribute A, the encoding of A
consists in splitting its value in two (or more) attributes, say A% and A7, whose
combined knowledge is necessary to reconstruct A (i.e., A = A" ® AJ with ®
a non-invertible composition operator). Encoding an attribute using encryption
means therefore that A* contains the ciphertext, A7 contains the encryption key,
and ® is the encryption function adopted by the data owner. For the sake of
readability, in the remainder of this section we will consider encryption as the
specific technique adopted to enforce encoding.

According to the proposal in [1], the original relation r is fragmented generat-
ing a fragmentation F={F'1,Fs,E}, where I'; and F'5 are two fragments that are
stored at two providers and F is the set of encrypted attributes. Singleton con-
straints are satisfied by encrypting sensitive attributes. Association constraints
are satisfied by splitting the involved attributes between the two providers. Since
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relation 7 can be split in two fragments only, it may happen that an attribute
cannot be stored at any of the two providers without violating a confidentiality
constraint. In this case, the confidentiality constraint can be satisfied by encrypt-
ing one (or more) of its attributes. A fragmentation F={F1,F3,E} is correct if it
satisfies all the confidentiality constraints defined by the data owner, as formally
stated below.

Definition 2 (Correct Fragmentation). Let R(A;,...,A,) be a relation
schema and C be a set of confidentiality constraints over it. A fragmentation
F ={F1, Fa, E} is correct iff:

— Ve €C: ¢cLF1, cLFs (confidentiality),
— F1UFsUE = R (completeness).

The first condition requires that neither F'; nor F'5 store all the attributes in

a confidentiality constraint in plaintext. Since the two fragments are stored at

different providers, and these providers do not communicate with each other,

sensitive associations as well as sensitive attribute values cannot be recon-
structed by non authorized users. The second condition instead demands that
the fragments store (either plaintext or encrypted) all the attributes in the
original relation. This guarantees that the content of the original relation can
always be reconstructed starting from JF. For instance, a correct fragmenta-
tion F of relation PATIENTS in Figure 1(a) with respect to the confidential-
ity constraints in Figure 1(b) is F={F;,F2,E}, with F';={Name,Race,Job},

Fy={Disease,Treatment}, and F={SSN,Ins}.

At the physical level, fragments F; and F are represented by physical
fragments F§ and F'§, respectively. Each physical fragment F§ stores the at-
tributes in F'; in plaintext, and all the attributes in F encrypted. The two phys-
ical fragments representing relation r must have a common attribute, to allow
authorized users to correctly reconstruct the content of r (lossless join prop-
erty). Therefore, physical fragment F'§ representing fragment F; has schema
F¢(tid Ay, ..., Ag, AL, .. AL ), where:

— tid is a randomly generated tuple identifier;

— {4;,,...,A;,} is the set of attributes composing fragment F;;

—{A .., Aén} is the set of attributes resulting from the encryption of the
attributes in E={A.,,..., Ac, }, that is, for each A, in E, either A} repre-
sents encrypted attribute A., and Ai,- represents the corresponding encryp-
tion key, or viceversa.

Each tuple ¢ in r is represented by a tuple ¢ in F{ and a tuple ¢§ in F§,
where: t§[tid|=t5[tid] is a randomly generated value; t§[A]=t[A], VA€F; and
t5[A]=t[A], VAEF3; and attributes t[A1], t2[A?] are the encrypted version and
the encryption key of attribute t[A], VAEE (i.e., Enc(t[A], t5[A']) = t5[A?] or
Enc(t[4],t5[42) = t5[A1]).

Figure 6 illustrates the physical fragments representing fragmentation
F={F1,Fy,E}, with F;={Name,Race,Job}, Fs={Disease,Treatment}, and

11



Py
Name|Race Job SSN! Ins’
Alice |white[teacher |Enc(123-45-6789,kiy)|Enc(150,kL,.)

Ins

Bob |while [farmer | Enc(234-56-7890,k2y,) | Enc(100,k2,.)

Ins

Carol |asian [nurse Enc(345-67-8901, k5, ) | Enc(100,k3, )

Ins

David |black |lawyer | Enc(456-78-9012,k5q, )| Enc(200,k% )

( Ins

Eric  |black |secretary| Enc(567-89-0123,k2,,)| Enc(100,k2, )
Fred |asian |lawyer |Enc(678-90-1234,kS)| Enc(180,k% )

FZ

tid[Disease| Treatment |SSNZ[Ins”
1 (flu paracetamol ks |Fins
asthma |bronchodilators|kzy, :
gastritis |antacids ki Tns

2
3
4 |angina |nitroglycerin kQ‘SN k2
5
6

2
[

G)U‘»bwl\ibd"

Ins
3

Ins
P 5 5
flu aspirin kssy | FTns
kG

Ins

. X . 6
diabetes |insulin kgsy

Fig. 6. An example of a correct fragmentation of relation PATIENTS in Figure 1(a) in
the two can keep a secret scenario

E={SSN,Ins} of relation PATIENTS in Figure 1(a). In this example, for sim-
plicity, we assume that F'§{ stores the encrypted attribute values and F'§ stores
the corresponding encryption keys for all the tuples in r and for both attributes
SSN and Ins.

Fragmentation metrics Given a relation schema R and a set C of confidential-
ity constraints over it, the data owner needs to compute a correct fragmentation.
However, there may exist different fragmentations that satisfy all the constraints.
As a simple example, fragmentation F={F1,F2,E} with E=R and F1=Fy=0 is
clearly correct but undesirable, since no query can be evaluated by the providers
storing F'{ and F§. Aiming at leaving as much computational effort as possible
to the cloud providers, it is then necessary to define a metric to measure the
quality of a fragmentation in terms of the query overhead required to users for
evaluating their queries over the fragmentation F. The metric proposed in [1]
is based on the knowledge of the query workload Q (i.e., a set of representative
queries that are expected to be frequently executed) characterizing the system.
In fact, the query workload describes how frequently attributes appear together
in queries, and then permits to estimate the computational overhead that a frag-
mentation that splits these attributes may cause to users. To assess the quality
of a fragmentation, the query workload is modeled as an affinity matriz, which
is a symmetric matrix with a row and a column for each attribute in R, and
where each cell M[A;,A;]=M[A;,A;] (i # j), represents the cost (i.e., the com-
putation overhead for users) of having attributes A; and A; stored in different
fragments. Each cell M[A4,A4] (i.e., cells along the diagonal) instead represents
the cost of having attribute A encrypted. For instance, the affinity matrix in
Figure 7 states that the cost of having attributes Name and Disease stored in
two different fragments is M [Name,Disease| = 10, and that of encrypting at-
tribute Ins is M[Ins, Ins] = 15. The cost of a fragmentation F is computed by
summing the costs of the attributes encrypted in F, and the costs of the pairs

12



SSN Name Race Job Disease Treatment Ins

SSN
Name
Race

Job
Disease
Treatment
Ins

Fig. 7. An example of affinity matrix

of attributes not stored together in a fragment in F. Formally, the cost of a
fragmentation F={F1,F5,E} is defined as:

> M[Ai, Ajl+ ) M[A;, Aj
A;jeF1AjeFy A;eFE

As an example, consider relation PATIENTS in Figure 1(a), the fragmentation in
Figure 6, and the affinity matrix in Figure 7 (since the matrix is symmetric, we re-
port the values only for the cells in the upper half of the matrix). The quality of F
is computed as: M [Name,Disease| + M [Name, Treatment] + M [Race, Disease] +
M Race, Treatment] + M[Job,Disease] + M[Job, Treatment| + M[SSN, SSN] +
M|(Ins,Ins] =10+ 15432+ 40+ 14 + 23 + 10 + 15 = 159.

Computing an optimal fragmentation The problem of computing a frag-
mentation that minimizes the cost of query evaluation is NP-hard (the minimum
hypergraph coloring problem reduces to it in polynomial time [1]). Hence, in [1]
the authors propose to adopt an heuristic approach to compute a good, although
non optimal, solution. The proposed solution is based on a graph modeling of
the fragmentation problem, where each attribute in R is represented as a vertex
in a complete graph G whose edges and vertices are weighted according to M
(i.e., weight(A)=MI[A,A] and weight(A;,Aj)=M[A;,A;]). The graph has an ad-
ditional set H of hyperarcs, modeling the confidentiality constraints in C. The
proposed heuristic combines two approximation techniques, traditionally used
to find a good solution to the following well known hard problems.

— Min-Cut. Assuming that C is empty, the problem of computing an optimal
fragmentation can be translated into the problem of computing a minimum
cut for G. A minimum cut for a graph G is a partitioning of the set of vertices
in G in two subsets, V3 and V5, that minimizes the weight of the edges
with one vertex in V; and vertex in V5. Intuitively, the heuristic approaches
proposed for the Min-Cut problem can be used to compute different cuts
that are nearly minimal, and then we can choose the one that satisfies the
highest number of confidentiality constraints.

— Weighted Set Cover. If we do not consider the cost of splitting attributes
between F'; and F'o, the problem of computing a correct fragmentation can
be translated into the minimum set cover problem. Intuitively, each confi-
dentiality constraint is a set whose elements are the attributes composing
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it. The weight of each attribute A is M[A4,A] and the minimum set cover is
the set C’ of attributes with minimum weight that includes (at least) one
attribute for each constraint. Confidentiality constraints can be satisfied by
encrypting all the attributes in C”.

By combining these two approaches, it is possible to compute a good fragmen-
tation in polynomial time. In fact, the Min-Cut heuristic algorithm guarantees to
compute a good split of the attributes between F'; and F, while the weighted
set cover guarantees constraint satisfaction. The corresponding heuristic algo-
rithm works as follows. First, it computes a minimum set cover E through a
greedy strategy, to guarantee that all the constraints are satisfied by encrypt-
ing the attributes in E. Then, it computes a minimum cut for the attributes in
R\ E, to split them between F; and Fy minimizing the cost of the fragmenta-
tion. Finally, for each attribute A in E, it moves A to F'; (Fa, respectively) if
no confidentiality constraint is violated.

Query evaluation A query ¢ formulated over the original relation r is trans-
lated into a set of queries operating over the two fragments stored at the two
cloud providers. A naive solution would download from the two providers both
F¢ and F§, and locally evaluate ¢ at the user side on the joined fragments.
However, this solution would not be acceptable due to the high computational
and communication overhead for users. The translation of original queries to
operate on fragments should then limit the computational overhead for the user
(i.e., moving as much as possible the query evaluation process to the providers).

Consider, for simplicity, a query ¢ of the form “SELECT Att FROM R WHERE
Cond”, with Att a set of attributes in R and Cond= A, cond; a conjunction
of basic conditions of the form (A; op v), (4; op A;), or (4; IN {vj,...,v;}),
where A;,A; € R, {v,v1,...,v} are constant values in the domain of 4;, and
op is a comparison operator in {=, #, >, <, >, <}. For the sake of readability, in
the following, we will use notation Attr(cond) to denote the set of attributes in
the basic condition cond. To partially delegate the computation of the query to
the providers storing F'¢ and F§, ¢ is translated into a set {q1, g2, ¢} of queries
operating at the provider storing F'§, at the provider storing F'§, and at the user
side, respectively. This translatwion is based on the observation that the eval-
uation of basic conditions involving only attributes plaintext represented in F'§
(F'5, respectively) can be delegated to the provider storing F'§ (F'§, respectively).
Conditions operating on encrypted attributes or on two attributes, say A; and
As, with A;€F; and As€F5, must be evaluated by the user. Given query g,
condition Cond in the WHERE clause is then split into three sub-conditions as
follows:

— Cond1=/\,; cond; : Attr(cond;)CF; is the conjunction of basic conditions
that involve only attributes in fragment F'y;

— Condy=/\,; cond; : Attr(cond;)CF5 is the conjunction of basic conditions
that involve only attributes in fragment F'o;
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— Cond,=/\, cond; : Attr(cond;)ZF; and Attr(cond;)ZF5 is the conjunction
of basic conditions that either involve encrypted attributes or are of the form
(A; op Aj), where A;€F; and A;€F, (or viceversa).

For instance, consider relation PATIENTS in Figure 1(a), its fragmentation in
Figure 6 and query ¢=“SELECT Name FROM Patients WHERE Job="‘lawyer’ AND
Disease=‘flu’ AND Ins=100."” Cond; includes basic condition Job="‘lawyer’;
Conds includes basic condition Disease=‘flu’; and Cond, includes basic condi-
tion Ins=100.

The evaluation of a query ¢ on R can follow different strategies, depending on
whether Cond; and Conds are evaluated in parallel (Figure 8(a)) or in sequence
(Figure 8(Db)), as illustrated in the following.

— Parallel strategy. The two providers evaluate in parallel queries ¢; and ¢,
which are in charge of returning the tuples in F'{ and F'§ satisfying conditions
Cond; and Conda, respectively. Query ¢1 (g2, respectively) returns the tuple
identifier tid, which is necessary to join its result Ry (Ra, respectively) with
the result of g2 (q1, respectively), and all those attributes included in F
(F2, respectively) and in E that appear either in the SELECT clause of ¢, or in
Cond,. When the user receives both Ry and R, she executes query ¢, that
computes the join between them, decrypts encrypted attributes, evaluates
Cond,,, and projects the attributes in the SELECT clause of ¢. Figure 8(a)
illustrates the translation of query ¢=“SELECT Name FROM Patients WHERE
Job="‘lawyer’ AND Disease=‘flu’ AND Ins=100" formulated over relation
PATIENTS in Figure 1(a) into an equivalent set of queries operating on the
fragments in Figure 6.

— Sequential strategy. With this strategy, one among the two queries ¢; and go
is sent to the corresponding provider first. Let us assume that the provider
storing F'§ goes first (the case where the provider managing F'§ goes first is
symmetric) and executes query ¢1, which evaluates condition Cond; retuning
attribute tid and all those attributes included in F'; and in E that appear
either in the SELECT clause of ¢, or in Cond,. Upon receiving Ri, the user
sends to the provider storing F'§ the identifiers of the tuples in R;. The
provider then executes g2, which evaluates Conds on the tuples in F'§ whose
identifier is among the ones received from the user. The user finally computes
the join between R; and R, evaluates Cond, and projects the attributes
of interest. Figure 8(b) illustrates the translation of query ¢=“SELECT Name
FROM Patients WHERE Job=‘lawyer’ AND Disease=‘flu’” AND Ins=100"
formulated over relation PATIENTS in Figure 1(a) into an equivalent set of
queries operating on the fragments in Figure 6. (Values {4,6} in the WHERE
clause of g2 are the identifiers of the tuples satisfying Cond;.)

The choice between the parallel and the sequential strategies depends on
the performance they guarantee and on the resource that the user considers
more valuable. In fact, the parallel strategy has the advantage of reducing the
response time, while causing a higher communication cost than the sequential
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Original query Translated queries
q = SELECT Att q1 := SELECT tid, (AttUAttr(Condy)) N (F1UE)
FROM R FROM F'{
WHERE Cond WHERE Cond;
¢2 := SELECT tid, (AttUAttr(Condy)) N (F2UE)
FROM F'§
WHERE Condsa
qu = SELECT Att
FROM R JOIN Ry ON Ri.tid=Ro.tid
WHERE Cond,
¢ := SELECT Name g1 := SELECT tid, Name, Ins’
FROM Patients FROM F'{
WHERE Job='‘lawyer’ AND WHERE Job="‘lawyer’
Disease=‘flu’ AND
Ins=100 g2 = SELECT tid, Ins>
FROM F'§
WHERE Disease=‘flu’
qu SELECT Name
FROM R; JOIN Rs ON R;.tid=R».tid
WHERE Decrypt(Ins', Ins®)=100

(a) PARALLEL STRATEGY

Original query Translated queries
q := SELECT Att g1 := SELECT tid, (AttJAttr(Condy)) N (F1UE)
FROM R FROM F{
WHERE Cond WHERE Cond;
g2 := SELECT tid, (AttUAtir(Cond,)) N (F2UE)
FROM F'§
WHERE (tid IN Ri.tid) AND Conds
qu := SELECT Att
FROM R1 JOIN R2 ON Ri.tid=Ro.tid
WHERE Cond,,
¢ := SELECT Name g1 := SELECT tid, Name, Ins’
FROM Patients FROM F'§
WHERE Job="‘lawyer’ AND WHERE Job='‘lawyer’
Disease=‘flu’ AND
Ins=100 g2 = SELECT tid, Ins>
FROM F'§
WHERE (tid IN {4,6}) AND Disease=‘FLU’
v := SELECT Name
FROM R1 JOIN Rz ON Ri.tid=R>.tid
WHERE Decrypt(Ins', Ins®)=100

(b) SEQUENTIAL STRATEGY

Fig. 8. An example of query translation in the two can keep a secret scenario

strategy (Rq is likely to be composed of a higher number of tuples). The choice
of the provider that goes first in the sequential strategy instead depends only on
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Fig. 9. Multiple fragments

the selectivity of Cond; and Conds, since it is preferable to evaluate the most
selective condition first.

5 Multiple fragments

We present a solution based on encryption and fragmentation where data can be
splitted among an arbitrary number of fragments [7,10], which may be possibly
stored at the same provider (Figure 9).

Fragmentation model The goal of the proposal in [7] is to remove the limiting
assumption of absence of collusion between the two providers characterizing the
solution in [1]. The idea is therefore to compute a fragmentation (with no limits
on the number of fragments composing it) in such a way that its fragments are
not linkable, meaning that it is not possible for parties different from the data
owner and authorized users to reconstruct the original relation and then also the
sensitive values and associations. Being non linkable, fragments can be stored at
a different providers, but also at the same provider, with no confidentiality risk.

The approach in [7] couples vertical fragmentation with encryption to sat-
isfy confidentiality constraints. In particular, each singleton constraint c={A}
is satisfied by encrypting the involved attribute A. Each association constraint
c={A1,..., A,} can instead be satisfied by either encrypting at least one among
the Aq,..., A, attributes, or by storing these attributes in different fragments.
To prevent indirect violation of confidentiality constraints by joining fragments,
fragments must be disjoint (i.e., no attribute can appear in more than one frag-
ment). More formally, a correct fragmentation is defined as follows.

Definition 3 (Correct Fragmentation). Let R(Ai,...,A4,) be a relation
schema and C be a set of confidentiality constraints over it. A fragmentation
F=A{F1,...,F,,} is correct iff:

— Ve el,VF € F: ¢ £ F (confidentiality);
—VF,F;eF,i#j: F;NF; =0 (unlinkability).
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Fig. 10. An example of correct fragmentation of relation PATIENTS in Figure 1(a) in
the multiple fragments scenario

The first condition states that a fragment in F cannot contain all the attributes
composing a confidentiality constraint. The second condition states that frag-
ments must be disjoint. This approach has two advantages: i) being disjoint, all
fragments F'1,...,F, composing a fragmentation F are not linkable and can
therefore be stored at the same provider; and 4i) not imposing any limit on the
number of fragments, association constraints can always be satisfied without en-
cryption, thus increasing the wvisibility over data, with clear advantages for query
evaluation. In fact, the plaintext representation of an attribute A in a fragment
F' permits the evaluation of conditions over A at the cloud provider storing F'.
For this reason, the approach in [7] aims at computing fragmentations that max-
imize visibility. A fragmentation maximizes visibility if each attribute A in R not
appearing in a singleton constraint is plaintext represented in at least one frag-
ment. Note however that, to satisfy the unlinkability condition, each attribute
not appearing in a singleton constraint can belong to at most one fragment in
a correct fragmentation. For instance, F={{Name,Job}, {Disease,Treatment},
{Race,Ins}} is a correct fragmentation of relation PATIENTS in Figure 1(a) with
respect to the constraints in Figure 1(b). This fragmentation maximizes visi-
bility as all the attributes but SSN, which is sensitive per se (¢1), are plaintext
represented in exactly one fragment.

At a physical level, each fragment F; = {A;,,..., A;, } of a fragmentation F
is represented by a physical fragment F$(salt, enc, Aiy, ..., A;, ), where:

— salt is the primary key of the relation and contains a randomly chosen value;
— enc is an attribute storing the encrypted attributes in R\{4;,,..., 4i, };
— {A;,..., A; } is the set of attributes composing fragment F.

Each tuple ¢ in r is represented by a tuple in each of the physical frag-
ments {F§,..., F¢} corresponding to the fragments {Fy,..., Fp,} in F. Tu-
ple t°¢ representing ¢ in F¢ is such that: ¢°[salt] is a random value; t¢[enc]| is
computed as Enc(t[R \ F;| @ t[salt], k), with @ the binary XOR operator; and
t°[A]=t[A], VA€F. Note that the attributes not appearing in plaintext in F*©
are combined with a random salt before encryption to prevent frequency at-
tacks [33]. Since each physical fragment stores (either plaintext or encrypted) all
the attributes in R, every query can be evaluated on a single fragment. Figure 10
illustrates the physical fragments representing fragmentation F={{Name,Job},
{Disease,Treatment}, {Race,Ins}} of relation PATIENTS in Figure 1(a).
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Metric | Quality function

Number of fragments |card(F)

n

Affinity Z aff(Fy)

k=1

0o
Query evaluation cost Zfreq(q,z)@ost(q,;,f)

i=1

where cost(q;, F)=Min(cost(qi,Fj), j=1,...,n)

and cost(qi,F;)=S(qi, Fj)|r|- size(t;),i=1,...,mand j=1,...,n

Fig. 11. Classification of the metrics in the multiple fragments scenario

Fragmentation metrics Given a relation schema R and a set C of confiden-
tiality constraints over it, there may be different correct fragmentations that
maximize visibility. As an example, a fragmentation F where each attribute in
R that does not appear in a singleton constraint is stored in a different fragment
is correct and maximizes visibility. However, this solution causes an excessive
fragmentation making the evaluation of queries involving more than one at-
tribute expensive. We now present different metrics (see Figure 11) that can be
used to assess the quality of a fragmentation in terms of the query evaluation
overhead caused to users.

— Minimal fragmentation (e.g., [7]). A simple metric for evaluating the qual-
ity of a fragmentation consists in minimizing the number of fragments thus
avoiding excessive fragmentation. Intuitively, a fragmentation with a lower
number of fragments is likely to store more attributes in the same frag-
ment, clearly favoring the evaluation of queries that involve these attributes
(also together). For instance, both F={{Name,Job}, {Disease,Treatment},
{Race,Ins}} and F'={{Name,Job}, {Disease},{Treatment}, {Race,Ins}}
are correct fragmentations of relation PATIENTS in Figure 1(a). However, F
is preferable to F' because it efficiently supports the evaluation of queries
involving, both Disease and Treatment. Two different notions of minimal-
ity have been proposed: minimality (i.e., composed of the minimum number
of fragments [3,12]) and local minimality (i.e., composed of fragments that
cannot be merged without violating constraints [7,12]). We note that, while
a locally minimal fragmentation might not be composed of the minimum
number of fragments, a minimal fragmentation is indeed also locally mini-
mal (i.e., merging any of its fragments violates at least a constraint).

— Mazimum affinity (e.g., [10]). A more precise assessment of the quality of
a fragmentation is based on the affinity between attributes. The affinity
between two attributes quantifies the performance advantage in query eval-
uation that can be obtained by storing them in the same fragment [31]. At-
tributes with high affinity are expected to be frequently involved together in
queries. Therefore, the higher the affinity, the higher the advantage in query
evaluation of having the attributes stored in the same fragment. Attribute
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Disease
Treatment
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Fig. 12. An example of affinity matrix

affinity can be modeled by an affinity matriz M, which is a symmetric ma-
trix with a row and a column for each attribute that do not appear in a
singleton constraint. Each cell M[A;,A;], with ¢ # j, represents the benefit
obtained by storing attributes 4; and A4; in the same fragment. For instance,
Figure 12 illustrates an example of affinity matrix for relation PATIENTS in
Figure 1(a). Fragmentations that keep in the same fragment attributes with
high affinity are to be preferred over fragmentations that split them in differ-
ent fragments. The quality of a fragmentation F is measured as the sum of
the affinity of the fragments composing it, where the affinity of a fragment F’
is obtained by summing the affinities of the pairs of attributes in F'. As an ex-
ample, consider relation PATIENTS in Figure 1(a), the fragmentation in Fig-
ure 10, and the affinity matrix in Figure 12. The quality of F is computed as:
M [Name, Job| + M [Disease, Treatment| + M [Race, Ins| = 30+ 25+ 40 = 95.

Minimum query evaluation cost (e.g., [8]). Another possible metric is based
on the definition of a query cost model, which can be used to evaluate the cost
of executing a representative set of queries over fragments. This metric, com-
pared with the affinity metric, has the advantage of taking into consideration
also the benefit of storing in the same fragment arbitrary sets of attributes
(instead of pairs thereof). The adoption of this metric requires the availabil-
ity of the query workload Q of the system, which is a set {q1,..., ¢m} of
queries along with their execution frequency freq(q;), ¢ = 1,...,m. The pro-
posal in [8] assumes that queries in Q are of the form “SELECT 4;,,..., 4;,
FROM R WHERE A_; (A; IN V;)” with Vj a set of values in the domain of
attribute A;. The quality of a fragmentation F then depends on the cost
of executing the queries in Q, properly weighted by their frequency, over
the fragments in F. Since each physical fragment stores, either plaintext or
encrypted, all the attributes in R, the cost of evaluating a query ¢ over F is
the minimum among the costs of evaluating ¢ over each physical fragment
F¢ in F. The cost of evaluating ¢ on F°¢ is estimated by the size of the
result returned to the user, because the costs of communication, decryption,
and evaluation of conditions on encrypted attributes at the user side are
more expensive than the computational costs at the provider side. Hence,
the cost cost(q;,F;) of executing ¢; on F; is computed as S(q;, F;) - |r] -
size(t;), where S(q;, F';) is the selectivity of query g¢;, |r| is the number of
tuples in 7, and size(t;) is the size of the attributes appearing in the SELECT
clause of ¢; and the size of attribute enc if there is the need of accessing
attributes not appearing in plaintext in F';. The selectivity of condition A
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INV ={v1,...,v,} is an estimate of the ratio of the number of tuples in F
that satisfy the condition over the total number of tuples in r. If attribute A
does not appear in plaintext in F', the selectivity is set to 1. Consider, as an
example, a query workload composed of two queries: ¢;=“SELECT * FROM
Patients WHERE Job=‘teacher’ AND Race="‘asian’”, with frequency 30; and
¢2="“SELECT* FROM Patients WHERE Job=‘lawyer’ AND Disease=‘flu’”,
with frequency 70. The fragmentation in Figure 10 implies a query eval-
uation cost cost(Q,F) = cost(q1,F) - freq(q1) + cost(qa, F) - freq(q2) =
1/6-6-1-30+1/3-6-1-70 = 170. In fact, assuming that the size of the
tuples is the same for all the fragments and is equal to 1, the fragment that
minimizes query evaluation cost for ¢; is F'y, and are both F'; and F'5 for ¢s.
Indeed, the most selective condition in ¢; operates on attribute Job, while
the two conditions in ¢o are equally selective.

Computing an optimal fragmentation Regardless of the metric adopted to
evaluate the quality of a fragmentation, the problem of computing an optimal
fragmentation is NP-hard (the minimum hypergraph coloring problem reduces
to it in polynomial time [10]). Hence, the time complexity of any algorithm able
to compute an optimal fragmentation is exponential in the number of attributes
in R. In the following, we briefly survey exact and heuristic algorithms proposed
for efficiently computing a correct and optimal (according to a chosen metric)
fragmentation.

— Minimal fragmentation (e.g., [3,7,12]). Both exact and heuristic algorithms
have been proposed to the aim of avoiding an excessive fragmentation and
producing minimal or locally minimal fragmentations. The exact algorithms
in [3,12], proposed to produce a minimal fragmentation, rely on a logical
modeling of the problem. The attributes in R are interpreted as Boolean vari-
ables, and each confidentiality constraint ¢c={A4;,...,A,} in C as a Boolean
formula representing the conjunction A; A ... A 4, of the attributes com-
posing it. A fragment F' of R is a truth assignment that assigns true to the
variables representing the attributes in the fragment, and false to the other
variables. A fragmentation F is a set of truth assignments that satisfy all the
constraints in C, and such that each variable A is assigned true in at most
one fragment F' in F. Two approaches have been studied to compute a set
of truth assignments representing a correct fragmentation that use a SAT
(SATisfiability) and an OBDD (Ordered Binary Decision Diagram) formu-
lation of the fragmentation problem. The adoption of SAT solvers has been
proposed in [3] to compute a fragmentation composed of the minimum the
number of fragments. To this aim, a SAT solver able to compute a correct
fragmentation composed of n fragments is iteratively invoked. At the first
iteration, n is set to 1. It is then incremented by 1 at each iteration. The
iteration stops when the SAT solver finds a correct fragmentation. The adop-
tion of the OBDD data structure to represent confidentiality constraints and
efficiently compute fragments (i.e., truth assignments) satisfying constraints
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has been proposed in [12]. The problem of computing a fragmentation com-
posed of the minimum number of fragments is translated into the problem
of computing a maximum weighted clique over a fragmentation graph. The
fragmentation graph models fragments, efficiently computed using OBDDs,
that satisfy all the confidentiality constraints and a subset of the visibility
constraints (i.e., required views over the data) defined in the system. Another
heuristic approach for computing a locally minimal fragmentation has been
proposed in [7]. The algorithm starts from an empty fragmentation F and
tries to insert each attribute A in R (non involved in a singleton constraint)
into a fragment F'€F. If A cannot be inserted into any fragment in F with-
out violating constraints, a new fragment F'={A} is created and inserted
into F. The attributes are considered in decreasing order of the number of
constraints in which they are involved (i.e., attributes appearing in a higher
number of constraints are considered first).

Mazimum affinity (e.g., [10]). The greedy approach proposed in [10] takes
advantage of the affinity matrix M previously illustrated in this section to
compute a fragmentation that maximizes affinity. The proposed technique
starts with a fragmentation F where each attribute A that does not appear in
a singleton constraint belongs to a different fragment F'€F. At each iteration,
the algorithm merges the pair of fragments (F;,F;) with highest affinity
according to M, provided no constraint is violated. The algorithm terminates
when no further merge is possible.

Minimum query evaluation cost (e.g., [8]). The exact algorithm proposed
in [8] to minimize the cost of query execution is based on an efficient visit
of the solution space of the fragmentation problem, which is represented
through a lattice (Sp,=<). Set Sr includes all the fragmentations of relation
R composed of disjoint fragments; < is a dominance relationship between
fragmentations where F<F' iff F can be obtained by merging fragments
in F'. The visit of the fragmentation lattice is based on two nice proper-
ties of the dominance relationship: i) given a non-correct fragmentation F,
any fragmentation F such that F<F' is not correct; and i) given two frag-
mentations F and F’ such that F<F’', the query evaluation cost of F’ is
higher than the cost of F (i.e., the cost is monotonic with the dominance
relationship). A heuristic algorithm exploiting the fragmentation lattice has
also been proposed [8].

Query evaluation Since each physical fragment stores (either plaintext of
encrypted) all the attributes in R, a query ¢ can be evaluated on any physical
fragment. However, the performance clearly depends on the fragment that is
chosen to evaluate ¢. Given the set Att of attributes involved in ¢, it is intuitively
more convenient to evaluate ¢ over a physical fragment F'§ that stores attributes
in Att (or a subset thereof) in the clear, rather than over a fragment F'; where
attributes in Atl are encrypted. In fact, choosing F'§ would require the user to
download the whole fragment from the cloud and to locally evaluate the query
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Original query Translated queries

q := SELECT Att gp ‘= SELECT salt, enc, AtiNF
FROM R FROM F°
WHERE Cond WHERE Cond,

Gu = SELECT Att
FROM  Decrypt( Rp.enc®salt k)
WHERE Cond.,

q := SELECT Name qp = SELECT salt, enc, Name
FROM Patients FROM F¢
WHERE Disease=‘flu’ AND WHERE Job=‘teacher’

Job="‘teacher’
Gu = SELECT Name
FROM  Decrypt(Rp.enc@salt, k)
WHERE Disease=‘flu’

Fig. 13. An example of query translation in the multiple fragments scenario

(after the encrypted attributes have been decrypted). Instead, resorting to F'§
permits to (partially) delegate to the provider the query evaluation task.

The solution in [7] considers queries ¢ of the form SELECT Att FROM R
WHERE Cond, with Att a set of attributes in R and Cond= A, cond; a conjunc-
tion of basic conditions of the form (A4; op v), (A; op Aj), or (4; IN {v;,...,v}),
where A;,A; € R, {v,v1,...,v;} are constant values in the domain of 4;, and
op is a comparison operator in {=,#,>,<,>, <}. Let us assume that query
q is evaluated over physical fragment F¢. The basic conditions in the WHERE
clause of ¢ operating on attributes in F' (i.e., attributes appearing in plaintext
in F¢) can be evaluated by the provider while the basic conditions operating on
attributes not included in F' (i.e., encrypted attributes in F¢) must be evaluated
by the user who knows the encryption key. To translate ¢ into an equivalent set
of queries operating on F¢, Cond is split in sub-conditions Cond, and Cond,,,
as follows:

— Cond,=/\, cond; : Attr(cond;) C F is the conjunction of the basic conditions
involving only attributes plaintext stored in the chosen fragment;

— Cond,=/\, cond; : Attr(cond;) € F is the conjunction of the basic condi-
tions that involve at least one attribute that appears encrypted in the chosen
fragment.

For instance, consider the fragmentation in Figure 10, and assume that query
“SELECT Name FROM Patients WHERE Disease=‘flu’ AND Job="‘teacher’” is
evaluated over fragment F'{. In this case, Cond includes conditions Disease="‘flu’
and Job=‘teacher’. Since attribute Job belongs to F'; while attribute Disease
does not, Cond,, includes condition Job="‘teacher’, and Cond,, includes condition
Disease=‘flu’.

After conditions in Cond have been classified between Cond, and Cond,,
query ¢ is translated in two queries, as illustrated in Figure 13. Query ¢,, ex-
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ecuted at the provider side, operates on the selected physical fragment F'¢ and
evaluates condition Cond,. When the user receives the result R, of query ¢, it
decrypts attribute enc and evaluates, on the resulting tuples, query ¢,. Query ¢,
evaluates condition Cond, and projects the attributes in Att. Note that if Cond,,
is empty and all the attributes in the SELECT clause of ¢ belong to F', then ¢,
does not need to be executed and ¢, does not need to return attributes salt and
enc (since the result R, returned by ¢, already coincides with the result of the
original query ¢). Consider, as an example, relation PATIENTS in Figure 1(a),
the fragmentation in Figure 10, and query ¢=“SELECT Name FROM Patients
WHERE Disease=‘flu’ AND Job=‘teacher’”, returning the names of the teachers
suffering from flu. While, in principle, the query might be evaluated using any
of the three fragments, F'{ and F'§ are more convenient than F§ because F§
does not include any of the attributes involved in the conditions of ¢. Figure 13
illustrates the translation of ¢ in the corresponding sub-queries operating at the
provider side (i.e., g,) and at the user side (i.e., ¢,) using F¥§.

6 Keep a few

We present a solution completely departing from encryption where a trusted
party (the owner) is involved in storing a portion of the data (Figure 14). Specif-
ically, data are splitted into two fragments, one stored at the data owner side,
and one stored at an external provider so that the fragment managed by the
provider does not violate the confidentiality constraints [4,9,11].

Fragmentation model Sensitive associations are protected by the approaches
discussed in previous sections by encrypting (a portion of) the original relation
and/or by splitting its content into non-linkable fragments. The approach in [9]
departs from encryption, and protects sensitive associations relying on owner-
side storage to satisfy confidentiality constraints. According to this proposal,
relation R is fragmented generating a pair F = (F,, F),) of fragments, with F,
stored at the data owner and F, stored at a cloud provider. This solution satisfies
singleton constraints c={ A} by storing A at the owner. Similarly, it satisfies as-
sociation constraints c={ A1, ..., 4,,} by storing at least one among {44,...,4,,}
at the owner. Formally, a correct fragmentation is defined as follows.

24



Fe Fe

o

tid SSN Name | Ins tid | Race Job Disease Treatment
1 123-45-6789 | Alice 160 1 white | teacher Hu paracetamol
2 234-56-7890 | Bob 100 2 while | farmer asthma bronchodilators
3 345-67-8901 | Carol 100 3 asian | nurse gastritis | antacids
4 456-7 8-9012 | David 200 4 black | lawyer angina nitroglycerin
5 567-89-0123 Eric 100 5 black | secretary | flu aspirin
6 678-90-1234 Fred 180 6 asian lawyer diabetes | insulin

Fig. 15. An example of a correct fragmentation of relation PATIENTS in Figure 1(a) in
the keep a few scenario

Definition 4 (Correct Fragmentation). Let R(Ai,...,A4,) be a relation
schema and C be a set of confidentiality constraints over it. A fragmentation
F = (F,, Fp) is correct iff:

— Ve el,c € Fy, (confidentiality);
— F,UF,=R (losslessness).

The first condition states that fragment F', cannot contain all the attributes
composing a confidentiality constraint. This condition must hold only for F,
since F, is stored at the data owner and is therefore accessible to authorized
users only. The second condition demands that all attributes in R are represented
at the data owner or at the cloud provider, thus guaranteeing losslessness of the
fragmentation. Although, in principle, F', might include attributes appearing in
F,, this redundancy is not necessary and might be expensive for the data owner
(both in terms of storage and computation). Fragments are then required to be
disjoint (i.e., F,NF,=0). For instance, F = (F,, F,,) with F,={SSN,Name,Ins}
and F',={Race,Job,Disease,Treatment} represents a correct fragmentation of
relation PATIENTS in Figure 1(a) with respect to the confidentiality constraints
in Figure 1(b).

At the physical level, fragments F', and F', must have a common key attribute
to permit authorized users to correctly reconstruct the content of relation r. This
attribute can be either the primary key of relation R, if it is not sensitive, or
an attribute that does not belong to the schema of R and that is added to both
F, and F, to this purpose. Assuming that the primary key of R cannot be
publicly released, a fragmentation F = (Fy, F},), with F, = {4,,,..., 4, } and
F,={A,,..., Ay}, is translated into physical fragments F'§(tid,A,,, ..., Ao,)
and I (tid,Ap, , ..., Ap,), where tid is a randomly generated tuple identifier. Fig-
ure 15 illustrates the physical fragments representing fragmentation F = (Fy,, F},)
with F,={SSN,Name,Ins} and F,={Race,Job,Disease,Treatment} of relation
PATIENTS in Figure 1(a). Note that at least one attribute of each constraint in
Figure 1(b) is in F,.

Fragmentation metrics Given a relation schema R and a set C of confiden-
tiality constraints over it, there may exist different correct fragmentations that
are non-redundant. For instance, consider a fragmentation F = (Fy, F,) where
F, = R and F, = (. This fragmentation is correct and non-redundant, but
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Attribute A [ size(A) | [ Query ¢ [ freq(q) | Attr(q) [ Condgq |

SSN 10 q1 20 Job, Disease (Job), (Disease)

Name 20 q2 30 Disease, Treatment | (Disease), (Treatment)
Race 5 q3 40 Job, Ins (Job), (Ins)

Job 18 qa 10 SSN, Ins, Disease (SSN), (Ins), (Disease)
Disease 18

Treatment 30

Ins 8

(a) (b)

Fig.16. An example of size of attributes (a) and query workload (b) for relation
PATIENTS in Figure 1(a)

it does not take advantage of outsourcing as no storage and/or computation
is delegated to the cloud provider. To maximize the advantages for the data
owner, she must push to the cloud provider as much as possible of the storage
and computation workload necessary for the management of her data. To this
aim, it is necessary to properly measure the storage, computation, and commu-
nication overhead caused to the data owner by the storage and management of
fragment F,. In the following, we illustrate the metrics that can be adopted to
assess the quality of a fragmentation, depending on the resource that the data
owner values more and on the information available about the system workload
at initialization time [9)].

— Minimal fragmentation. The most straightforward metric consists in count-
ing the number of attributes in F,. Intuitively, a fragment composed of a
lower number of attributes is likely to be smaller (reducing the storage oc-
cupation), and to be involved in a lower number of queries (reducing the
computation and communication overhead).

— Minimal size of attributes. If the data owner aims at limiting the storage
occupation at the provider side, the most effective metric to assess the quality
of a fragmentation measures the size of F',. The storage occupation of F', is
computed as the sum of the size of the attributes composing it. For instance,
suppose that the size of the attributes of relation PATIENTS in Figure 1(a)
is as summarized in Figure 16(a). The size of fragment F, in Figure 15 is
size(SSN)+size(Name)+size(Ins) = 10 + 20 4+ 8 = 38.

— Minimal number of queries. The computation and communication overhead
at the data owner side can be measured as the number of queries whose eval-
uation requires the owner’s intervention (i.e., queries involving at least one
attribute in F',). The adoption of this metric requires the knowledge of the
query workload Q characterizing the system that, in this scenario, is a set
{q1,...,qm} of representative queries, along with their frequency freq(q;),
i=1,...,m. For instance, the first three columns in Figure 16(b) represent
a query workload for relation PATIENTS in Figure 1(a). The cost of a frag-
mentation F = (F,, F,) is computed as the sum of the frequencies of the
queries including at least one attribute in F,. With respect to the workload
in Figure 16(b), the fragmentation in Figure 15 requires the evaluation of
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| | Metric | Quality function

Number of attributes|card(F,)
Storage
Size of attributes Z size(A)
AeclF,
Number of queries Z freq(q) s.t. Attr(q)NF o#£0
Computation and qeQ
communication Number of conditions Z freq(cond) s.t. condNF ,#0
conde Cond (Q)

Fig. 17. Classification of the metrics in the keep a few scenario

freq(qs)+freq(qs) = 50 queries at the data owner, since g3 and ¢4 involve
attributes in F,,.

— Minimal number of conditions. A more precise metric measuring the com-
putation overhead of the data owner considers, instead of the number of
queries, the number of conditions she should evaluate. In fact, the presence
of multiple conditions in the same query operating on F, causes a higher
computation overhead for the data owner. To adopt this metric, it is neces-
sary to know, besides the frequency freg(q;) of each query ¢; in the query
workload Q, also the conditions, denoted Cond(g;), composing it. The qual-
ity of F = (F,, F)) is then computed as the sum of the frequencies of the
conditions in @ involving attributes in F,. For instance, the first, second,
and fourth column of Figure 16(c) represent a possible workload profile for
relation PATIENTS in Figure 1(a). With respect to this workload, the frag-
mentation in Figure 15 requires the evaluation of freq((SSN))+freq({Ins))
=10 + (40 + 10) = 60 conditions at the data owner side.

Figure 17 summarizes the formal definition of the metrics illustrated above.
Note that the adoption of each metric is subject to the knowledge of different
information about relation r and the query workload expected for the system.

Computing an optimal fragmentation The problem of computing an opti-
mal fragmentation that minimizes the storage or the computation and commu-
nication costs for the data owner is NP-hard (the minimum hitting set problem
reduces to it in polynomial time [9]). The heuristic approach proposed to com-
pute a good fragmentation is based on the nice property that all the metrics
illustrated above are monotonic in the number of attributes in F, (i.e., the cost
of a fragmentation F increases when an attribute is moved from F), to F,).
Hence, the same heuristics applies to all the four metrics in Figure 17. The
algorithm proposed in [9] aims at computing a locally minimal fragmentation
F = (F,, F,), which is defined as a fragmentation where no attribute can be
moved from F, to F, without violating confidentiality constraints. The algo-
rithm first inserts into F', all the attributes that are considered sensitive per se
(i.e., the attributes involved in singleton constraints). The remaining attributes,
which initially belong to F',, are organized in a priority queue. The priority of an
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attribute A depends on: 7) the number of constraints that would be solved mov-
ing A to F,, and i) the cost that the data owner would pay to move A to F,.
The algorithm iteratively extracts from the queue the attribute A with highest
priority (i.e., the attribute with minimum cost per solved constraint) and inserts
it into F',. The iteration stops when either all the constraints are satisfied or the
queue is empty (i.e., F,=R and F,=0). The algorithm finally tries to move each
attribute in F, to F',, to guarantee minimality of the computed fragmentation.

Query evaluation A query ¢ formulated over the original relation r must
be translated into an equivalent set of queries operating on F = (F,, F}),). The
solution in [9] considers queries ¢ of the form SELECT At FROM R WHERE
Cond, with Att a set of attributes in R and Cond= A, cond; a conjunction of
basic conditions of the form (A4; op v), (4; op Aj), or (A;i IN {v;,...,vp}),
where A4,4;,A4; € R, {v,v1,...,vx} are constant values in the domain of A;,
and op is a comparison operator in {=, #, >, <, >, <}. Although in principle the
data owner can evaluate, any query ¢ formulated by the users, such a solution
should be avoided when possible as it would reduce the advantages of resorting
to a cloud provider for partial data storage and management. In fact, the cloud
provider shluld be delegated for the evaluation of all those conditions operating
on attributes in F,. Given query ¢, the approach in [9] first splits Cond in
three sub-conditions, Cond,, Cond,, and Cond,,, depending on the attributes
involved in each basic condition, as follows:

— Cond,=/\; cond; : Attr(cond;)CF, is the conjunction of basic conditions
that involve only attributes stored at the data owner, which can be evaluated
only by the owner;

— Cond,=/\, cond; : Attr(cond;)CF, is the conjunction of basic conditions
that involve only attributes stored at the cloud provider, which can be eval-
uated by the provider;

— Condyo=/\; cond; : Attr(cond;)NF,7#D and Attr(cond;)NF,#0 is the con-
junction of basic conditions of the form (A4; op A;), where A;€F, and A;€F,,
which can be evaluated only by the data owner, with the support of the
provider.

For instance, consider relation PATIENTS in Figure 1(a), its fragmentation in
Figure 15 and query ¢=“SELECT Name FROM Patients WHERE Disease=‘flu’
AND Ins=100". Cond, includes condition Disease=‘flu’; Cond, includes condi-
tion Ins=100; and Cond,, is empty.

The evaluation of a query q on R can follow the provider-owner or the owner-
provider strategies, depending on the order in which Cond,, Cond,, and Cond,,
are evaluated (see Figure 18).

— Provider-Owner strategy. This strategy first evaluates condition Cond, at

the provider side and then evaluates both Cond, and Cond,, at the data
owner side. Query ¢ is translated into two equivalent queries ¢, and g¢,, as
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Original query

Translated queries

q := SELECT Att
FROM R
WHERE Cond

gp 1= SELECT {tid, (AttUAttr(Condyo)})NFp
FROM Fj
WHERE Cond,

Go := SELECT Att
FROM F¢ JOIN R, ON F¢.tid=R,.tid
WHERE Cond, AND Condp,

q := SELECT Name
FROM Patients
WHERE Disease=‘flu’ AN
Ins=100

qp = SELECT tid, Name
FROM [}

D WHERE Disease="‘flu’

SELECT Name
FROM Fj JOIN Ry, ON Fj.tid=Rp.tid
WHERE Ins=100

qo :

(a) PROVIDER-OWNER STRATEGY

Original query

Translated queries

q := SELECT Att
FROM R
WHERE Cond

(o := SELECT tid
FROM F§
WHERE Cond,

qp := SELECT (AttUAttr(Condp,))NF)p
FROM Fj
WHERE (tid IN R,) AND Cond,

@po = SELECT Att
FROM F§ JOIN R, ON F§.tid=R,.tid
WHERE Condp,

q := SELECT Name
FROM Patients
WHERE Disease=‘flu’ AND
Ins=100

Go := SELECT tid
FROM F§
WHERE Ins=100

gp := SELECT tid, Name
FROM [}
WHERE (tid IN {2,3,5}) AND Disease=‘flu’

(po := SELECT Name
FROM F§ JOIN R, ON F§.tid=R,.tid

(b) OWNER-PROVIDER STRATEGY

Fig. 18. An example of query translation in the keep a few scenario

illustrated in Figure 18(a). Query ¢, operates on F' » and evaluates condi-
tion Cond,. It returns to the data owner the tuple identifier tid (which is
necessary to join the result R, of ¢, and F') and the attributes in F;, that
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appear in the SELECT clause of ¢ or in Cond,,. When the data owner re-
ceives R, she executes query ¢,, that computes the join between R, and
F¢, evaluates Cond, and Cond,,, and projects the attributes in the SELECT
clause of ¢. The data owner finally returns the result R, of ¢p, to the user.
As an example, Figures 18(a) illustrate the translation of query ¢=“SELECT
Name FROM Patients WHERE Disease=‘flu’ AND Ins=100" formulated over
relation PATIENTS in Figure 1(a) into an equivalent set of queries operating
on the fragmentation in Figure 15.

— Owner-Provider strategy. This strategy first evaluates Cond, at the data
owner, then evaluates condition Cond,, at the provider side, and finally eval-
uates Cond,, again at the data owner side. Query ¢ is then translated into
three queries, as illustrated in Figure 18(b). Query ¢, operates on F'¢, eval-
uates condition Cond,, and projects attribute tid only. The result R, of
this query, computed by the data owner, is sent to the cloud provider that
executes query ¢, on the join between R, and Fj. Query g, evaluates condi-
tion Cond,, and returns attribute tid and the attributes in F'j that appear
in the SELECT clause of ¢ or in Cond,,. The provider returns the result
R, of g, to the data owner, who evaluates g, on the join between R, and
F¢. Query gpo evaluates Cond,, and projects the attributes in the SELECT
clause of ¢. The data owner finally returns the result R, of ¢,, to the user.
As an example, Figures 18(b) illustrate the translation of query ¢=“SELECT
Name FROM Patients WHERE Disease=‘flu’ AND Ins=100" formulated over
relation PATIENTS in Figure 1(a) into an equivalent set of queries operating
on the fragmentation in Figure 15 (values {2,3,5} in the WHERE clause of ¢,
represent the identifiers of the tuples satisfying Cond,=Ins=100).

In the choice between these two strategies, it is necessary to take into con-
sideration (besides performance) the risk of leakage of sensitive information that
the Owner-Provider strategy may cause. In fact, if the provider knows the query
g formulated by the user, this strategy reveals to the provider which are the
tuples in F, that satisfy Cond,, even if the provider is not authorized to see the
content of attributes in F,.

7 Conclusions

Users as well as private and public organizations are more and more often relying
on cloud providers to store and manage their data, enjoying economic advan-
tages and high data availability. Although appealing, outsourcing the storage and
management of data to the cloud introduces risks for data confidentiality, which
could still represent a major obstacle to the wide adoption of cloud computing.
In this chapter, we focused on the problem of protecting the confidentiality of
data stored at external cloud providers. We first described the confidentiality
requirements that may need to be considered and enforced before moving the
data in the cloud. We then surveyed different approaches that have been pro-
posed for enforcing such confidentiality requirements, using data encryption and
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fragmentation, either by themselves or in combination. In addition to the data
confidentiality issue treated in this chapter, other issues that might need to be
addressed when relying on external cloud providers for data storage or computa-
tion include: data integrity, and availability; protection against external attacks;
selective access to the data; fault tolerance management; the specification of se-
curity requirements on task/resource allocation in a cloud; query privacy; and
query and computation integrity (e.g., [15,17,18,19,23,28,29,30]).
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